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Description of chaos in simple relativistic systems
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Chaos is investigated in the context of general relativity and gravitation. We show how quantitative
global measures of chaos can be obtained from qualitative and local ones. After averaging—first, ov
two-directions, and second, along the trajectory—the rate of separation of nearby trajectories~Lyapunov-like
exponents! can be obtained. This gives us a tool to the invariant chaos description. The sign of the Ricci s
serves as a criterion of the local instability in simple mechanical systems~systems with a natural Lagrange
function!. We also show how to reduce relativistic simple mechanical systems to the classical ones. Tim
and null geodesics in multi-black-hole cosmological spacetimes are considered. The role of relativistic sy
in general relativity is emphasized.@S0556-2821~96!05310-6#
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I. INTRODUCTION

Our investigations are focused on developing geometr
methods to study the chaotic behavior of dynamical syste
in general relativity and gravitation. Standard detectors
chaos pose difficulties since they depend on the choice of
particular coordinate system. To avoid such problems ch
should be described in an invariant way.

As Wintner @1# points out, the Maupertuis principle is a
interesting curiosity in geometrical mechanics. It was n
formulated by Maupertuis but rather by Jacobi, Euler, a
Lagrange. In our approach@2#, we use the Maupertuis prin
ciple which allows us to reduce the Hamiltonian flows
geodesic flows on a Riemannian or pseudo-Riemann
space with the Jacobi metric

ĝ52uE2Vug52Wg ~1!

whereV is a potential andg is a metric which is taken from
the kinetic energy form T5 1

2g(v,v), va5dqa/dt,
a51, . . . ,N. The Hamiltonian of our system is of the form

H5T1V5
1

2
gabpapb1V~q!5E5const,

wherepa5gabq̇
b.

We consider the geodesic deviation equation

D2n

ds2
52gradnVu~n! ~2!

whereu andn are tangent and normal vectors to the geod
sic, respectively,@gradn#

i5]/]ni , andVu(n) is the geodesic
deviation potential.
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In general, we can precisely determine neither the tang
vector u nor the deviation vectorn for the specific initial
value of the parameters along the geodesic. Therefore i
seems reasonable to introduce an averaged potentialV̄u(n)
which is found by choosing vectorsu andn at random; i.e.,
every direction determined by the bivectoru`n is equally
probable. The averaged deviation potentialV̄u(n) is

V̄u~n!5
1

2N~N21!
R̂ĝ~n,n!ĝ~u,u! ~3!

whereN5dimM, M is a configuration space; andR̂ is a
Ricci scalar calculated with respect to the Jacobi metricĝ.

The problem of determining the average separation rate
nearby geodesics has been reduced to determining the
mal separation vectorn5n̂iEi , i51, . . . ,N. After introduc-
ing the orthonormal Fermi basis$E1 , . . . ,EN21 ,EN5u and
¹uE

a50, ĝ(Ei ,Ej )5d i j % Eq. ~2! is reduced to the form

d2n̂a

ds2
52

R̂~W„q~s!…!

N~N21!
n̂asgn~E2V! ~4!

wheres:ds/dt52uE2Vu is the natural parameter along the
geodesics.

From ~4! one can see that the full information concernin
the averaged local instability of the geodesic flow is co
tained in the productR̂ĝ(u,u) which is calculated with re-
spect to the Jacobi metricĝ @2#. Therefore the local behavior
of nearby geodesics can be obtained from the metric witho
integrating the equations of motion. The generalized Ma
pertuis principle allows us to construct a model of Lagrang
dynamics in the same sense as the famous Poincare´ construc-
tion is a model of the Lobatchevsky geometry. Of cours
there is an isomorphism between the original dynamics a
its model. In our case, the dynamics is modeled by the co
gruence of geodesics on the conformally singular manifo
with the Jacobi metric. However, the existence of singula
ties of the Ricci scalar~see@1#, Sec. 239! does not exclude
this approach: by constructing the so-called singul
6893 © 1996 The American Physical Society
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6894 53MAREK SZYDL”OWSKI AND ADAM KRAWIEC
covering~the covering space is without singularities!, we can
suitably regularize the problem~see@3#!. Moreover, one can
prove the existence and uniqueness of the degenerate ge
sics passing through conformally singular points@4#. One
can also show that the existence of singularity in the Ric
scalar does not mean the existence of singularity in the
lution of the deviation equation@5#.

It should be noticed that, for classical mechanical syste
(E2V>0), the deviation of nearby geodesics, calculat
along the normal vector, is described by a nonautonomo
equation~the harmonic oscillator with the negative potentia
energy depending on time!. The equilibrium position is, of
course, unstable. By comparison with the autonomous ca
one can see that the solutions of the deviation equation o
manifold with negative sectional curvature grow not mo
slowly than the exponential of the covered distance —els

~wherel is equal to the square root of the absolute value
the sectional curvature in this two-direction, for which th
value is the smallest one!. As the result of the above, the
normal components of the deviation of the nearby geodes
behave similarly to a ball near unstable equilibrium@6#.

The norm ini2 of the deviation vectorn measures the
actual distance between nearby geodesics of congruence~and
not only between points on them!. With the help of the com-
ponents of the normal vector, one can determine the prin
pal Lyapunov-like exponent. Such a detector of chaotic b
havior is qualitative~cf. @2#!. However, chaos cannot be
created by an averaging procedure. The negative value of
Ricci scalar is a sufficient~but not necessary! condition of
the local instability of the geodesic flow. Evidently, the Ricc
scalar as an invariant of the internal geometry is a gau
invariant detector of chaos. This means that such a dete
is invariant with respect to any change of coordinate sy
tems. However, the problem is that the standard Lyapun
exponents are global and quantitative measures of ch
rather than qualitative and local ones. The deviation equat
is in fact local, but the Lyapunov-like exponents derive
from it are defined globally.

Deterministic chaos in general relativity is obscure as
result of the gauge freedom of this theory. In particular, t
property of sensitive dependence on initial conditions — t
key ingredient of deterministic chaos — should be invaria
with respect to time reparametrization. The sensitive dep
dence on initial conditions means that long-time predictio
of motion in the phase space is impossible since small init
perturbations grow arbitrarily large as the system evolves
time. This property is a necessary but not sufficient conditi
for the existence of deterministic chaos. It is also a sufficie
condition if the geodesic congruence is defined on a comp
manifold @7#. Unfortunately, the compactness of a pha
space~or finiteness of its volume! is rather difficult to prove.
The choice of the bounded orbits may be made from t
corresponding condition imposed on the effective potent
method or, equivalently, as we do, from the compactne
~boundedness! of the admitted domain of motion.

Additionally, as is well known, the Lyapunov stability is
not invariant with respect to changing the coordinates and
rescaling the time variable@8,9#. If the system is locally un-
stable then nearby geodesics diverge exponentially, wh
implies sensitive dependence on initial conditions.
ode-
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To make the presentation self-contained and to estab
the notation, the standard definitions and formulas will
given. Our main results are the following:~1! a quantitative
measure of separation of nearby trajectories is obtained
the averaging procedure of the qualitative separation m
sure; ~2! a method of reducing relativistic mechanical sy
tems to classical ones is proposed;~3! a general formula for
the Ricci scalar for systems with the potential function of t
form V5V(r i j ), wherer i j is the distance between particle
is given.

It should be noticed that it is meaningless to apply o
approach to a certain class of problems, for instance, to
problem of motion of a test particle in the external gravit
tional field of general relativity. Such test particles and ph
tons already move along geodesics in a given spacetime,
their dynamics is geometrized from the very beginning.
this case, the geodesic motion is determined by the Hami
function which coincides with the kinetic energy form.

II. RICCI SCALAR FOR CLASSICAL SIMPLE
MECHANICAL SYSTEMS

Mechanical systems with the natural Lagrangian and po
tive kinetic energy form (E2V>0) will be called classical
simple mechanical systems. For these systems the Ricci
lar of the space with Jacobi metric~1! is given by the for-
mula @2#

R̂5
N21

8~E2V!3
@4~E2V!DV2~N26!NV2# ~5!

where

DV5gi j¹ i¹ jV,

NV25gi j¹ iV¹ jV,

and ¹ i is the covariant differentiation with respect to th
metric g. Let us consider a classical mechanical syste
(gi j5const3d i j and ¹ i5] i) with the potential energyV
taken fromR3N in the form

V~xW1 , . . . ,xWN!5(
i51

N

V~r i j !, ~6!

r i j5r j i5uxW i2xW j u5F (
k51

3

~xi
k2xj

k!2G1/2.
The Ricci scalar for the potential in the general form~6!

can be determined if we notice that

]

]xW k
V~xW1 , . . . ,xWN!5

]

]xW k
F (
1<s,k

V~r sk!1 (
k,s<N

V~r ks!G
and
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]V~r sk!

]xW k
5V8~r sk!

]r sk

]xW k
5V8~r ks!

]r ks

]xW k

where

]r sk

]xW k
5
xW k2xW s
r rs

5
]r ks

]xW k
.

From the above formulas we obtain

]

]xW k
V~xW1 , . . . ,xWN!5(

sÞk
~xW k2xW s!

V8~r ks!

r ks
5(

sÞk
rWks

V8~r ks!

r ks
~7!

whererWks5xW k2xW s .
It is convenient to introduce the following notation. Let

MW k~xW1 , . . . ,xWN![(
sÞk

rWks
V8~r ks!

r ks
; ~8!

then we have

gradV5~MW 1 , . . . ,MW N!

and

igradVi25iMW 1i21•••1iMW Ni2. ~9!

From formula~5! one can see that the Ricci scalar is det
mined if igradVi2 and the LaplacianDV5(k51

N (]/]xW k)MW k

are given.
After simple calculations we obtain

DV5 (
k51

N H (
sÞk

N FV9~r ks!12
V8~r ks!

r ks
G J . ~10!

In the case of the Newtonian gravitational potential

V~r i j !52G
mimj

r i j

we haveDV50.
It is easy to see that total force acting on the system at

point (xW1 , . . . ,xWN) is equal to zero because

]V

]xW1
1•••1

]V

]xWN
50

or
er-

the

MW 11MW 21•••1MW N5(
sÞ1

rW1s
V8~r 1s!

r 1s
1(

sÞ2
rW2s

V8~r 2s!

r 2s

1•••1 (
sÞN

rWNs
V8~r Ns!

r Ns

5rW12FV8~r 12!

r 12
2
V8~r 21!

r 21
G

1rW13FV8~r 13!

r 13
2
V8~r 31!

r 31
G1•••

1rWN21NFV8~r N21N!

r N21N

2
V8~r NN21!

r NN21
G50.

For a higher derivative theory of gravitation, the pertu
bation expansion gives rise to divergences which can
avoided with the help of a renormalization procedure. In th
type of theory, the Newtonian limit of gravitational potentia
is of the form@10#

V~r !5
1

r
2
4

3

e2m2r

r
1
1

3

e2m0r

r
.

Special cases of the potential function~6! are the Debye-
Hückel potential and the Lennard-Jones potential. The lat
has the form

V~r i j !54eF S s

r i j
D 122S s

r i j
D 6G . ~11!

It is a realistic model for interaction between the atoms
inert gases such as argon. It is convenient to chooses as the
units of mass and time such that 4e51.

After substitution of the Lennard-Jones potential form
into formulas~7!, ~8!, and~9! we obtain

V8~r i j !524s6eS 1r i j7 2
2s6

r i j
13 D ,

V9~r i j !5224s6eS 7r i j8 2
26s6

r i j
14 D ,

and

DV5224s6e(
k51

N F (
s51,sÞk

N S 5

r ks
8 2

22s6

r ks
14 D G , ~12!

as well as

NV25igradVi2

52 (
1< i, j<N

@V8~r i j !#
2

12(
i51

N F (
1<k,s<N;k,sÞ i

rW ik
r ik

rW is
r is

V8~r ik!V8~r is!G .
~13!
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Formulas~5! and~13! show that forN.6 ~the number of
particles is greater than 2! the Ricci scalar is negative if
DV,0. In the case of the Lennard-Jones potential, it mea
that if ;sÞk,r sk.A5 22s6/5, then the system is locally un-
stable.

The idea of determining the relaxion time for th
N-body system in terms of the Ricci scalar was formulat
by Krylov @11# for the potential~6!, but with no solid justi-
fication. In our approach the Ricci scalar is the average m
sure of the sectional curvature over all two-directions for a
type of potential function@2#. Our paper is an attempt to
develop Krylov’s idea for the case of relativistic dynamica
systems.

III. RICCI SCALAR AND LOCAL INSTABILITY
FOR RELATIVISTIC DYNAMICAL SYSTEMS

Systems with a natural Lagrangian and an indefinite
netic energy form will be called relativistic simple dynamica
~mechanical! systems. They find their natural applications
general relativity and gravitation. In such applications th
corresponding Jacobi metric is, in general, pseud
Riemannian. The configuration space admissible for mot
of the Hamiltonian system is a manifold with singularities. I
relativistic mechanical systems timelike, spacelike, and n
vectors must be distinguished. If, for example, the signatu
of the Jacobi metric is (21•••1) we define directions cor-
responding to the minus sign as spacelike (ĝabn

anb,0),
those corresponding to the plus sign as timelik
(ĝabn

anb.0), and null whenĝabn
anb50. Let us notice

that the Hamiltonian constraintH50 in general relativity
determines the tangent vectoru which is spacelike in the
regionE2V,0, timelike in the regionE2V.0, and null on
the boundary setE5V.

The above discussed criterion of the local instability ‘‘o
the average’’ must be modified in the case of a relativis
mechanical system. In this case, the local instability of t
geodesic flow means that

R̂,0 if ĝ~u,u!51,

R̂.0 if ĝ~u,u!521,

iui25ĝ~u,u!5sgn~E2V!,

ds/dt52uE2Vu,

ĝ52uE2Vug,

m

R̂,0,

iui25ĝ~u,u!51, ds/dt52~E2V!, ĝ52~E2V!g.

The reduction of the motion to a geodesic flow via th
Maupertuis procedure admits freedom in the choice of s
of ds/dt @i.e., monotonicity of the functions(t)#. While in
the first case the functions(t) is strictly monotonic~revers-
ible! in the second case, it is nonmonotonic~irreversible!.

From the above criteria one can see that, for a conform
factor with module, we get a global formulation of th
ns
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Maupertuis-Jacobi principle, whereas in the second case~no
module! the approach is strictly local.

The above criteria also show that it is not the sign of th
Ricci scalarR̂ that decides the sign of the right-hand side o
~4! but rather the sign ofR̂sgn(E2V).

The deviation equation~4! can be interpreted as the equa
tion of a harmonic oscillator inna,a51, . . . ,N21, coordi-
nates and with the time dependent potential energy

Ṽ5
R̂~s!

2N~N21!
ĝ~u,u! (

a51

N21

~na!2.

The local instability of solutions of the geodesic equation
equivalent to the condition

Ṽ,0 or @gradnVu~n!# i,0

where

Vu~n!5
1

2
Ku;nĝ~u,u!ĝ~n,n!.

HereKu;n is the sectional curvature in the (u;n) direction
@2#. The above criterion of local instability is not equivalen
to Arnold’s condition:Vu(n),0 @6# ~neither is it identical
with our conditionṼ,0). It can be easily seen that if the
norms of the tangent and normal vectors are positive th
both criteria coincide. In general, the sectional curvature a
the sign of the norm of the tangent vector decide the loc
instability of the geodesic flow.

IV. REDUCTION OF A RELATIVISTIC SIMPLE
MECHANICAL SYSTEM TO A CLASSICAL ONE

Let us consider geodesic motion of an uncharged te
mass (m51) in the gravitational field of two fixed masses
M1 andM2 . In this problem gravitational attraction of two
fixed masses is balanced by the electrostatic repulsive fo
and there is the Majumdar-Papapetrou solution to t
Einstein-Maxwell equations@12,13#. The line element is

ds252
1

U2~x,y,z!
dt21U2~x,y,z!~dx21dy21dz2!

where

U~x,y,z!511
M1

r 1
1
M2

r 2
,

r i5A~x2xi !
21~y2yi !

21~z2zi !
2,

and this line element represents the static solutions of
Einstein-Maxwell equations for two fixed centers located
the points (xi ,yi ,zi), i51,2. In general, the Majumdar-
Papapetrou form of solutions is true ifU5U(x,y,z) satisfies
the Laplace equation in flat space:DU5Uxx1Uyy1Uzz
50.

The geodesic motion is determined by the Hamiltonian
relativistic simple dynamical systems~see Table I!. In this
case the motion of a test particle or a photon in spacetimes
general relativity is geodesic. Therefore the Maupertui
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TABLE I. Examples of relativistic simple dynamical systems.

Mechanical system Hamilton~Lagrange! function Remarks

Friedmann-Robertson-Walker cosmology coupled
to real free massive scalar field

H5
1
2(2p1

21p2
2)1 1

2(2q1
21q2

21m2q1
2q2

2)50 Nonintegrable
~chaotic! @22,21#

Friedmann-Robertson-Walker model
with curvature-squared terms in action H52

1
4(p1

22p2
2)1 1

4(q1
22q2

2)1
q1
2

8b̄
(2q11q2)

2
Nonintegrable

~chaotic! @23,24#
Cosmological models~Friedmann or Bianchi I!
with minimally coupled scalar fields H5

1
2

pf
2

a3
2

2p

3mp
2

pa
2

a
1

1
2m

2a3f22
3mp

2

8p
kga

322g
Nonchaotic@25,26#

Multidimensional cosmology with topology
R3M1

33M2
n23 equivalent to classical model

with minimally coupled scalar field

L52
1
2n(n21)q̇1

21
1
2q̇2

21
R̄

2
e22q11V(q2)

Integrable@9#

Mixmaster model as disturbed periodic
Toda lattice

H5
1
2( i , j51

n ai j pipj1(k,l51
n bklexp((i51

n akqi1(i51
n alqi) Integrable?

chaotic?@27#
Free particle in Majumdar-Papapetrou
spacetime H5

1
2m

@2U2pt
21U22(px

21py
21pz

2#
Chaotic@28#

Charged particle in uniform magnetic field
and linearly polarized gravitational wave L5

1
2p0

22
1
2p1

22
1
2

(x1)2

12asin@n(x12x0)#
[1

2

Chaotic@29#

Multidimensional cosmology with topology
R3M13•••3Mn

L5
1
2Gi j ẋ

i ẋ j2V(x) Chaotic?@30#

General relativity with scalar field
in Arnowitt-Deser-Misner~ADM ! formulation H5NHGi j abP i jPab2Ag3R1

Ag
2 FPf

2

g
1V~f!G J Integrable?

chaotic?@19#
e
a-

f

r-
Jacobi procedure is not necessary here. Let us note tha
this class of problems there is no trouble with the metric
singularity.

For the Majumdar-Papapetrou metric there is the first i
tegral which corresponds to the Killing field of the time co
ordinatet — ]/]t — and one can reduce the problem to th
three-dimensional case. In this case the problem of geode
~timelike and zero! is equivalent to the problem of geodesic
on the Riemannian space with the metric

d̄s25U2~x,y,z!@U2~x,y,z!1h#~dx21dy21dz2!

52Wgabdx
adxb

whereh,0 is the constant of motion,U5U(x,y,z) satisfies
the Laplace equation~we will not specify the concrete form
of this function!, andU21h>0 — the region admissible for
motion.

On such a metric manifold~Riemannian!, the geodesic
motion is determined by the Hamiltonian

H5T5
1

2
gi j pipj , pi5gi j ẋ

j .

The above procedure of reducing relativistic simple d
namical systems to classical simple mechanical systems
using first integrals of the equation of motion in gener
works for static spacetimes with the metric

ds25g00dt
21gi j dx

idxj , i , j51,2,3,

and

g00,0, g0i50.

In this case three-dimensional Riemannian space takes
form of the conformally Euclidean space with the metric
t in
’s

n-
-
e
sics
s

y-
by
al

the

d̄s252
12hg00
g00

(
i51

N

~dxi !2[2Wgabdx
adxb,

2
12hg00
g00

>0, ~14!

and for h[0 we obtain the null-geodesic problem in the
static spacetime.

As was mentioned elsewhere@2# the Ricci scalar plays the
role of the average measure of the local instability of the
geodesic flow. If three-dimensional space is compact and th
Ricci scalar is negative, and the entire phase space is a ch
otic invariant set, then the geodesic flow of the manifold is
chaotic on ‘‘average’’~if the sectional curvature in all two-
directions and at any point is negative the geodesic flows o
compact manifolds are chaotic!. The sign of the sectional
curvature can be characterized by the so-called invariant cu
vature polynomials@2#.

In general, for the metric~14!, the Ricci scalar takes the
form

R̂5
N21

8W3 @24WDW2~N26!~¹W!2#.

Because the conformal factor 2W5 f (U) is a function of
harmonic functions we obtain the very simple final results

R̂52
~N21!~¹U !2

f ~U ! F ~ lnf !91
N22

4
~ lnf !82G , 8[

d

dU
,

for null geodesics,

R̂h5050,

and for spacelike (h.0) or timelike (h,0) geodesics,
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R̂hÞ052
~N21!U2~¹U !2

f 3~U !
h~2U21h!.

The sign of the Ricci scalar for timelike geodesics
strictly positive whereas for spacelike geodesics it is stric
negative. This fact means, in our terminology, that the sy
tem has the property of a sensitive dependence on ini
conditions only for spacelike geodesics~tachyons! but we
must remember that the negativeness of the Ricci scalar a
criterion of local instability is sufficient but not necessary.

V. AVERAGE SEPARATION RATES
ALONG A GEODESIC

For simplicity let us consider the averaged deviatio
equations~over all two-directions! ~4! in the caseN52. The
generalization of our considerations to theN-dimensional
case may be done automatically. Let

ẍ5 f ~s!x, xPR2, ~15!

or

ẋ15x2,

ẋ25 f ~s!x1,

where an overdot denotes differentiation with respect tos;
x15n1, x25ṅ1, and we have

f ~s!52
R̂„q~s!…

N~N21!
52

R̂„q~s!…

2
.

We assume that solutions of Eqs.~15! can be given by the
Picard functional series of successive approximations
F(s). This solution is a 232 matrix,

F0~s!51,

Fk11~s!511E
0

s

A~s8!Fk~s8!ds8, ~16!

where

A~s![F 0 1

f ~s! 0G .
In our case (N52) we have

F0~s!51,

F1~s!511E
0

s

A~s8!F0~s8!ds8, ~17!

and

F1~s!511E
0

sF 0 1

f ~s8! 0Gds8511F 0 s

E
0

s

f ~s8!ds8 0G .
is
tly
s-
tial

s a

n

of

Now, we introduce the following definition of the
Lyapunov-like exponents averaged over the parameters:

l5: lim
s→`

1

sE0
s

f ~s8!ds8. ~18!

Let us note that that they have quantitative character.
We assume that limit~18! exists and then we obtain

F1~s!>11F 0 s

sl 0G ~19!

ass→`.
Analogously, we obtain

F2~s!511E
0

sF 0 1

f ~s8! 0GF 1 s8

s8l 1 Gds8>1

1F ~s2/2!l s

sl E
0

s

s8 f ~s8!ds8G . ~20!

By integrating by parts we obtain

E
0

s

s8 f ~s8!ds85s8E
0

s8
f ~s1!ds1us8

s
2E

0

sF E
0

s8
f ~s1!ds1Gds8

5sE
0

s

f ~s8!ds82E
o

s

s8F 1s8E0s8 f ~s1!ds1Gds8
>ls22l

s2

2
5l

s2

2
.

By induction one can show that

F2n~s!5F (
k50

n
lks2k

~2k!! (
k50

n21
lks2k11

~2k11!!

l (
k50

n21
lks2k11

~2k11!! (
k50

n
lks2k

~2k!!

G , ~21!

and

F2n11~s!5F (
k50

n
lks2k

~2k!! (
k50

n
lks2k11

~2k11!!

l (
k50

n
lks2k11

~2k11!! (
k50

n
lks2k

~2k!!

G . ~22!

To see this it is enough to notice that
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F2n11~s!511E
0

sF 0 1

f ~s8! 0GF2n~s!ds

511E
0

sF 0 1

f ~s8! 0GF (
k50

n
lks82k

~2k!! (
k50

n21
lks82k11

~2k11!!

l (
k50

n21
lks82k11

~2k11!! (
k50

n
lks82k

~2k!!

Gds8
511E

0

sF l (
k50

n21
lks82k11

~2k11!! (
k50

n
lks82k

~2k!!

(
k50

n
lkf ~s8!s82k

~2k!! (
k50

n21
lkf ~s8!s82k11

~2k11!!

Gds8
511F l (

k50

n21
lks2k12

~2k12!! (
k50

n
lks2k11

~2k11!!

(
k50

n
lk

~2k!! E0
s

f ~s8!s82kds8 (
k50

n21
lk

~2k11!! E0
s

f ~s8!s82k11ds8
G

511F (
k50

n
lks2k

~2k!! (
k50

n
lks2k11

~2k11!!

l (
k50

n
lks2k11

~2k11!! (
k50

n21
lk11s2k12

~2k12!!

G
5F (

k50

n
lks2k

~2k!! (
k50

n
lks2k11

~2k11!!

l(
k50

n
lks2k11

~2k11!! (
k50

n
lks2k

~2k!!

G .

a-
s

Finally we obtain

lim
n→`

Fn~s!>F cosh~Als!
1

Al
sinh~Als!

Alsinh~Als! cosh~Als!
G

and general solutions of~15! are of the form

l.0: x~s!>cosh~Als!x01
1

Al
sinh~Als!ẋ0 ,

ẋ~s!>Alsinh~Als!x01cosh~Als!ẋ0 , ~23!

l,0: x~s!>cos~Aulus!x01
1

Aulu
sin~Aulus!ẋ0,

ẋ~s!>2Aulusin~Aulux01cos~Aulus!ẋ0. ~24!

The exact solutions of the averaged geodesic deviat
equations over all two-directions have a very simple inte
pretation, namely, the first order averaging procedure gi
ion
r-
ves

us the Ricci scalar as an average measure of the local inst
bility, whereas the second order averaging procedure give
us the average scalar curvature

l52 lim
s→`

1

sE0
s R̂~s8!

N~N21!
ds8.

In this way, the parameterl may be treated as a quantitative
measure of the average rate of separation of trajectories~over
all two-directions and the natural parameters along the geo-
desic!.

If the dynamical process is ergodic then

l52 lim
s→`

1

sE0
s R̂~s8!

N~N21!
ds8

52
1

~VolMN!
E
MN
R̂d~VolMN!;

i.e., the average over ‘‘time’’ can be replaced by the average
over the finite configuration spaceMN. It is worth noticing
that in this ergodic case the principal Lyapunov-like expo-
nentl is proportional to the ‘‘gravitational action.’’ For the
two-dimensional, compact configuration space,
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l52
1

VM24pk~s2!,

if we assume ergodicity. This means that the local instabil
of geodesic flows on two-dimensional compact Riemanni
spaces is determined by their topological characteristics~Eu-
ler characteristick). On the other hand, the classification o
the two-dimensional compact manifolds is known and the
Euler characteristics are equal tok(s2)5222g, whereg is
the number of handles. This coincidence certainly reflects
deep connection between deterministic chaos~as a nonlinear
effect! and the global topological methods.

It is interesting to observe that if*sR̂ds goes to infinity as
s→` we obtain

l52
R̂~W„q~`!…!

N~N21!
.

The above formula means that in the case of asymptotica
free systems,W→const ass→` and we obtainl50 @this is
also the case ifR̂(W„q(s)…) is quasiperiodic#. This reflects
the fact that the system is integrable. Moreover, in the Bia
chi type IX cosmology near the initial singularity trajectorie
concentrate in the neighborhood ofV50 @14#. Gutkin
proved the important theorem characterizing a class of
grable systems with exponential potentials. He has sho
that the system which is asymptotically free is integrab
@15#. This theorem can be used to demonstrate that the m
els of this subclass which allow Kasner’s asymptotics in th
neighborhood of the initial or final singularities are inte
grable~for instance, the Bianchi class A model with massle
scalar field! @16#.

The application of the above chaos criterion, which
now global and quantitative, to the classical (E2V>0) and
relativistic (E2V>0,E2V,0) mechanical systems will be
investigated in subsequent papers. In Table I some relativ
tic simple mechanical systems are presented. Let us no
that the invariant qualitative criterion of chaos is a ne
‘‘quality’’ and the question ‘‘What does it mean?’’ is in prin-
ciple an open problem. It seems that the chaotic behavior
the Bianchi type IX model does not correspond to any sta
dard concept of deterministic chaos. On the other hand,
invariant chaos description is necessary in the context
gauge theories such as the theory of relativity and its cosm
logical applications@17#.

If the kinetic energy form is indefinite we have to work
with the pseudo-Riemannian manifold with the singula
boundary setQ:uE2Vu50 on which the Jacobi metric de-
generates. The Maupertuis principle, in this case, reduces
problem of motion to the study of global geodesics in th
general sense (g is a geodesic onM \Q). Singularities of
ĝab are indeed obstacles to both analytical and numeri
computations@18# but no problem arises in discussing th
dynamics near those points in terms of the original dynam
cal systems. It is worthwhile mentioning that the Maupertu
principle for the case of relativistic dynamical systems wa
ity
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implicitly used by Misner in his minisuperspace constructio
@14#. In this case, Misner’s supertime coincides with our pa
rameters.

Another important circumstance is that the Jacobi geod
sics can be uniquely prolonged through the singularity@3,4#.
Owing to this fact we can draw global conclusions concer
ing the behavior of dynamics~not just piecing together some
local geodesics, as is done in the typical case!.

VI. THE MIXMASTER DYNAMICS

It can be shown that the Bianchi IX@B~1X!# cosmology
@19# is well approximated by a series of Bianchi I solution
~Kasner epochs! connected by bounces~Bianchi II solu-
tions!. Therefore one can understand the dynamics of t
Mixmaster cosmology~near the initial singularity! as the dy-
namics of a particle in the potential moving in a three
dimensional space.

Singularities in the Jacobi metric for the B~IX ! model in
the Balinskii-Khalatnikov-Lifshitz~BKL ! approximation be-
long to the mild singularity class such that the metric i
continuous and the curvature is ofd-function type. The po-
tential function can be approximated by ad function which
is zero everywhere except for momentssn of change of Kas-
ner epochs. It allows us to interpret the solutions of the ge
desic equation in terms of generalized functions. The mo
important consequence of this is the possibility to unique
prolong geodesics through this conformal singular poin
Then the Ricci scalar takes the form

R̂[d~s2sn!5H 0 at Kasner epoch changesÞsn ,

` during Kasner epochs5sn ,

wheresn52( i51
n b i(u) represents the total length ofn Kas-

ner epochs in terms of Maupertuis times, and in the
Belinski-Lifshitz-Khalatnikov approximation we obtain

l̄ 52 lim
s→`

1

sEs0
s

R̂~s8!ds852 lim
s→`

1

sE
s

(
n

d~s2sn!ds>
1

2b̄
,

b̄5 lim
n→`

1

n(i51

n

b i ,

where n is the number of Kasner epochs in the interva
(s0 ,s); 2b i represents the length of thei th Kasner epoch in
the parameters, and 2b̄ the average length of the Kasne
epoch in the Maupertuis times; the length 2b i is related to
the dominating Kasner exponentpi , i51,2,3, such that
pi,pj,pk whenb i5u2pi(u)u, ( i51

3 pi5( i51
3 pi

251. As is
well known,pi can be parametrized by one parameteru ~for
the specific terminology and a review of chaos in gener
relativity we recommend Ref.@20#!. Thus the infinite number
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of d-type contributions tol̄ can lead to finite quantity of the
average rate of separation of nearby geodesics.

Therefore, in every transition from one Kasner epoch
another one bit of information is lost~on the average! be-
cause in every Kasner transition the normal separation vec
increasese times:

na~s!}e~1/2b̄ !D̄s5e~1/2b̄ !2b̄5e.
to

tor

In the first BKL approximation the volume of the configu-
ration space with the Jacobi metric is finite~whereas in the
second BKL approximation it is infinite!. This fact means
that the information loss is not associated with a change
epoch, but rather with a change of era.
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