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The gravitational instability of inhomogeneities in the expanding universe is studied by the relativistic
second-order approximation. Using the tetrad formalism we consider irrotational dust universes and get equa
tions very similar to those given in the Lagrangian perturbation theory in Newtonian cosmology. Neglecting
the cosmological constant and assuming a flat background model we give the solutions of the nonlinea
dynamics of cosmological perturbations. We present the complete second-order solutions, which extend an
improve earlier works.@S0556-2821~96!04210-5#
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I. INTRODUCTION

Gravitational instability and structure formation in th
universe is an important topic of cosmological research.
usingN-body codes it is possible to follow the general no
linear evolution of initially small perturbations numerically
but an understanding of what has happened between in
and output can often better be gained by analytical tre
ments. Various analytical approaches have been comp
with the numerical results statistically@1–4# and it has turned
out that the celebrated Zel’dovich approximation@5# gives
the best fit to the numerical treatment. Buchert@6# presented
the Lagrangian perturbative approximation to first ord
based on Newtonian theory. This work was extended to s
ond order@7# and even to third order@8#, giving some new
useful information about self-gravitating systems. But the
and most other analytical treatments are Newtonian
proaches, which are valid only for perturbations on sca
much smaller than the horizon size. On super-horizon sca
instead one needs a relativistic approach. The pioneer
Lifshitz @9# with his linearized theory on the basis of gener
relativity, which was extended to the second order by Tom
@10–12#. An anisotropic, homogeneous general-relativis
model was considered by Raychaudhuri@13#. A Zel’dovich-
like relativistic formulation was suggested by Eardley, L
ang, and Sachs@14#. A Lagrangian relativistic approximation
to the second order based on fluid flow equations was gi
by Matarrese, Pantano, and Saez@15,16#. Parry, Salopek, and
Stewart @17# presented the nonlinear solution of th
Hamilton-Jacobi equation for general relativity, using th
spatial gradient expansion technique@18# and reproduced the
Zel’dovich approximation. The ‘‘higher-order Zel’dovich
approximation’’ is discussed in Croudaceet al. @19# and Sa-
lopek, Stewart, and Croudace@20#.

In this paper, we give an alternative approach, which e
tends a tetrad-based Zel’dovich-type approximation by Ka
@21#. We derive the fully general relativistic equations ve
similar to those given in the Newtonian case, which a
solved in a flat background model without the cosmologic
constant by an iteration method. The complete solutions
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compared with previous work and it is found that they in
clude all these results.

This paper is organized as follows. In Sec. II we prese
the basic relativistic equations and introduce the tetrad fo
malism. In Sec. III the perturbative approach is present
and the solutions up to second order are given. In Sec. IV w
compare our results with previous works. Section V contain
conclusions. In the appendixes we explain our gauge con
tion and present the complete second-order solutions, inclu
ing the decaying and the coupling mode. Units are chosen
that c51. Indicesm,n, . . . anda,b, . . . run from 0 to 3
and indicesi , j , . . . run from 1 to 3.

II. EXPOSITION OF THE METHOD

In this section, we summarize a general relativistic trea
ment to describe the nonlinear evolution of an inhomog
neous universe@21–23#. The models we consider contain
irrotational dust with densityr and four-velocityum ~and
possibly a cosmological constantL). Neglecting the fluid
pressure and the vorticity is a reasonable assumption in
cosmological context. In comoving synchronous coordinate
the line element can be written in the form

ds252dt21gi j dx
idxj ~2.1!

with um5(1,0,0,0). Then the Einstein equations read

1

2
@3Ri

i1~Ki
i !
22Ki

jK
j
i #58pGr1L, ~2.2!

Ki
j i i2Ki

i i j50, ~2.3!

K̇ i
j1Kk

kK
i
j1

3Ri
j5~4pGr1L!d i j , ~2.4!

where 3Ri
j is the three-dimensional Ricci tensor,

Ki
j5

1

2
gikġjk ~2.5!
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6882 53RUSS, MORITA, KASAI, AND BÖRNER
is the extrinsic curvature,i denotes the covariant derivative
with respect to the three-metricgi j , and an overdot~•! de-
notes]/]t. The energy equationumT

mn
;n50 gives

ṙ1rKi
i50, ~2.6!

with the solution

r5r~ t in ,x!
Adet@gi j ~ t in ,x!#

Adet@gi j ~ t,x!#
. ~2.7!

The evolution equation for the Ricci curvature is obtained
the form @21#

3Ṙ j
i 12K k

i 3R j
k 5Ki

ki j
ik1Kk

j
i i

ik2Ki
j
ik

ik2Kk
k

i i
i j .

~2.8!

Let us introduce the scale factor functiona(t) which sat-
isfies the equation

2aä1ȧ21k2La250, ~2.9!

where the curvature constantk takes the value of
11, 0, 21 for closed, flat, and open spaces, respective
@Equation~2.9! is obtained from the Friedmann equation

S ȧaD
2

1
k

a2
5
8pG

3
rb1

L

3
~2.10!

and its derivative with respect to time.# If the spacetime is
exactly Friedmann-Lemaıˆtre-Robertson-Walker ~FLRW!,
then we have

K j
i 5

ȧ

a
d j
i , 3R j

i 52
k

a2
d j
i for FLRW. ~2.11!

Therefore, the deviations from the FLRW models due to i
homogeneity are expressed by the peculiar part of the ext
sic curvature

V j
i [K j

i 2
ȧ

a
d j
i , ~2.12!

which represents the deviation from the uniform Hubble e
pansion, and the deviation of the curvature tensor

R j
i [a2 3R j

i 22kd j
i . ~2.13!

Using these quantities, Eqs.~2.3!, ~2.4!, and~2.8! are rewrit-
ten as

V j u i
i 2V i u j

i 50, ~2.14!

V̇ j
i 1S 3ȧa1V k

k DV j
i 1

1

a2 SR j
i 2

1

4
R k

k d j
i D

5
1

4
$~V k

k !22V l
k V k

l %d j
i , ~2.15!

Ṙ j
i 12V l

i
R j
l 14kV j

i 5Vi
l u j

ul 1Vl j
u i

ul 2Vi
j
ul

ul 2Vl l
u i

u j ,
~2.16!

whereu denotes the covariant derivative with respect to th
conformally transformed three-metricg i j[a22gi j .
in

ly.
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x-

e

The procedure essential to develop the relativist
Zel’dovich-type approximation@21# is to introduce the ortho-
normal tetrad

gmn5h~a!~b!ēm
~a!ēn

~b! ~2.17!

with

ēm
~0!5um5~21,0,0,0!,

ēm
~ l !5„0, ēi

~ l !
…[„0, a~ t !ei

~ l !
… for l 51,2,3.

~2.18!

The spatial basis vectors are parallel transported along e
fluid line: i.e.,

ē~ l !
m;n u

n50. ~2.19!

In our choice of the tetrad components, it reads

ė~ l !
i5V i

j e j
~ l ! or V j

i 5e ~ l !
i ė~ l !

j . ~2.20!

Using Eqs. ~2.15!, ~2.16!, and ~2.20!, we obtain the key
equation

]

]t Fa3S ë~ l !
i12

ȧ

a
ė~ l !

i24pGrbe
~ l !

i D G
5a~P~ l !

i1Q~ l !
i1S~ l !

i !, ~2.21!

where

P~ l !
i5

]

]t H a24 @~V k
k !22V n

k Vn
k#e

~ l !
i

2a2~V k
k V i

j 2V k
j V i

k !e~ l !
j J , ~2.22!

Q i
~ l !5SV k

j
R i

k1
1

4
V i
j
R k

k 2
1

2
d i
j V n

k
R k

n De~ l !
j ,

~2.23!

and

S~ l !
i5@Vj

i
uk

uk1Vk
k
u j

u i2Vj
ku i

uk2Vk
i
u j

uk1k~3Vj
i

2Vk
kd

j
i !#e

~ l !
j . ~2.24!

Note that the left-hand side of Eq.~2.21! is already linearized
with respect toe(l ) i and all terms on the right-hand side
exceptS(l ) i are manifestly nonlinear quantities. It has, there
fore, a form suitable for solving it perturbatively by iteration
It should also be stressed that we have not used any appro
mation methods in deriving Eq.~2.21!. Our treatment here is
fully nonlinear and exact.

III. PERTURBATIVE APPROACH

In this section, we solve perturbatively the key equatio
Eq. ~2.21! by an iteration method.

A. The background

The background (V j
i 50, R j

i 50) solution is character-
ized by
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ė~ l !
i50, i.e., e~ l !

i5e~ l !
i~x!. ~3.1!

Furthermore, the metricg i j5d (k)(l )e
(k)

ie
(l )

j is that of a con-
stant curvature space with curvature constantk. In the case
of a flat background, we can write

e~ l !
i5d~ l !

i for k50. ~3.2!

Hereafter, we restrict our consideration to the Einstein–
Sitter background,k50, L50.

B. The first-order solutions: scalar modes

Linear perturbations are classified into scalar, vector, a
tensor modes. In the first-order level, they do not couple w
each other, and can be discussed separately. Let us first
sider the scalar perturbations. The general form for the
early perturbed triad in this case is

e~ l !
i5d~ l !

i1E~ l !
i5d~ l !

i1d~ l !
j~Ad j

i1B, j
,i !. ~3.3!

Let us write the first-order quantities with subscript(1).
Then the perturbed extrinsic curvature is

V~1! j
i 5Ȧd j

i 1Ḃ , j
,i . ~3.4!

From the constraint equation~2.14!, which reads

V ~1! j ,i
i 2V ~1!i , j

i 50 ~3.5!

in the first order, we obtainȦ,i50. However, the part
Ȧ(t)d j

i in the extrinsic curvature simply represents the un
form and isotropic Hubble expansion. Therefore, by a su
able redefinition of the background, we can set

Ȧ50, i.e., A5A~x!. ~3.6!

As was noted previously, it is apparent that the sou
terms P(l )

i and Q(l )
i are second-order quantities~and

higher!. UsingV (1) j
i 5Ḃ , j

,i , we also find thatS(l ) i vanishes
in linear order:

S~ l !
~1!i5d~ l !

j~V
j
~1!i

,k
,k1Vk

~1!k
, j
,i2Vj

~1!k,i
,k2Vk

~1!i
, j
,k!

50. ~3.7!

Therefore, to first order, the right-hand side of the k
equation~2.21! vanishes and it can be integrated to give

a3S Ë~ l !
i12

ȧ

a
Ė~ l !

i24pGrbE
~ l !

i D5C~ l !
i~x!. ~3.8!

By choosingC(l )
i(x)524pGrba

3d (l ) j„A(x)d i
j 1C ,i

, j (x)…,
Eq. ~3.8! is rewritten as

]2

]t2
~B , j

,i 2C , j
,i !12

ȧ

a

]

]t
~B , j

,i 2C , j
,i !24pGrb~B , j

,i 2C , j
,i !

50. ~3.9!

Note that now it has the same form as the equation wh
governs the density contrastd in conventional linear pertur-
bation theory @24#. Using the growing mode
de

nd
ith
con-
lin-

i-
it-

rce

ey

ich

D1(t)5a(t)5t2/3 and the decaying mode solutions
D2(t)5t21, respectively, we obtain the solutions in the
form

B , j
,i 5C , j

,i ~x!1t2/3C , j
,i ~x!1t21F , j

,i ~x!. ~3.10!

For the metric, we have the first-order expression

gi j5a2~ t !$@112A~x!#d i j12C,i j ~x!12t2/3C ,i j ~x!

12t21F ,i j ~x!%. ~3.11!

The relation betweenA(x) and C(x) is given by Eq.
~2.15!. To first order, it reads

V̇ ~1! j
i 13

ȧ

a
V ~1! j
i 1

1

a2 SR ~1! j
i 2

1

4
R ~1!k

k d j
i D50 ,

~3.12!

where

V ~1! j
i 5

2

3
t2 1/3C , j

,i 2t22F , j
,i ~3.13!

and

R ~1! j
i 52A , j

,i 2A ,k
,k d j

i . ~3.14!

Hence we have

A~x!5
10

9
C~x!. ~3.15!

The functionC(x) is not determined by the Einstein equa
tions within our approximation. As shown in Appendix A,
however, we can setC(x)50 using a residual gauge free-
dom. The final form of the first-order solutions is, therefore

e~ l !
i5S 11

10

9
C~x! D d~ l !

i1d~ l !
j„t

2/3C ,i
, j ~x!1t21F ,i

, j ~x!…,

~3.16!

or in the form of the metric

gi j5a2~ t !F S 11
20

9
C~x! D d i j12t2/3C ,i j ~x!12t21F ,i j ~x!G .

~3.17!

Note that we have not assumed that the density contras
small, in order to derive the solutions. The density is give
by Eq. ~2.7!, which in this case reads

r5r~ t in ,x!S a~ t in!

a~ t ! D 3 det@e~ l !
i~ t in ,x!#

det@e~ l !
i~ t,x!#

. ~3.18!

C. The first-order solutions: tensor modes

Under the assumption of vanishing vorticity, the remain
ing is the tensor mode perturbations. In this case, we c
write the triad in the form

e~ l !
i5d~ l !

i1d~ l !
jH

j
i ~3.19!

with H j ,i
i 50 andH i

i 50.
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The perturbed extrinsic curvature is

V ~1! j
i 5Ḣ j

i . ~3.20!

Then, the constraint equation~2.14! to first order, i.e., Eq.
~3.5!, is trivially satisfied.

To obtain the equation forHi
j , we can use the key equa

tion ~2.21!. On the right-hand side of Eq.~2.21!, S(l ) i is the
only quantity to be calculated sinceP(l )

i andQ
(l )

i are of
higher order:

S~ l !
~1!i5d~ l !

j Ḣ
j
i
,k
,k . ~3.21!

Equation~2.21! reads

]

]t Fa3S Ḧ i
j12

ȧ

a
Ḣi

j24pGrbH
i
j D G5aḢi

j
,k
,k .

~3.22!

Integrating Eq.~3.22!, we obtain

Ḧ i
j13

ȧ

a
Ḣi

j2
1

a2
¹2Hi

j50, ~3.23!

where¹2 is the Laplacian of flat three-spaces. In fact, th
same equation forHi

j can be also obtained directly from Eq
~3.12!.

The solution of Eq.~3.23! is given as

Hi
j5E d3qt2 1/2J63/2~3uqut1/3!hi jexp~ iq•x!,

~3.24!

whereJ63/2is the Bessel function of order63/2 andhi j is a
constant tensor withhi i50 and qih j

i 50. ~See, e.g., Ref.
@25# for detail.!

D. The second-order solutions

In order to avoid notational complexity, in this subsectio
we only deal with growing mode terms. The complete so
tions of the decaying and coupling terms can be found
Appendix B. Moreover, we omit the first-order tensor mod
~It is not our aim to consider the nonlinear effect whic
comes from this mode. With respect to this problem, s
Refs.@11,12#.! Thus we begin with the form

e~ l !
i5S 11

10

9
C~x! D d~ l !

i1t2/3d~ l !
jC ,i

, j ~x!1«~ l !
i .

~3.25!

The second-order quantity« (l ) i is decomposed into a
transverse-traceless part and a remaining longitudinal pa

«~ l !
i5d~ l !

j~b j
i1x j

i !, ~3.26!

wherex j ,i
i 50, x i

i 50.
The peculiar deformation tensor to second order is imm

diately found to give

V ~2! j
i 5ḃ j

i 1ẋ j
i 2

20

27
t2 1/3CC , j

,i 2 2/3 t1/3C ,k
,i C , j

,k .

~3.27!
-

e
.

n
lu-
in
e.
h
ee

rt

e-

Quantities with subscript (2) represent the second-order te
in the expansion. From the constraint equation~2.14!, we
now obtain

ḃ j ,i
i 2ḃ i , j

i 1
20

27
t2 1/3~C ,kC ,k! , j50. ~3.28!

Let us turn our attention to the key equation~2.21!. To
second order it reads

«̈ ~ l !
i12

ȧ

a
«̇ ~ l !

i24pGrb«
~ l !

i5
1

a3
c~ l !

i~x!1
1

a3E
t

a~P~2!i
~ l !

1Q~2!i
~ l ! 1S~2!i

~ l ! !dt, ~3.29!

wherec(l ) i(x) is a second-order integration ‘‘constant.’’ It is
apparent that the source termsP (2)i

(l ) andQ (2)i
(l ) are quadratic

with respect to the first-order quantities, hence contain n
therb j

i nor x j
i . Furthermore, from Eq.~3.28!, we find that

the longitudinal part ofS (2)i
(l ) does not containb j

i . Actually,
if we take the divergence of Eq.~3.29!, we obtain

b̈ j ,i
i 12

ȧ

a
ḃ j ,i
i 24pGrbb j ,i

i 5
1

a3
c j ,i
i ~x!2

1

3
t2 2/3@~C ,k

,k !2

2C ,l
,k C ,k

,l # , j . ~3.30!

Therefore, solutions forb j
i can be written as a linear com

bination of the homogeneous solution and the inhomog
neous solution in the presence of the given source terms

b j
i 5a~x!d j

i 1t2/3c j
i ~x!1t4/3w j

i ~x!, ~3.31!

where we have used a convenient choice of the integrat
‘‘constant’’ c(l ) i(x)524pGrba

3a(x)d j
i .

Once we obtain the temporal dependency of the solutio
their spatial dependency, i.e.,c j

i (x) andw j
i (x), are deter-

mined by Eq.~2.15!. To second order

c j
i 5

5

9
C ,kC ,kd j

i 2
10

9
~C2! , j

,i 1
9

10
a , j
,i , ~3.32!

w j
i 5

3

7
~m k

k d j
i24m j

i !, ~3.33!

where

m j
i [

1

2
~C ,k

,k C , j
,i 2C ,k

,i C , j
,k !. ~3.34!

~The tensorm j
i has an interesting property: the tracem i

i

gives the second scalar invariant1 of the tensorC , j
,i .)

1Three scalar invariants of a three-dimensional tensorAj
i

are defined by I (A)[Ai
i , II (A)[1/2@(Ai

i)22Aj
i Ai

j #, and
III (A)[det(Aj

i ). They satisfy the relation det(d j
i1Aj

i )51
1I (A)1II (A)1III (A). See, e.g., Ref.@8# and references therein.
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The equation forx j
i can also be obtained from Eq.~3.29!,

but it is more convenient to use Eq.~2.15! instead. To second
order, it gives for the transverse-traceless part

ẍ j
i 13

ȧ

a
ẋ j
i 2

1

a2
¹2x j

i 5S j
i , ~3.35!

where

S i
j5

3

7
mk

k
,i
, j1

3

7
~mk

kd
i
j24m i

j !
,l
,l ~3.36!

is a transverse and traceless tensor:S i
i50,S i

j ,i50. This
shows that gravitational waves are induced even if there
initially scalar perturbations only. The solution of Eq.~3.35!
was given by Tomita@10# in the following way. Introducing
the conformal time variableh, which is related tot by
dt5adh, Eq. ~3.35! is rewritten as

]2

]h2x i
j1

4

h

]

dh
x i

j2¹2x i
j5

1

81
h4S i

j . ~3.37!

Equation~3.37! can be solved using the retarded Green fun
tion as
are

c-

x i
j~x,h!5

1

81E D ret~x,h;x8,h8!a4~h8!S i
j~x8!dh8d3x8,

~3.38!

where

D ret~x,h;x8,h8!5
1

4p~hh8!3
@11e~h2h8!#

3Fhh8d~t22r 2!1
1

2
u~t22r 2!G

~3.39!

with r[ux2x8u andt[h2h8. Substituting Eq.~3.39! into
Eq. ~3.38!, the solution reads

x j
i ~x,h!5

1

1944ph3E
0

h2h in
dr8r 8@~6h1r 8!~h2r 8!6

2r 8h in
6#E dV8S j

i ~x1x8!, ~3.40!

wherer 8[ux8u.
Finally, we obtain the metric tensor up to second orde
g i j5a22gi j5S 11
20

9
C1

100

81
C212a D d i j1a~ t !F S 2C2

20

9
C21

9

5
a D

,i j

1
20

9
CC ,i j1

10

9
C ,kC ,kd i j G

1a2~ t !F197 C ,i
,kC ,k j2

12

7
C ,k

,k C ,i j1
3

7
„~C ,k

,k !22C ,l
,k C ,k

,l
…d i j G12x i j . ~3.41!
ill

la-

t
ing
ete

w-
We still have freedom in choosinga(x), which corresponds
to the second-order term of the initial amplitude of the gra
tational potential fluctuations. It can be absorbed into t
first-order perturbations by a suitable redefinition ofC(x).
For example, choosinga52 50

81C
2 gives

g i j5S 11
20

9
C D d i j12a~ t !C ,i j1

10

9
a~ t !

3~26C ,iC , j24CC ,i j1C ,kC ,kd i j !

1
1

7
a2~ t !@19C ,i

,kC ,k j212C ,k
,k C ,i j

13„~C ,k
,k !22C ,l

,k C ,k
,l
…d i j #12x i j . ~3.42!

At the initial time (t→0) only first-order metric perturba-
tions exist.
vi-
he

IV. COMPARISON WITH PREVIOUS WORKS

In this section, we compare our result, Eq.~3.42!, with
previous work. Quantities, which refer to these papers, w
be indicated by a caret.

A. Tomita’s second-order theory

Tomita @10# extended Lifshitz’s linearized theory@9# up
to the second-order calculation on the basis of general re
tivity. Setting F̂5 20

9 C for the growing mode andF̂554F
for the decaying mode@see Eq.~4.1! in Ref. @10# # his result
is fully coincident with ours, except for one point: he did no
consider the terms due to the coupling between the grow
and decaying modes, which are included in our compl
solutions.~See Appendix B.!

B. Velocity-dominated singularities

The paper from Eardley, Liang, and Sachs@14# uses an
ansatz similar to ours@their Eq.~8!#. The evolution of quan-
tities describing the deviation from homogeneity are, ho
ever, not considered there.
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C. The fluid flow approach

Matarreseet al. @16# also carried out second-order calcu
lations based on the fluid flow approach. Their result@Eq.
~49! in Ref. @16# # is partly consistent with ours, since the
neglect several terms in the computed metric. In spite of
fact that they obtain the initial condition from the gaug
invariant linear theory, they neglect the first-order consta
mode,209 Cd i j in our notation in Eq.~3.42! in the subsequent
calculations. Also missing is the second-order homogene
solution, which is proportional tot2/3.

The comparison of the second-order transverse-trace
parts has to be taken with some caution. Equation~B19! in
Ref. @16#, which has to be solved, can be derived from o
Eq. ~3.35!. In the short-wavelength limit inside the horizo
(h@r 8) in our approach we get¹2x j

i 52t4/3 S j
i , which

can be identified with Eq.~65! in Ref. @16#. In the long-
wavelength limit outside the horizon they obained a resu
which can be neglected cause of the appearance of sp
derivatives, whereas in our exact result there exists no s
tion for the wavelength larger than the horizon size.

D. The gradient expansion technique

Parry et al. @17# derived a nonlinear solution forgi j ,
based on the gradient expansion method.~See also Refs.
@19,20#.! Their ‘‘fifth-order’’ result is the
-

y
the
e-
nt

ous

less

ur
n

lt,
atial
olu-

ĝ i j5t4/3k̂i j1
9

20
t2~R̂k̂i j24R̂i j !1

81

350
t8/3F S 8932R̂21

5

8
R̂ ;k
;k

24R̂kl R̂kl D k̂i j210R̂R̂i j1
5

8
R̂; i j117R̂ i

nR̂jn

2
5

2
R̂i j ;k

;kG , ~4.1!

where k̂i j5 k̂i j (x) is the ‘‘seed’’ metric,R̂i j and R̂ are the
three-dimensional Ricci tensor and Ricci scalar, respective
of the three-metrick̂i j , and a semicolon (;) denotes the co
variant derivative with respect tok̂i j . To compare our solu-
tion Eq. ~3.42! with their Eq.~4.1!, we set

k̂i j ~x!5S 11
20

9
C~x! D d i j . ~4.2!

Then the Ricci tensor up to second order is

R̂i j52
10

9
~C ,i j1C ,k

,k d i j !1
100

27
C ,iC , j1

200

81
CC ,i j

1S 10081 C ,kC ,k1
200

81
CC ,k

,k D d i j . ~4.3!

If we substitute this expression into Eq.~4.1! and calculate
up to the second order, we obtain
g i j[t2 4/3ĝ i j5S 11
20

9
C D d i j12t2/3C ,i j1

10

9
t2/3~26C ,iC , j24CC ,i j1C ,kC ,kd i j !

1
1

7
t4/3@19C ,i

,kC ,k j212C ,k
,k C ,i j13„~C ,k

,k !22C ,l
,k C ,k

,l
…d i j #. ~4.4!
he

ss
x-
e
i-
m

-
the
o

the
Therefore, we find that their ‘‘fifth-order’’ result coincides
with our second-order solution, except for the transvers
traceless part,x i j . If we take the long-wavelength limit,
x i j can be neglected, since spatial derivatives are assume
be quantities of higher order than time derivatives in th
limit and as a result, the wave equation forx i j does not
appear. In this sense, our result includes theirs.

V. CONCLUDING REMARKS

In this paper, we have developed the second-order per
bative approach to the nonlinear evolution of irrotation
dust universes in the framework of general relativity. W
have shown the complete calculation of the second-order
lutions in a k50, L50 background, based on the tetra
formalism given by Kasai@21#. As mentioned in Sec. IV, our
second-order solution includes the results given in Tom
@10#, Matarreseet al. @16#, and Parryet al. @17# although the
essential calculation we need in our approach is just the
lution of a second-order ordinary differential equation b
iteration method. Therefore, our approach surpasses th
others in perfection and simplicity.

Another advantage of our method remains, which is n
e-

d to
is

tur-
al
e
so-
d

ita

so-
y
ese

ot

mentioned above. Tomita’s approach is valid only when t
absolute value of the density contrastudu!1 while ours does
not rely on this assumption, which is the inherent usefulne
of the so-called Zel’dovich approximation. The gradient e
pansion technique implies taking the ‘‘square root’’ of th
metric tensor in order to reproduce the Zel’dovich approx
mation, while we do not need such a trick since we start fro
the tetrad formalism.

In our approach the extensions tokÞ0, LÞ0 cases and
radiation universes (p5 1

3r) are straightforward. These will
be the subjects of future investigation.
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APPENDIX A: GAUGE CONDITION

The most general gauge transformation to first order is
result of the infinitesimal coordinate transformation
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x̃m5xm1jm. ~A1!

The changes in the four-velocity and in the metric tensor a
computed from

ũm~ x̃ l!5
] x̃m

]xn u
n~xl!, gmn~xl!5

] x̃ a

]xm

] x̃b

]xn g̃ab~ x̃ l!,

~A2!

which gives, to first order,

dGu
m[ũm~xl!2um~xl!5j ,n

m un2u ,n
m jn,

dG gmn[g̃mn~xl!2gmn~xl!

52gmn,aja2gmaj ,n
a 2gnaj ,m

a . ~A3!

If the perturbations are linear, we can treat scalar pert
bations separate and we write

jm5~T,d i j L , j ! ~A4!

for thek50 background, whereT5T(xm) andL5L(xm) are
arbitrary scalar functions.

The gauge condition we impose in this paper is the c
moving synchronous condition

ui50, g00521, g0i50. ~A5!

These equations must hold for every gauge transformati
so thatdG ui5dG g005dG g0i50 lead to

L̇ , j50, Ṫ50, T,i50 . ~A6!

Apart from a trivial constant translation, these are solved
give

T50, L , j5L , j~x!. ~A7!

The change due to the residual gauge freedom is

dG gi j522a2L ,i j ~x!, ~A8!

or if we use Eq.~3.11!,

dG C,i j ~x!52L ,i j ~x!. ~A9!

Therefore, using the remaining gauge freedomL , j (x), we
can chooseC,i j (x)50.

APPENDIX B: COMPLETE SECOND-ORDER SOLUTIONS

The complete solution for the triad reads

e~ l !
i5S 11

10

9
C D d~ l !

i1d~ l !
j~ t

2/3C ,i
, j 1t21F ,i

, j !

1d~ l !
j~ t

2/3c i
j 1t21f i

j 1t4/3w i
j 1t2 1/3y i

j 1t22z i
j

1x i
j 1q i

j 1u i
j !, ~B1!

wherec j
i and f j

i are the spatially dependent parts of th
second-order homogeneous solutions of Eq.~2.21!, w j

i ,
y j
i , andz j

i those of the second-order inhomogeneous so
re

ur-

o-

on,

to

e

lu-

tions, which come fromC3C, C3F, and F3F, and
x j
i , q j

i , andu j
i are the corresponding transverse-tracel

parts.

1. The coupling mode

We obtain

y j
i 52C ,k

,k F , j
,i 12F ,k

,k C , j
,i 219C ,k

,i F , j
,k 215C ,kF , jk

,i

1~6C ,l
,k F ,k

,l 2C ,k
,k F ,l

,l 15C ,kF ,kl
,l !d j

i

1 9
2 ~fk

k
,i
, j2f i

j
,k
,k! ~B2!

with

f j ,i
i 2f i , j

i 52
20

9
C ,kF , j

,k . ~B3!

~In this calculation we useC ,k
,i F , j

,k 5F ,k
,i C , j

,k which comes
from V j

i [ 1
2g

ikġ jk5e (l )
i ė j

(l ).)
The equation for the transverse-traceless part is

q̈ j
i 13

ȧ

a
q̇ j
i 2

1

a2
¹2q j

i 5t2 5/3P j
i , ~B4!

where

P j
i 5~6C ,l

,k F ,k
,l 2C ,k

,k F ,l
,l 15C ,kF ,kl

,l ! , j
,i

1F 2C ,k
,k F , j

,i 12F ,k
,k C , j

,i 224C ,k
,i F , j

,k

220C ,kF , jk
,i 1~6C ,l

,k F ,k
,l 2C ,k

,k F ,l
,l

15C ,kF ,kl
,l !d j

i 1
9

2
~fk

k
,i
, j2f i

j
,k
,k!G

,m

,m

. ~B5!

Using the conformal timeh, this is rewritten as

]2

]h2q j
i 1

4

h

]

]h
q j
i 2¹2q j

i 5
3

h
P j

i . ~B6!

The solution is

q j
i ~x,h!5

3

4ph3E
0

h2h in
dr8r 8@~h1r 8!~h2r 8!

2r 8h in#E dV8P j
i ~x1x8!. ~B7!

2. The decaying mode

We obtain

z j
i 5

1

4
~l k

k d j
i 24l j

i !, ~B8!
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where

l j
i [

1

2
~F ,k

,k F , j
,i 2F ,k

,i F , j
,k !. ~B9!

The equation for the transverse-traceless part is

ü j
i 13

ȧ

a
u̇ j
i 2

1

a2
¹2u j

i 5t2 10/3Q j
i , ~B10!

where

Q j
i 5

1

4
lk

k
,i
, j1

1

4
~l k

k d j
i 24l j

i ! ,l
,l . ~B11!

Again this is rewritten as
]2

]h2 u j
i 1

4

h

]

]h
u j
i 2¹2u j

i 5
729

h6 Q j
i ~B12!

and we obtain the solution

u j
i ~x,h!5

729

16ph3E
0

h2h in
dr8r 8@~4h2r 8!~h2r 8!24

1r 8h in
24#E dV8Q j

i ~x1x8!. ~B13!

3. The complete expression of the metric tensor

The complete metric reads
g i j5S 11
20

9
C D d i j12t2/3C ,i j12t21F ,i j1

10

9
t2/3~26C ,iC , j24CC ,i j1C ,kC ,kd i j !1

1

7
t4/3@ 19C ,i

,kC ,k j212C ,k
,k C ,i j

13„~C ,k
,k !22C ,l

,k C ,k
,l
…d i j #12x i j12t21S f i j1

10

9
CF ,i j D1t22F 2F ,i

,kF ,k j2F ,k
,k F ,i j1

1

4
„~F ,k

,k !22F ,l
,k F ,k

,l
…d i j G

12u i j1t2 1/3@4C ,k
,k F ,i j14F ,k

,k C ,i j218C ,i
,kF ,k j218F ,i

,kC ,k j230C ,kF ,i j
,k 1~12C ,l

,k F ,k
,l 22C ,k

,k F ,l
,l

110C ,kF ,kl
,l !d i j19~f k,i j

k 2f i j ,k
,k !#12q i j . ~B14!
on.

rt,

t.
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