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Description of chaos in simple relativistic systems
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Chaos is investigated in the context of general relativity and gravitation. We show how quantitative and
global measures of chaos can be obtained from qualitative and local ones. After averaging—first, over all
two-directions, and second, along the trajectory—the rate of separation of nearby trajetipmmsnov-like
exponentscan be obtained. This gives us a tool to the invariant chaos description. The sign of the Ricci scalar
serves as a criterion of the local instability in simple mechanical systeystems with a natural Lagrange
function). We also show how to reduce relativistic simple mechanical systems to the classical ones. Timelike
and null geodesics in multi-black-hole cosmological spacetimes are considered. The role of relativistic systems
in general relativity is emphasize50556-282(96)05310-¢

PACS numbg(s): 04.20.Cv, 95.10.Fh

I. INTRODUCTION In general, we can precisely determine neither the tangent
vector u nor the deviation vecton for the specific initial
Our investigations are focused on developing geometricalalue of the parametes along the geodesic. Therefore it
methods to study the chaotic behavior of dynamical systemseems reasonable to introduce an averaged potantial)
in general relativity and gravitation. Standard detectors ofyhich is found by choosing vectorsandn at random; i.e.,
chaos pose difficulties since they depend on the choice of thevery direction determined by the bivectaf\n is equally

particular coordinate system. To avoid such problems chaogropable. The averaged deviation potentig(n) is
should be described in an invariant way.

As Wintner[1] points out, the Maupertuis principle is an
interesting curiosity in geometrical mechanics. It was not
formulated by Maupertuis but rather by Jacobi, Euler, and A
Lagrange. In our approadl2], we use the Maupertuis prin- whereN=dim.#, .7 is a configuration space; arilis a
ciple which allows us to reduce the Hamiltonian flows to Ricci scalar calculated with respect to the Jacobi mefric
geodesic flows on a Riemannian or pseudo-Riemannian The problem of determining the average separation rate of

1 -

Vy(n)= mR@(

n,n)g(u,u) 3

space with the Jacobi metric nearby geodesics has been reduced to determining the nor-
A mal separation vector=n'E;, i=1, ... N. After introduc-
g=2|E—-V|g=2Wg (1) ing the orthonormal Fermi bas{€,, ... ,Ey_1,Ey=U and

V,E®=0, 9(E; ,E;)= 8} Eq.(2) is reduced to the form
whereV is a potential andj is a metric which is taken from R .
the kinetic energy form T=3ig(v,v), v¥=dg¥/dr, d?h*  R(W(q(s))) .,
a=1, ... N. The Hamiltonian of our system is of the form ds? ~ N(N—-1) n“sgrE—V) )

1 wheres:ds/d7=2|E—V/| is the natural parameter along the
H=T+V= Egaﬁpapﬁ_l—v(q): E=const, geodesics.

From (4) one can see that the full information concerning
the averaged local instability of the geodesic flow is con-
tained in the producRg(u,u) which is calculated with re-
spect to the Jacobi metrge[2]. Therefore the local behavior
2 of nearby geodesics can be obtained from the metric without

D™n _ integrating the equations of motion. The generalized Mau-
9~ ~gradVy(n) v Y :

pertuis principle allows us to construct a model of Lagrange

dynamics in the same sense as the famous Poiccaisiruc-
whereu andn are tangent and normal vectors to the geodetion is a model of the Lobatchevsky geometry. Of course,
sic, respectivelyjgrad,]'=d/dn', andV(n) is the geodesic there is an isomorphism between the original dynamics and
deviation potential. its model. In our case, the dynamics is modeled by the con-
gruence of geodesics on the conformally singular manifold
with the Jacobi metric. However, the existence of singulari-

“Electronic address: uoszydlo@cyf-kr.edu.pl ties of the Ricci scalafsee[1], Sec. 239 does not exclude
TElectronic address: uukrawie@cyf-kr.edu.pl this approach: by constructing the so-called singular

wherep,=9,59".
We consider the geodesic deviation equation
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6894 MAREK SZYDLOWSKI AND ADAM KRAWIEC 53
covering(the covering space is without singularifiewe can To make the presentation self-contained and to establish
suitably regularize the probleKsee[3]). Moreover, one can the notation, the standard definitions and formulas will be
prove the existence and uniqueness of the degenerate geo@é+en. Our main results are the followingt) a quantitative
sics passing through conformally singular poifild. One  measure of separation of nearby trajectories is obtained via
can also show that the existence of singularity in the Riccthe averaging procedure of the qualitative separation mea-
scalar does not mean the existence of singularity in the sgiure; (2) a method of reducing relativistic mechanical sys-
lution of the deviation equatiofb]. tems to classical ones is proposé€8); a general formula for

It should be noticed that, for classical mechanical systemgn'e Ricci scalar for systems with the potential function of the

(E—V=0), the deviation of nearby geodesics, calculateo_foré?v\e/:v(rij): wherer;; is the distance between particles,

along the normal vector, is described by a nonautonomou$ _ . :
It should be noticed that it is meaningless to apply our

equation(the harmonic oscillator with the negative potential approach to a certain class of problems, for instance, to the
energy depending on timeThe equilibrium position is, of roblem of motion of a test particle in the external gravita-

course, unstable. By comparison with th? autonomous CasEt)nal field of general relativity. Such test particles and pho-
one can see that thg SOIUUOOS of the deviation equation N @Bns already move along geodesics in a given spacetime, and
manifold with negative sectional curvature grow not MOreair dynamics is geometrized from the very beginning. In

i ; rs
slowly than the exponential of the covered distancee this case, the geodesic motion is determined by the Hamilton
(where\ is equal to the square root of the absolute value ofnction which coincides with the kinetic energy form.

the sectional curvature in this two-direction, for which this

value is the smallest opeAs the result of the above, the
normal components of the deviation of the nearby geodesics
behave similarly to a ball near unstable equilibrij.

The norm||n||? of the deviation vecton measures the
actual distance between nearby geodesics of congryande Mechanical systems with the natural Lagrangian and posi-
not only between points on thenWith the help of the com- tive kinetic energy form E—V=0) will be called classical
ponents of the normal vector, one can determine the princisimple mechanical systems. For these systems the Ricci sca-
pal Lyapunov-like exponent. Such a detector of chaotic belar of the space with Jacobi metri¢) is given by the for-
havior is qualitative(cf. [2]). However, chaos cannot be mula[2]
created by an averaging procedure. The negative value of the
Ricci scalar is a sufficientbut not necessajycondition of N—1
the local instability of the geodesic flow. Evidently, the Ricci = m
scalar as an invariant of the internal geometry is a gauge
invariant detector of chaos. This means that such a detector
is invariant with respect to any change of coordinate sysyv ere
tems. However, the problem is that the standard Lyapunov

II. RICCI SCALAR FOR CLASSICAL SIMPLE
MECHANICAL SYSTEMS

ok

[4(E—V)AV—(N—6)Nyz] (5)

exponents are global and quantitative measures of chaos AV:gijViVjVn
rather than qualitative and local ones. The deviation equation
is in fact local, but the Lyapunov-like exponents derived szzgijvivvjv,

from it are defined globally.

Deterministic chaos in general relativity is obscure as a

result of the gauge freedom of this theory. In particular, the2nd _Vi is the covarlanF dlfferentlatlpn with respect to the
property of sensitive dependence on initial conditions — thd"elric g. Let us consider a classical mechanical system
key ingredient of deterministic chaos — should be invariant 9ij = CONSX 35“' -and V;=4;) with the potential energy/
with respect to time reparametrization. The sensitive deperf@ken fromR*" in the form

dence on initial conditions means that long-time prediction

of motion in the phase space is impossible since small initial . . N

perturbations grow arbitrarily large as the system evolves in V(Xy, ... X =2, V(Ty)), (6)
time. This property is a necessary but not sufficient condition =1
for the existence of deterministic chaos. It is also a sufficient

condition if the geodesic congruence is defined on a compact ..
manifold [7]. Unfortunately, the compactness of a phase ry=ri=Ix—xj|=
space(or finiteness of its volumes rather difficult to prove.

The choice of the bounded orbits may be made from the

corresponding condition imposed on the effective potential The Ricci scalar for the potential in the general fof@
method or, equivalently, as we do, from the compactnes§an be determined if we notice that

(boundednessof the admitted domain of motion.

Additionally, as is well known, the Lyapunov stability is J . _ 9
not invariant with respect to changing the coordinates and to —=V(Xy, ... XnN)= —=
rescaling the time variablg,d]. If the system is locally un- 9%k IX
stable then nearby geodesics diverge exponentially, which
implies sensitive dependence on initial conditions. and

12

3
> (X =x1?
k=1

1<s<k

> v<rsk>+k<§$N vm}
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&V(rsk) (9rks = = = > V,(rls) > V/(rZS)
——=V(r _V,(rks)_» My+Mo+ - +My= > g + ) T
(9Xk k (9Xk s#1 Mg S#2 l2s
- V'(rng
where +"'+2 BN T —
s#N rNs
- - - V/(r V' (r
&rsk_ Xk_Xs_ ks :rlz{ (ri) — ( 21)}
= = li2 21

&Xk lrs an

+F13[V'("13) 3 V'(rsﬁ} N

From the above formulas we obtain M3 Ma1
o V' (rn-1n)

J > > >z V,(rks) e V,(rks) N-IN r
V(X X = 2 (K Xo) =2 fis N-IN

Xy SEK Mks SEK Mks V/(r )

(7) VNNV g
INN-1
- - - For a higher derivative theory of gravitation, the pertur-

wherers= X —Xs. bation expansion gives rise to divergences which can be

It is convenient to introduce the following notation. Let  4ygided with the help of a renormalization procedure. In this
type of theory, the Newtonian limit of gravitational potential
is of the form[10]

I V'(rye)
MK(Xe o X = 2 Ths t)
ks 1 4e ™ 1e M

= — — — + —
V() r 3 r 3 r

then we have
Special cases of the potential functi() are the Debye-
- - Huckel potential and the Lennard-Jones potential. The latter
gradv=(Mq, ... My) has the form
L)
r” rij '

Igradv||2=|M |2+ - - - + | M y||% (9) It is a realistic model for interaction between the atoms of
inert gases such as argon. It is convenient to chooas the

. . units of mass and time such tha¢41.
From formula(5) one can see that the Ricci scalar is deter- After substitution of the Lennard-Jones potential form

mined if |gradv||> and the Laplaciald V==L (9/ax)Mk  into formulas(7), (8), and(9) we obtain
are given.

and V(1) =4e (11)

After simple calculations we obtain 6 1 20°
Vi(rij)=24c"€| 7 — —13 |,
N
_ , V(1) ]
Av=2, E V'(rkg) +2 . (10 . [7 260
k= Fks V'(rij)=—240"€¢| 5~ —177 |,
ij ij
In the case of the Newtonian gravitational potential and
N N 6
5 220
m;m; — 24,6 =
Virg=-6o AV=-24 2[ %(@S = ” 2
ij
as well as
we haveAV=0.
It is easy to see that total force acting on the system at the Ny2= | gradv||?
point (Xy, . .. Xy) is equal to zero because
=2 2 VP
oV Y
—+---+—=0 N —)k r
&Xl aXN +22 LEV ( |k)V (rIS)
i=1 | 1<sk<s=N:k,s#i lik lis

or (13
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Formulas(5) and(13) show that foiN>6 (the number of Maupertuis-Jacobi principle, whereas in the second Gase

particles is greater than) Zhe Ricci scalar is negative if module the approach is strictly local.

AV<0. In the case of the Lennard-Jones potential, it means The above criteria also show that it is not the sign of the

that if Vs#k,rg>3/220%/5, then the system is locally un- Ricci scalarR that decides the sign of the right-hand side of

stable. (4) but rather the sign olf?sgn(E—V).
The idea of determining the relaxion time for the The deviation equatiot¥) can be interpreted as the equa-
N-body system in terms of the Ricci scalar was formulatedtion of a harmonic oscillator im®,«=1, ... N—1, coordi-

by Krylov [11] for the potential(6), but with no solid justi- nates and with the time dependent potential energy
fication. In our approach the Ricci scalar is the average mea-

sure of the sectional curvature over all two-directions for any ~ ﬁz(s) . N 2

type of potential functiof2]. Our paper is an attempt to V= —2N(N—1)9(“’“)a§1 (n%)~.

develop Krylov's idea for the case of relativistic dynamical

systems. The local instability of solutions of the geodesic equation is

equivalent to the condition
Il. RICCI SCALAR AND LOCAL INSTABILITY
FOR RELATIVISTIC DYNAMICAL SYSTEMS V<0 or [grad,V,(n)]'<0

Systems with a natural Lagrangian and an indefinite ki-
: . L . Where

netic energy form will be called relativistic simple dynamical

(mechanical systems. They find their natural applications in 1

general relativity and gravitation. In such applications the Vu(n)=§Ku;n@(u,u)§;(n,n).
corresponding Jacobi metric is, in general, pseudo-

Riemannian. The configuration space admissible for motion, .o K,., is the sectional curvature in thein) direction

Ofltkl.e .H?mllton;wan §ys|tem LS a m:;lnlfc;lf with S'”?lea”t'eds' InIF]' The above criterion of local instability is not equivalent
relativistic mechanical systems HMelike, Spacelixe, and MU, arno|q's condition:V,(n)<0 [6] (neither is it identical

vectors must be distinguished. If, for example, the signature . L . .
of the Jacobi metric iS%JF .. +) we define %irectionsgcor— with our conditionV<0). It can be easily seen that if the

responding to the minus sign as spacelige,'n°<0), oAt B0 i® SRR T O e el cumvature and
those corresponding to the plus sign as timelike -ng '

(§.,n°nP>0), and null wheng, ;n*nf=0. Let us notice the sign of the norm of the tangent vector decide the local
ap ) afB =VU.

that the Hamiltonian constrainZ=0 in general relativity instability of the geodesic flow.
determines the tangent vectarwhich is spacelike in the
regionE— V<0, timelike in the regiore — V>0, and null on
the boundary seE=V.

The above discussed criterion of the local instability “on | et us consider geodesic motion of an uncharged test
the average” must be modified in the case of a relativisticmass (m=1) in the gravitational field of two fixed masses
mechanical system. In this case, the local instability of thgy, andM,. In this problem gravitational attraction of two
geodesic flow means that fixed masses is balanced by the electrostatic repulsive force

R<0 if §(uu)=1 and there is the Majumdar—Papapetrou solution. to the
' ' Einstein-Maxwell equationgl2,13. The line element is

IV. REDUCTION OF A RELATIVISTIC SIMPLE
MECHANICAL SYSTEM TO A CLASSICAL ONE

R>0 if g(u,u)=—1,

1
ds?=— ————dt?+ U?(x,y,z)(dx®>+ dy>+ dZ?)
AU ) — U%(x,y,2) 7
lull>=8(u,u)=sgnE-V),
ds/dt=2|E— V|, where
N M M
9=2|E—Vl|g, U(X,y,Z)=l+—l+—2,
r{ I
g
R M= V(X=x)?+(y—y)?+(z—2)%,
R<O,

and this line element represents the static solutions of the
lul2=g(u,u)=1, dsdt=2(E-V), §=2(E—V)g. Einstein-Maxwell equations for two fixed centers located at
the points §;,Yi,z), i=1,2. In general, the Majumdar-
The reduction of the motion to a geodesic flow via thePapapetrou form of solutions is truelif=U(x,y,z) satisfies
Maupertuis procedure admits freedom in the choice of sigrthe Laplace equation in flat spacaU=U,,+U,,+U,,

of ds/dt [i.e., monotonicity of the functiors(t)]. While in ~ =0.
the first case the functios(t) is strictly monotonic(revers- The geodesic motion is determined by the Hamiltonian of
ible) in the second case, it is nonmonotofiiceversible. relativistic simple dynamical systenisee Table ). In this

From the above criteria one can see that, for a conformatase the motion of a test particle or a photon in spacetimes of
factor with module, we get a global formulation of the general relativity is geodesic. Therefore the Maupertuis-
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TABLE |. Examples of relativistic simple dynamical systems.

Mechanical system HamiltofLagrangé function Remarks
Friedmann-Robertson-Walker cosmology coupled T=3(—p3+p2) + 3(— g3+ g2+ m?g2q3) =0 Nonintegrable
to real free massive scalar field (chaotig [22,21]
Friedmann-Robertson-Walker model 1,2 o122 2 ) Nonintegrable
with curvature-squared terms in action H==ap1—p2) +a(qi—q2)+ @f_(h“h) (chaotig [23,24]
Cos_molo_gi_cal modelgFriedmann or Bianchi)l o= lpfﬁ_ 2m p_§+ 12832 _lz,k 2327 Nonchaotic[25,26|
with minimally coupled scalar fields Mt 3m2p a ? ‘f’_ 8 Y
Multidimensional cosmology with topology o 1 o 1o _2q Integrable[9]
RXM3x M52 equivalent to classical model Z==an(n—1)a1+ 205+ 5 € T+ V(a2)
with minimally coupled scalar field
Mixmaster model as disturbed periodic Th= %E{szlaijpipj+EEJ:1bk|exp(2i”:1akqi+Ei”:1a|qi) Integrable?
Toda lattice chaotic?[27]
Free particle in Majumdar-Papapetrou 1 22, i—pr 2. 2, 2 Chaotic[28]
Spacetime = %[_U pt +U (px+py+pz]
Charged particle in uniform magnetic field gl 2 12 1 (x1)? _1 Chaotic[29]
and linearly polarized gravitational wave T 20T 2T 2 i (XE—x0)] 2
Multidimensional cosmology with topology L= %Gij)'(‘Xj—V(x) Chaotic?30]
RXM X - XM,
General relativity with scalar field B Jg Hi Integrable?
in Arnowitt-Deser-MisnefADM) formulation T=N| Gjj o g1 TP~ VoiR+ > ?Jr V(¢)“ chaotic?[19]
Jacobi procedure is not necessary here. Let us note that in . 1—hggo N .
this class of problems there is no trouble with the metric’s ds?= —2 (dx)2=2Wg,,dx3dx’,
singularity. Yoo =1
For the Majumdar-Papapetrou metric there is the first in- 1—hgy,
tegral which corresponds to the Killing field of the time co- —-——=0, 14

ordinatet — d/dt — and one can reduce the problem to the Yoo
three—ldlmensmnallcase..Inth|s case the problem of geod.es%%d forh=0 we obtain the null-geodesic problem in the
(timelike and zerpis equivalent to the problem of geodesics

on the Riemannian space with the metric static spacetimg. .
As was mentioned elsewhdf2] the Ricci scalar plays the

o 12 2 2 5 role of the average measure of the local instability of the
ds®=U%(x,y,2)[U%(x,y,2) + h)(dx* + dy* +dZ*) geodesic flow. If three-dimensional space is compact and the
=2Wga,8dx“dxﬁ Ricci scalar is negative, and the entire phase space is a cha-
otic invariant set, then the geodesic flow of the manifold is
whereh< 0 is the constant of motiott) =U(x,y,z) satisfies chaotic on “average’(if the sectional curvature in all two-
the Laplace equatiofwe will not specify the concrete form directions and at any point is negative the geodesic flows of
of this function, andU?+h=0 — the region admissible for compact manifolds are chaoticThe sign of the sectional

motion. curvature can be characterized by the so-called invariant cur-
On such a metric manifoldRiemannia, the geodesic vature polynomialg2].
motion is determined by the Hamiltonian In general, for the metri€14), the Ricci scalar takes the
form
T 1 ij Y
A=T=59"pipj,  Pi=giX. N—1

R= 8—W§[—4WAW—(N—6)(VW)2].
The above procedure of reducing relativistic simple dy-
namical systems to classical simple mechanical systems Because the conformal factoM®=f(U) is a function of
using first integrals of the equation of motion in generalharmonic functions we obtain the very simple final results
works for static spacetimes with the metric
(N—1)(VU)?
f(U)

infy+ )2, =2
(Inf) 2 (InH=L =9

ds?=godt?+g;;dxdx, i,j=1,2,3, R=—

and .
for null geodesics,

900<0, o =0. R
Rh=0=0,

In this case three-dimensional Riemannian space takes the
form of the conformally Euclidean space with the metric  and for spacelikel(*>0) or timelike h<<0) geodesics,
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. (N—=1)U?(VU)? ) Now, we introduce the following definition of the
Rhzo=— fe,(—U)h(ZU +h). Lyapunov-like exponents averaged over the paranseter

The sign of the Ricci scalar for timelike geodesics is 1 (s
strictly positive whereas for spacelike geodesics it is strictly A=": |im—f f(s')ds'. (18)
negative. This fact means, in our terminology, that the sys- 0
tem has the property of a sensitive dependence on initial
conditions only for spacelike geodesi@mchyons but we
must remember that the negativeness of the Ricci scalar as
criterion of local instability is sufficient but not necessary.

Let us note that that they have quantitative character.
We assume that limif18) exists and then we obtain

0 s
V. AVERAGE SEPARATION RATES O, (s)=1+ o\ 0 19
ALONG A GEODESIC
For simplicity let us consider the averaged deviation Sso0
equationgover all two-directions(4) in the caseN=2. The X .
L X . . . Analogously, we obtain
generalization of our considerations to thedimensional
case may be done automatically. Let
x=f(s) R? (15) P 1]50 H S/d 1
x=f(s)x, x , =]+ =
< 2(8) olf(s') ofls'n 1%
or (s212)\ s
xt=x2, + s 20
SA f s'f(s')ds’ 20
co 1 0
xc=f(s)x",
where an overdot denotes differentiation with respecs;to By integrating by parts we obtain
xt=n!, x?=n!, and we have
'E{(Q(S)) é(Q(S)) fs ! ! ! ,fs' S fs[ fsl ’
=_ =_ s'f(s')ds'=s f(s))dsy |, — f(sy)ds; |ds
f(s) N(N=1) > o ( o (sp)dsylg ol Jo (s1)ds;
~We assume that solutions of Eq$5) can be given by the :stf(s,)dsl _ FS, i/fS,f(Sl)dsl ds’
Picard functional series of successive approximations of 0 o |S'Jo
®(s). This solution is a X2 matrix, ) )
S S
=\<2—\ — =)\ —
Do(s)=1, =NS"—A > A 5
S
Dy q(s)=1+ fo A(s") P (s')ds’, (16) By induction one can show that
where AKg2k n-1 \ kg2k+1
0 1 kgO(Zk).' 2 (2k+1)!
A(s)= f(s) O} Pan(s) = )\nfl N kg2k+1 Ny kgk |’ (D)
K=o (2k+1)! K=o (2k)!
In our case N=2) we have ° °
Do(s)=1, and
S
<I>1(S)=J1+f A(s")Dy(s")ds’, 17 N\ kg2k N \kg2k+1
0 -
IZ (2k)! g‘o (2k+1)!
and (I)2n+l(s) n )\k 2k+1 n )\kSZK (22)
0 . 0 s 2 (2k+1)! go (2k)!
1+ '=14+| (s .
Pa(s)= J f(s) 0] f f(s')ds' O o ,
0 To see this it is enough to notice that
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s/ 0
q)2n+1(s):]+ fo_f(sl) O-(I)Zn(s)ds
é AKg' 2K El g 2k+1
J 0 1] & (kI Eb (k1!
= + ,
! fo_f(S') 0] Ly kgr2k+1 N\ kgr2k ds
Z (2k+1)! 2 (2k)!
N1, kgr2k+1 Ny kg2
A's
s )\kzo (2k+1)! 2 (2k)!
:]'f‘f B !
0 % Af(s)s' 2 kf(s )5/ 2K+1
[0 (2K)! b (2k+1)!
[ )\El AKg2kt2 é ) Kg2k+1
o (2k+2)! & (2k+ 1)1
=1+| , e . )
ST ")s'2ds’ 12K+ 1 ot
.kEO(Zk)Jof(S )sds E (2k+1)IJ f(s")s™ " ds
i N Kg2K é N Kg2k+1
&6 2K &b (2k+1)!
=1t i Akg2k+1 N1 k+1g2k+2
&b (2k+ 1)1 &b (2k+2)!
N\ kg2k é N Kg2k+1
&b (2K &b (2k+1)!
= 2n: A Kg2k+1 En: \ kg2K
K=o (2k+1)! &0 (2k)!
|
Finally we obtain us the Ricci scalar as an average measure of the local insta-

bility, whereas the second order averaging procedure gives
us the average scalar curvature

cosh\/\s) isink( J\s)

lim @ (s)= NN i F R(s") ds
— 0 = — | —_— S
" JAsinh(\As)  cosiy/\s) - N(N—1)
and general solutions @.5) are of the form In this way, the parameter may be treated as a quantitative

measure of the average rate of separation of traject(oies
1 all two-directions and the natural parametaalong the geo-
A>0:  x(s)=coshJAs)xq+ Ksink{ﬁs)ko, desio.

If the dynamical process is ergodic then

X(s)= VAsinh( YA s)xo+ cosi VA s)Xo, (23) — _im FNEEJS )1) ,
1
A<0: x(s)=cog V|\|s)Xo+——==sin(\/|\|S)Xoq, B 1 - .
\/|)\| —(Vol—MN)fMNRd(VdMN),

X(s)=— VI\[Sin( V] [Xo+ cog VIN[S)Xo. (24)  i.e., the average over “time” can be replaced by the average
over the finite configuration spadé@N. It is worth noticing
The exact solutions of the averaged geodesic deviatiothat in this ergodic case the principal Lyapunov-like expo-
equations over all two-directions have a very simple internent is proportional to the “gravitational action.” For the
pretation, namely, the first order averaging procedure givesvo-dimensional, compact configuration space,
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) implicitly used by Misner in his minisuperspace construction
A==yt Tr(sY), [14]. In this case, Misner’s supertime coincides with our pa-
rameters.
Another important circumstance is that the Jacobi geode-

if we assume ergodicity. This means that the local instabilitySIcS €an be uniquely prolonged through the singuldBiy].

of geodesic flows on two-dimensional compact Riemanniaf?ing to this fact we can draw global conclusions concern-
spaces is determined by their topological characterigics N9 the behavior of dynamiogot just piecing together some
ler characteristioc). On the other hand, the classification of 10cal geodesics, as is done in the typical gase

the two-dimensional compact manifolds is known and their

Euler characteristics are equal #¢s?) =2— 2g, whereg is

the number of handles. This coincidence certainly reflects a VI. THE MIXMASTER DYNAMICS

deep connection between deterministic ch@ssa nonlinear It can be shown that the Bianchi IB(1X)] cosmology

effect and the global topological methods. [19] is well approximated by a series of Bianchi | solutions
It is interesting to observe that fFRds goes to infinity as (Kasner epochsconnected by bouncegBianchi Il solu-
s—o we obtain tions). Therefore one can understand the dynamics of the
Mixmaster cosmologynear the initial singularityas the dy-
. namics of a particle in the potential moving in a three-
R(W(q(=))) dimensional space.
N(N—1) ° Singularities in the Jacobi metric for thgI&) model in
the Balinskii-Khalatnikov-LifshitzZ(BKL ) approximation be-
long to the mild singularity class such that the metric is
The above formula means that in the case of asymptoticallgontinuous and the curvature is éffunction type. The po-
free systemsW— const as— and we obtail =0 [thisis  tential function can be approximated bysafunction which
also the case iR(W(q(s))) is quasiperiodit This reflects IS zero everywhere except for momestsof change of Kas-
the fact that the system is integrable. Moreover, in the Bianher epochs. It allows us to interpret the solutions of the geo-
chi type IX cosmology near the initial singularity trajectories desic equation in terms of generalized functions. The most
concentrate in the neighborhood &f=0 [14]. Gutkin  important consequence of this is the possibility to uniquely
proved the important theorem characterizing a class of inProlong geodesics through this conformal singular point.
grable systems with exponential potentials. He has showAhen the Ricci scalar takes the form
that the system which is asymptotically free is integrable
[15]. This theorem can be used to demonstrate that the mod-
els of this subclass which allow Kasner's asymptotics in the  5_ _ |0 atKasner epoch change# s,,
. - . . o . =45(s—s,)= .
neighborhood of the initial or final singularities are inte- o during Kasner epocts=s,,
grable(for instance, the Bianchi class A model with massless
scalar field [16].
The application of the above chaos criterion, which iswheresnzzzi“:lgi(u) represents the total length nfKas-
now global and quantitative, to the classicBl{V=0) and  ner epochs in terms of Maupertuis time and in the

relativistic (E—V=0,E—V<0) mechanical systems will be Belinski-Lifshitz-Khalatnikov approximation we obtain
investigated in subsequent papers. In Table | some relativis-

tic simple mechanical systems are presented. Let us notice
that the invariant qualitative criterion of chaos is a new___ 1(s
“quality” and the question “What does it mean?” is in prin- A =—1lim —f
ciple an open problem. It seems that the chaotic behavior of §—
the Bianchi type IX model does not correspond to any stan-
dard concept of deterministic chaos. On the other hand, the
invariant chaos description is necessary in the context of — 10
gauge theories such as the theory of relativity and its cosmo- B=lim ﬁz Bi,
logical applicationg17]. n—e =1

If the kinetic energy form is indefinite we have to work
with the pseudo-Riemannian manifold with the singular . ) )
boundary se®:|E—V|=0 on which the Jacobi metric de- where n is the number of Kasner epochs in the |nte'rval
generates. The Maupertuis principle, in this case, reduces tH&o-S); 28; represents the length of theh Kasner epoch in
problem of motion to the study of global geodesics in thethe parametes, and 25 the average length of the Kasner
general sensey( is a geodesic oM\®). Singularities of ~€poch in the Maupertuis timg the length 23; is related to
g*? are indeed obstacles to both analytical and numericahe dominating Kasner exponemt, i=1,2,3, such that
computationg 18] but no problem arises in discussing the p;<p;<px When g;=|2p;(u)|, =¥ ,p;=3_,p?=1. As is
dynamics near those points in terms of the original dynamiwell known, p; can be parametrized by one parameiéfor
cal systems. It is worthwhile mentioning that the Maupertuisthe specific terminology and a review of chaos in general
principle for the case of relativistic dynamical systems was relativity we recommend Ref20]). Thus the infinite number

R(s")ds = — li 1J525 )o|~1
(s")ds' = Sms 4 (s—sy S_Zﬁ’

So
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of 5-type contributions to. can lead to finite quantity of the I the first BKL approximation the volume of the configu-
average rate of separation of nearby geodesics. ration space with the Jacobi metric is finiiwhereas in the

Therefore, in every transition from one Kasner epoch tg>€¢0nd BKL approximation it is infinije This fact means
another one bit of information is logbn the averagebe- that the information loss is not associated with a change of
cause in every Kasner transition the normal separation vect&POCh: but rather with a change of era.

increase® times:
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