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Schild’s null strings in flat and curved backgrounds
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Schild’s null ~tensionless! strings are discussed in certain flat and curved backgrounds. We find close
stationary, null strings as natural configurations existing on the horizons of spacetimes which possess such
hypersurfaces. Examples of these are obtained in Schwarzschild and Rindler spacetimes. A dynamic null s
is also identified in Rindler spacetime. Furthermore, a general prescription~with explicit examples! is outlined
by means of which null string configurations can be obtained in a large class of cosmological backgroun
@S0556-2821~96!01210-6#
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In a posthumously published paper, nineteen years a
Schild @1# first introduced the notion of a null or tensionles
string ~see also Karlhede and Lindstro¨m @2#!. By replacing
the Nambu-Goto Lagrangian with its square, he wrote do
the action and equations of motion for the null string follow
ing the standard treatment for null geodesics. The null str
was quantized by Lizziet al. @3#. Surprisingly, they found
that consistent quantization did not imply a critical dime
sion. Subsequently, it was realized that the absence of a c
cal dimension was essentially an artifact of the ordering
operators in the quantum theory. Whereas Lizziet al. pre-
ferred Weyl ordering~the absence of oscillator modes bein
the rationale!, others@4# used normal ordering and obtaine
D526 as the critical dimension. Simultaneously, a Ham
tonian analysis was also carried out@5# and supersymmetric
generalizations were discussed@6#. The latest, carefully done
Hamiltonian Becchi-Rouet-Stora-Tyutin~BRST! analysis by
Gustaffsonet al. @7# ~see also@8,9#! which employs the use
of a smearedd function in the canonical commutation rela
tions, concludes that the critical dimension of the boso
null string is D52. A review of the literature on null
p-branes and superp-branes up to 1993 can be found i
Bandos and Zheltukhin@10#.

However, null strings have almost never been discus
in a curved Lorentzian background. The only reference t
curved background can be found in the concluding portion
Schild’s paper. Stachel@11#, on the other hand, has obtaine
an energy-momentum tensor satisfying the conservation
with matter made out of a cloud of null strings~null string
dust!. This sort of matter can therefore be used as source
the Einstein equations and exact metrics generated by su
source. More recently, however, it has been shown@12# that
the energy-momentum tensor describing a fluid of n
strings can act as a source for metrics representing Friedm
Robertson-Walker~FRW! universes in both its matter and
radiation-dominated epochs. In this article our aim is as f
lows. We first set up the equations of motion of a null strin
in a curved background and then obtain exact string confi
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rations in a variety of backgrounds which include the Rin
dler, Schwarzschild, and some cosmological spacetimes.

Let us begin with the curved background action written
down by Schild@1#. This is given as

S5E S2dsdt, ~1!

whereS25gmagnbSmnSab and

Smn5
]xm

]t

]xn

]s
2

]xm

]s

]xn

]t
. ~2!

Here,xm(t,s) is the embedding function for the null world
sheet in a general background spacetime.

Note thatS2 is essentially the determinant of the metric
induced on the world sheet by the background spacetime.
the world sheet is null then there must exist one null tange
vector. This leads to the fact that the determinant of th
induced metric is identically zero.

The field equations and constraints that arise out of vari
tions of the action in~1! are given as

ẍm1Grl
m ẋrẋl50, ~3!

gmnẋ
mẋn50, gmnẋ

mx8n50, ~4!

where the overdots and primes denote differentiations wi
respect tot ands, respectively.

The constraint equations are not invariant for arbitrar
reparametrizations ofs andt. In fact, the allowed reparam-
etrizations aret15 f (s,t) ands15g(s). Thus, thess el-
ement of the induced world sheet metric has to be indepe
dent of t. Then, only one has a reparametrization-invarian
theory where the class of reparametrizations allowed are r
stricted in comparison to the usual timelike bosonic strin
@13#. In fact, one can show that this restricted set of transfo
mations which leave the degenerate character of the met
invariant form the Caroll group introduced by Levy Leblond
@14# many years ago.

It should be mentioned that one can also use the actio
proposed in@2#, instead of the one we have used@see Eq.
~1!#. The classical equations of motion and constraints whic
6842 © 1996 The American Physical Society
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53 6843SCHILD’S NULL STRINGS IN FLAT AND CURVED BACKGROUNDS
are of primary concern in this paper are the same for b
these actions as long as one makes the gauge ch
xm8ẋm50, fx825const wheref is the Lagrange multiplier
field ~analogue of the einbein for the massless particle!.

The field equations are essentially geodesic equatio
The constraint (gmnẋ

mẋn50) implies that we should look for
only null geodesics. Thus, knowing the null geodesics in
background spacetime would naturally lead to null stri
configurations provided all the constraints are satisfied. T
is reminiscent of the bosonic case where the stationary st
equations can also be transformed into geodesic equation
anunphysicalRiemannian space@15#.

We now move on towards solving these equations of m
tion and constraints in specific background spacetimes in
der to obtain specific string configurations.

a. Minkowski spacetime.To begin, let us deal with the
almost trivial case of Minkowski spacetime as the bac
ground. The null string equations of motion and constrai
yield a solution of the form

xm5amt1bm~s! ~5!

with the constraints

amam50 and ambm8 ~s!50. ~6!

A simple choice foram andbm could be

am[~1,1,0,0!, bm[„0,0,b2~s!,b3~s!…. ~7!

The string here is located on the lightcone of Minkows
spacetime (x5t). It can be closed or open depending on t
choice ofb2(s) andb3(s).

b. Rindler spacetime.The metric in Rindler spacetime is
given as

ds252a2x2dt21dx21dy21dz2. ~8!

The null string equations of motion and constraints in th
background turn out to be

t¨12
ẋ

x
ṫ50, ~9!

ẍ12a2xṫ250, ~10!

ÿ50, z̈50, ~11!

2a2x2ṫ21 ẋ21 ẏ21 ż250. ~12!

Let us choose a generic string configuration as

t5t~t!, x5x~t!, y5y~s!, z5z~s!. ~13!

A solution of the equations of motion and constraints is

t5
1

2a
lnt, x5A1t

1/2, y5g1~s!, z5g2~s!, ~14!

whereA1 can be any constant andg1(s) andg2(s) are any
two functions ofs. By choosing the functionsg1(s) and
g2(s) suitably, we can have different string configuration
Moreover, ast→0 (t→2`), x→0, which is the event ho-
rizon of Rindler spacetime. The domain 0<t<` encom-
oth
oice

ns.
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ng
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passes the whole of2`<t<`. The configuration starts out
at the horizon att→2` and ends att→` where x→`.
Notice also that the string equations of motion and co
straints have a very simple stationary string solution. This
given as

t5t, x50, y5 f 1~s!, z5 f 2~s!. ~15!

This solution exists exclusively at the horizon of the Rindle
spacetime for all timet. However, this is quite expected
because the horizon being one way membrane is a null h
persurface of the spacetime.

c. Schwarzschild spacetime.We now write down the
string equations of motion and constraints for a gener
static, spherically symmetric metric given by

ds252e2F~r !dt21
dr2

12b~r !/r
1r 2~du21sin2udf2!. ~16!

The null string equations of motion are

t¨12F̃ṙ ṫ50, ~17!

r̈1
b̃r2b

2r ~r2b!
ṙ 22~r2b!~ u̇21sin2uḟ2!50, ~18!

ü1
2

r
u̇ ṙ2sinu cosuḟ250, ~19!

f̈1
2

r
ḟ ṙ12 cotuḟu̇50. ~20!

The constraintgmnẋ
mẋn50 reduces to

2e2F ṫ21
ṙ 2

12b~r !/r
1r 2u̇21r 2sin2uḟ250. ~21!

The other constraint is trivially satisfied because of the dia
onal nature of the background metric. In addition, the qua
tity gmnx

m8xn8 must be independent oft.
It is easy to see that a closed stationary string of the for

t5t, r5C, u5
p

2
, f5C0s, ~22!

can exist inany such geometry which posseses a horizo
~i.e.,g0050 somewhere!, irrespective of the functional forms
of b(r ) andF(r ). In fact, the closed, stationary string exists
exactly at the horizon which is by definition a null hypersur
face. Thus, Lorentzian wormholes cannot have a closed, s
tionary null string anywhere. On the other hand, they d
support a closed, stationary timelike string at their throats
has been pointed out in a recent paper by this author@16#.

d. Cosmological spacetimes.We now move on towards
obtaining null strings in cosmological models. The back
ground metric is

ds252dt21R2~ t !F dr2

12kr2
1r 2~du21sin2udf2!G , ~23!

wherek521,0,1 refer to hyperbolic, flat, and three-spher
(S3) spacelike sections.
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The string equations of motion in this background tu
out to be

ẗ1RR̃
ṙ 2

12kr2
1RR̃r 2~ u̇21sin2uḟ2!50, ~24!

r̈12
R̃

R
ṙ ṫ1

ṙ 2kr

12kr2
2~12kr2!r ~ u̇21sin2uḟ2!50,

~25!

ü1
2

r
ṙ u̇12

R̃

R
ṫ u̇2sinu cosuḟ250, ~26!

2R2r 2sin2uḟ50, ~27!

and the constraint equation is

2 ṫ21R2F ṙ 2

12kr2
1r 2u̇21r 2sin2uḟ2G50. ~28!

Our ansatz for a string solution would be

t5t~t!, r5r ~t!, u5
p

2
, f5C0s. ~29!

This represents a closed string which is dynamic~nonsta-
tionary!. The condition ongmnx

m8xn8 ~i.e., its being indepen-
dent oft) constrains the choice ofr (t) andR(t). We must
have

r ~t!R~ t !5
1

C
, ~30!

whereC is some constant. Therefore, the radiusr (t) of the
string is inversely related to the scale factor governing t
evolution of the spacelike sections of the cosmologic
model. Note that by virtue of this choice, the degenera
induced metric on the null world sheet is the same for
forms ofR(t) and r (t).

With the ansatz for a string configuration and subs
quently that ofr (t), we end up with two equations which w
have to solve in order to obtainR(t) and t(t):

R̃56AC2R22k, ~31!

ẗ1
R̃

R
ṫ250, ~32!

where the overdot denotes differentiation with respect tot.
We now treat thek521,0,1 cases separately. In all th

results below we have chosen to use the plus sign on
right-hand side~rhs! of Eq. ~28!.

i. k521. This is the Universe with a hyperbolic spacelik
section. The scale factor equation~28! has a solution given
as

R~ t !5
1

C
sinh~Ct1C1!, ~33!
rn

he
al
te-
all

e-
e

e
the

e

whereC1 is an arbitrary integration constant. Thus, the Un
verse begins with a big bang~at t52C1 /C) and expands
ever after.

The r (t) and t(t) turn out to be

r ~t!5F SC2

C0
t D 221G21/2

, ~34!

t~t!5
1

C S cosh21
C2

C0
t2C1D , ~35!

whereC0 is an arbitrary integration constant. The closed nu
string collapses att→6`. However, it is necessary that
t.C0/C

2.
ii. k50. Here the spacelike sections are flat. Equation~28!

has a solution which represents the inflationary univers
with a scale factor given as

R~ t !5exp~Ct!. ~36!

The string configuration is given as

t~t!5
1

C
ln~Ct1C1!, ~37!

r ~t!5
1

C~Ct1C1!
. ~38!

Thus, ast→`, t→`, andr→0. In this case also, the closed
null string collapses but only ast→`.

iii. k51. This represents a Universe withS3 spacelike
sections. The scale factor has a solution given as

R~ t !5
1

C
cosh~Ct1C1!. ~39!

Note that the scale factor is such that the Universe is no
singular~there is no big bang here!.

The closed null string solution turns out to be

r ~t!5F SC2

C0
t D 211G21/2

, ~40!

t~t!5
1

C S 2C11arcsinh
C2

C0
t D . ~41!

In this case also, the string collapses only ast→6`.
It can be seen quite easily that equations similar to~28!

and~29! @with the assumptionr (t)R(t)5C# hold for a more
general class of cosmological spacetime metrics generica
represented as

ds252dt21R2~ t !S dr2

12b~r !/r
1r 2du21r 2sin2udf2D .

~42!

Equation~29! remains unaltered whereas~28! becomes

R̃56CRA12b~r !/r . ~43!
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Thus, for a givenb(r ), we can solve~40! to find R(t) and
thereby determinet(t) andr (t). We now illustrate this with
two representative examples.

~i! First, let us chooseb(r )5b0
2/r . This represents an

evolving version of Ellis geometry@17#. The scale factor
equation has a solution given by

R~ t !5
4eCt1C1

114a2e2Ct12C1
. ~44!

The string solution turns out to be

t5
1

C H ln 1

2a
tan

aCt

2
2C1J , ~45!

r ~t!5
a

C sinaCt
. ~46!

In the above,a25b0
2C2.

This represents a string which is significantly large
small t (t→0) but becomes smaller and smaller a
one approaches t5p/2aC where r5b0 and
t5(1/C)„ln(1/2a)2C1…, R(t)51/a. Since r (t) and t(t)
are both periodic int, the solution is valid only in the do-
mainnp/aC,t,(n11)p/aC.

~ii ! This case involves the evolving version of the hor
zonfree Schwarzschild wormhole@18# for which we have
b(r )5b0 .

The scale factor equation has a solution given by

R~ t !5
4eCt1C1

~11beCt1C1!2
. ~47!

The string configuration is

t5
1

C F lnS 1b H 4

bC~C22t!
21J D2C1G , ~48!

r ~t!5
b

4

@4/bC~C22t!#2

@4/bC~C22t!#21
, ~49!

whereb5b0C.
This configuration is also defined only fo

t,C224/bC. One can try out various choices forb(r ) and
easily obtain string configurations and their correspond
scale factors by utilizing the relations described in the pre
ous paragraphs@Eqs.~29! and ~40!#.

Alternatively, in Eqs.~29! and ~40!, one can useR(t) as
the input and derive the resulting functional form ofb(r )
~i.e., the features of the spacelike hypersurface!. For ex-
ample, assumingR(t);tn @which is motivated by the stan-
dard matter (n5 2

3! and radiation-dominated (n5 1
2! scale fac-

tors#, we obtain expressions fort(t), r (t), andb(r ):

t~t!5S n11

C0
D 1/~n11!

~t2C1!
1/~n11!,

r ~t!5
1

C S n11

C0
D 2n/~n11!

~t2C1!
2n/~n11!, ~50!
at
s

i-

r

ing
vi-

b~r !5r ~12n2C~222n!/nr 2/n!. ~51!

For n5 1
2 ~radiation-dominated FRW!, n5 2

3 ~matter-
dominated FRW!, andn51 ~Milne!, theb(r ) turns out to be

b~r !5r ~12 1
4C

2r 4! ~n5 1
2 !, ~52!

b~r !5r ~12 4
9C

2r 3! ~n5 2
3 !, ~53!

b~r !5r ~12r 2! ~n51!. ~54!

Unfortunately, none of these corresponds to the standard
well-known spacelike hypersurfaces we encounter in th
context of cosmology.

To conclude, let us now summarize the results obtaine
~1! We have written down the null string equations o

motion and constraints in general curved spacetimes. S
cializing to specific backgrounds, we have also obtained e
plicit null string configurations.

~2! In spacetimes with event horizons, there is always
closed, stationary string on the horizon. In Rindler spac
time, we have been able to construct an explicit example o
dynamic string configuration. It is possible that such configu
rations also exist in general black hole spacetimes but w
have not succeeded in finding one.

~3! In cosmological backgrounds, a general prescriptio
has been outlined following which one can construct a d
namic string configuration in a fairly large class of suc
spacetimes. We have found string configurations in the infl
tionary or de Sitter universes and some other cases involv
some interesting but not so popular scale factors. Examp
of string configurations in evolving wormhole spacetime
have also been discussed towards the end.

It remains to be seen whether one can check the pert
bative stability of these string configurations. However, to d
such an analysis, we have to set up a formalism for nu
strings along the lines of the one for the timelike ones~see
Guven @19#, Larsen and Frolov@20#, Carter @21#, and Ca-
povilla and Guven@22#!.

The existence of a closed, stationary null string on th
black hole horizon may also have some nontrivial implica
tions on the interpretation of black-hole entropy from nu
string theory. Finally, it would be worthwhile to work out in
detail the conditions under which a general curved bac
ground is allowed in null string theory. This is analogous t
the b-function equations for the timelike string. However
we have to be careful in the case of the null string becau
we cannotuse the inverse of the string tension as a pertu
bation parameter here. On the contrary, since null strings a
tensionless and therefore correspond to the extreme high
ergy limit of the tensionful theory, one might be tempted t
ask—does null string theory have a low-energy limit at all
These and other issues are currently under investigation a
will be communicated in future.

It is a pleasure to thank Jnanadeva Maharana for maki
me aware of several important references on null strings a
for useful discussions. Financial support from the Institute
Physics, Bhubaneswar is also gratefully acknowledged.
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