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Schild’s null strings in flat and curved backgrounds
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Schild’s null (tensionlesp strings are discussed in certain flat and curved backgrounds. We find closed,
stationary, null strings as natural configurations existing on the horizons of spacetimes which possess such null
hypersurfaces. Examples of these are obtained in Schwarzschild and Rindler spacetimes. A dynamic null string
is also identified in Rindler spacetime. Furthermore, a general prescrigitmexplicit examplesis outlined
by means of which null string configurations can be obtained in a large class of cosmological backgrounds.
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PACS numbgs): 11.27:+d, 11.10.Kk

In a posthumously published paper, nineteen years ageations in a variety of backgrounds which include the Rin-
Schild[1] first introduced the notion of a null or tensionless dler, Schwarzschild, and some cosmological spacetimes.
string (see also Karlhede and Lindstnd2]). By replacing Let us begin with the curved background action written
the Nambu-Goto Lagrangian with its square, he wrote dowrflown by Schild[1]. This is given as
the action and equations of motion for the null string follow-
ing the standard treatment for null geodesics. The null string S:f S2dodr, (1)
was quantized by Lizzet al. [3]. Surprisingly, they found
that consistent quan_tization di_d not imply a critical dimen,’wherezzzg agyﬂzﬂvzaﬁ and
sion. Subsequently, it was realized that the absence of a criti- ”
cal dimension was essentially an artifact of the ordering of L Ox# X" oxk gxY
operators in the quantum theory. Whereas Lietzal. pre- 2 T or 9o do or" @)
ferred Weyl orderingthe absence of oscillator modes being
the rationalg others[4] used normal ordering and obtained Here,x*(,o) is the embedding function for the null world
D =26 as the critical dimension. Simultaneously, a Hamil-sheet in a general background spacetime.
tonian analysis was also carried ¢6{] and supersymmetric Note that>? is essentially the determinant of the metric
generalizations were discusg&d. The latest, carefully done induced on the world sheet by the background spacetime. If
Hamiltonian Becchi-Rouet-Stora-TyutiBRST) analysis by ~ the world sheet is null then there must exist one null tangent
Gustaffsonet al. [7] (see alsd8,9]) which employs the use Vector. This _Iez_ids_ to '_[he fact that the determinant of the
of a smeareds function in the canonical commutation rela- induced metric is identically zero. _ ,
tions, concludes that the critical dimension of the bosonic, 1he field equations and constraints that arise out of varia-

null string is D=2. A review of the literature on null tions of the action ir(1) are given as

p-branes and supgp-branes up to 1993 can be found in KH4 T 3P =0 @)
Bandos and ZheltukhifiL0]. A ’
However, null strings have almost never been discussed 9, XMX"=0, g, X*x'"=0, (4)

in a curved Lorentzian background. The only reference to a
curved background can be found in the concluding portion ofvhere the overdots and primes denote differentiations with
Schild’s paper. Stachél1], on the other hand, has obtained respect tor and o, respectively.
an energy-momentum tensor satisfying the conservation law The constraint equations are not invariant for arbitrary
with matter made out of a cloud of null stringsull string  reparametrizations af and r. In fact, the allowed reparam-
dus). This sort of matter can therefore be used as source fastrizations arer,=f(o,7) ando;=g(o). Thus, theoo el-
the Einstein equations and exact metrics generated by suche@ent of the induced world sheet metric has to be indepen-
source. More recently, however, it has been shgb#j that  dent of 7. Then, only one has a reparametrization-invariant
the energy-momentum tensor describing a fluid of nulltheory where the class of reparametrizations allowed are re-
strings can act as a source for metrics representing Friedmastricted in comparison to the usual timelike bosonic string
Robertson-WalkefFRW) universes in both its matter and [13]. In fact, one can show that this restricted set of transfor-
radiation-dominated epochs. In this article our aim is as folmations which leave the degenerate character of the metric
lows. We first set up the equations of motion of a null stringinvariant form the Caroll group introduced by Levy Leblond
in a curved background and then obtain exact string configuF14] many years ago.
It should be mentioned that one can also use the action
proposed in2], instead of the one we have usgzbe Eq.
*Electronic address: sayan@iopb.ernet.in (1)]. The classical equations of motion and constraints which
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are of primary concern in this paper are the same for botlpasses the whole of w<t=<«. The configuration starts out

these actions as long as one makes the gauge choieg the horizon at— —o and ends at— where x—o.

x/“>'<M=O, ¢x'2=const wherep is the Lagrange multiplier Notice also that the string equations of motion and con-

field (analogue of the einbein for the massless paiticle straints have a very simple stationary string solution. This is
The field equations are essentially geodesic equationgjiven as

The constraintg,, ,x*x"=0) implies that we should look for

only null geodesics. Thus, knowing the null geodesics in a t=7, x=0, y=fi(0), z=f5(0). (15

background spacetime would naturally lead to null string., . . . . . .
configurations provided all the constraints are satisfied. Thig—hIS solution exists exclusively at the horizon of the Rindler

is reminiscent of the bosonic case where the stationary strin%?acet'me for aI_I timet.. However, this Is quite _expected
equations can also be transformed into geodesic equations cause the horizon bel_ng one way membrane is a null hy-
an unphysicalRiemannian spacfl5]. persurface of the spacetime. .

We now move on towards solving these equations of mo- C. Schwa_rzschlld spaceﬂthe now vynte down the
tion and constraints in specific background spacetimes in oRliNg equations of motion and constraints for a general
der to obtain specific string configurations. static, spherically symmetric metric given by

a. Minkowski spacetimelo begin, let us deal with the dr2
almost trivial case of Minkowski spacetime as the back-ds’= —e?®("dt?+
ground. The null string equations of motion and constraints
yield a solution of the form

m+r2(d02+sin20d¢2). (16)

The null string equations of motion are

x‘=alr+b*(c) 5) '+ 2drt=0, (17)
with the constraints ~
i 0 e py(esitog=0, (19
a*a,=0 anda*b,(0)=0. (6) 2r(r—b) '
A simple choice fora* andb* could be .2 .
6+ — Or —sinf coshp>=0, (19
a#=(1,1,00, b*=(0,0p*0),b%0)). @ r
The string here is located on the lightcone of Minkowski w2 o
spacetime X=t). It can be closed or open depending on the b+ F¢r+2 cotfp6=0. (20)

choice ofb?(o) andb®(o). o
b. Rindler spacetimeThe metric in Rindler spacetime is The constraing, x“x”=0 reduces to

given as L2

ds?= —a®x2dt?+dx?+dy?+d 2. (8) —e?t2+ m+r202+r25m20¢220_ (21)
The null string equations of motion and constraints in thisthe ther constraint is trivially satisfied because of the diag-
background turn out to be onal nature of the background metric. In addition, the quan-
X tity g,,x*'x"" must be independent of
t+ 2;1[: 0, 9) It is easy to see that a closed stationary string of the form
X+ 2a?xt?=0, (10) t=r, r=C, 0=5, ¢=Coo, (22)
y=0, 2=0, (11)

can exist inany such geometry which posseses a horizon
(i.e.,goo=0 somewherk irrespective of the functional forms
of b(r) and®(r). In fact, the closed, stationary string exists
exactly at the horizon which is by definition a null hypersur-
face. Thus, Lorentzian wormholes cannot have a closed, sta-
t=t(7), x=x(7), y=y(o), z=z(c). (13 tionary null string anywhere. On the other hand, they do
support a closed, stationary timelike string at their throats as
A solution of the equations of motion and constraints is  has been pointed out in a recent paper by this aJtb@jr
d. Cosmological spacetime®/e now move on towards
obtaining null strings in cosmological models. The back-
ground metric is

—a?x%t2+x%+y?+72=0. (12)

Let us choose a generic string configuration as

L 1/2
t= ZlnT, X:AlT \ y:gl(o-), 2292(0'), (14)

2

1—kr?

whereA; can be any constant angd(o) andg,(o) are any
two functions ofe. By choosing the functiong;(o) and
g,(o) suitably, we can have different string configurations.
Moreover, asr—0 (t— — =), x—0, which is the event ho- wherek=—1,0,1 refer to hyperbolic, flat, and three-sphere
rizon of Rindler spacetime. The domain<@=<x encom- (S° spacelike sections.

ds?= —dt?+ R(t) +r2(d6?+sirfed¢?) |, (23
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The string equations of motion in this background turnwhereC; is an arbitrary integration constant. Thus, the Uni-

out to be

2
. ~ r ~ . .
t+RRy— =+ RRr2(6°+sirf0¢?) =0, (24

P2

R.. rekr . :
r+2th+ Tk (1—kr?)r(6%+sirf0¢?) =0,
(25)
. 2. R. .
6+ —1 0+ 210—sing cosf¢?=0, (26)
2R2r2sirt =0, (27)
and the constraint equation is
: r? . )
—1t°+R? 1_kr2+r202+rzsin20¢2 =0. (29
Our ansatz for a string solution would be
r
t=t(7), r=r(7n), 0=§, ¢=Cyo. (29

This represents a closed string which is dynatnignsta-
tionary). The condition org,,,x*'x"" (i.e., its being indepen-
dent of 7) constrains the choice of 7) andR(t). We must
have

1

r(IRO= 2, (30)

whereC is some constant. Therefore, the radigs) of the

verse begins with a big ban@t t=—C;/C) and expands
ever after.
Ther(7) andt(7) turn out to be

C2 2 —-1/2
(c‘f) ‘1} '
0

2

cosh‘lc—O —C,

(39

t(r)= , (39

c

whereC, is an arbitrary integration constant. The closed null
string collapses at— *. However, it is necessary that
7> C,/C2.

ii. k=0. Here the spacelike sections are flat. Equatk8)
has a solution which represents the inflationary universe,
with a scale factor given as

R(t)=exp(Ct). (36)
The string configuration is given as
1
t(r)= Eln(CT-I- Cy), (37
r(r)= (38

C(Cr+Cy)

Thus, asr—®, t—o, andr—0. In this case also, the closed
null string collapses but only as— .

ii. k=1. This represents a Universe wis# spacelike
sections. The scale factor has a solution given as

R(t)= écosr(CtJr Cy). (39

string is inversely related to the scale factor governing the

evolution of the spacelike sections of the cosmologicalNote that the scale factor is such that the Universe is non-
model. Note that by virtue of this choice, the degeneratesingular(there is no big bang here

induced metric on the null world sheet is the same for all

forms of R(t) andr (7).

With the ansatz for a string configuration and subse-
quently that ofr (7), we end up with two equations which we

have to solve in order to obtaiR(t) andt(7):

R==/C?R?—k, (31)
. R,
t+ 5t?=0, (32

where the overdot denotes differentiation with respedt to

The closed null string solution turns out to be

2 -1/2

: (40)

2
t(r)zé( —Cﬁarcsinl%—or). (42

In this case also, the string collapses onlyras .

It can be seen quite easily that equations similat2®)
and(29) [with the assumption(7)R(t) =C] hold for a more
general class of cosmological spacetime metrics generically

We now treat thek=—1,0,1 cases separately. In all the represented as
results below we have chosen to use the plus sign on the

right-hand sidgrhs) of Eq. (28).

i. k= —1. This is the Universe with a hyperbolic spacelike

section. The scale factor equati@8) has a solution given
as

R(t)= ésinf(CH— Cy), (33

2

d
ds?=—dt?+ Rz(t) m

+r2de%+ rzsin20d¢2).
(42

Equation(29) remains unaltered where&28) becomes

R==*CR{1-Db(r)/r.

(43
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Thus, for a giverb(r), we can solvg40) to find R(t) and

thereby determing(7) andr (7). We now illustrate this with

two representative examples.

6845
b(r)=r(1—v?C2=2")/rp2l), (51)

For v=13 (radiation-dominated FRYW v=2% (matter-

(i) First, let us choosé(r)=bj/r. This represents an dominated FRW, andv=1 (Milne), theb(r) turns out to be

evolving version of Ellis geometry17]. The scale factor

equation has a solution given by

4eCt+Cl

R(O= T2 2e%ctr e - (44)
The string solution turns out to be
1 1 aCr

t= c InﬂtanT —Cqi, (45)

S — 46

r(T)_CsinaCT' (48)

In the above x®=b3C2.

This represents a string which is significantly large at
small 7 (—0) but becomes smaller and smaller as

one approaches 7=w/2aC where r=b, and
t=(1/C)(In(1/2a) — C,), R(t)=1/a. Sincer(7r) and t(7)

are both periodic inr, the solution is valid only in the do-

mainnz/aC<7<(n+1)w/aC.

(ii) This case involves the evolving version of the hori-
zonfree Schwarzschild wormholel8] for which we have

b(r)=b,.
The scale factor equation has a solution given by
4eCt+C1
R(t)=m- (47)
The string configuration is
1 I L 4 1 C 48
“elMalacc YTy @
4/BC(C,—7)]?
r(r)=é [4/BC(Cy— )] ’ (49)
4 [4/BC(Cy—1)]—1
where 8=b,C.
This configuration is also defined only

7<C,—4/BC. One can try out various choices fbfr) and

b(r)=r(1-3C%% (v=3), (52
b(r)=r(1-3C?r% (v=%), (53
b(r)y=r(1-r? (v=1). (54)

Unfortunately, none of these corresponds to the standard or
well-known spacelike hypersurfaces we encounter in the
context of cosmology.

To conclude, let us now summarize the results obtained.
(1) We have written down the null string equations of
motion and constraints in general curved spacetimes. Spe-
cializing to specific backgrounds, we have also obtained ex-

plicit null string configurations.

(2) In spacetimes with event horizons, there is always a
closed, stationary string on the horizon. In Rindler space-
time, we have been able to construct an explicit example of a
dynamic string configuration. It is possible that such configu-
rations also exist in general black hole spacetimes but we
have not succeeded in finding one.

(3) In cosmological backgrounds, a general prescription
has been outlined following which one can construct a dy-
namic string configuration in a fairly large class of such
spacetimes. We have found string configurations in the infla-
tionary or de Sitter universes and some other cases involving
some interesting but not so popular scale factors. Examples
of string configurations in evolving wormhole spacetimes
have also been discussed towards the end.

It remains to be seen whether one can check the pertur-
bative stability of these string configurations. However, to do
such an analysis, we have to set up a formalism for null
strings along the lines of the one for the timelike orese
Guven[19], Larsen and Froloy20], Carter[21], and Ca-
povilla and Guveri22]).

The existence of a closed, stationary null string on the
black hole horizon may also have some nontrivial implica-
tions on the interpretation of black-hole entropy from null

for string theory. Finally, it would be worthwhile to work out in

detail the conditions under which a general curved back-

easily obtain string configurations and their correspondingyround is allowed in null string theory. This is analogous to
scale factors by utilizing the relations described in the previthe g-function equations for the timelike string. However,

ous paragraphiEgs. (29) and (40)].

Alternatively, in Egs.(29) and(40), one can us&(t) as
the input and derive the resulting functional form lufr)
(i.e., the features of the spacelike hypersurfadeor ex-

ample, assumingr(t) ~t” [which is motivated by the stan-

dard matter ¢= %) and radiation-dominatedv& 3) scale fac-
tors], we obtain expressions fa¢7), r(7), andb(r):

v+1 1UNv+1)
t(T)Z CO (T—Cl)l/(v+l),
1/v+1 —vl(v+1)
(=gl e (r=Cy "D, (50

we have to be careful in the case of the null string because
we cannotuse the inverse of the string tension as a pertur-
bation parameter here. On the contrary, since null strings are
tensionless and therefore correspond to the extreme high en-
ergy limit of the tensionful theory, one might be tempted to
ask—does null string theory have a low-energy limit at all?
These and other issues are currently under investigation and
will be communicated in future.
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