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We consider the evolution of a perturbed Bianchi type-1 model universe filled with a radiation 
fluid. The background model shows a smooth transition from the shear-dominated early anisotropic 
universe to the radiation-dominated isotropic one. We have analytic solutions describing the back- 
ground evolution. We numerically investigate the evolution of perturbations in’the metric and the 
fluid variables through the transition. We consider the wave vector lying in a plane of two principal 
axes of the background anisotropy. In view of the well-studied case in the isotropic model we adopt 
the comoving gauge to treat the density perturbation in an ideal fluid. Because of the coupling 
between different modes in the anisotropic stage, the amplitude of resulting tensor perturbation 
in the isotropic stage is comparable to the one of scalar perturbation. We present the evolution 
characterizing the density perturbation and the gravitational waves in some selected parameter 
SPXCZ. 

PACS number(s): 98.80.Hw, 98.7O.Vc 
I. INTRODUCTION 

In ow previous work we presented a general formu- 
lation for studying the perturbations in a Bianchi,type-I 
background metric [l]. An application is made to the case 
where the energy-momentum content is filled with an 
ideal fluid 121. In such a model the early shear-dominated 
anisotropic universe later becomes the matter-dominated 
isotropic one. In [2] we considered the case where the 
perturbation wave vector lies in a plane of two princi- 
pal axes of the background anisotropy. We presented 
the equations using dimensionless variables, and derived 
asymptotic solutions in the shear-dominated stage. In 
the present paper, as a concrete application, we numer- 
ically investigate the evolution in the background filled 
with the radiation fluid. We give the analytic solutions 
which describe the smooth transition of the background 
model from the early shear-dominated anisotropic stage 
to the later radiation-dominated isotropic stage. 

In an anisotropic universe, there exist couplings of all 
three types of modes. In an ideal fluid case with the wave 
vector in a plane of two principal axes, we have two de- 
coupled sets of equations. In one set the scalar mode is 
coupled with one polarization state of the gravitational 
wave and one vector mode; thus, in this case, generally we 
have a fifth-order differential equation. In the other set, 
the other polarization state of gravitational wave mode 
couples with the other remaining vector mode; thus, in 
1/96/53(2)/690(11)/~06.~ 53 
general, we have a third-order differential equation. In 
both sets, the rotation modes work only as sources for 
other modes. Equations in dimensionless forms are pre- 
sented in Eqs. (17)-(29) of [2]. Thus, in general, we need 
the numerical treatment to investigate these pertwba- 
tion equations. In this paper we consider a medium with 
radiation. 

In the ~iedman-Lemaitre-Robertson-Walker (FLRW) 
universe the relevant scales appearing in the perturba- 
tion equations are the sound horizon for the scalar mode 
and the visual horizon for the tensor mode. For the ra- 
diation fluid, since e. = c/A, the sound horizon scale is 
comparable to the visual horizon scale. Inside the hori- 
non the density contrast (6 = &p/p) of the radiation fluid 
shows oscillation with constant amplitude [see Eq. (G23) 
of [l]], whereas inside the horizon the gravitational Wave 
shows oscillating behavior with decaying amplitude [see 
Eq. (G28) of [I]]. 

In the FLRW regime, the density perturbation vari- 
able in the comoving gauge (CG) shows a similar behav- 
ior to the Newtonian one; the perturbed potential and 
the perturbed velocity variables in the zero-shear gauge 
(ZSG) show similar behaviors to the corresponding New- 
tonian ones. Because of the nonvanishing shear in the 
anisotropic background, we have the uniform-shear (van- 
ishing scalar part of the perturbed shear variable) con- 
dition as a gauge-fixing condition; see Sec. IIIB 1 of [l]. 
On scales larger than the %ound” horizon, from Tables 
2 and 8 of [3] we have 
(1) 
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where actl and w?(x, tl are the scale factor and the per- 
,twbed ~dknti~i [r&ted to the perturbed &atial cur- 
vature), re&ctively; w z p/p where p and /I are the 
pressure and the energy density, respectively. An over- 
dot denotes the time derivative based on the background 
proper time t. 

Equation (1) is valid for generally time-varying equa- 
tions @state with p = p(p); in the last step we used 
w = c&t and thus a rn t2/f3(1+w)l. In Eq. (G13) of [I] 
we showed that I+I = +C’; -‘pin the zero-shear gauge cm- 
responds to the perturbed Newtonian gravitational po- 
tential. ‘C is a part of the perturbed three space metric 
defined in Eq. (12) of [l]. From Eq. (B3) of [l] we have 

Et@) = -2e-2sC’“a. Thus, C also characterizes the per- 
turbed part of the intrinsic (Ricci) curvature. From Eq. 
(1) we note that, although C in the zero-shear gauge has 
the correct Newtonian correspondence, C in the comov- 
ing gauge shows simpler behavior; i.e., C[CG = const in 
time for a general equation of state p = p(p). In this pa- 
per we will investigate the evolution of perturbations in 
the comoving gauge. The evolution of the perturbed ve- 
locity and the potential in the uniform-shear gauge con- 
dition will be considered elsewhere. 

In Sec. IIA we present the background evolution. In 
Sec. IIB the perturbation scales are presented. In Sec. 
IIC we present the perturbed equations in the comov- 
ing gauge which describe the coupled evolution of the 
scalar mode and one polarization state of the gravita- 
tional wave. In Sec.11 D the perturbed equations for 
the decoupled set of gravitational wave are presented. 
In Sec. III A the large scale asymptotic solutions for ini- 
tial conditions are derived. In Sec. III B we comment on 
the parameter space which we are considering. In Sec. 
III C the numerical method for solving the perturbed 
equations is briefly mentioned. In Sec. III D the nu- 
merical results are shown. We will present the temporal 
evolution of the perturbation variables in a few selected 
parameter spaces. In Sec. IV the discussion is given. As 
a unit we set c q 1. 

II. EQUATIONS 

A. Background evolution 

We consider a Bianchi type-1 model supported by a 
radiation fluid with w = $. The background equations 
are [Eqs. (2)-(4) of [2]] 
/i + 4ip = 0, i, + 3s.L = 0, 

where Et, se = 0, s, = s&t), s = s(t). Thus, S, cx e--3s and p rx e--4e, 
Using 7 as a time variable (dv 3 a-‘@ a 3 e”) the solutions are derived in Eq, (A5) of [2]: 

(4) 

Since Ca S, = 0 and C, Sz = 6, S, can be represented by a parameter u; see Eq. (31) of [Z]. We normalized a(q) as 
a = 0 at 17 = 0. We also set S?iG&* = vr2, th us normalizing the scale factor as a(~.) = 1. vs indicates the transition 
time from the shear-dominated into the radiation-dominated era. In the limiting cases of the shear-dominated era 
(SDE) and the radiation-dominated era (RDE) we have 

SDE : q < 7. (1) K t2j3) : es x $I2 x tl/3, @.a m 9s& K tw3; 
(5) 

BDE : O>Q (q&) : e’al)cctl”, &+I. (‘5) 
From Eq. (3) we have 

T,= J1+3e2B- 1. (7) 
98 

Some trends of the background evolution are presented 
in Fig. 1. 

B. Perturbation scales 

The perturbed equations will be analyzed in Fourier 
space. Thus, the equations turn into ordinary coupled 
I 
differential equations. Since the Bianchi type-1 model 
is spatially flat, we can decompose the spatial depen- 
dence of the perturbed variables using a wave vector k 
as A(+ t) c( J Ak(t)e”*‘” d3k, etc. To linear order, perter- 
bations with different wave vectors do not mix together. 
Thus, we can single out ~a particular wave vector k and 
consider the equation for Ak(t). Since the same form of 
equations is valid for the Fourier amplitude Ak(t) with 
the spatial derivative which changes into the correspond- 
ing combination of wave vectors, without causing any 
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FIG. 1. Plot of ea+‘* (q). (a), (b), and (c) 
represent the evolution of three different di- 
rections for S, = (-&O, &). In the early 
stage, the background evolves differently in 
different directions, and is thus anisotropic. 
But they evolve like the FLRW universe at 
large II. The transition occurs near vs = 5. 
confusion, we often neglect the subindex k to indicate 
the Fourier amplitude. 

The size and the direction (with respect to the prin- 
cipal axes of the background anisotropy) of the pertur- 
bations can be characterized by the wave vector ka. We 
align the coordinate so that i1 = (l,O, 0), z?, and ?$ are 
three orthogonal directions of the principal axes of the 
background anisotropy. In this paper we consider the 
situation where the wave vector k, lies in a plane of two 
principal axes, thus k, = (0, kz, k3). The index of kQ 

vector is raised by using ye0 as a metric; see Eqs. (1) 
and (2) of [I]. We have 

-s, 

k% = “122(k2)2 = e-28. (k# = 

-‘= (k3)’ 

We introduce 

In Fourier space we have A = -ra@ k,ko = -k” k, which 
becomes A = -(k2kz+k3k3) in our alignment of the wave 
vector. Using k E a, we have 

(10) 
The horizon crossing epoch of a given scale k, qB(k), is 
defined as 

(11) 

Erom this relation we can express ks in terms of 1)~ and 
T as 

The wave propagation vectors kz and k3 will be specified 
in terms of T and q~. The parameters T and 718 char- 
acterize the direction and the size of the wave vector, 
respectively. 

C. Perturbed equations in the comoving gauge 

The set of perturbation equations describing the set 
including the scalar mode is presented in Eqs. (17)-(26) 
of 121. The equation for the rotation mode Qv is inde- 
pendent of other equations. However, the rotation mode 
can work as a source for other modes. In the following 
we ignore the contribution ftom the rotation mode. By 
irrotational condition we mean Q,, = 0. However, the 
scalar and the tensor modes can generate the B, term; 
see Eq. (26) of [2]. 

In the comoving gauge, we let 

cj E 0. (13) 

In the following, we present the fundamental equations 
for general w = con&. From Eqs. (l&J), (19), (20), (24), 
and (26) of [2], we have 
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6R= is-3wb 

lfw ) 
(14) 

-$T+(.+$) (nc.-3~6)+4(~;-r’s)‘k~~~k~(-&d-;C+G), (15) 

where a prime denotes the time derivative with respect to s, I c $. From Eqs. (19), (21), (22), and (26) of [2] we 

(17) 
Equations (14)-(17) describe the coupled evolution of the 
scalar mode (characterized by 6 or C) and one polarba- 
tion state of the gravitational wave (G). These equations 
can be combined into a fourth-order differential equatidn 
for 6 or G. 

A combination of the wave vector k2kzk3k3/A2 ap- 
pears in several places in OUT perturbed set of equa- 
tions (Eqsi (14)-(18)j. We present the evolution of this 
quantity ii Fig. 2. As T increases, the slope change of 
k2kzk3ks/Aa occurs at an earlier time. Since & > S,, 
in the early enough time we have k3k3 > kzkz for any 
T (kg # 0). Thus, in the early time, the wave vector 

is in the k, direction effectively. As the background ap- 
proaches the FLRW regime, &?&@& approaches r. 
Thus, for large values of T; the transition of the effective 
wave direction from the k:3 direction into the i, direc- 
tion with kz/k3 = T will occur earlier. For all cases with 
different values of T, as .s becomes large, k2kzk3ks/A2 
approaches r2/(1 +r’)‘. Later we will see that this term 
causes the perturbed variables (S, C, G, etc.) to change 
their slopes at an earlier time as T increases; compare 
with Figs. 3(a)-3(c). 

D. Decoupled gravitational wave mode 

A set of equations for the decoupled gravitational wave 
mode is given in Eqs. (27)-(29) of [2]. The decoupled 
gravitational wave is determined by a second-order dif- 
ferential equation with &,, as a source. We ignore Q”; 
thus, f& = 0. However, & does not vanish, and we have 
FIG. 2. Tiie time evolution of 
kZkzk3k3/AZ for T = 100 (a), 10 (b), 1 (c), 
and 0.1 (d). We consider S, = (0, -a, a). 
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) 
G” + 3 + ; + 2 (si - 8;) + 2 (Sk - 8;) 
a 
k=kz 1 G, 

+ -A + 4 (S’Z - si) (si - 5’2) 
k2kz , 2 k2kzk3k3 
7 + 4 (S’Z - s3) A2 1 G = 0. (18) 

This equation describes the evolution of the decoupled gravitational wave (G). 

III. EVOLUTIONS 

A. Initial conditions 

In the numerical study we will consider Eqs. (14)-(17) as differential equations for b and G. As the initial condition 
we can use the large scale asymptotic solutions of the perturbed variables in the shear-dominated stage which were 
derived in Eqs. (43), (44), and (47) of [2]. For w = i we have 

☺(⌧,t) 4 p(W8 
4 1 4- 

q + 
3 1+ 4(2 _ c&)(5 _ &) it 1 Q(X) + :A l+ 

(7 - 2%) 
24(2 

- 
S#(5 

- 
2s~) 

Li 1 a&) + ~SiLl&), 

(19
C(x, t) = -;(a - S3)ale-2~ - 2(2 - S3)(3- SQ) + 5 - s3 

6(2 - &) 
d 1 a3 

- [5 - zs, + 2 (2 - S3) (3 - S3) s] a4, (20) 

1 2 1 
G(x,t) = $91 - S,)W-~~ + - 

1 

3 (5 - Sz) -‘+ 2(5 - 53) 
S3(2 - S,) - ;Li I> a2 

+ i -3&(2-S~)(3-S3)+8(s~-s;)(2-s9) [s-7&+;(-8+3&+2S,2) a3 

1 1 
+zs,[8(3 - S,) + Ss(-27+ 10s~) -S&(2 - S3)(3 - S&+4, (21) 
where Q(X), Q(X), Q(X), and Q(X) are four integration 
constants. a;(x) determines the i,nitial amplitudes of four 
different modes. Unless we have the physical mechanism 
which can determine the relation between the amplitudes 
each amplitude can be given arbitrarily as the initial con- 
dition. 

For the decoupled gravitational wave G, the large scale 
asymptotic solutions are presented in Eq. (68) of [2]. We 
ignored the rotation mode and have 

0(x, t) = gl(x)e- w--%)~ + g2(x), 
(22) 

where gl(x) and gz(x) are constant coefficients of the 
second-order differential equation [Eq. (IS)]. 

B. Parameter space 

In order to specify the scale and the configuration of 
the perturbation, we use the following quantities as pa- 
rameters. 
(1) The direction of the wave vector relative to the 
princibal axes of the background anisotropy is specified 
by r(= kz/ks). 

(2) The size of perturbation is specified by using 7~ 
which indicates the horizon-crossing epoch for a given 
scale kS and T. 

(3) The rate of background anisotropy is determined 
by S,; as we mentioned below Eq. (4), S, can be repre- 
sented by a parameter u. 

In Sec. IIE of [2] we made brief comments on some 
special situations of the background anisotropy and the 
perturbations. The numerical results using this param- 
eter space with some discussion will be given in Sec. 
IIID. 

C. Numerical methods 

The scalar mode is characterized by variables S and 
C. The tensor mode is characterized by a variable G 
and a decoupled c:. We ignore the vector mode. In this 
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paper we take the (spatial) C gauge and the (temporal) 
comoving gauge. This set of gauge conditions completely 
fixes all gauge modes. Thus, under tbis set of gauge 
conditions the variables are gauge free and consequently 
each variable has a unique corresponding gauge-invariant 
combination; see Sec. III C of [l]. 

The evolutions of 6, C, and G can be obtained by solv- 
ing Eqs. (14)-(17) numerically. The evolution of G can 
be obtained by solving Eq. (18). The exact behavior 
of some useful quantities appearing as coefficients in the 
equations is presented in the Appendix. For given values 
of the parameters T, 1)~~ and u, we used the Runge-Kutta 
method to integrate the set of differential equations from 
the initial stage (= si) to the final stage (= sr). We typi- 
cally set s; = -10, sf = 10, and .s. = 0; s. is the value of 
s at the transition from the shear-dominated era into the 
radiation-dominated era, i.e., at qs. However, for large 
values of T, we need much smaller values of si (much ear- 
lier initial stage), since our asymptotic solutions are valid 

on the condition th& ,/(k”k2)/(k3k3) = (ea)s~-s~~ <( 1; 
see Eq. (36) of [2]. We typically divided the time dura- 
tion into 5000 steps for which the results almost do not 
change (5 1%) with varying the step size. 

For the initial amplitude, we typically set a; = lOwlo 
(i = 1,2,3,4). Since this value is arbitrary, only the 
relative scale is important. As initial conditions, we need 
the values for- 6, .6X, G, G’ at si, and usually choose 
the a3 mode of the asymptotic solutions (in Sec. IIIA) 
which show the growing behavior together with a4 mode; 
the a3 mode shows the same behavior as the growing 
mode in the FLRW situation [see Eqs. (49)-(54) of [2]]. 
Unless otherwise mentioned, we assume that the horizon 
crossing occurs much later than the transition time se; 
we typically set sx = 15, where sx is the value of s at 
the horizon crossing qn. 

D. Results 

In Fig. 3(a) we show the evolution of 6 for the a3 
mode for different values of r. In the following, unless 
4 , , , , , , , , 
k (a) Cb) 

FIG. 3. (a) Ins(s) for T = 0, 0.01, 0.1 (d), 1 (c), 10 (b), 100 (a). W e a t k e one of the growing modes a3 as the initial 
condition. We consider S, = (0, -& 4). (b) C( s III units of lo-“.for T = 0, 0.01 (e), 0.1 (d), 1 (c), 10 (b), 100 (a), and ) 
S, = (0, -&, 4). The a3 mode is considered. (c) G( s m units of lo-” for T = 0, 0.01 (e), 0.1 (d), 1 (c), 10 (b), 100 (a), ) 
and S, = (0, -& ti). The aa mode is considered. (d) The ratio of G(s) to C(s) f or 7 = 0, 0.01 (e), 0.1 (d), 1 (c), 10 (b), 
100 (a), and S, = (0, -&, &). The a3 mode is considered. 
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otherwise mentioned we will take the a3 mode as the 
initial condition. For Figs. 3(a)-3(d) we considered S, = 

(0, -4 vq. 
As introduced in Sec. IIB, T determines the direc- 

tion of the perturbation wave vector; as r becomes large, 
the direction of the perturbation wave vector is close to 
$?z-axis. For a case with T = 0, the,;,~$~~@%ctor al- 
ways lies in the +? direction with k, ” (O,O,ka). It is 
noticeable that 6 changes its growth rate near s = 0 
where the transition from the shear-dominated era into 
the radiation-dominated era occurs. Especially, in the 
case of using the a3 mode as the initial condition, the 
6 evolves like e4--2S=(k=fr) in the shear-dominated era, 
where Sa(kee) indicates the S, with the effective wave 
vector k,@ = (O,fi,m). At large values of 
s, 6 evolves like the FLRW universe in the radiation- 
dominated era (6 a: eza cx q2 cz t). The evolution of the 
perturbation in the early stage is affected by the back- 
ground anisotropy. The growth rate of the density per- 
turbation has a directional dependence, i.e., depends on 
T. 

We see that as T increases, another change in the 
growth rate appears between the shear-dominated era. 
apd the FLRW regime. For large T, the effective wave 
vector of the perturbation, kee = (0,&%&a), 
changes from (O,O,&?&) into (O,rm,a). 

Thus, for SX > SZ and large T, i& effectively changes 
from the Z3 into the ?’ direction. The perturbations 
will be affected by the evolution of the background 
anisotropy. For example, using the a3 mode, the result 
in Fig. 3(a) shows that for large T, 6 actually evolves 
like 6 rx &“a in some stage between the initial stage 
and the FLRW stage. As T increases, the slope change of 
variables occurs at an earlier time. This fact can be ex- 
plained by the shift of the slope change in k2kzk3k3/A2 
in the earlier time as T increases as shown in Fig. 2. The 
dependence of initial values of lnb on T does not.have a 
physical meaning. The amplitude depends on our cho- 
sen value of a3 and P [see Eqs. (19) and (lo)], whereas 
the initial values for the a3 modes of C and G in the 
large scale limit do not depend on T [see Eqs. (20) and 
(21)j. The convergence of ln6 for different T in the FLRW 
regime occurs because we plot 6 in logarithemic scale. 

We show the evolution of C and G for different value 
of T in Figs. 3(b) and 3(c), respectively. As in the case 
of 6, C and G show the change in the growth rate near 
the transition time s., and evolve like the FLRW uni- 
verse as s increases. Again, these changes in the growth 
rate occw at an earlier time as T increases. For small 
7, C and G remain constant for the whole period. Ebr 
s > s., C and G evolve like the FLRW universe where 
they remain constant. Even in the shear-dominated era, 
and thus s < sg, C and G remain constant; see Eqs. 
(20) and (21). The evolution of ratio between C and 
G for different 1‘ is shown in Fig. 3(d). Notice that 
the values of G is comparable to that of C for differ- 
ent values of T. A similar result was also obtained in 
[4]; in 141, the uniform-curvature gauge together with the 
C-gauge condition was used (see Sec. IIIB of [Z]). C 
and G characterize the amplitudes of the scalar and the 
tensor perturbations, respectively. Therefore, Fig. 3(d) 
shows that in the anisotropic universe the tensor pertur- 
bation is correlated ,with the scalar perturbation, while 
they are ind~&%nd&t in the isotropic universe. Such a 
correlation ‘isrreflected in the asymptotic solutions in the 
shear-dominated era presented in Eqs. (19)-(X). Thus, 
as the perturbation goes through the anisotropic phase, 
the resulting amplitude of the tensor mode in the later 
isotropic phase is comparable to the one of the scalar 
mode. 

As explained in Sec. IIE of [2] we have the following 
cases which representatively cover the whole parameter 
space (without losing generality we consider S, 2 S,): 

FIG. 4. (a) C(s) in units of 10-l’ using the background 
model with S, = (-& 0, 4). We consider T = 0, 0.01 
(e), 0.1 (d), 1 (c), 10 (b), 100 (a). The slope change occurs 
at an earlier time as T increases. (b) G(s) in units of lo-‘” 
using the background model with S, = (-4, 0, A). We 
consider T = 0, 0.01 (e), 0.1 (d), 1 (c), 10 (b), 100 (a), The 
slope change occurs at an earlier time as T increases. 
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case Al: sm = (0,-d% A) 
case AZ: sm = (-&,0,&i) 
case A3: se = (&,-&,O) 
case Bl: s, = (1, -2,1) 
case B2: s, = (-2,1,1) 
case Cl: ~3, = (2, -1, -1) 
case c2: s, = (-1, -1,2) 

[Figs. 3(a)-3(d)] ; 

IFigs. 4(a), J(b)1 ; 

[Figs. 5(a), 5(b)] ; 
Pigs. G), 6(b)] ; 
[Fig. 71 ; 
[Fig. 71 ; 
[Figs. 8(a)+(c)] 
I 
The cases of S, = (l,l, -2) and (-1,2, -1) are covered 
by exchanging S, with Sz in cases Bl and C2, respec- 
tively, considering a complete coverage in the parameter 
T; the cases with S, < Sz are similarly covered. 

For cases Al-A3, we have the system with maximally 
different background anisotropies in different directions. 
The evolutions in case Al are presented in Figs. 3(a)- 

FIG. 5. (a) C(s) in units of 10-l” using the background 
model with S, = (a, -6, O).’ We consider T ,= 0, 0.01 
(e), 0.1 (d), 1 (c), 10 (b), 100 (a). The slope change occurs at 
an earlier time as T increases. (b) G(s) in units of IOK” using 
the background model with S, = (&, -4, 0). We consider 
T = 0, 0.01 (e), 0.1 (cl), 1 (c), 10 (b), 100 (a). The case with 
P = 0, 0.01 (e) remains almost constant for all time. The 
slope change occurs at an earlier time as T increases. 
3(d). We show the evolution of C, and G for case A2 in 
Figs. 4(a), 4(b), and case A3 in Figs. 5(a), 5(b), using 
various values of T. Because of the coupling, the behav- 
ior of a variable can be derived as a linear combination 
of other variable(s). However, we may regard C and G 
as characterizing the evolution of the scalar and tensor 

a b 
4 

FIG. 6. (a) C(s) in units of lo-” using the background 
model with .S, = (1, -2, 1). We consider T = 0, 0.01 (e), 
0.1 (d), 1 (c), 10 (b), 100 (a). The case with P = 0, 0.01 
(e) remains almost constant for all time. The slope change 
occurs at an earlier time as P increases. (b) G(s) in units of 
10-I’ using the background model with S, = (1, -2, 1). We 
consider T = 0, 0.01 (e), 0.1 (d), 1 (c), 10 (b), 100 (a). The 
case with T = 0, 0.01 (e) remains almost constant for all time. 
The slope change occurs at an earlier time as T increases. 
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modes, respectively. In the FLRW limit C and G are 
decoupled and the growing modes of both variables are 
conserved. We find that for T = 0, 6 in case A2 is consis- 
tent with that in case Al. This must be the case because 
for T = 0 the wave vector lies in the ?? direction and the 
S3’s for cases Al and A2 coincide with each other. 

Figures 6(a), 6(b) show the evolutions of C and G for 
case Bl in which the background is axisymmetric with 
respect to the ?’ axis (SI = &). For cases B2 and Cl, 
the background is axisymmetric with respect to the ?I 
axis (Sz = Ss). In this case, the perturbed variables are 
independent of r. The variables C and G for caxs B2 
and Cl remain constant for the whole period. 

In Fig. 7, we compare the evolution of 6 for cases Al, 
B2, and Cl. Figure 7 shows that in the shear-dominated 
era the evolution of the perturbation is determined by 
the property of the background anisotropy. The per- 
turbed variables show different behavior depending on 
the background anisotropy in the shear-dominated era. 
At s < se, 6 evolves like e4-“s, because the wave vector 
effectively lies in the ?’ direction. But, at s > s., the 
perturbations evolve like the FLRW universe. 

In Figs. 8(a)-S(c), we present case C2 in which the 
background model is axisymmetric with respect to the 
s3 axis (S1 = &). In this case, the different initial con- 
dition was taken. As initial conditions we took the con- 
stant mode for G and the a3 mode for other variables; 
see Sec. IIIA2 of [2]. After the transition time, 6 first 
decays and then grows. Both of these decaying (a e-“) 
and growing (cx e2”) behaviors are consistent with the 
FLRW evolution. This behavior occurs at earlier time as 
T becomes larger. Such behavior may occur because the 
initial conditions we chose correspond to a mixture of the 
growing and decaying modes in the FLRW limit. 

So far, we considered the large scale perturbation; thus, 
the horizon crossing occurs much later than the transi- 
tion time from the shear-dominated into the radiation- 
dominated era. In Figs. Q(a)-Q(c), we present the evolu- 

FIG. 7. ln6(s) for three cases: (Al) S, = (0, -& Jj), 
(B2) S, = (-2, 1, l), (Cl) S, = (2, -1, -1). We consider 
T = 0 and the a3 mode. 
-6 -4 .2 0 2 

FIG. 8. (a) Ins(s) using the background model with 
S, = (-1, -1, 2) in which the model is axisymmetric with 
respect to the e3 axis. We consider T = 0, 0.01 (d), 0.1 (c), 1 
(b), 10, 100 (a), and consider the a3 mode. (b) C(s) in units 
of lo-” using the background model with S, = (-1, -1, 2). 
The a3 mode is considered. We consider T = 0, 0.01 (e), 0.1 
(d), 1 (c), 10 (b), 100 (a). The case with r = 0, 0.01 (e) re- 
mains almost constant for all time. The slope change occurs 
at an earlier time as T increases. (c) G(s) in units of lo-” 
using the background model with S, = (-1, -1, 2). The 
as mode is considered. We consider r = 0, 0.01 (e), 0.1 (d), 
1 (c), 10 (b), 100 (a). The slope change occurs at an earlier 
time as T increases. 
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FIG. 9. (a) The evolution of 6(s) in units of lo-” using 
the case where the horizon cr&sing occurs earlier than the 
transition time sa, The horizon crossing occws at SN = -7.4. 
We consider T = 0.01 and the a3 mode. After the horizon 
crossing, 6 starts to oscillate. In FLRW limit, 6 oscillates 
with constant amplitude. (b) C(s) in units of 10-l’ using 
the case where the horizon crossing occurs at SR = -7k 
We consider T = 0.01 and the as mode. (c) G(s) in units 
of lo-” using the case where the horizon crossing occurs at 
SH = -7.4. We consider T = 0.01 and the a3 mode. 
FIG. 10. The evolution of the decoupled gravitational wave 
Gin units of 10-l’ for T = 0 (d), 1 (c), 10 (b), 100 (a), using 
g2 mode as an initial condition with g2 = 10-‘“. We consider 

s, = (0, -6 a’). 

tion of perturbation variables in the case where the hori- 
zon crossing occurs much earlier than the transition time 
8.. All variables show an oscillation after the horizon 
crossing. 6 starts to oscillate after the horizon crossing. 
After the transition time s., the oscillation amplitude of 
6 becomes constant which is consistent with the behavior 
in the FLRW universe; see Eq. (G23) of [I]. C and G 
show a similar behavior to 6 until the transition time, 
but after then their amplitudes decrease; see Eq. (G28) 
of [I]. 

In Fig. 10, we show the evolution of the decoupled 
gravitational wave perturbation for S, = (0, -&, A). 
As the initial condition we take the growing mode (gz) 
in Eq. (22). As in the case of the coupled gravitational 
wave, the decoupled gravitational wave changes its slope 
,at earlier time with increasing T. Also, this fact is con- 
sistent with the slope change in k2kzk3k3/A2; see Fig. 
2. In the FLRW limit, G becomes constant which coin- 
cides with the FLRW behavior. The behavior of G can 
be compared with the one of G presented in Fig. 3(c). 

IV. DISCUSSION 

In this paper we investigated the evolution of perturba- 
tions in the Bianchi type-1 universe model filled by a radi- 
ation fluid. Using the asymptotic solutions derived in [2] 
as initial conditions, the evolutions of perturbations were 
numerically investigated while the background model ex- 
periences a transition from the early anisotropic phase to 
the later radiation-dominated isotropic phase. We con- 
sidered the evolution in the comoving gauge condition. 

We restricted our attention to the configuration of per- 
turbations where the wave propagation vector lies in a 
plane of two principal axes of the background anisotropy. 
The perturbation equations can be categorized into two 
sets. In one set, the scalar mode and the tensor mode are 
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shown to be coupled each other. In the other set, we have 
a decoupled tensor mode which evolves freely i&m other 
modes. In both cases, the two separate vector modes 
work as source terms to the corresponding set. 

In the shear-dominated stage, the temporal evolu- 
tion of the perturbations depends on the background 
anisotropy. Near the transition time from the shear- 
dominated era into the radiation-dominated era, the per- 
turbations change the growth rate. After then, the per- 
turbations evolve like the ones in the FLRW universe. 

In the numerical study we selected some combination 
of parameters out of the parameter space, which we (1) 
the background anisotropy, u, (2) the size of the pertur- 
bation characterized by the horizon crossing epoch of the 
given scale, 7x, (3) the direction of the wave propagation 
vector in a plane of two principal axes, T, and (4) the ini- 
tial mode out of four ai(x in the comoving gauge or 
two g<(x)% for the decoupled gravitational wave. As the 
initial condition we mainly considered the a3 mode (and 
the 92 mode for the decoupled gravitational wave) which 
is one of two growing modes. 

The assumptions us&in this paper are the following: 
(1) radiation-filled Bianchi type-1 model; (2) ignored the 
effect from the rotation mode; (3) plane wave perturba- 
tions; (4) wave vector which lies in a plane consisting of 
two principal axes of the background anisotropy; (5) nu- 
m&cal results in some selected parameter space of u) T, 
and qx. 

We show the effect of the parameter T on the evolu- 
tion of perturbation. With increasing value of T, so that 
the wave vector of the perturbation is close to the ?’ di- 
rection, the perturbation changes its growth rate at an 
earlier time. However, in the case of using the model in 
which the background is axisymmetric with respect to 
the +Y axis (Si = SJ), the behavior of the perturbation 
is independent of T. 

Because of the nonvanishing shear in the background, 
the tensor mode is coupled with the scalar mode in the 
anisotropic stage. Thus, as the background evolution 
transits from the anisotropic to the isotropic stage, the 
resulting amplitude of the tensor perturbations viewed in 
the later isotropic stage should be related to the ampli- 
tude of scalar perturbations. We find that for the grqwing 
mode (a3 mode) of initial conditions the tensor mode per- 
turbation is comparable to the scalar mode perturbation 
for different values of the parameters T and u. The ratio 
of C to G is close to 1 for different T; see Fig. 3(d) for the 

background model with S, = (0, -&, a). The asymp- 
totic solutions in the shear-dominated stage clearly show 
that for all four modes the amplitude of the G is linearly 
related to the one for C and 6; see Eqs. (lQ)-(21). 

An accompanying case of the evolution of pertwba- 
tions in a dust-filled Bianchi type-1 background will be 
presented in a separate work. 

ACKNOWLEDGMENTS 

The author wishes to thank Dr. .I. Hwang for helpful 
discussions and comments throughout the work. 
APPENDIX: USEFUL COEFFICIENTS 

We present some convenient expressions in the following. The following quantities appear often in our perturbation 
equations (Eqs. (14)-(18)]. W e express the evolution of such quantities using the known exact solutions in the shear 
plus radiation stage. From the exact solutions in Sec. IIA we can show 

The evolution of the wave vector follows from the equations in Sec. IIB: 

-=- 
64’4 

where T e kzlk3 and 17~ is the value of 1) at the horizon crossing. 
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