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We combine and further develop ideas and techniques of Allen and OtfMilk. Rev. D42, 2669(1990 ]
and Kay and StuddiCommun. Math. Physl39 103(1991)] for calculating the long-range effects of cosmic
string cores on classical and quantum field quantities far frortirdimitely long, straight cosmic string. We
find analytical approximations fofa) the gravity-induced ground state renormalized expectation values of
&% and T,” for a nonminimally coupled quantum scalar field far from a cosmic string(ahthe classical
electrostatic self-force on a test charge far from a superconducting cosmic string. Surprisingly—even at cos-
mologically large distances—all these quantities would be very badly approximated by idealizing the string as
having zero thickness and imposing regular boundary conditions; instead they are well approximated by
suitably fitted strengths of logarithmic divergence at the string core. Our formukpfor reproducegwith
much less effort and much more generalitye earlier numerical results of Allen and Ottewiill. Bdih?) and
(T,”) turn out to be “weak field topological invariants” depending on the details of the string core only
through the minimal coupling paramete¢™ (and the deficit ang)e Our formula for the self-forcéleaving
aside relatively tiny gravitational correctionsirns out to be attractive: We obtain, for the self-potential of a
test chargeQ a distance from a(GUT scalg¢ superconducting string, the formutaQ?/[ 16e,rIn(gr)] where
g is a(in principle, computableconstant of the order of the inverse string rad{i&0556-282(196)01510-X]

PACS numbdis): PACS numbds): 11.27+4d, 04.62:+v

[. INTRODUCTION tions placed at the conical singularity. This paper presents
two calculations involving fields propagating around and in-
A realistic cosmic string has structure on a length scalgeracting with a cosmic string for which this is not true.
defined by the phase transition at which it is formed. In theThese calculations have, instead, the remarkable feature that
case of a grand unified theofGUT) string this corresponds  the quantity calculated, even at very large distances from the

to a radius of order 10°° cm. As this radius is so small, one string, depends on details of the interaction inside the string
often models the true string space-time by an idealize@gre.

space-time where the string core has zero thickness and the e shall start by treating a “realistic” or “true” cosmic
curvature is represented by a two-dimensiodalunction.  string having a core of finite thickness with a definite radius
The idealized model for an infinitely long s+tra|glht static Cos-5 (hut assumed, for simplicity, to be infinitely long, straight,
mic string space-time is the manifoRf X R*x S with the 5 statig. This corresponds to a space-time metric taking
conical metric the standard conical form with a given deficit angle outside
d?= —dt2+dZ2+dr2+r2d¢?, (1.1) f[he_ radiu_&a, bL_lt matching onto a smooth model core metric
inside this radiugsee Eq.(2.1) below].
where the angular range is<[ 0,27/ «), corresponding to a The first calculation involves a nonminimally coupled
deficit angle of 2r(1— 1/k). Throughout this paper we shall quantumiinear scalar fieldp(x): We shall obtain an approxi-
assume the standard case of a positive deficit angle, so thetate formula for the renormalized vacuum expectation value
k>1; for GUT stringsk—1~10"6. {@?) for such a field far from the string and a similar formula
In studying the behavior of various types of fields andfor the expectation value of the energy-momentum tensor
waves far from such a string, it is sometimes erroneouslyT,”). The second calculation concernglassicalelectro-
taken for granted that one can always ignore the details oftatic field at large distances fronsaperconductingosmic
the interior structure of the string and approximate the effecktring: In this case the string is additionally characterized by
of the string by this idealized model with regularity condi- a nonvanishing function within the core representing the
“local photon mass term” responsible for making it super-
conducting[1]. We shall obtain an approximate formula for

“Electronic address: ballen@dirac.phys.uwm.edu the self-force on a test charge far from the string due to the
TElectronic address: bsk2@unix.york.ac.uk presence of such a stringAs we shall see, this self-force
*Electronic address: ottewill@relativity.ucd.ie arises as the sum of two terms: A small repulsive term pre-
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viously calculated by Smith2] and Linet[3] which depends conical singularity, imposing the boundary conditigh?3)

on the deficit angle and a typically much larger attractivewhere R is identified with this scattering length. Only in

term which depends on the “scattering length” of the local cases wher¥ in Eq. (1.2 vanishes, when one can show that

photon mass term and is independent of the deficit angle. the scattering lengtR will be automatically zero, will it be
Both calculations presented here involve calculatingystified to approximate the true string by the idealized string

Green functionss for equations of the schematic form with regular boundary conditions. Nonvanishikgwill, in

(—A+V)G=5 (1.2 general, givg rise to ryonvgnishing'scat'tering Igngths gnd
hence require approximation by idealized strings with

and both involve calculating(suitably renormalized nonregular(i.e., suitably logarithmically divergingbound-
coincident-point values of such Green functions. In the calary conditions. In the present paper, we shall always assume
culation of( ?), A represents the Laplace-Beltrami operatorV to be non-negative, and, in consequence, it may easily be
for the (Euclideanizedl four-dimensional string space-time shown that the corresponding scattering leng®swhile
metric, while V represents a nonminimal coupling term nonvanishing, will necessarily be smdbounded by the
&7, where.7 is the Ricci scalar of the same metric. In the string radiusa in all cases, and, for the problem 6$2),
calculation of the self-forceA represents the Laplace- even “exponentially smallj. Nevertheless, and quite sur-
Beltrami operator for the three-dimensional spatial metric ofprisingly, we shall find that the failure d® to be precisely
the string at a fixed time whil® represents the local photon zero makes a big difference to the effects we calculate, even
mass term regarded as a function on that three-dimensiongt cosmologically large scales and it will turn out to be cru-
space. For both calculations presented here, the sensitivity {ga|ly important, if one idealizes the string as having zero
the core structure can be traced back to the potential terfhjckness, to take the appropriate logarithmically divergent
V in Eq.(1.2). For example, in the case of the calculation of pondary conditions, rather than regular boundary conditions
(?) for a minimally coupled quantum scalar fielorre- iy order to obtain valid approximations.
sponding toV=0), one can idealize the true space-time of .,y and Studer speculated that this method of fitting the
the cosmic strmg bY. the |deal|zeq COI’]IC&! lspace-t(ms_) idealized boundary condition to the true scattering length
and, with the imposition of regularity conditions on the Sca'may lead to a useful analytical approximation to Allen and
lar field at the conical singularity, obtain an excellent aP- Grewill lculati 702 f inimall led
proximation to(¢?) at large distances from the stririgee ewr’ s caicuiations of{¢) for @ nonminimally couple
Sec. V). scalar fleld(see the end of Sec. 5 [#]). They glso discussed
That the value of $2) for a nonminimallycoupled field how this procedure could bg uged to approximate thg scatter-
will depend on the details of the metric in the core of the'r:igctgﬁ%g:;i'ﬁﬁgﬁ?;%”?;'g;'g:gg ggiﬁgepdegzzdﬁgtgglgos-
string even very far from the string was argued by Allen and : .
Ottewill in [4]. There, the argument was confirmed by de-Of (5D tfhat the s_elf-pqtentlal_of al test Ich?rgeddsje to t_he pres-
tailed calculations for two model cores: the “flower pot” ence of a cosmic stnn(prewogsy calculated by Smitfe]
and the “ball-point pen.” In particular, the value ¢§2) for and_ L'InEI [3] who r?nblldtﬁc’k Into aé:ccj:.qunt Ithe effect of a
the flower-pot model was computed numerically and show Qg"(t:.a g]?ome;[{]ysl ou | r?vte an a |t|t0na !m%?rtant CO;;
to differ significantly from the ideal value out to cosmologi- rioution from tne focal photon mass term In the case the
cal scales for GUT scale strings. string were supercond_uctmg. They again suggesteq that this
Roughly simultaneously with the work of Allen and Ot- gﬂgeht rgglevr\{ne(lil-eam\)/\:gﬁlmaete%oigr?lﬁlgglslyte?rﬁh retﬂlé':\m?gb_the
tewill, Kay and Studef5] looked at the question of boundary lem gf findingn tHe electrosgatic potentiéle éreen F:‘unc-

conditions at the conical singularity for a variety of situationsti n) due t int test charae in the presen f an idealized
involving (classical and quantunscalar fields and waves on) due 1o a point test charge In e presence of an ideaflze
osmic string when the potential is obliged to satisfy the

around an idealized string. They found that there is typicallyC o . .
a one-parameter family of possible boundary conditions forbounda(ytcondltlor(ll:B) glt the %trlng al_nd_tthen taking the
the idealized problem—one of which is regular while the dPPropriate renormalized coincidence fimit.

others involve a field which, at each tirhés logarithmically id HO\{tveV(;:, !t wrns Ol.Jt tflat Wh(larl_onlef tries lto }:f)y;sue (tjhese
divergent near the origin: ideas to obtain approximate analytical formulas{f@f) an

the self-force, one encounters certain difficulties, as was
@~cons In(r/R), (1.3  partly anticipated in[5]. These difficulties are associated
with the fact that the idealized problem with nonz&awill

whereR is a quantity with the dimensions of length labeling have a bound state, which, however, for small scattering
the boundary conditiofi6]. Moreover, they argued that, in lengths(less than or around as will be the case hexgs not

the case of many physical quantities involving such a fieldexpected to be “believable’(see[5] and[12]). If one at-
around a true string, and, in particular, in the case of Eqtempts to implement the proposals [if] literally, this is
(1.2), one should be able to well approximate the effect ofreflected in the existence of spurious poles in certain inte-
the string core by a single parameter with the dimensions ofrals[see, for example, Ed4.3) in the present papér

length which they introduced and termed the “two- In the present paper we show, by a combination of ideas
dimensional scattering length'5]. This length is easily de- and techniques derived both frdd] and[5], that such suit-
termined in terms of the core metric antl by what they able modifications can be made. We then obtain approximate
termed their “fitting formula” [Eq. (5.9) of [5] and Eq. analytical formulas both fof¢?) [Eq. (4.8)] and for the self-
(3.195 herd. The approximation proceeds by idealizing the force[Egs.(5.13] which depend oV only through its fitted
string, but rather than taking regularity conditions at thescattering lengtiR, and which, in the case df?), give an
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excellent approximation to the numerical results[4f. In  where the range of the angular coordinatepis [ 0,27/ k),

this way, the basic philosophy ¢5] is vindicated. and P(r/a) is a smooth monotonic function satisfying the
Remarkably, for small deficit angle we find that the scat-equations

tering lengthR required to approximate the calculation of

($?) is a “weak field topological invariant” given by /IimOP(r/a)=1/;< and P(r/a)=1 r>a. (2.2
ra—
R~a exd — 1 The first condition means that there is no conical singularity
2¢8(k—1))° at r=0. The second condition means that the curvature is

confined within a cylinder of radiua, the string core, and

Thus, in this casé®?) is actually insensitive to the detailed that, viewed from outside this core, the space has the stan-
shape of the string core and depends on the interaction witflard deficit angle (1—1/«). The second condition here is
the string core only through the single “nonminimal cou- actually slightly stronger than that used in Ref] but agrees
pling” parameteré and the deficit angle. with the condition used by Kay and Studé&] and is more

We remark that, as discussed &, in the self-force prob- convenient for our purposes hefblote the unfortunate clash
lem, the typical values for the scattering lengtiof the local ~ ©f notation that as defined i5] is the inverse of thex as
photon mass term are expected to be of the order of the strirfgfined in[4]. We follow the latter convention here so that a
radiusa. While, at first sight, this is “very small” compared POsitive deficit angle corresponds o= (1). ]

to the distances of interest, as we have already anticipated We wish o construct Green functions for 'the scalar
above (and as, in this case, was already anticipated inWave equation” on this space-time and Laplace’s equation

[5]—see “pitfall 2" in Note 22 therg, one can argue that ©N its con.stant sections with pogitivg cylindrically symmet-
such values oR will lead to effects at “medium scales” fic potential V. whose support lies im<a. These Green
which are significantly different from the effects one would functions satisfy
calculate in the casB were precisely zerd.The reason for 1
this is essentially becaude and the scales of interest are (—D+ —V(rla)
expected to occur—because of the “two-dimensional” na- a

ture of the problem—in the combination In(sc&@/] This i ) )
is borne out in the present paper by our self-force calcula?Vhere Ul is the Laplace-Beltrami operator for the metric

~ 4 - - . . -
tion. More spectacularly than this, for the problem(of), (2.1, 8™ is the four-dimensional covaria function, and

we shall see that typic# values will beexponentiallysmall 1
compared ta (R~e *%%°%& for a GUT scale string with ( — A+ V(r/a)
£=1/6). Yet, we shall continue to fin@nd this goes beyond a
anything envisaged if5]) that the corresponding value of
($?) differs significantly from the value one would obtain in X 3 ; : ‘
the caseR were precisely zerdi.e., from what one would S€ction ands*™ is the three-dimensional covariaatfunc-
obtain in the case of naive regularity conditipreven on  tion. We have written the potential in this form so that
cosmological scales. Thus we conclude, as we have aIreacX/ is a dlmens_lon_less function of a (_jlme_nsmnless arg_ument
mentioned, that, for this problem too, even though the scat=/a and(b) its integral over a spatial slice of constaris
tering lengthsR are so incredibly tiny, it continues to be ndependent o&. _ _
important not to replace them by zero. Equation (2.3) includes the case of a scalar field with
Throughout this paper we shall work with a positive defi- curvature coupling¢=0, if one identifiesV(x)=£7(x),
nite metric. This is a valid and convenient way to treat theSince we then have
guantum field theory since the space-time is sfatldand is , ,
irrelevant to the classical self-force calculafiott is, how- ER(X)= % 2 P3(r/a) = g P3(X)
ever, a crucial step in our approach since it leads to compu- a“ (r/a) P*(rla) x P3(x)

tations of Green functions that fall off rapidly in all direc- . .
which is positive as we have assum&{r/a) to be a

tions from the string. By replacing the Lorentzian signature y ) ;
metric with a positive definite one, the hyperbolic problemMonotone-increasing function. Here and throughout, the no-
tationf’ denotes the derivative of the functiérwith respect

for G becomes an elliptic one, with a unique regular solution*** : _ i
G which falls off in all directions away from the string. to its argument. Equatiofi2.4) is of interest to us as the
equation for the electrostatic potential on a superconducting

string. Here, stability requiregl] the absence of “bound
Il. GREEN FUNCTIONS states” for the Schrdinger-like operator in(2.4) and, for
simplicity, we shall take the potentidl to be non-negative
rgverywhere.

GW(x,x")=8Yx,x"), (2.3

G, x)=8%(x,x"), (2.9

where A is the Laplace-Beltrami operator for a constant

(2.9

In Allen and Ottewill[4], the quantum field theory of a
scalar field was studied on a model string space-time i . .
which the string was still taken to be infinitely long, straight, h Tfhe homogeneous form of E.3) admits solutions of
and static but the core of the string was given a nonzerd® form
spatial extent characterized by a length seal&@he(positive eiotelkzgincdy (r/a:sa) (2.6
definitey metric was written in the form n ;Sa), .

wherew, keR, s?=w?+k? neZ, and¥,(r/a;sa) satis-
ds?=dt?+dz2+ P?(r/a)dr?+r2d¢?, (2.1) fies
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1 d x d 2nsz -
_Xp553;5655;+®a)+fp—+VU)wa5@_o_ 2.7

The Green function for the “wave equation” may then be written as

» dw . » dk . k.
(4) Y — _ AlwAt _— alkAz _ AINKA\p < . > .
G (x,x") fﬁwzwe ﬁw 5 e n;x 27Te Vo(rola;sa)V, (r-/a;sa), (2.8
K * OC .
=mfo s ds Q)(s\/At2+A22)n:Zx e Aep <(r_/a;sa)¥, (r-/a;sa), (2.9

where ¥ is determined by the boundary condition that it be regular-a® andW_ by the condition that it vanishes at
infinity. Here, we have introduced the standard notation=min(r,r’) and r-=max{,r’). In contrast with the conical
space-time, the “boundary condition” as—0 here is not an assumption but is simply a consequence of the regularity of the
space-time. In additiony' ., ¥~ must satisfy the normalization condition

JV = (x;sa) dV-(x;sa) P(x
%\Pﬁ(x;sa)—\lf:(x;sa) n )= ().

(2.10

IX X

The Green function to Laplace’s equation on the condtasictions may be found in an entirely analogous way. We find

o0

° dk ,
G(3)(X,X’):f 5= elkaz 2 %e'“"w‘l’f(u/a;sa)\I’n>(r>/a;sa), 2.19)
o W
Kk (* * )
=§2j dscosAz >, €AW <(r_/a;sa)¥,(r-/a;sa), (2.12
0 n=-—o

where nows=|k| but all other symbols retain their previous meanings.

As mentioned above, the “inner” mode functioh= is defined by the boundary condition that it be regular as0. As
one integrates out in the regior a, it is impossible to write an explicit formula fob = without specifying the potential. We
denote the solution t€2.7) in this region byY ,(r/a;sa). However, ag increases beyond, the potential “turns off” and
V= becomes a sum of Bessel functions. Thus we can write

Y, (r/a;sa) for r<a,
V- (rla;sa)= (2.13
An(sa)l jn(sr)+Bp(sa)K,p(sr)  for r>a.

HereA,(sa) andB,(sa) are constantéwith respect tar) determined by matching’ ;- and its derivative at=a.

The solutions td2.7) for the “outer” mode functions are determined by the condition that they fall off whene. In the
regionr >a where the potential vanishes, these solutions are again Bessel functions. Together with the normalization condition
(2.10), this yields

1
> . —
\Ifn(r/a,sa)——An(sa)KKW(sr) for r>a. (2.149

We shall not needV, within the regionr <a where the potential is nonzero, since we shall not attempt to compute any
physical quantities inside the string core.

We now restrict ourselves to the region outside the core where bathd r’ are greater thara. Then defining
C,=B,/A,, the Green functions on the true cosmic string may be written as

K el - .
G(x,X")=Glay(x,x") + mfo s ds ‘]J(s\/AterAzz)n:E_w e AIC (SA)K o (SHK gn(ST), (2.15
and

K o * .
G (XX ) =Gigy(x,X') + WJ’O dscosAz X, €MA4C (sa)K qn(SNK gni(ST). (2.1

n=—oo
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Here,Gﬁé&(x,x’) and Gg’é(x,x’) are the Green functions appropriate to the idealized string space-time with regularity condi-

tions placed at the origin:

K [~ ~ )
Gla(xx)=7> fo s ds HSVALPHAZ) 3 €My (ST)K g (ST), (217
and
G(3) Y — K Ocd A i ir‘IKAt;bI K 21
reg(xyx )_ 2772 o S COSs Zn:_w € K|n\(sr<) K|n\(sr>)' ( . 8)

The only dependence @& and G® uponV anda, or It is convenient to rewrite this equation in the form
indeed upon the detailed structure of the space here, is

through the ratio€,(sa). 1 %( a)— sl (s?)
For completeness, we note that in the case of the regular Yn(l;sa) ax I n|(S@)
Green functions on the idealized cone, one may perform th&n(S@) = 1 9y sak, (sa)
mode sums. The Green function for the “wave equation” is — —(1;50)— 2 dnf >
[8] Y, (1;sa) dx Kn/(sd)
. ljnj(s@)
) N K sinhkn KR (3.2
GregX:X") 87 rr'sinhy(coshk 7—coxA ¢)’ 219 Kagnl(58)
It follows that, forn=+0,
where
A2+ AZ2+r2+4r'2 Cn(sa)=— il : (sa/2)2In
coshy= TR , (2.20 " ant «[n| T («[n)T («[n[+1)"
+0((sa) N +2), (3.3
with At=t—t’ and likewise for¢ andz. The Green func-
tion for Laplace’s equation on the spatial sectiofid assa—0 where
1 Y,
1 o ds
3y v/ — an=——— —(1;0). (3.4
Greg(xlx ) 4’7T2(2|’rl)1/2f{ (COS}'S—COSW)UZ n= (1 O) X

y k Sinhks 22
(coshks—coxA @)’ 2.23
where
_AzerrZﬂLr’2 0y
COSW:T ( . 2)

IIl. APPROXIMATION

The limit as the dimensionless variatda tends to zero

It is easy to see, directly fronR.7), that @,>0 so the de-
nominator in(3.3) cannot vanish[To see this, note that
Y(0,0)=0 while we may assume that,(0,0) is positive.
Equation(2.7) then ensures thdk/P(x))Y'(x,0) and hence
Y’ (x,0) increases whereupdri(x,0) must increasg¢.Thus,
for n#0, C,(sa) vanishes at least as fast asaJ>*I" as
sa—0. On the other hand, in generé@lg(sa) vanishes only
as an inverse logarithm in this limit:

sa |2

In(sa)

@o
ag[In(sal2) +

Co(sa)= , (3.5

V]—1+O(

may be considered either as the limit as the size of the stringssa .0, where# is Euler's constant.

tends to zero for fixed enerdgs in[4]) or as the limit as the
scattering energy tends to zero for fixed string diae in
[5]). We now consider the behavior @, (sa) in this limit.

First we writeC,(sa) in terms of the solution to the radial

wave equatior(2.7), using the continuity of?’ > and its de-
rivative atr =a:

K|n|(sa) Al (1 sa)—saly,(saYy(1;sa)

Ch(sa)=—

(1 sa)—sakK

Kni(s8)==" (SR o(Lisa)

(3.2

Later we shall find it useful to rewrite the long-range term
in Eqg. (3.9 in the form

Co(S@)iong rangezﬁa (3.6)
where
q=2e ‘IR (3.7
and whereR is defined, in turn, by
R=a exp— ag b). (3.8
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(The reason why we write things in this way, and the signifi-where the “time-dependent constant(t) is independent of
cance of the interrelated quantitigsand R, will become  z, while regularity holds in all the sectors with#0. So,

clear below) solving (3.11) amounts to solving the equation
Here again we can easily see, directly frét7), that in

the casen=0, (=0 with a=0 if and only if the potential &

V vanishes identically. This includes the particular case of 2~ Or|e(tX)=0

minimal coupling €=0) with no other potential. Thus, in
this case there are no long-range effects and the theory on thgject to these boundary conditions.
idealized cone with regularity conditions accurately models Turning to the question of how the best fit is made,
the full theory. In all other cases, it seems reasonable, ijye begin by remarking that, atzero energy, the
view of (3.3) and(3.5), to approximate, say, the Green func- (z.translationally invariant, cylindrically symmetiisolution
tion G®)(x,x") far from the string by dropping all terms to (3.10 will take the exact form
other than then=0 term in the sum i2.16 and substitut-
ing for Cgy(sa) the long-range approximation @frtfgc(r)zconswn(r/R), (3.13
Co(S@)ong rangediven by (3.6). This leads to the formula

outside the support of the potential for some positive real
GR(X,Xx") =G5 (x,x") parameteR which, it is worth noticing, will be related to the

logarithmic derivative ofpil2™atr=a by

K (= Ko(sr)Kg(sr’)
+ ﬁfo ds cosAz nsiq) (3.9 g .
PR - In(a/R)’ (3.14
As it stands, the integral in E¢3.9) is ill defined because Ptrue r=a
of the pole in the integrand at=q. In an attempt to resolve ,
this issue(and because it is of independent interese now ~ ©F eauivalently,
discuss how this approximate Green function arises from the static
point of view of Kay and Studer. Ifb] it is argued that the Reaexd —1 o deyue (3.15
low-energy dynamics for thaun-Euclideanizedequation ot dr . ' '
a 1 The best-fit self-adjoint extension is then declared to be
(W At ng(r/a) PuudtX)=0 (310 the one for which theR in (3.12 coincides with theR in

(3.13: In the language of5], one identifies the label of the
on the true string should be well approximated by solving theself-adjoint extension iri3.11) with the “scattering length”
equation of the potential in(3.10 which may be calculated from the
“fitting formula” (3.15.

We remark that, mathematically, there is clearly no dis-
tinction between the zero-energy solutiofi2i{(r) to (3.10
in the region r<a and the zerosa regular solution
on the idealized string, wheré\r is chosen to be the Y(r/a;0) to(2.7) so that the quantitiR introduced above in
(z-translationally invariantself-adjoint extension of the La- (3.8) is now seen to be identical with Kay and Studer’s scat-
placian (defined on the domain of smooth functions com-tering length and the Eq3.8) to be mathematically identical
pactly supported away from=0 in the Hilbert space of with the fitting formula(3.15. Note that asx;=0, one can
square integrable functionsen the constarit spatial sections read off from (3.8) that the scattering lengtR is always
of the idealized string which gives the best fit to the low- bounded by the string siz (This is the content of “obser-
energy “true” dynamics of equatiof3.10. Before we ex- vation 1” in Sec. 5.2 of 5].)
plain how this best-fit choice is made, we note first that this The significance ofy, related toR by Eq. (3.7), is also
choice amounts to a choice of self-adjoint extensdbﬁ) of explained by Kay and Studer-q? is the eigenvalue—
the two-dimensional Laplaciah (2 (defined on the domain with normalizable eigenstate which we call(®,
of smooth functions compactly supported away from the ori{l/,g%)un((r) =7 2qKo(qr), see Eq.(2.6) of [5]]—which
gin in the Hilbert space of square integrable functjamsthe  exists for (minug the self-adjoint extension of the two-
two-dimensional ideal cone of constanandz since, in a  dimensional Laplacian-A&) for R#0. If one thinks of
sense made precise 5], each translationally invariant _Ag) as a possible candidate for a Satirgyer operator for
tf;ree;dlme(g)smnal self-adjplnt(gxten5|cﬂ93 mus'F arise as quantum mechanics on the cone, th‘bﬁ)und would have a
9°/9z°+ Ay for some choicel g of two-dimensional self- - pysical interpretation as a “bound state.” As is appropriate
adjoint extension. Eac_h_ of these self-adjom_t extensions is, iy 4 hound state, this eigenvalue of minus the Laplacian is
turn, as we have anticipated by our notation, known t0 b&egative Of course, since we are assuming our potentials to
labeled by a single parameté and corresponds to the e non-negative, the corresponding “true two-dimensional
boundary condition at smailon then=0 sector component | gpjacians” for the true smooth string space-times consid-
of ¢ (i.e., on the circular average ), ered here can haweo bound states, so the bound state in the

h—0 idealized approximation is a mathematical artifaéh the
er (t,r,2)~c(t)In(r/R), (3.12  |anguage of5] and[12], it is related to small scale aspects of

P
(W_AR)(PR(LX):O (3.1
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the idealized dynamics and hence not “believable.” Seeon small scales.” It is then proposed [5] to study the

“Pitfall 3" in Note 20 in [5].) quantity {¢2) in this ground state in order to compare with
The relevant solution foR=0 is simply ¢g=const and the results of4]. In the event, we have performed such a

s0 ap=0. In this caseq is set by convention to zer(see study in the present papésee next sectigrbut we circum-

Note 4 in [5]), and the corresponding extensionA{?)  vent the “unbelievability problem” in a, at least superfi-

(which is actually the Friedrichs extensjoof (minug two-  cially, somewhat different way to that proposed [ifi],

dimensional cone Laplacian does not possess a bound stagamely, by essentially eliminating in a rather direct way
The circle of ideas may now be completed since one maywhich we explain in the next sectipthe pole in(3.17). It

show (for example, by an elegant method using the Kreinmight be interesting to investigate further the relationship

resolvent formula—see Appendix)Ahat theexact Green between the approach adopted here and that proposed in the

function for the approximate Green function equation final paragraph of Sec. 5 ¢5].
Next, we consider the question of determining the scatter-
— ARG (x,x") =6 (x,x") (3.16  ing length of a given potential teri. A case of particular

) ) o ) ) _ interest is that of weak potentials. Fe=n=0, Eq. (2.7)
on the idealized string is identical with the approximate ex-reduces to

pression(3.9) given earlier for the exact three-dimensional
Green function outside=a on the(constantt sections of
the) true string. Moreover, as we mention in Appendix A, the
problem of the pole as=q in (3.9) should be resolved by a
principal part prescription. For weak potentials, it follows that (1;0)~Y (0;0) and

Clearly, there will be a formula similar t63.9) for an
idealized four-dimensional Green functic®%’(x,x’) for
eachR value:

d
T XP(x) dx P(x) dx V)

To(x;0)=0. (3.18

N :0)~ ld Y (O;
(9—)((1,0)~f0 X XP(xX)V(x)Y (0;0)

, ' o o)
G (X,X")=Glag(x.x") + mfo s ds J(sVAtZ+AZ?)

1
Ko(sPKq(sr') R~a exp(—l /fodx xP(x)V(x)). (3.19

In(s/q) ’ (317
This is exactly Eq(5.10 of Ref.[5] written in our current

which again should be understood as a principal part inteeonventions. We may rewrite E¢3.19 as

gral. As before, one may arrive at this by either of two

routes: the first by dropping all but the zero term in the sum _ _ > 2

in (2.195 and replacingC, there by the approximatio(8.3), R~a exp{ 2m /Kf V@9 d*xv(x)

the second by calculating directly, e.g., by the Krein resol- )

vent formula method of Appendix A, the Green function for It iS remarkable that for the standard curvature coupling po-

the ideal operatoﬁzlat2+(92/azz+Ag). j[ent|e.1l, V=.§y2, the integral in Eq.(3.20 is a topological
We remark that, in botf3.9) and (3.17), the integrands nvariant given by

have poles as=q related to the existence of the “bound

state” in — A{?) that we mentioned above. In view of this f V@g d2x 2(x)=4m(1-1/x), (3.2

structure, and in contrast with the case of the true four-

dimensional Green fgnctioﬁ(“)(x,x’) of Eq.(2.19, we do  ang; correspondingly,

not expect the idealized Green funcu@é{‘)(x,x’) of Eq.

(3.17 to exactly correspond under analytic continuation with 1

any exact two-point function for the quantum field theory in R~a exp( - m) .

the Lorentzian version of the idealized string space-time in

some ground statelie., we expect the appropriate For é=1/6 and a GUT scale strings=1-+10"°, we have

Osterwalder-Schrader-like axioms to fail fGi&"(x,x")]. In

fact, as was discussed [if], (except for the casR=0), the R~g~300000% (3.23

field algebra for the Lorentzian idealized string will not ad- ) ) ] ) )

m|t a ground state for the t|me evo|ution Corresponding toWe W|” ShOW n the next section that deSpIte SUCh an InCI’ed-

the classical solutions to the massless Klein-Gordon equatioRly small size forR, it will give rise to large relative cor-

with the boundary condition§3.12). This is a physically rections to{@? and(T,”) on cosmological scales.

spurious result which has to do with the “unbelievability” of ~ As a useful check, we calculat for the “flower-pot”

the bound state, as is discussed in some detgfitsee also  and “ball-point pen” models of Allen and Ottewill4]. A

[12]). In the last paragraph of Sec. 5 there, one possiblédttle care is required for the “flower-pot” model as the “in-

method of circumventing this problem is proposed whichner” mode function¥ . has a first derivative which is not

involves “projecting out” the “bound state contribution” to continuous at =a, as is apparent from E@17) of Ref. [4].

the exact dynamics for the boundary conditi@12 to ob- It is important in this case that the value @f, which ap-

tain another dynamics which approximates it on large scalepears in the definition oR, be evaluated by taking the right

and admits a quantum ground state, but which is “nonlocaberivative of ¥ _ atr =a+ 0. By this means, the appropriate

. (3.20

(3.22
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ag may be obtained from a comparison with E§.4). For  which we have reason to expect to be no less accurate. In

the “flower-pot” model we find[9] fact, as is clear from the discussion of Sec. lll, the pole at
v=qr in the integrand of4.3) lies well beyond the range of
R.—a exp{ _ 1 (3.24 v(=rs) for which the approximatiori3.6) has any validity.
F 2&(k—1))’ If we return to the exach=0 term,

exactly. For the “ball-point pen” model we find

K 0 a 5
KPVO(llK) 4772r2f0 v dv Cq UF Kg(v), (4.4
Rg=a eX[{ m) , (325)

we see that the pole occurs because we are using the small
where P, denotes the Legendre function of the first kind sa asymptotic form foiCy(sa) whensa=2e™ “e!/®. How-
and vo(ve+1)=—2&. For (k—1)<1, this reduces to Eq. ever, this is always greatéand generally much greajghan
(322 on noting that P,(1/k)~P,(1)=1 and 1. In fact Cy(sa) cannot ha_lve any singularities, as these
P’ (1k)~P’ (1)=—¢. would correspond to zeros iy(sa) of (2.13. These may
"o "o be ruled out by recalling from Sec. I that, [which must
match onto the logarithmic derivative oF ;(r/a;sa) of
(2.13)] is necessarily positive, while the logarithmic deriva-
In this section we shall investigate to what extent the exdive of the Bessel functioio(sr) is negative[This absence
pectation values of $?) and <-‘|-MV> on rounded cones for Of Zeros inAq(sa) corresponds to the absence of any bound
nonminimally coupled fields can be mocked up by choosingstate in(then=0 sector of the differential operator ir2.3)
the appropriate nonzeR value. We start by considering the When regarded as a Schifnger operator. See the end of Sec.

renormalized expectation value d£. This may be defined S Of Kay and Studef5] as discussed in the previous sectjon.
as[10,11 This observation suggests that an equally satisfactory ap-

proximation will be given by simply replacing the integral

IV. VACUUM EXPECTATION VALUES

($200)= lim [GP(x,X') = G Elgigeat . X)], (4.1

X’—»X J<DO KOZ(U)

v_vhereG(E‘L’c,idea,(x,x’).:l/[8_172<r(x,x’)]. is the Green func- 0 Clnu—In(qr)
tion for flat four-dimensional Euclidean spacg¢Here,

20(x,x") denotes the square of the geodesic distance fro

x to x’.] By symmetry,{®?) is a function only ofr. From
Eqg. (2.15, we may write

(4.5
T 4.3 by

1 o0
. _ = 2
ap - Kk (= , ingr Jo v dv Kg(v) (4.6)
(e =(o >reg+ 42 0 S dsn:E_x Cn(sa)len\(Sr)

« . % a which, by the identity given in Appendix B, is equal to
=(¢%)regt WJ' vdv > Cn(vr) KZn(v),

0 n=—c

1
4.2 " 2Inqn) 4.7

where the first term is the renormalized vacuum expectation
value of 2 on the idealized cone with regularity conditions The rationale behind this is as follows: The multiplier
imposed at the strin{g]. vK3(v) in the integrand of(4.4) vanishes aw =0, peaks
Bearing in mind the asymptotic behavior of t, for  aroundv of order 1, and decays as exffv) for largev. On
small argument, one might hope to approximai€) for  the other handCo[v(a/r)] vanishes ab =0 and grows less
r>a by neglecting the terms in E¢4.2) corresponding to  slowly than exp2v(a/r)] for large v. Thus, assuming that
n#0 and replacingCo[v (a/r)] by its asymptotic form for Cg[v(a/r)] is sufficiently well behaved, the contribution to
small argument given by E@3.6). This is, of course, equiva- the integral from the “largey” region [where 1/In{/qr) no
lent to replacingG)(x,x") in (4.1 by the approximate longer well approximate€,[v (a/r)] and where its pole is
Green functionG(Ff)(x,x’) of (3.17). Whichever of these located will be negligible. In addition, we are interested in
points of view one adopts, the correction term in E42)  regions far from the string so that fm) [which is always
would then be approximated by greater than In{a)] will be large. Thus, except when is
very small, where again one expects the contribution to the

Ko Kg(v) 3 integral to be small, 1/ln{qgr) will not only well approxi-
4732 ), v vlnu—ln(qr) ' ' mateCy[v(a/r)], but also be slowly varying and, in its turn,

well approximated by-1/In(gr). The exact integrand and its
While one approach would be to stop at this point, interpretapproximation are illustrated for a “flower-pot” model
ing (4.3 as a principal part integralcf. the discussion in string in Fig. 1.
Sec. I, we shall now argue for a simpler approximation In conclusion, we have the approximation
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FIG. 2. The solid curves are the exact relative corrections
W(r/a), given by Eq.(4.9), and the dashed curves are approximate
relative corrections, given by E@4.10, for the flower-pot model
with £=1/6 and «=10/9 (upper curves and «=100/99 (lower

FIG. 1. The solid curve is € 10° times the integrand of the
exactn=0 term, given by(4.4), and the dashed curve is-(10°
times the approximate integrand, given ©4.6) including the pre-
factor, for the flower-pot model witik=100/99 and-/a=10°. The

agreement between the two curves increasesgets closer to 1 or curves.
asr/a is increased. usingRg as given in Eq(3.24). The calculation of the exact
curve was a substantial computational chore while the calcu-
R K2—1 K lation of the approximation curve is clearly trivial.
<‘P2>R:48 2,27 g 2 Zn(qn) To determine the importance of the correction term for a
g ™ d GUT string we notice that for such a string{ 1)<1 so we
K2—1 K may make the weak potential approximatith22, where-
= 28272 8% ln(26 "TIR)’ (4.8  upon(4.8 becomes
" k—1 6&
where the first term is simply¢?) reg—i-€., the value one (¢ >R:247T2r2 1- 2&(k—1)In(2e Crla)+ 1]’ (4.11

would obtain on the assumption of an ideal string with regu-
lar boundary condition§2]. We see here directly the long- from which we see that, for typical nonzero valueséptthe
range effect of the cosmic string structure, parametrized bgorrection term is of the same order of magnitude as the first
the single parametar or, equivalently R. term for all reasonable large values ofand vanishes so

While our above argument for the approximati@h8) is  slowly asr—oo, that one needs to considervalues which
not justified by any rigorous bound, we believe it is likely to massively exceed the radius of the observable Universe be-
be an excellent approximation in practice wheneveis  fore the correction term is significantly attenuated. For ex-
much greater than the string radius. Evidence for this may bample, in the most interesting case of conformal coupling,
seen immediately in Fig. 2 where we plot the exact expresé=1/6 (which, incidentally, is special in that, for this value
sion for of &, the correction term almost precisely cancels the first

term at reasonable values 1Of, one requires
<§A02>_<§A02>reg

W(r)= (4.9 a

<‘x’b2>reg r= Ze_CeSI(Kfl)ANJeB‘ 000 000 cm (412
for a “flower-pot” model with £= 1/6 against its approxima- - hefore(2) has climbed back up to half its asymptotic value
tion of <‘Pz>reg-
Given the success of the above approximation scheme for
Wo(r)=— 1 6« 1 (9, itis tempting to extend it t4T,”), the renormalized
R k=1 In(qr) k’°—1In(2e” “r/R) vacuum expectation value of the stress tensor. Starting by
(4.10  keeping only then=0 term in(2.15, we may write
|
Tt Tt K [*es 2 1 2
(TO)=(T)wegt 7,2 | $°ds| 26K (s1)+| 26— 5 |K(s1) | Cofsa), (413
Tr T K [*3 1 2 28 1 2
(T,"Y=(T, )reg+m . s°ds) — EKO (sr)—gKo(sr)Kl(sr)Jr EKl (sr){Cy(sa), (4.19

. . - 1 2 1
(T =(T4regt %fo s3ds( ( 2¢~ 5) Koz(sr)+s—fKo(sr)K1(sr)+ 2¢— E) Klz(sr)] Co(sa), (4.15
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apd, by boost invariance in thez pIane,(TZZ>=<Ttt>. Here, Here,V represents the local photon mass term supported

(T,")reqis the standard result for the idealized cq@g inside the string radius which will be responsible for making
the string superconducting. The detailed shap¥ afill de-

~ kK"=1 pend on the particular model field theory out of which the

(T )red™ 12207229109 1,1,1,-3) string is made(see[1]), but we shall assume it to be non-

negative.A represents the usual Laplace-Beltrami operator

4

(k*—1) 1) . ’ on scalars[This is the correct operator here even thouygis
+ 24722 &= 6 diag2,2,-1,3,". (4.18 a component of a four-vector, because of the ultrastatic na-

ture of the metria2.1).]
It is readily verified that these expressions satisfy the only The renormalized self-energg/(x,), for a pointx, out-

nontrivial conservation equation side the string core, will be given by the formula
4 sy (F 6 - Q &) (3)
ar TN =(T4%). (4.17 W(Xo) = lim 2_60[6 (X,Xo0) ~ GEyciideat X, X0) 1, (5.3)
X—=Xp

We were guarantee(_j conservation here as the correction e ere g3, (X,X0) = Li(4m|x—x|) is the corresponding
we have kept td5,., is a homogeneous solution to the wave Euclidean ™ "0 0 )
equation 9 Green function one would have in the case the string were
If we pursue the same line of argument as above then ngsent[Le., if, in Eq. (2.4), V were equal to Z€ro, and.
are led to the approximation Were t_he usual flat space Laplac_]a'lﬁhe self-forceF is then
given in terms of the self-potential by

) ) 1
T = (T e m( ¢-=|diag2.2-13,", F=—VW. (5.4

(4.18  Using Eq.(2.16), we obtain, from Eq(5.3),

where we have made frequent use of the identity given in W=W.. +W. (5.5

Appendix B. In making the transition to the last expression, 69 Tstper

we have moved away from an exact solution to the waveyhere

equation. As a consequence it is not surprising tfat’)g

violates conservation by terms of order kQ? (=
super:mf

©

ds > Cn(saKZ,(sn, (5.6
0 n¥e

1
o 4.1
inan 1 @19 o
Nevertheless, since we are interested in regions very far from Q2
the string, Ingr) [which is always greater than )] will ~ WieyXo) = lim Z[Ggé(x,xo)—G(Eﬂclideag(x,xo)], (5.7
be large so that the violation is small agd@,")g should X% “ 50

provide us with an acceptable approximation to the true

stress tensor. In particular, it is reasonable to conclude that f{he rgnormallzeq self—en_ergy .approprlate to the. |deal|z'ed
for 0<¢+1/6, the energy density will have long-range cor- string with regularity conditions imposed at the string. This

rections arising from the string structure. On the other hand!gge;g”lfgﬂgy' Wdh'zht;nzy;ci_rte.g]aer%e? aa? trhee ngt;.':)sl:t?;cto_
in distinction to the situation fof@?), in the conformally gy du P ! urvature was M u

coupled case£=1/6, our correction term for the stress ten- !ated by Smitt{2] and Line3]. Th|s.|s the me cont.rlbut.|on
sor vanishes. in the case of a nonsuperconducting string and in this case

there are no long-range effects of the string structure. Now,

combining(5.7) and(2.21), one easily obtains
V. SELF-FORCE g(5.7) and(2.21) y

Similar techniques may be used to investigate the electro- Wieg 1) = 1 Q*Z(x) (5.9
static self-force on a point test charge outside a supercon- e 4mey 21
ducting cosmic string of finite thickne$5]. Working in Sl )
units, the electrostatic potential(x) due to a point charge with
Q atxg will be

k coth( kv) — cothv

1 59
T (k)= —J dv - (5.9
¢(x)=69e<3>(x,xo), (5.0 mlo sinfu
0
As shown in[2], for k—1<1, .%(k)~(x—1)w/8, so that
whereG®)(x,x,) solves[cf. Eq. (2.4)] W,¢q COrresponds to &epulsivg contribution
1 , , Q*(k—1) F

(—A—l-ng(r/a) G®(x,x)=8¥(x,x"). (5.2 Freg™ 6de, 12 (5.10
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to the self-force. 20 40 60 80 100 120 0 |1 (ra)
We now turn toWs,,e,which, as we shall see, turns out to

be attractive, and typically, very much larger in magnitude P

thanW 4. Following a similar path to that adopted in Sec. ™ ,

IV, if one naively approximate€s.6) by discarding all terms [

in the sum other tham=0, and replacingCq(sa) by its o

asymptotic form(3.6), one obtains the formula

!
i
Q%k (= K3(sr) !
Wagpel1) |Case }
|
[
I

" 4m2ey)o SIn(siq) o0.2fl

2 o 2 ’
__Q* f G20 gy e
A€l Jo  Inv—In(qgr)

FIG. 3. The solid curve is thdscaled exact self-energy
[Alternatively, one may obtai5.11) by settingAz=0 and  Wsype") X (47€/Q?)r and the dashed curve is tiiscaled ap-
r=r’ in (3.9.] Here, we recal[see around and after Eq. proximate self-energyVg(r)x (4meo/Q?)r for perfect conductor
(3.7)] thatg=2e °/R andR is the scattering length appro- boundary cqnditions on a superconducting string w&i?hl(?O/QQ.
priate to Eq.(3.10 in the case wher® represents the local The gra_vltatlpnal contribution tc2) tr(eca!ed self-energy is given by
photon mass term. As explained[i5] on the basis of argu- the straight ineéWeyx (4me/Q7)r =.7(100/99)/2-0.0020.
ments given in1], one expectR to be of the order of the
string radiusa. (It will certainly be bounded by if, as we | jnj(S@)
have assumed/ is non-negative.Hence,q in (5.12) will be Cn(sa)=— Ko@) (5.14
of the order of 1. As in the discussion of Eq4.3), the
formula(5.11) must be interpreted as a principal part i'nt(j:-graland’ correspondinghR=a. In Fig. 3 we plot the exact cor-
1 those discuseed in 1 case 63, we expoct tnat & Souon (0 e renormalized selfcnerBeey given bY E
simpler and still good approximation will be given by replac- (5:12)' '
ing Eq.(5.11) with

VI. CONCLUSION

2 »
W)= gz [ Caok3o) o e
4meor In(qr) Jo There is an important distinction between the two calcu-
2 2 lations that we have not yet mentioned. The deviation of
=_ <Q =_ <Q L ($?) from its ideal value goes away if one imagines switch-
16eor In(qr) 16¢or In(2e™"r/R)’ ing off gravity, that is, if the deficit angle goes to zero, and

(5.12 the core becomes flat. On the other hand, for the self-force
calculation, the deviation from the ideal values does not go
where we have performed the integral with the formula inaway if one ignores gravity. In fact, the gravitational contri-
Appendix B. Note that although the integrand in E§.12 bution in this case is tiny in comparison with the effect of the
diverges a® —0, it does so very weakly so that the integral local photon mass term and hence we may ignore gravita-
from 0 to € yields a contribution of ordek Ine. Thus, as tional effects and take the spatial metric to be flat in this

before, we expect the major contribution to come from thecase.

region wherev is order 1 andC,[v(a/r)] is well approxi- In con_clusion, the palculations presentgd in this paper
mated by— 1/In(gr). serve to illustrate an important general point of principle;

Differentiating this expression, and ignoring a term whichnamely, the long-range effects of cosmic striigad more
is down in magnitude by a factor 1/ [see the discussion generally of “small objects'{12]) can sometimes depend on
following Eq. (4.18], we obtain the contribution the details of the structure of the string core.

«kQ?
Fr(r)=— 16€, r2n(qr)

, .
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As a simple model, we may consider a potentiagjiven In this appendix, we sketch the justification of our claim

by V= for r<a andV=0 for r>a. This ensures thap that the expression(4.3) for the Green function
vanishes atr=a, corresponding to a perfect conductor GE)(x,x')—when supplemented with a suitable “principal
boundary condition. In this case one immediately finds part prescription’—is the exact Green function for the ap-
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proximate Green function equati@f.16):

— ARG (x,x")= 6% (x,x"). (A1)

We recall thatA g= 3%/ 92%+ A ) where A?) is the self-
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for some functionf z(s), where, as befores=|k|. Now,

K ” .
Giegyy =5 2 ™4 (ST)Kn(sr=),  (A9)

adjoint extension of the two-dimensional Laplacian on theso thatGgg] satisfies

cone with deficit angle 2(1—1/k) corresponding to the
boundary condition

e=9(r)~consIn(r/R) as r—0, (A2)

where ¢=% represents the=0 sector componenti.e.,
circular averageof an (elsewhere smoojhelement of the
domain of AZ) . (See[5] for a fuller discussion.

Writing x=(z,y), wherey=(r,¢) represents a point on
the two-dimensional cone, formally, we clearly have

1 . '
Gg)(x,x’)zﬁf GR(y,y ke = *dk,  (A3)

whereG® (which will, of course, be the Fourier transform
of GQ) with respect taz—z') satisfies

(—AR+KIG (Y =52(yy)  (Ad
together with the boundary conditions
G2 (y,y' k)~consXIn(r/R) asr—0, (A5)

for fixed y’ and allk (on which the “constant” may de-

K
GZY K~ 5-Ko(sr') asr—0.  (A10)

Hence, from Eq(A8),

4

GO (yy k) ~1 = —ta(s)in| ==t | LK y(sr') asr—0
R v,y 20 R 2 0 .
(A11)

To obtain agreement with EgA5), we must take
e’s k1) 1 AL
2 %N 29 R (A12)

that is,

Fr(8) = ——[In(s/q)] A13
r(S)=5_[In(s/a)]" (A13)
Finally, —multiplying both sides of (A8) by

(1/27)e*(z=2) and integrating, we obtaif8.9). We remark
that, because of the pole fi(s) ats=q, the integral has to

pend. We now observe that the above conditions amount tge interpreted as a principal part integral. It is not difficult to

the statement thaB{?) is the resolvent kernel of the self-
adjoint extension—A? of the two-dimensional cone La-
placian. We may calculate this §rein’s resolvent formula
(See, for example, Appendix A i13].)

This stateqin the case of deficiency indic€4,1)) that,
given a symmetric operatdk (on a dense domain in some
Hilbert spacg if A; and A, are a pair of its self-adjoint

see that, when so interpreted, the form(8a9) does indeed

yield a Green function which satisfi€3.16), i.e., which sat-

isfies— AG®)(x,x") = 5®)(x,x") together with the boundary
condition

G (x,x",k)~consIn(r/R). (A14)

extensions, then the difference in their resolvents is given by

the formula

(A;=N) 1= (A= N) " 1=T(N) Py (AB)
where(a) \ belongs to the resolvent set of each operdtor,
¢(\) denotes a nonzero solution to

A*o(N)=Ne(N), (A7)
with A* the adjoint ofA, andP,,) the projector onto the
subspace spanned ky(\), and(c) f(\) is an appropriate
function to be fixedsee below.

If we identify A with — A ?) and\ with k?, then Eq(A6)
is easily seen to be solved l(\)=Kq(|k|r), so we con-
clude that our resolvent kern@{) is related to the corre-
sponding kernel with regular boundary conditions by

GE(y.y' K =G@(y.y' K +r(s)Ko(SDKo(sr')  (A8)

APPENDIX B: A USEFUL IDENTITY

_In deriving the approximate expressions fap?) and
(T,") given in the text, we have made frequent use of the
identity

f:dv v"K#(v)K,,(v)

o 2M? . 1+N+pu+v\ [1+N—pu+v
CT(1+)N) 2 2
1+N+u—v 1+N—u—v
r( 2“ ) 2“ ) (B1)

valid for Re(\)>|Re(u)|+|Re(v)| — 1. This equation may
be readily derived from Eq(6.576.4 of Gradsteyn and
Ryzhik [14].
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