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The gravitational instability of inhomogeneities in the expanding universe is studied by the relativistic
second-order approximation. Using the tetrad formalism we consider irrotational dust universes and get equa-
tions very similar to those given in the Lagrangian perturbation theory in Newtonian cosmology. Neglecting
the cosmological constant and assuming a flat background model we give the solutions of the nonlinear
dynamics of cosmological perturbations. We present the complete second-order solutions, which extend and
improve earlier works[S0556-282(96)04210-3

PACS numbe(s): 98.80.Hw, 04.25.Nx

I. INTRODUCTION compared with previous work and it is found that they in-
clude all these results.

Gravitational instability and structure formation in the  This paper is organized as follows. In Sec. Il we present
universe is an important topic of cosmological research. Byhe basic relativistic equations and introduce the tetrad for-
usingN-body codes it is possible to follow the general non-malism. In Sec. Ill the perturbative approach is presented
linear evolution of initially small perturbations numerically, @nd the solutions up to second order are given. In Sec. IV we
but an understanding of what has happened between inpGPMpare our results with previous works. Section V contains
and output can often better be gained by analytical treatconclusions. In the appendixes we explain our gauge condi-
ments. Various analytical approaches have been compard@n and present the complete second-order solutions, includ-
with the numerical results statisticall¥—4] and it has turned ing the decay!ng and the coupling mode. Units are chosen so
out that the celebrated Zel'dovich approximatits] gives thatc=1. Indicesy,», ... anda,b, ... run from 0 to 3
the best fit to the numerical treatment. Buchéittpresented and indicesj, ... run from 1 to 3.
the Lagrangian perturbative approximation to first order
based on Newtonian theory. This work was extended to sec- [l. EXPOSITION OF THE METHOD

ond 0“?'”[7] aqd even to third 0“?'6['8,1 giving some new In this section, we summarize a general relativistic treat-
useful information about self-gravitating systems. But these,ant to describe the nonlinear evolution of an inhomoge-
and most other analytical treatments are Newtonian aPreous universé21-23. The models we consider contain
proaches, which are valid only for perturbations on scale$otational dust with density and four-velocityu” (and
much smaller than the horizon size. On super-horizon scalgsossibly a cosmological constant). Neglecting the fluid
instead one needs a relativistic approach. The pioneer wagessure and the vorticity is a reasonable assumption in a
Lifshitz [9] with his linearized theory on the basis of general cosmological context. In comoving synchronous coordinates,
relativity, which was extended to the second order by Tomitahe line element can be written in the form

[10-12. An anisotropic, homogeneous general-relativistic

model was considered by Raychaudhd3]. A Zel'dovich- ds?=—dt*+g;; dXdx 2.1

like relativistic formulation was suggested by Eardley, Li-
ang, and SacHd4]. A Lagrangian relativistic approximation with
to the second order based on fluid flow equations was given
by Matarrese, Pantano, and Sa&%,16. Parry, Salopek, and 1
Stewart [17] presented the nonlinear solution of the —[3Rii+(K‘i)2—KinJi]=87er+A, (2.2
Hamilton-Jacobi equation for general relativity, using the 2

spatial gradient expansion techniqus] and reproduced the . .

Zel'dovich approximation. The “higher-order Zel'dovich K'5i—K')=0, (2.3
approximation” is discussed in Croudaeeal.[19] and Sa-
lopek, Stewart, and Crouda¢2q].

In this paper, we give an alternative approach, which ex-
tends a tetrad-based Zel'dovich-type approximation by Kasai - _ . e
[21]. We derive the fully general relativistic equations very where R’ is the three-dimensional Ricci tensor,
similar to those given in the Newtonian case, which are
solved in a flat background model without the cosmological
constant by an iteration method. The complete solutions are

u#=(1,0,0,0). Then the Einstein equations read

K+ KK +3R = (47Gp+A) 6, (2.4)

L
Kj:ig Ok (2.9
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is the extrinsic curvaturd], denotes the covariant derivative =~ The procedure essential to develop the relativistic
with respect to the three-metrg;; , and an overdot-) de-  Zel'dovich-type approximatiof1] is to introduce the ortho-

notesd/dt. The energy equation, T#",,=0 gives normal tetrad
p+pKi=0, (2.6 Ur= N b EL €} (2.17
with the solution with
Vdefg; (tin ,X)] e¥=u,=(-10,00,
p=p(tin ,X)ﬁ- (2.7 o
Gijtt e)=(0,e")=(0, a(t)e{”)) for /=1,2,3.
The evolution equation for the Ricci curvature is obtained in (2.18
the form[21] . .
The spatial basis vectors are parallel transported along each
3pi i 3pk _ei ko ek Jli ik K i fluid line: i.e.,
R+ 2K 3R = Kl 1+ KK = K= K.
29 )., u"=0. (2.19

Let us introduce the scale factor functiaft) which sat-

isfies the equation In our choice of the tetrad components, it reads

. al). —\/ji a#) i _al &),
2aa+a’+k—Aa’=0, (2.9 ei=Viejl or Vi=e e, (2.20

where the curvature constark takes the value of ;J;lijr;ggioliqs.(zla, (2.1, and (2.20, we obtain the key

+1, 0, —1 for closed, flat, and open spaces, respectively.

[Equation(2.9) is obtained from the Friedmann equation :
9| 3 air a. /
. —la e(’)i+2—e(’)i—47Tpre( )i
a2+k 87G +A 210 t a
Z vt 2= 3 mtg :
aj a3 3 =a(P)+Q)+8), (2.20

and its derivative with respect to tinjdf the spacetime is \ here
exactly Friedmann-Lemtie-Robertson-Walker (FLRW),

then we have d(a?
P, :E[ Z[(ka)z_vknvnk]e(/)i

K' —éai 3Ri—2£6i for FLRW. (2.1
i=z°%0 =429 - :

Therefore, the deviations from the FLRW models due to in-
homogeneity are expressed by the peculiar part of the extrin- _ 1 1
sic curvature Q(()z(vlkl%iki + ZVJiQ%Zkk— Eﬁlivkn.“’@”k) e,

. Ca (2.23

V=K —=4§", (2.12

i i” g%l and
which represents the deviation from the uniform Hubble ex- S(/)i=[Vji‘k\k+ ka|j|i_vjk\i|k_vki“\k+ k(3VJ,
pansion, and the deviation of the curvature tensor _

AT (2.24

#=a% °R'|—2kd';. (2.13
Note that the left-hand side of E.21) is already linearized
Using these quantities, EqR.3), (2.4), and(2.8) are rewrit-  with respect toe!?); and all terms on the right-hand side,
ten as exceptS”); are manifestly nonlinear quantities. It has, there-
fore, a form suitable for solving it perturbatively by iteration.

i i _
Vii—Vi=0, (2.14 It should also be stressed that we have not used any approxi-
: 1 1 mation methods in deriving Eq2.21). Our treatment here is
V. 3E+Vk Vit S| 7 — ks fully nonlinear and exact.
J a k J a2 g kK j
1 lll. PERTURBATIVE APPROACH
Y YRV SV AT
21V Sy, 219 In this section, we solve perturbatively the key equation

. o _ o " o Eqg. (2.2 by an iteration method.
P i o/ i / / _ /Y
A+ 2V A+ ARV =V v =Vl vl

(2.16 A. The background

where| denotes the covariant derivative with respect to the The background\(’ij=0, .%3ij=0) solution is character-
conformally transformed three—metri)qua‘zgij . ized by
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e.=0, ie., e”=e(x). (3. DT()=a(t)=t*® and the decaying mode solutions
D (t)=t"1, respectively, we obtain the solutions in the
Furthermore, the metrig;; = 5 (,e;e); is that of a con-  form
stant curvature space with curvature constanin the case . 4 A .
of a flat background, we can write B! =C"0+tPW! () +t ol (x).  (3.10

) — 5</)i for k=0. (3.2) For the metric, we have the first-order expression

_ /
Hereafter, we restrict our consideration to the Einstein—de gij=a%(O{[1+2A(X)]8; +2C jj(x) + 2t**W j5(x)
Sitter backgroundk=0, A=0. +2t_1(b,ij(x)}- (3.11

B. The first-order solutions: scalar modes The relation betwee\(x) and ¥(x) is given by Eq.

Linear perturbations are classified into scalar, vector, an(ﬁz'lS)' To first order, it reads
tensor modes. In the first-order level, they do not couple with - a 1
each other, and can be discussed separately. Let us first con- V'(1)1-+3—V'(1>j+ — /8<1 /’(Dké' =0,
sider the scalar perturbations. The general form for the lin- a a
early perturbed triad in this case is (3.12

e(/)i=5(/)i+E(/)i=5(/)i+ 5</)1(A5ji+B’j’i). (33) where

Let us write the first-order quantities with subscriff). Vi(l)jzzr 1/3q;,ij_t*2q>vij (3.13
Then the perturbed extrinsic curvature is 3 ' '
N and
'(l)j—A5'j+ij. (3.9
i ks

From the constraint equatigq®.14), which reads
i i Hence we have
Viii=Viwi,=0 (3.5

10
in the first order, we obtaer =0. However, the part A(x)=3\P(x). (3.1
A(t) 5' in the extrinsic curvature simply represents the uni-
form and isotropic Hubble expansion. Therefore, by a suit-the functionC(x) is not determined by the Einstein equa-

able redefinition of the background, we can set tions within our approximation. As shown in Appendix A,
. ) however, we can sef(x)=0 using a residual gauge free-
A=0, ie., A=A(X). (38 dom. The final form of the first-order solutions is, therefore,

As was noted previously, it is apparent that the source 10 _ ,

/ / (), = 2 4 S() (1213 ~1gy
terms P¢); and Q'); are second-order quantiie@nd € I+ 5¥(X 8+ 8 (PP () + 1D (),
highey. UsmgV 0= B' we also find tha8"); vanishes (3.16
in linear order:

p . . . A or in the form of the metric
s )(1>i:5(/)j(V'(1)i'k,k+Vk(l)k’J,i_VJ(l)k,i'k_Vku)i’J,k)

=0. 37  gj=a%t)

20
1+ 3‘[’(X)

8ij+ 223 (x)+ 2t 71D 5 (x) |

Therefore, to first order, the right-hand side of the key (3.17

equation(2.21) vanishes and it can be integrated to give  Note that we have not assumed that the density contrast is
. small, in order to derive the solutions. The density is given
28 E(/)i+2§E(/>i_4WprE(/>i —Cc(x). (3.8 DY EQ.(27), whichin this case reads

. _ a(tin) | 2defe'”;(tin,%)]

By choosfingc(/_)i(x):—4wpra35(/)j(A(X)5Ji+c'{i(x)), p=p(tin,X) alt) dete,(tx)] (3.18
Eq. (3.8 is rewritten as

g2 _ _ _ C. The first-order solutions: tensor modes

i i N I W . . . .. .
W(B —C' )+25 E(B —Cj)—4mGpy(B";—C7)) Under the assumption of vanishing vorticity, the remain-
ing is the tensor mode perturbations. In this case, we can
=0. (3.9  write the triad in the form

Note that now it has the same form as the equation which el)i=8)+ 8 H; (3.19

governs the density contragtin conventional linear pertur- .
bation theory [24]. Using the growing mode with HI =0 andH';=0.
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The perturbed extrinsic curvature is Quantities with subscript (2) represent the second-order term
| in the expansion. From the constraint equati@il4), we
V= H (3.20  now obtain

Then, the constraint equatidi2.14) to first order, i.e., Eq. 20
(3.5), is trivially satisfied. BB+ oot B ) =0, (3.29

To obtain the equation fdfl' we can use the key equa-
tion (2.21). On the right-hand srde of Eq42.21), S is the
only quantity to be calculated sind®); and Q(/), are of
higher order:

Let us turn our attention to the key equatit21). To
second order it reads

()= 8 ik . a. 1
S yi= 8 H K. (329 s(/)i+2—8(/)i—4ﬂ'prs(/)i=—3 (i(x +—3j a(P(3)
a

Equation(2.2]) reads
Ql3)i+Sipdt,  (3.29

i _ ik
at | HY +2 HYj = 4mGpH'; || =aH'y,. wherec”),(x) is a second-order integration ‘constant.” It is
(3.22  apparent that the source terrﬁ%)l andQ() (2) are quadratic
Integrating Eq.(3.22, we obtain with respect to the first-order quantities, hence (_:ontarn nei-
D ther,B nor)( Furthermore, from Eq(3.28), we find that
o a. 1 _ the Iongrtudrnal part oS( ; does not contaim’:"j . Actually,
H|j+3aHlj_ ?VZH'J' =0, (3.23  if we take the drvergence of E@3.29, we obtain

whereV? is the Laplacian of flat three-spaces. In fact, the

1
_ 423 2
same equation de' can be also obtained directly from Eq. ’81 '+2 ’81 ' 477pr’31 ' 7;0 i t [(\P 2

(3.12. K AL
The solution of Eq(3.23 is given as VA SIEE (3.30
. Therefore, solutions foB'; can be written as a linear com-
— 34— 1/2 1/3\hi. . et ’ j ' g
l_f dat™ 3.5/2(3]alt™)h'jexpliq-x), bination of the homogeneous solution and the inhomoge-
(3.29 neous solution in the presence of the given source terms
whereJ.. 5,,is the Bessel function of order 3/2 andh', isa Bij: a(X) 5ij+t2/3¢ij(x)+t4/3¢ij(x), 3.31)

constant tensor witth’;=0 and q; h' =0. (See, e.g., Ref.

[25] for detail) where we have used a convenient choice of the integration

“constant” ¢\);(x) = —47Gppata(x) d; .
Once we obtain the temporal dependency of the solutions,
In order to avoid notational complexity, in this subsectiontheir spatial dependency, i.e,z/,'j(x) and (plj(X), are deter-

we only deal with growing mode terms. The complete solu-mined by Eqg.(2.15. To second order

tions of the decaying and coupling terms can be found in

Appendix B. Moreover, we omit the first-order tensor mode. 5 1 .9

(It is not our aim to consider the nonlinear effect which ¢'j=§‘1"k‘1’,k5j—g(q’z)’tﬁﬁa’ij, (3.32

comes from this mode. With respect to this problem, see

Refs.[11,12.) Thus we begin with the form

D. The second-order solutions

-3 . .
10 . ¢Ij:7(ﬂkk5}_4ﬂlj), (3.33
(D= 1+ E\If(x))6</>i+t2’35(/>,-‘l"fi(x)+s(/>i.
(3.25 where
The second-order quantitg!”); is decomposed into a 1 . A
transverse-traceless part and a remaining longitudinal part ,u'jz E(\If’!(k\lf'fj—\lf",k\lf'ﬁ). (3.39
D=8 (Bt X, (3.26

. _ (The tensor,uJ has an interesting property: the traymé
where)('J i=0, x',=0. gives the second scalar invariawnf the tensor\If )
The peculiar deformation tensor to second order is imme-
diately found to give
20 Three scalar invariants of a three-dimensional ten:ﬁr
A i i are defined by I(A)=A], 1I(A)=1/Z(A)*-AAl]l, and
V<2>J=B|1+XJ’_2—7I PR - 213U 11 (A)=det(Al). yTh(ey) satisfy (th)e rezl[a(troz def[+]A') 1
(3.2 +1(A)+11(A)+111 (A). See, e.g., Ref8] and references therein.
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The equation fop(ij can also be obtained from E.29), i 1 o a i

but it is more convenient to use E@.15 instead. To second X j(X,7)= 8_1j Dred X, mX",p")a%(n")."(x")dp"d*X’,

order, it gives for the transverse-traceless part (3.39

. where
v a. i 1 2.0 o2

where Dred X, 7%, n") = ,)3[1+6(77— 7')]

4m(nn

1
3 3 X 7;77’5(7-2—r2)+§0(7-2—r2)

A=z i+ 5 (o —au), (3.39

(3.39
is a transverse and traceless tenser;=0,7"'; ;=0. This
shows that gravitational waves are induced even if there areith r=|x—x’| and 7=»n—»’. Substituting Eq(3.39 into
initially scalar perturbations only. The solution of E§.35  EQ. (3.38), the solution reads
was given by Tomit410] in the following way. Introducing
the conformal time variabley, which is related tot by

dt=adn, Eqg.(3.39 is rewritten as X0 m) = ﬁwfn_mndr'r'[wwﬂ')(ﬂ—r')6
0
? 49 1, , ,
0_772X|j+ ;ﬁle_vz){li:ﬁﬂ4~ylj- (3.37) —r ﬂig]j dQ' 7 (x+x"), (3.40

Equation(3.37) can be solved using the retarded Green funcwherer’=|x|.
tion as Finally, we obtain the metric tensor up to second order

L 20 100, 20 .9 20 10
yij=a gij: 1+ E\If‘f' ﬁqf +2«a 5ij+a(t) Z‘I’_E\P +§C¥ +§\P\P’ij+§‘l” ‘P,k5ij
i
19 12 3
+a?(t) 7\?&\1{,(,-— 7x1fv'ka1f,ij+7((qfv$k)2—\pv,k/qfvj()5ij +2xi; - (3.4))
|
We still have freedom in choosing(x), which corresponds IV. COMPARISON WITH PREVIOUS WORKS

to the second-order term of the initial amplitude of the gravi- | this section. we compare our result, B8.42, with
tational potential fluctuations. It can be absorbed into theyrevious work. Quantities, which refer to these papers, will
first-order perturbations by a suitable redefinition®{x). be indicated by a caret.
For example, choosing = — 32¥? gives

A. Tomita's second-order theory

Tomita [10] extended Lifshitz's linearized theof@] up
to the second-order calculation on the basis of general rela-
Si+2a(t) W + 1_Oa(t) tivity. Setting F=2%W for the growing mode andr =54®
! M9 for the decaying modEsee Eq(4.1) in Ref.[10] ] his result
is fully coincident with ours, except for one point: he did not
consider the terms due to the coupling between the growing
1 and decaying modes, which are included in our complete
+ 7a2(t)[19\If"fi‘I’ij— 1205w |, solutions.(See Appendix B.

1+ 2O\I’
9

X(—6W W —4WW  + kY 5)

Yij=

+3((‘I”kk)2_‘1”k/‘1”1<)5ij]+ 2Xi;- (3.42 B. Velocity-dominated singularities
The paper from Eardley, Liang, and Sadlig] uses an
ansatz similar to ourftheir Eq.(8)]. The evolution of quan-
At the initial time (t—0) only first-order metric perturba- tities describing the deviation from homogeneity are, how-
tions exist. ever, not considered there.
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C. The fluid flow approach . 9 o . 81 89.. 5.
M . %zﬁ“h+—%%Rh—4&)+——@ﬂ«—¥+—ﬁﬁ
atarreseet al. [16] also carried out second-order calcu- ‘! 120 ] 177350 32 8
lations based on the fluid flow approach. Their re$Ed.
(49 in Ref.[16] ] is partly consistent with ours, since they
neglect several terms in the computed metric. In spite of the
fact that they obtain the initial condition from the gauge-
invariant linear theory, they neglect the first-order constant _ _Rij‘k;k

mode,%o\lfaij in our notation in Eq(3.42 in the subsequent 2
calculations. Also missing is the second-order homogeneoygnere kij =kij(X) is the “seed” metric ﬁij andR are the

. . . . /3 ) A ) i N L . N
solution, which is proportional 1¢?°. three-dimensional Ricci tensor and Ricci scalar, respectively,

The comparison of the second-order transverse-traceles§ iha three-metrik.: . and a semicolon () denotes the co-
parts has to be taken with some caution. Equat®h9) in e - '

Ref. [16], which has to be solved, can be derived from our}[/.a”agt dgrzlat|v$hvz|rt]h_reépec‘:1tilqj - To (iompare our solu-
Eqg. (3.39. In the short-wavelength limit inside the horizon lon Eq. (3.42 with their Eq.(4.1), we se

(#>r") in our approach we gef2y';=—t*% ', which -

can be identified with Eq(65) in Ref. [16]. In the long- kij(x)=
wavelength limit outside the horizon they obained a result
which can be neglected cause of the appearance of spat

~ o~ N ~n 5. A
_4Rk/Rk/) kij —10RR;j+ g Ry + 17RIR,

, 4.0

20
1+3\p(x))5”. 4.2

i‘l{;pen the Ricci tensor up to second order is

derivatives, whereas in our exact result there exists no solu- . 10 K 00 200
tion for the wavelength larger than the horizon size. Rij=— g (Wi + Vs + o7 V¥ j+ W
- - i 100 200
D. The gradient expansion technique n (E‘P’k‘l’,lﬁ ﬁq’q’kk) 5” . 4.3
Parry et al. [17] derived a nonlinear solution fog;; ,

based on the gradient expansion meth(fsee also Refs. If we substitute this expression into E@.1) and calculate

[19,20.) Their “fifth-order” result is the up to the second order, we obtain
- 4/32 20 213 10 2/3 ki
‘)/”Et ‘yij: 1+ 3\1' 5|]+2t \I},ij+§t (_GWPJ\P'J'_"-\P‘I"”'F\I" \Ifykéij)
1 s k k k\2 K s/
+7t [lg\lf'yiqf’k]‘_lz\lf"kq}’ij+3((\If"k) _\I}',/qjy,k)b‘ij]' (44)

Therefore, we find that their “fifth-order” result coincides mentioned above. Tomita’s approach is valid only when the
with our second-order solution, except for the transverseabsolute value of the density contrést<1 while ours does
traceless party;;. If we take the long-wavelength limit, not rely on this assumption, which is the inherent usefulness
Xij can be neglected, since spatial derivatives are assumed @ the so-called Zel'dovich approximation. The gradient ex-
be quantities of higher order than time derivatives in thispansion technique implies taking the “square root” of the
limit and as a result, the wave equation fe does not metric tensor in order to reproduce th_e Zgl’dowch approxi-
appear. In this sense, our result includes theirs. mation, while we do not need such a trick since we start from
the tetrad formalism.
In our approach the extensionske-0, A+#0 cases and
V. CONCLUDING REMARKS radiation universesp= 3p) are straightforward. These will

) be the subjects of future investigation.
In this paper, we have developed the second-order pertur-

bative approach to the nonlinear evolution of irrotational
dust universes in the framework of general relativity. We ACKNOWLEDGMENTS
have shown the complete calculation of the second-order so-

lutions in ak=0, A=0 background, based on the tetrad lating and helpful discussions. H.R. was supported by the
formalism given by Kasg21]. As mentioned in Sec. IV, our “Deutsche Forschungsgemeinschaft.” M.M. would like to

second-order solution includes the results given in Tomitg

[10], Matarreseet al.[16], and Parnet al.[17] although the ~hank T. Hamana for valuable comments.

essential calculation we need in our approach is just the so-

lution of a second-order ordinary differential equation by

iteration method. Therefore, our approach surpasses these

others in perfection and simplicity. The most general gauge transformation to first order is the
Another advantage of our method remains, which is notesult of the infinitesimal coordinate transformation

H.R. wants to thank M. Soffel and H. Riffert for stimu-

APPENDIX A: GAUGE CONDITION
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XK=xH+ EF, (A1) t|ons which come from¥ X¥, X®, and d X P, and
X 1‘}' , and 0' are the corresponding transverse-traceless
The changes in the four-velocity and in the metric tensor arq‘aarts
computed from

M 9X @ gxXP 1. The coupling mode
WX )= g0, g (xh)=

IXH ax”gaﬁ(x ol We obtain
(A2) i K o K gy ik K i
vj=2‘1’"kq)”j+2<I)”k‘1"’j—lgq’”kq)"j—l5\1” q)',jk
which gives, to first order, :
+(6Y D VKD +5T KD )6,

FUH=TH(X") — ur(x") = € u"— U, &,

. N +3 (= 0 (B2)
5G g,uVEg/.w(X )_g,u,v(x )
= _g,u.v,ozga_g,u.agcfy_gvagcflu . (A3) with
If the perturbations are linear, we can treat scalar pertur- , , 20 }
bations separate and we write ¢~ b=~ IR (B3
g=(T, 8L ) (A4)

(In this calculation we us@', @ =", ¥ which comes
for thek=0 background, wher€=T(x*) andL=L(x*) are  from V' =%y'kyjk—e(/)e(/) )

arbitrary scalar functions. o _ The equat|on for the transverse-traceless part is
The gauge condition we impose in this paper is the co-

moving synchronous condition

| b‘.+3é6i-— L vegi —-spi (B4)
u'=0, dopo=-—1, go=0. (A5) iTogvi g2 j 7
These equatlons must hold for every gauge transformation vvh
s0 thatdg U'= 8¢ o= Sg Joi=0 lead to
L;=0, T=0, T,;=0. (AB) 71 =60 0~ KD +5U kD),
g\i;\)/zrt from a trivial constant translation, these are solved to n Zq,,lfkq),i’j+2q),f<kq,,i’__24\1,,ikq),k_
T=0, L,=L,(x). (A7) — 200D+ (6W KD~ KD,
; ; .9 . : m
The change due to the residual gauge freedom is +5\I,,kq),j(/)5lj+ §(¢>kk",j _ ¢|j,k’k) . (B5)
,m
86 gij= —2a°L j;(x), (A8)
or if we use Eq(3.11) Using the conformal timey, this is rewritten as
o Cij(x)=—L;;(x). (A9) ? 4 ad b 3
P+ —— -V == (B6)
Therefore, using the remaining gauge freedbn(x), we
can chooseC ;;(x) =0.
The solution is
APPENDIX B: COMPLETE SECOND-ORDER SOLUTIONS
The complete solution for the triad reads ﬁij(x, 7= _mndr’r’[(n+r’)(n—r’)
=1+ Dy i+ 8 (2P + 1)
! 9 ! J ! ! —r n,n]f dQ'> x+x) (B7)
+ 8 (2P + 1+ 143+t 3 4172
+x! |+ ,31 1o D, (B1) 2. The decaying mode
We obtain
WherewJ and ¢>J are the spatially dependent parts of the
second-order homogeneous solutions of E221), gDJ, ¢ 21(“ S —any (B8)
v'J, andg those of the second-order inhomogeneous solu- VR 17
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where

1
N= (B9)

=S (D1 — D).

The equation for the transverse-traceless part is
a1 . _
i i 29 —_+—10/3 » i

where

1 . 1 . .
6‘|':_)\kk’|’j+ _()\kk5|]_4)\lj)yy// .

o'=3 n (B11)

Again this is rewritten as

1+ 20‘1’
9

Yij =

10
+3((‘P’I’(k)2_\lf'f(/‘l"’/k)5ij]+2)(”' +2tl( d)” + E\I,q)’”
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ﬁz i 4 0 i 2 i_729,wi
(9—7]20]+;%0j—v 01-—7@]-

and we obtain the solution

i 729 (rm , -
9,—(X,77)=Wfo drir’'[(4np—r')(n—r")

+r'n;n4]f dQ' o (x+x). (B13)

3. The complete expression of the metric tensor

The complete metric reads

10 1
5” +2t2/3q,,ij +2t_1¢),ij + §t2/3(_6\1r’i\1r’j_4\1'\y’ij +\If’k‘P'k5ij)+ 7t4/3[ 19\Ir’!(iql,kj_12\1,'5(kq,,ij

1
+172 2000 = OB i+ 2 (@)= P05,

+20;+t VAV KD+ 4D KW | — 18T KD\~ 18D KW~ 30¥ &K + (120 K & — 2w KD,

+ 10\If’kq)'y/k/) i+ 9(¢kk,ij - ¢:(J Wl+H29;.

(B14)
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