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We combine and further develop ideas and techniques of Allen and Ottewill@Phys. Rev. D42, 2669~1990!#
and Kay and Studer@Commun. Math. Phys.139, 103 ~1991!# for calculating the long-range effects of cosmic
string cores on classical and quantum field quantities far from an~infinitely long, straight! cosmic string. We
find analytical approximations for~a! the gravity-induced ground state renormalized expectation values
ŵ2 and T̂m

n for a nonminimally coupled quantum scalar field far from a cosmic string and~b! the classical
electrostatic self-force on a test charge far from a superconducting cosmic string. Surprisingly—even at
mologically large distances—all these quantities would be very badly approximated by idealizing the strin
having zero thickness and imposing regular boundary conditions; instead they are well approximate
suitably fitted strengths of logarithmic divergence at the string core. Our formula for^ŵ2& reproduces~with
much less effort and much more generality! the earlier numerical results of Allen and Ottewill. Both^ŵ2& and
^T̂m

n& turn out to be ‘‘weak field topological invariants’’ depending on the details of the string core on
through the minimal coupling parameter ‘‘j ’’ ~and the deficit angle!. Our formula for the self-force~leaving
aside relatively tiny gravitational corrections! turns out to be attractive: We obtain, for the self-potential of a
test chargeQ a distancer from a ~GUT scale! superconducting string, the formula2Q2/@16e0r ln(qr)# where
q is a ~in principle, computable! constant of the order of the inverse string radius.@S0556-2821~96!01510-X#

PACS number~s!: PACS number~s!: 11.27.1d, 04.62.1v
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I. INTRODUCTION

A realistic cosmic string has structure on a length sca
defined by the phase transition at which it is formed. In th
case of a grand unified theory~GUT! string this corresponds
to a radius of order 10230 cm. As this radius is so small, one
often models the true string space-time by an idealiz
space-time where the string core has zero thickness and
curvature is represented by a two-dimensionald function.
The idealized model for an infinitely long straight static co
mic string space-time is the manifoldR23R13S1 with the
conical metric

ds252dt21dz21dr21r 2df2, ~1.1!

where the angular range isfP@0,2p/k), corresponding to a
deficit angle of 2p(121/k). Throughout this paper we shal
assume the standard case of a positive deficit angle, so
k.1; for GUT stringsk21;1026.

In studying the behavior of various types of fields an
waves far from such a string, it is sometimes erroneous
taken for granted that one can always ignore the details
the interior structure of the string and approximate the effe
of the string by this idealized model with regularity cond

*Electronic address: ballen@dirac.phys.uwm.edu
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tions placed at the conical singularity. This paper presen
two calculations involving fields propagating around and in
teracting with a cosmic string for which this is not true
These calculations have, instead, the remarkable feature
the quantity calculated, even at very large distances from t
string, depends on details of the interaction inside the stri
core.

We shall start by treating a ‘‘realistic’’ or ‘‘true’’ cosmic
string having a core of finite thickness with a definite radiu
a ~but assumed, for simplicity, to be infinitely long, straight
and static!. This corresponds to a space-time metric takin
the standard conical form with a given deficit angle outsid
the radiusa, but matching onto a smooth model core metri
inside this radius@see Eq.~2.1! below#.

The first calculation involves a nonminimally coupled
quantumlinear scalar fieldŵ(x): We shall obtain an approxi-
mate formula for the renormalized vacuum expectation val
^ŵ2& for such a field far from the string and a similar formula
for the expectation value of the energy-momentum tens
^T̂m

n&. The second calculation concerns aclassicalelectro-
static field at large distances from asuperconductingcosmic
string: In this case the string is additionally characterized b
a nonvanishing function within the core representing th
‘‘local photon mass term’’ responsible for making it super
conducting@1#. We shall obtain an approximate formula for
the self-force on a test charge far from the string due to t
presence of such a string.~As we shall see, this self-force
arises as the sum of two terms: A small repulsive term pr
6829 © 1996 The American Physical Society
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6830 53BRUCE ALLEN, BERNARD S. KAY, AND ADRIAN C. OTTEWILL
viously calculated by Smith@2# and Linet@3# which depends
on the deficit angle and a typically much larger attracti
term which depends on the ‘‘scattering length’’ of the loc
photon mass term and is independent of the deficit angle!

Both calculations presented here involve calculati
Green functionsG for equations of the schematic form

~2D1V!G5d ~1.2!

and both involve calculating ~suitably renormalized!
coincident-point values of such Green functions. In the c
culation of^ŵ2&, D represents the Laplace-Beltrami operat
for the ~Euclideanized! four-dimensional string space-time
metric, while V represents a nonminimal coupling term
jR, whereR is the Ricci scalar of the same metric. In th
calculation of the self-force,D represents the Laplace
Beltrami operator for the three-dimensional spatial metric
the string at a fixed time whileV represents the local photon
mass term regarded as a function on that three-dimensio
space. For both calculations presented here, the sensitivit
the core structure can be traced back to the potential te
V in Eq. ~1.2!. For example, in the case of the calculation
^ŵ2& for a minimally coupled quantum scalar field~corre-
sponding toV50), one can idealize the true space-time
the cosmic string by the idealized conical space-time~1.1!
and, with the imposition of regularity conditions on the sc
lar field at the conical singularity, obtain an excellent a
proximation to^ŵ2& at large distances from the string~see
Sec. IV!.

That the value of̂ ŵ2& for a nonminimallycoupled field
will depend on the details of the metric in the core of th
string even very far from the string was argued by Allen a
Ottewill in @4#. There, the argument was confirmed by d
tailed calculations for two model cores: the ‘‘flower pot
and the ‘‘ball-point pen.’’ In particular, the value of^ŵ2& for
the flower-pot model was computed numerically and sho
to differ significantly from the ideal value out to cosmolog
cal scales for GUT scale strings.

Roughly simultaneously with the work of Allen and Ot
tewill, Kay and Studer@5# looked at the question of boundar
conditions at the conical singularity for a variety of situation
involving ~classical and quantum! scalar fields and waves
around an idealized string. They found that there is typica
a one-parameter family of possible boundary conditions
the idealized problem—one of which is regular while th
others involve a field which, at each timet is logarithmically
divergent near the origin:

w;const3 ln~r /R!, ~1.3!

whereR is a quantity with the dimensions of length labelin
the boundary condition@6#. Moreover, they argued that, in
the case of many physical quantities involving such a fie
around a true string, and, in particular, in the case of E
~1.2!, one should be able to well approximate the effect
the string core by a single parameter with the dimensions
length which they introduced and termed the ‘‘two
dimensional scattering length’’@5#. This length is easily de-
termined in terms of the core metric andV by what they
termed their ‘‘fitting formula’’ @Eq. ~5.9! of @5# and Eq.
~3.15! here#. The approximation proceeds by idealizing th
string, but rather than taking regularity conditions at t
ve
al
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conical singularity, imposing the boundary condition~1.3!
whereR is identified with this scattering length. Only in
cases whereV in Eq. ~1.2! vanishes, when one can show tha
the scattering lengthR will be automatically zero, will it be
justified to approximate the true string by the idealized strin
with regular boundary conditions. NonvanishingV will, in
general, give rise to nonvanishing scattering lengths an
hence require approximation by idealized strings with
nonregular~i.e., suitably logarithmically diverging! bound-
ary conditions. In the present paper, we shall always assum
V to be non-negative, and, in consequence, it may easily
shown that the corresponding scattering lengthsR, while
nonvanishing, will necessarily be small~bounded by the
string radiusa in all cases, and, for the problem of^ŵ2&,
even ‘‘exponentially small’’!. Nevertheless, and quite sur-
prisingly, we shall find that the failure ofR to be precisely
zero makes a big difference to the effects we calculate, ev
at cosmologically large scales and it will turn out to be cru
cially important, if one idealizes the string as having zer
thickness, to take the appropriate logarithmically divergen
boundary conditions, rather than regular boundary condition
in order to obtain valid approximations.

Kay and Studer speculated that this method of fitting th
idealized boundary condition to the true scattering lengt
may lead to a useful analytical approximation to Allen and
Ottewill’s calculations of̂ ŵ2& for a nonminimally coupled
scalar field~see the end of Sec. 5 of@5#!. They also discussed
how this procedure could be used to approximate the scatt
ing theory of electromagnetic fields by superconducting co
mic strings. Furthermore, they also pointed out~see Note 16
of @5#! that the self-potential of a test charge due to the pre
ence of a cosmic string~previously calculated by Smith@2#
and Linet @3# who only took into account the effect of a
conical geometry! should have an additional important con-
tribution from the local photon mass term in the case th
string were superconducting. They again suggested that t
might be well-approximated analytically by replacing the
true problem~i.e., with the photon mass term! by the prob-
lem of finding the electrostatic potential~i.e., Green func-
tion! due to a point test charge in the presence of an idealiz
cosmic string when the potential is obliged to satisfy th
boundary condition~1.3! at the string and then taking the
appropriate renormalized coincidence limit.

However, it turns out that when one tries to pursue thes
ideas to obtain approximate analytical formulas for^ŵ2& and
the self-force, one encounters certain difficulties, as wa
partly anticipated in@5#. These difficulties are associated
with the fact that the idealized problem with nonzeroR will
have a bound state, which, however, for small scatterin
lengths~less than or arounda as will be the case here!, is not
expected to be ‘‘believable’’~see@5# and @12#!. If one at-
tempts to implement the proposals in@5# literally, this is
reflected in the existence of spurious poles in certain inte
grals @see, for example, Eq.~4.3! in the present paper#.

In the present paper we show, by a combination of idea
and techniques derived both from@4# and@5#, that such suit-
able modifications can be made. We then obtain approxima
analytical formulas both for̂ŵ2& @Eq. ~4.8!# and for the self-
force @Eqs.~5.13!# which depend onV only through its fitted
scattering lengthR, and which, in the case of^ŵ2&, give an
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excellent approximation to the numerical results of@4#. In
this way, the basic philosophy of@5# is vindicated.

Remarkably, for small deficit angle we find that the sca
tering lengthR required to approximate the calculation o
^ŵ2& is a ‘‘weak field topological invariant’’ given by

R'a expS 2
1

2j~k21! D .
Thus, in this casêŵ2& is actually insensitive to the detailed
shape of the string core and depends on the interaction w
the string core only through the single ‘‘nonminimal cou
pling’’ parameterj and the deficit angle.

We remark that, as discussed in@5#, in the self-force prob-
lem, the typical values for the scattering lengthR of the local
photon mass term are expected to be of the order of the str
radiusa. While, at first sight, this is ‘‘very small’’ compared
to the distances of interest, as we have already anticipa
above ~and as, in this case, was already anticipated
@5#—see ‘‘pitfall 2’’ in Note 22 there!, one can argue that
such values ofR will lead to effects at ‘‘medium scales’’
which are significantly different from the effects one woul
calculate in the caseR were precisely zero.@The reason for
this is essentially becauseR and the scales of interest are
expected to occur—because of the ‘‘two-dimensional’’ n
ture of the problem—in the combination ln(scale/R).# This
is borne out in the present paper by our self-force calcu
tion. More spectacularly than this, for the problem of^ŵ2&,
we shall see that typicalR values will beexponentiallysmall
compared toa (R'e23 000 000a for a GUT scale string with
j51/6). Yet, we shall continue to find~and this goes beyond
anything envisaged in@5#! that the corresponding value o
^ŵ2& differs significantly from the value one would obtain in
the caseR were precisely zero~i.e., from what one would
obtain in the case of naive regularity conditions! even on
cosmological scales. Thus we conclude, as we have alre
mentioned, that, for this problem too, even though the sc
tering lengthsR are so incredibly tiny, it continues to be
important not to replace them by zero.

Throughout this paper we shall work with a positive defi
nite metric. This is a valid and convenient way to treat th
quantum field theory since the space-time is static@7# ~and is
irrelevant to the classical self-force calculation!. It is, how-
ever, a crucial step in our approach since it leads to comp
tations of Green functions that fall off rapidly in all direc
tions from the string. By replacing the Lorentzian signatu
metric with a positive definite one, the hyperbolic problem
for G becomes an elliptic one, with a unique regular solutio
G which falls off in all directions away from the string.

II. GREEN FUNCTIONS

In Allen and Ottewill @4#, the quantum field theory of a
scalar field was studied on a model string space-time
which the string was still taken to be infinitely long, straigh
and static but the core of the string was given a nonze
spatial extent characterized by a length scalea. The~positive
definite! metric was written in the form

ds25dt21dz21P2~r /a!dr21r 2df2, ~2.1!
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where the range of the angular coordinate isfP@0,2p/k),
and P(r /a) is a smooth monotonic function satisfying the
equations

lim
r /a→0

P~r /a!51/k and P~r /a!51 r.a. ~2.2!

The first condition means that there is no conical singulari
at r50. The second condition means that the curvature
confined within a cylinder of radiusa, the string core, and
that, viewed from outside this core, the space has the st
dard deficit angle 2p(121/k). The second condition here is
actually slightly stronger than that used in Ref.@4# but agrees
with the condition used by Kay and Studer@5# and is more
convenient for our purposes here.@Note the unfortunate clash
of notation thatk as defined in@5# is the inverse of thek as
defined in@4#. We follow the latter convention here so that a
positive deficit angle corresponds tokP(1,̀ ).#

We wish to construct Green functions for the scala
‘‘wave equation’’ on this space-time and Laplace’s equatio
on its constantt sections with positive cylindrically symmet-
ric potential V whose support lies inr<a. These Green
functions satisfy

S 2h1
1

a2
V~r /a! DG~4!~x,x8!5d~4!~x,x8!, ~2.3!

where h is the Laplace-Beltrami operator for the metric
~2.1!, d (4) is the four-dimensional covariantd function, and

S 2n1
1

a2
V~r /a! DG~3!~x,x8!5d~3!~x,x8!, ~2.4!

wheren is the Laplace-Beltrami operator for a constantt
section andd (3) is the three-dimensional covariantd func-
tion. We have written the potential in this form so that~a!
V is a dimensionless function of a dimensionless argume
x5r /a and~b! its integral over a spatial slice of constantz is
independent ofa.

Equation ~2.3! includes the case of a scalar field with
curvature couplingj>0, if one identifiesV(x)5jR(x),
since we then have

jR~x!5
j

a2
2

~r /a!

P8~r /a!

P3~r /a!
5
2j

x

P8~x!

P3~x!
~2.5!

which is positive as we have assumedP(r /a) to be a
monotone-increasing function. Here and throughout, the n
tation f 8 denotes the derivative of the functionf with respect
to its argument. Equation~2.4! is of interest to us as the
equation for the electrostatic potential on a superconducti
string. Here, stability requires@1# the absence of ‘‘bound
states’’ for the Schro¨dinger-like operator in~2.4! and, for
simplicity, we shall take the potentialV to be non-negative
everywhere.

The homogeneous form of Eq.~2.3! admits solutions of
the form

eivteikzeinkfCn~r /a;sa!, ~2.6!

wherev, kPR, s2[v21k2, nPZ, andCn(r /a;sa) satis-
fies
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F2
1

xP~x!

d

dx

x

P~x!

d

dx
1~sa!21

n2k2

x2
1V~x!GCn~x;sa!50. ~2.7!

The Green function for the ‘‘wave equation’’ may then be written as

G~4!~x,x8!5E
2`

` dv

2p
eivDtE

2`

` dk

2p
eikDz (

n52`

`
k

2p
einkDfCn

,~r, /a;sa!Cn
.~r./a;sa!, ~2.8!

5
k

4p2E
0

`

s ds J0(sADt21Dz2) (
n52`

`

einkDfCn
,~r, /a;sa!Cn

.~r. /a;sa!, ~2.9!

whereCn
, is determined by the boundary condition that it be regular asr→0 andCn

. by the condition that it vanishes at
infinity. Here, we have introduced the standard notationr,5min(r,r8) and r.5max(r,r8). In contrast with the conical
space-time, the ‘‘boundary condition’’ asr→0 here is not an assumption but is simply a consequence of the regularity of
space-time. In addition,Cn

, , Cn
. must satisfy the normalization condition

]Cn
,~x;sa!

]x
Cn

.~x;sa!2Cn
,~x;sa!

]Cn
.~x;sa!

]x
5
P~x!

x
. ~2.10!

The Green function to Laplace’s equation on the constantt sections may be found in an entirely analogous way. We fin

G~3!~x,x8!5E
2`

` dk

2p
eikDz (

n52`

`
k

2p
einkDfCn

,~r, /a;sa!Cn
.~r. /a;sa!, ~2.11!

5
k

2p2E
0

`

ds cossDz (
n52`

`

einkDfCn
,~r, /a;sa!Cn

.~r. /a;sa!, ~2.12!

where nows[uku but all other symbols retain their previous meanings.
As mentioned above, the ‘‘inner’’ mode functionC, is defined by the boundary condition that it be regular asr→0. As

one integrates out in the regionr,a, it is impossible to write an explicit formula forC, without specifying the potential. We
denote the solution to~2.7! in this region byYn(r /a;sa). However, asr increases beyonda, the potential ‘‘turns off’’ and
C, becomes a sum of Bessel functions. Thus we can write

Cn
,~r /a;sa!5H Yn~r /a;sa! for r,a,

An~sa!I kunu~sr!1Bn~sa!Kkunu~sr! for r.a.
~2.13!

HereAn(sa) andBn(sa) are constants~with respect tor ) determined by matchingCn
, and its derivative atr5a.

The solutions to~2.7! for the ‘‘outer’’ mode functions are determined by the condition that they fall off whenr→`. In the
regionr.a where the potential vanishes, these solutions are again Bessel functions. Together with the normalization co
~2.10!, this yields

Cn
.~r /a;sa!5

1

An~sa!
Kkunu~sr! for r.a. ~2.14!

We shall not needCn
. within the regionr,a where the potential is nonzero, since we shall not attempt to compute

physical quantities inside the string core.
We now restrict ourselves to the region outside the core where bothr and r 8 are greater thana. Then defining

Cn[Bn /An , the Green functions on the true cosmic string may be written as

G~4!~x,x8!5Greg
~4!~x,x8!1

k

4p2E
0

`

s ds J0~sADt21Dz2! (
n52`

`

einkDfCn~sa!Kkunu~sr!Kkunu~sr8!, ~2.15!

and

G~3!~x,x8!5Greg
~3!~x,x8!1

k

2p2E
0

`

ds cossDz (
n52`

`

einkDfCn~sa!Kkunu~sr!Kkunu~sr8!. ~2.16!
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Here,Greg
(4)(x,x8) andGreg

(3)(x,x8) are the Green functions appropriate to the idealized string space-time with regularity co
tions placed at the origin:

Greg
~4!~x,x8![

k

4p2E
0

`

s ds J0~sADt21Dz2! (
n52`

`

einkDfI kunu~sr,!Kkunu~sr.!, ~2.17!

and

Greg
~3!~x,x8![

k

2p2E
0

`

ds cossDz (
n52`

`

einkDfI kunu~sr,!Kkunu~sr.!. ~2.18!
The only dependence ofG(4) andG(3) upon V and a, or
indeed upon the detailed structure of the space here,
through the ratiosCn(sa).

For completeness, we note that in the case of the regu
Green functions on the idealized cone, one may perform
mode sums. The Green function for the ‘‘wave equation’’
@8#

Greg
~4!~x,x8!5

1

8p2

k sinhkh

rr 8sinhh~coshkh2coskDf!
, ~2.19!

where

coshh[
Dt21Dz21r 21r 82

2rr 8
, ~2.20!

with Dt5t2t8 and likewise forf andz. The Green func-
tion for Laplace’s equation on the spatial section is@2#

Greg
~3!~x,x8!5

1

4p2~2rr 8!1/2
E

z

` ds

~coshs2coshz!1/2

3
k sinhks

~coshks2coskDf!
, ~2.21!

where

coshz[
Dz21r 21r 82

2rr 8
. ~2.22!

III. APPROXIMATION

The limit as the dimensionless variablesa tends to zero
may be considered either as the limit as the size of the str
tends to zero for fixed energy~as in@4#! or as the limit as the
scattering energy tends to zero for fixed string size~as in
@5#!. We now consider the behavior ofCn(sa) in this limit.
First we writeCn(sa) in terms of the solution to the radial
wave equation~2.7!, using the continuity ofCn

, and its de-
rivative at r5a:

Cn~sa!52

I kunu~sa!
]Yn

]x
~1;sa!2saIkunu8 ~sa!Yn~1;sa!

Kkunu~sa!
]Yn

]x
~1;sa!2saKkunu8 ~sa!Yn~1;sa!

.

~3.1!
is

lar
the
is

ing

It is convenient to rewrite this equation in the form

Cn~sa!52

1

Yn~1;sa!

]Yn

]x
~1;sa!2

saIkunu8 ~sa!

I kunu~sa!

1

Yn~1;sa!

]Yn

]x
~1;sa!2

saKkunu8 ~sa!

Kkunu~sa!

3
I kunu~sa!

Kkunu~sa!
. ~3.2!

It follows that, fornÞ0,

Cn~sa!52
an2kunu
an1kunu

2

G~kunu!G~kunu11!
~sa/2!2kunu

1O„~sa!2kunu12
…, ~3.3!

assa→0 where

an[
1

Yn~1;0!

]Yn

]x
~1;0!. ~3.4!

It is easy to see, directly from~2.7!, that an.0 so the de-
nominator in ~3.3! cannot vanish.@To see this, note that
Yn8(0,0)50 while we may assume thatYn(0,0) is positive.
Equation~2.7! then ensures that„x/P(x)…Y8(x,0) and hence
Y8(x,0) increases whereuponY(x,0) must increase.# Thus,
for nÞ0, Cn(sa) vanishes at least as fast as (sa)2kunu as
sa→0. On the other hand, in general,C0(sa) vanishes only
as an inverse logarithm in this limit:

C0~sa!5
a0

a0@ ln~sa/2!1C #21
1OS S sa

ln~sa! D
2D , ~3.5!

assa→0, whereC is Euler’s constant.
Later we shall find it useful to rewrite the long-range term

in Eq. ~3.5! in the form

C0~sa! long range5
1

ln~s/q!
, ~3.6!

where

q52e2C /R ~3.7!

and whereR is defined, in turn, by

R5a exp~2a0
21!. ~3.8!
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~The reason why we write things in this way, and the sign
cance of the interrelated quantitiesq and R, will become
clear below.!

Here again we can easily see, directly from~2.7!, that in
the casen50, a0>0 with a050 if and only if the potential
V vanishes identically. This includes the particular case
minimal coupling (j50) with no other potential. Thus, in
this case there are no long-range effects and the theory on
idealized cone with regularity conditions accurately mode
the full theory. In all other cases, it seems reasonable,
view of ~3.3! and~3.5!, to approximate, say, the Green func
tion G(3)(x,x8) far from the string by dropping all terms
other than then50 term in the sum in~2.16! and substitut-
ing for C0(sa) the long-range approximation
C0(sa) long rangegiven by ~3.6!. This leads to the formula

GR
~3!~x,x8!5Greg

~3!~x,x8!

1
k

2p2E
0

`

ds cossDz
K0~sr!K0~sr8!

ln~s/q!
. ~3.9!

As it stands, the integral in Eq.~3.9! is ill defined because
of the pole in the integrand ats5q. In an attempt to resolve
this issue~and because it is of independent interest!, we now
discuss how this approximate Green function arises from
point of view of Kay and Studer. In@5# it is argued that the
low-energy dynamics for the~un-Euclideanized! equation

S ]2

]t2
2n1

1

a2
V~r /a! Dw true~ t,x!50 ~3.10!

on the true string should be well approximated by solving t
equation

S ]2

]t2
2nRDwR~ t,x!50 ~3.11!

on the idealized string, wherenR is chosen to be the
(z-translationally invariant! self-adjoint extension of the La-
placian ~defined on the domain of smooth functions com
pactly supported away fromz50 in the Hilbert space of
square integrable functions! on the constantt spatial sections
of the idealized string which gives the best fit to the low
energy ‘‘true’’ dynamics of equation~3.10!. Before we ex-
plain how this best-fit choice is made, we note first that th
choice amounts to a choice of self-adjoint extensionnR

(2) of
the two-dimensional Laplaciann (2) ~defined on the domain
of smooth functions compactly supported away from the o
gin in the Hilbert space of square integrable functions! on the
two-dimensional ideal cone of constantt and z since, in a
sense made precise in@5#, each translationally invarian
three-dimensional self-adjoint extensionnR must arise as
]2/]z21nR

(2) for some choicenR
(2) of two-dimensional self-

adjoint extension. Each of these self-adjoint extensions is
turn, as we have anticipated by our notation, known to
labeled by a single parameterR and corresponds to the
boundary condition at smallr on then50 sector component
of w ~i.e., on the circular average ofw),

wR
n50~ t,r ,z!;c~ t !ln~r /R!, ~3.12!
ifi-

of

the
ls
in
-

the

he

-

-

is

ri-

t

, in
be

where the ‘‘time-dependent constant’’c(t) is independent of
z, while regularity holds in all the sectors withnÞ0. So,
solving ~3.11! amounts to solving the equation

S ]2

]t2
2nRDw~ t,x!50

subject to these boundary conditions.
Turning to the question of how the best fit is made

we begin by remarking that, atzero energy, the
(z-translationally invariant, cylindrically symmetric! solution
to ~3.10! will take the exact form

w true
static~r !5const3 ln~r /R!, ~3.13!

outside the support of the potential for some positive re
parameterR which, it is worth noticing, will be related to the
logarithmic derivative ofw true

static at r5a by

r

w true
static

dw true
static

dr
U
r5a

5
1

ln~a/R!
, ~3.14!

or equivalently,

R5a expS 21 Y r

w true
static

dw true
static

dr U
r5a

D . ~3.15!

The best-fit self-adjoint extension is then declared to b
the one for which theR in ~3.12! coincides with theR in
~3.13!: In the language of@5#, one identifies the label of the
self-adjoint extension in~3.11! with the ‘‘scattering length’’
of the potential in~3.10! which may be calculated from the
‘‘fitting formula’’ ~3.15!.

We remark that, mathematically, there is clearly no dis
tinction between the zero-energy solutionw true

static(r ) to ~3.10!
in the region r<a and the zerosa regular solution
Y0(r /a;0) to ~2.7! so that the quantityR introduced above in
~3.8! is now seen to be identical with Kay and Studer’s sca
tering length and the Eq.~3.8! to be mathematically identical
with the fitting formula~3.15!. Note that asa0>0, one can
read off from ~3.8! that the scattering lengthR is always
bounded by the string sizea. ~This is the content of ‘‘obser-
vation 1’’ in Sec. 5.2 of@5#.!

The significance ofq, related toR by Eq. ~3.7!, is also
explained by Kay and Studer:2q2 is the eigenvalue—
with normalizable eigenstate which we callcbound

(q)

@cbound
(q) (r )5p2 1/2qK0(qr), see Eq.~2.6! of @5##—which

exists for ~minus! the self-adjoint extension of the two-
dimensional Laplacian2nR

(2) for RÞ0. If one thinks of
2nR

(2) as a possible candidate for a Schro¨dinger operator for
quantum mechanics on the cone, thencbound

(q) would have a
physical interpretation as a ‘‘bound state.’’ As is appropriat
for a bound state, this eigenvalue of minus the Laplacian
negative. Of course, since we are assuming our potentials
be non-negative, the corresponding ‘‘true two-dimension
Laplacians’’ for the true smooth string space-times consi
ered here can haveno bound states, so the bound state in th
idealized approximation is a mathematical artifact.~In the
language of@5# and@12#, it is related to small scale aspects o
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the idealized dynamics and hence not ‘‘believable.’’ Se
‘‘Pitfall 3’’ in Note 20 in @5#.!

The relevant solution forR50 is simplyw05const and
so a050. In this case,q is set by convention to zero~see
Note 4 in @5#!, and the corresponding extension2n0

(2)

~which is actually the Friedrichs extension! of ~minus! two-
dimensional cone Laplacian does not possess a bound sta

The circle of ideas may now be completed since one ma
show ~for example, by an elegant method using the Krei
resolvent formula—see Appendix A! that theexactGreen
function for the approximate Green function equation

2nRGR
~3!~x,x8!5d~3!~x,x8! ~3.16!

on the idealized string is identical with the approximate ex
pression~3.9! given earlier for the exact three-dimensiona
Green function outsider5a on the ~constantt sections of
the! true string. Moreover, as we mention in Appendix A, the
problem of the pole ats5q in ~3.9! should be resolved by a
principal part prescription.

Clearly, there will be a formula similar to~3.9! for an
idealized four-dimensional Green functionGR

(4)(x,x8) for
eachR value:

GR
~4!~x,x8!5Greg

~4!~x,x8!1
k

4p2E
0

`

s ds J0~sADt21Dz2!

3
K0~sr!K0~sr8!

ln~s/q!
, ~3.17!

which again should be understood as a principal part int
gral. As before, one may arrive at this by either of two
routes: the first by dropping all but the zero term in the sum
in ~2.15! and replacingC0 there by the approximation~3.3!,
the second by calculating directly, e.g., by the Krein reso
vent formula method of Appendix A, the Green function fo
the ideal operator]2/]t21]2/]z21nR

(2) .
We remark that, in both~3.9! and ~3.17!, the integrands

have poles ats5q related to the existence of the ‘‘bound
state’’ in 2nR

(2) that we mentioned above. In view of this
structure, and in contrast with the case of the true fou
dimensional Green functionG(4)(x,x8) of Eq. ~2.15!, we do
not expect the idealized Green functionGR

(4)(x,x8) of Eq.
~3.17! to exactly correspond under analytic continuation with
any exact two-point function for the quantum field theory in
the Lorentzian version of the idealized string space-time
some ground state@i.e., we expect the appropriate
Osterwalder-Schrader-like axioms to fail forGR

(4)(x,x8)#. In
fact, as was discussed in@5#, ~except for the caseR50), the
field algebra for the Lorentzian idealized string will not ad
mit a ground state for the time evolution corresponding t
the classical solutions to the massless Klein-Gordon equati
with the boundary conditions~3.12!. This is a physically
spurious result which has to do with the ‘‘unbelievability’’ of
the bound state, as is discussed in some detail in@5# ~see also
@12#!. In the last paragraph of Sec. 5 there, one possib
method of circumventing this problem is proposed whic
involves ‘‘projecting out’’ the ‘‘bound state contribution’’ to
the exact dynamics for the boundary condition~3.12! to ob-
tain another dynamics which approximates it on large scal
and admits a quantum ground state, but which is ‘‘nonloc
e
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on small scales.’’ It is then proposed in@5# to study the
quantity ^ŵ2& in this ground state in order to compare with
the results of@4#. In the event, we have performed such
study in the present paper~see next section! but we circum-
vent the ‘‘unbelievability problem’’ in a, at least superfi-
cially, somewhat different way to that proposed in@5#,
namely, by essentially eliminating in a rather direct wa
~which we explain in the next section! the pole in~3.17!. It
might be interesting to investigate further the relationsh
between the approach adopted here and that proposed in
final paragraph of Sec. 5 of@5#.

Next, we consider the question of determining the scatte
ing length of a given potential termV. A case of particular
interest is that of weak potentials. Fors5n50, Eq. ~2.7!
reduces to

F2
1

xP~x!

d

dx

x

P~x!

d

dx
1V~x!GC0~x;0!50. ~3.18!

For weak potentials, it follows thatY(1;0)'Y(0;0) and

]Y

]x
~1;0!'E

0

1

dx xP~x!V~x!Y~0;0!

so

R'a expS 21 YE
0

1

dx xP~x!V~x! D . ~3.19!

This is exactly Eq.~5.10! of Ref. @5# written in our current
conventions. We may rewrite Eq.~3.19! as

R'a expS 22p YkE A ~2!g d2xV~x! D . ~3.20!

It is remarkable that for the standard curvature coupling p
tential, V5jR, the integral in Eq.~3.20! is a topological
invariant given by

E A ~2!g d2x R~x!54p~121/k!, ~3.21!

and, correspondingly,

R'a expS 2
1

2j~k21! D . ~3.22!

For j51/6 and a GUT scale string,k5111026, we have

R'e23 000 000a. ~3.23!

We will show in the next section that despite such an incre
ibly small size forR, it will give rise to large relative cor-
rections to^ŵ2& and ^T̂m

n& on cosmological scales.
As a useful check, we calculateR for the ‘‘flower-pot’’

and ‘‘ball-point pen’’ models of Allen and Ottewill@4#. A
little care is required for the ‘‘flower-pot’’ model as the ‘‘in-
ner’’ mode functionC, has a first derivative which is not
continuous atr5a, as is apparent from Eq.~17! of Ref. @4#.
It is important in this case that the value ofa0 , which ap-
pears in the definition ofR, be evaluated by taking the right
derivative ofC, at r5a10. By this means, the appropriate
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a0 may be obtained from a comparison with Eq.~3.4!. For
the ‘‘flower-pot’’ model we find@9#

RF5a expS 2
1

2j~k21! D , ~3.24!

exactly. For the ‘‘ball-point pen’’ model we find

RB5a expS kPn0
~1/k!

~k221!Pn0
8 ~1/k!D , ~3.25!

wherePn0
denotes the Legendre function of the first kin

and n0(n011)[22j. For (k21)!1, this reduces to Eq.
~3.22! on noting that Pn0

(1/k)'Pn0
(1)51 and

Pn0
8 (1/k)'Pn0

8 (1)52j.

IV. VACUUM EXPECTATION VALUES

In this section we shall investigate to what extent the e
pectation values of̂ ŵ2& and ^T̂m

n& on rounded cones for
nonminimally coupled fields can be mocked up by choosi
the appropriate nonzeroR value. We start by considering th
renormalized expectation value ofŵ2. This may be defined
as @10,11#

^ŵ2~x!&5 lim
x8→x

@G~4!~x,x8!2G Euclidean
~4! ~x,x8!#, ~4.1!

whereGEuclidean
(4) (x,x8)51/@8p2s(x,x8)# is the Green func-

tion for flat four-dimensional Euclidean space.@Here,
2s(x,x8) denotes the square of the geodesic distance fr
x to x8.# By symmetry,^ŵ2& is a function only ofr . From
Eq. ~2.15!, we may write

^ŵ2&5^ŵ2& reg1
k

4p2E
0

`

s ds (
n52`

`

Cn~sa!Kkunu
2 ~sr!

5^ŵ2& reg1
k

4p2r 2E0
`

v dv (
n52`

`

CnS v ar DKkunu
2 ~v !,

~4.2!

where the first term is the renormalized vacuum expectat
value of ŵ2 on the idealized cone with regularity condition
imposed at the string@8#.

Bearing in mind the asymptotic behavior of theCn for
small argument, one might hope to approximate^ŵ2& for
r.a by neglecting the terms in Eq.~4.2! corresponding to
nÞ0 and replacingC0@v (a/r )# by its asymptotic form for
small argument given by Eq.~3.6!. This is, of course, equiva-
lent to replacingG(4)(x,x8) in ~4.1! by the approximate
Green functionGR

(4)(x,x8) of ~3.17!. Whichever of these
points of view one adopts, the correction term in Eq.~4.2!
would then be approximated by

k

4p2r 2E0
`

v dv
K0

2~v !

lnv2 ln~qr !
. ~4.3!

While one approach would be to stop at this point, interpr
ing ~4.3! as a principal part integral~cf. the discussion in
Sec. III!, we shall now argue for a simpler approximatio
d

x-

ng
e

om

ion
s

et-

n

which we have reason to expect to be no less accurate.
fact, as is clear from the discussion of Sec. III, the pole
v5qr in the integrand of~4.3! lies well beyond the range of
v(5rs) for which the approximation~3.6! has any validity.
If we return to the exactn50 term,

k

4p2r 2E0
`

v dv C0S v ar DK0
2~v !, ~4.4!

we see that the pole occurs because we are using the sm
sa asymptotic form forC0(sa) whensa52e2Ce1/a0. How-
ever, this is always greater~and generally much greater! than
1. In fact C0(sa) cannot have any singularities, as thes
would correspond to zeros inA0(sa) of ~2.13!. These may
be ruled out by recalling from Sec. III thata0 @which must
match onto the logarithmic derivative ofCn

,(r /a;sa) of
~2.13!# is necessarily positive, while the logarithmic deriva
tive of the Bessel functionK0(sr) is negative.@This absence
of zeros inA0(sa) corresponds to the absence of any boun
state in~then50 sector of! the differential operator in~2.3!
when regarded as a Schro¨dinger operator. See the end of Sec
5 of Kay and Studer@5# as discussed in the previous section#

This observation suggests that an equally satisfactory a
proximation will be given by simply replacing the integral

E
0

`

v dv
K0

2~v !

lnv2 ln~qr !
~4.5!

in ~4.3! by

2
1

lnqrE0
`

v dv K0
2~v ! ~4.6!

which, by the identity given in Appendix B, is equal to

2
1

2ln~qr !
. ~4.7!

The rationale behind this is as follows: The multiplie
vK0

2(v) in the integrand of~4.4! vanishes atv50, peaks
aroundv of order 1, and decays as exp(22v) for largev. On
the other hand,C0@v(a/r )# vanishes atv50 and grows less
slowly than exp@2v(a/r)# for large v. Thus, assuming that
C0@v(a/r )# is sufficiently well behaved, the contribution to
the integral from the ‘‘largev ’’ region @where 1/ln(v/qr) no
longer well approximatesC0@v (a/r )# and where its pole is
located# will be negligible. In addition, we are interested in
regions far from the string so that ln(qr) @which is always
greater than ln(r/a)# will be large. Thus, except whenv is
very small, where again one expects the contribution to t
integral to be small, 1/ln(v/qr) will not only well approxi-
mateC0@v(a/r )#, but also be slowly varying and, in its turn,
well approximated by21/ln(qr). The exact integrand and its
approximation are illustrated for a ‘‘flower-pot’’ model
string in Fig. 1.

In conclusion, we have the approximation
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^ŵ2&R5
k221

48p2r 2
2

k

8p2r 2ln~qr !

5
k221

48p2r 2
2

k

8p2r 2ln~2e2C r /R!
, ~4.8!

where the first term is simplŷŵ2& reg—i.e., the value one
would obtain on the assumption of an ideal string with reg
lar boundary conditions@2#. We see here directly the long-
range effect of the cosmic string structure, parametrized
the single parameterq or, equivalently,R.

While our above argument for the approximation~4.8! is
not justified by any rigorous bound, we believe it is likely t
be an excellent approximation in practice wheneverr is
much greater than the string radius. Evidence for this may
seen immediately in Fig. 2 where we plot the exact expre
sion for

C~r ![
^ŵ2&2^ŵ2& reg

^ŵ2& reg
~4.9!

for a ‘‘flower-pot’’ model with j51/6 against its approxima-
tion

CR~r !52
6k

k221

1

ln~qr !
52

6k

k221

1

ln~2e2C r /R!
~4.10!

FIG. 1. The solid curve is (2103 times! the integrand of the
exactn50 term, given by~4.4!, and the dashed curve is (2103

times! the approximate integrand, given by~4.6! including the pre-
factor, for the flower-pot model withk5100/99 andr /a5103. The
agreement between the two curves increases ask gets closer to 1 or
as r /a is increased.
u-

by

o

be
s-

usingRF as given in Eq.~3.24!. The calculation of the exact
curve was a substantial computational chore while the calc
lation of the approximation curve is clearly trivial.

To determine the importance of the correction term for
GUT string we notice that for such a string (k21)!1 so we
may make the weak potential approximation~3.22!, where-
upon ~4.8! becomes

^ŵ2&R5
k21

24p2r 2 F12
6j

2j~k21!ln~2e2Cr /a!11G , ~4.11!

from which we see that, for typical nonzero values ofj, the
correction term is of the same order of magnitude as the fir
term for all reasonable large values ofr and vanishes so
slowly asr→`, that one needs to considerr values which
massively exceed the radius of the observable Universe b
fore the correction term is significantly attenuated. For ex
ample, in the most interesting case of conformal coupling
j51/6 ~which, incidentally, is special in that, for this value
of j, the correction term almost precisely cancels the firs
term at reasonable values ofr ), one requires

r5
a

2e2C e
3/~k21!'e3 000 000 cm ~4.12!

before^ŵ2& has climbed back up to half its asymptotic value
of ^ŵ2& reg.

Given the success of the above approximation scheme f
^ŵ2&R , it is tempting to extend it tôT̂m

n&, the renormalized
vacuum expectation value of the stress tensor. Starting
keeping only then50 term in ~2.15!, we may write

FIG. 2. The solid curves are the exact relative correction
C(r /a), given by Eq.~4.9!, and the dashed curves are approximat
relative corrections, given by Eq.~4.10!, for the flower-pot model
with j51/6 and k510/9 ~upper curves! and k5100/99 ~lower
curves!.
^T̂t
t&5^T̂t

t& reg1
k

4p2E
0

`

s3dsH 2jK0
2~sr!1S 2j2

1

2DK1
2~sr!JC0~sa!, ~4.13!

^T̂r
r&5^T̂r

r& reg1
k

4p2E
0

`

s3dsH 2
1

2
K0

2~sr!2
2j

sr
K0~sr!K1~sr!1

1

2
K1

2~sr!JC0~sa!, ~4.14!

^T̂f
f&5^T̂f

f& reg1
k

4p2E
0

`

s3dsH S 2j2
1

2DK0
2~sr!1

2j

sr
K0~sr!K1~sr!1S 2j2

1

2DK1
2~sr!JC0~sa!, ~4.15!
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and, by boost invariance in thet-z plane,^T̂z
z&5^T̂t

t&. Here,
^T̂m

n& reg is the standard result for the idealized cone@2#:

^T̂m
n& reg5

k421

1440p2r 4
diag~1,1,1,23!

1
~k221!

24p2r 4 S j2
1

6Ddiag~2,2,21,3!m
n . ~4.16!

It is readily verified that these expressions satisfy the on
nontrivial conservation equation

d

dr
~r ^T̂r

r&!5^T̂f
f&. ~4.17!

We were guaranteed conservation here as the correction t
we have kept toGreg is a homogeneous solution to the wav
equation.

If we pursue the same line of argument as above then
are led to the approximation

^T̂m
n&R5^T̂m

n& reg2
k

4p2r 4ln~qr ! S j2
1

6Ddiag~2,2,21,3!m
n ,

~4.18!

where we have made frequent use of the identity given
Appendix B. In making the transition to the last expressio
we have moved away from an exact solution to the wa
equation. As a consequence it is not surprising that^T̂m

n&R
violates conservation by terms of order

1

r 4@ ln~qr !#2
. ~4.19!

Nevertheless, since we are interested in regions very far fr
the string, ln(qr) @which is always greater than ln(r/a)# will
be large so that the violation is small and^T̂m

n&R should
provide us with an acceptable approximation to the tr
stress tensor. In particular, it is reasonable to conclude t
for 0<jÞ1/6, the energy density will have long-range co
rections arising from the string structure. On the other han
in distinction to the situation for̂ ŵ2&, in the conformally
coupled case,j51/6, our correction term for the stress ten
sor vanishes.

V. SELF-FORCE

Similar techniques may be used to investigate the elect
static self-force on a point test charge outside a superc
ducting cosmic string of finite thickness@5#. Working in SI
units, the electrostatic potentialw(x) due to a point charge
Q at x0 will be

w~x!5
Q

e0
G~3!~x,x0!, ~5.1!

whereG(3)(x,x0) solves@cf. Eq. ~2.4!#

S 2n1
1

a2
V~r /a! DG~3!~x,x8!5d~3!~x,x8!. ~5.2!
ly

erm
e

we

in
n,
ve

om

ue
hat
r-
d,

-

ro-
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Here, V represents the local photon mass term suppor
inside the string radius which will be responsible for makin
the string superconducting. The detailed shape ofV will de-
pend on the particular model field theory out of which th
string is made~see@1#!, but we shall assume it to be non
negative.n represents the usual Laplace-Beltrami opera
on scalars.@This is the correct operator here even thoughw is
a component of a four-vector, because of the ultrastatic
ture of the metric~2.1!.#

The renormalized self-energyW(x0), for a pointx0 out-
side the string core, will be given by the formula

W~x0!5 lim
x→x0

Q2

2e0
@G~3!~x,x0!2GEuclidean

~3! ~x,x0!#, ~5.3!

whereGEuclidean
(3) (x,x0)51/(4pux2x0u) is the corresponding

Green function one would have in the case the string w
absent@i.e., if, in Eq. ~2.4!, V were equal to zero, andn
were the usual flat space Laplacian#. The self-forceF is then
given in terms of the self-potential by

F52¹W. ~5.4!

Using Eq.~2.16!, we obtain, from Eq.~5.3!,

W5Wreg1Wsuper, ~5.5!

where

Wsuper5
kQ2

4p2e0
E
0

`

ds (
n52`

`

Cn~sa!Kkunu
2 ~sr!, ~5.6!

and

Wreg~x0!5 lim
x→x0

Q2

2e0
@Greg

~3!~x,x0!2GEuclidean
~3! ~x,x0!#, ~5.7!

is the renormalized self-energy appropriate to the idealiz
string with regularity conditions imposed at the string. Th
latter quantity, which may be regarded as the contribution
the self-energy due to space-time curvature was first cal
lated by Smith@2# and Linet@3#. This is the only contribution
in the case of a nonsuperconducting string and in this c
there are no long-range effects of the string structure. No
combining~5.7! and ~2.21!, one easily obtains

Wreg~r !5
1

4pe0

Q2K ~k!

2r
~5.8!

with

K ~k![
1

pE0
`

dv
k coth~kv !2cothv

sinhv
. ~5.9!

As shown in@2#, for k21!1,K (k)'(k21)p/8, so that
Wreg corresponds to a~repulsive! contribution

Freg'
Q2~k21!

64e0

r̂

r 2
~5.10!
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to the self-force.
We now turn toWsuperwhich, as we shall see, turns out t

be attractive, and typically, very much larger in magnitu
thanW reg: Following a similar path to that adopted in Se
IV, if one naively approximates~5.6! by discarding all terms
in the sum other thann50, and replacingC0(sa) by its
asymptotic form~3.6!, one obtains the formula

Wsuper~r !5
Q2k

4p2e0
E
0

`

ds
K0
2~sr!

ln~s/q!

5
Q2k

4p2e0r
E
0

`

dv
K0
2~v !

lnv2 ln~qr !
. ~5.11!

@Alternatively, one may obtain~5.11! by settingDz50 and
r5r 8 in ~3.9!.# Here, we recall@see around and after Eq
~3.7!# that q52e2C/R andR is the scattering length appro
priate to Eq.~3.10! in the case whereV represents the loca
photon mass term. As explained in@5# on the basis of argu-
ments given in@1#, one expectsR to be of the order of the
string radiusa. ~It will certainly be bounded bya if, as we
have assumed,V is non-negative.! Hence,q in ~5.11! will be
of the order of 1/a. As in the discussion of Eq.~4.3!, the
formula~5.11! must be interpreted as a principal part integr
because of the pole atv5qr. However, for reasons similar
to those discussed in the case of~4.3!, we expect that a
simpler and still good approximation will be given by repla
ing Eq. ~5.11! with

WR~r !52
Q2k

4p2e0r ln~qr !E0
`

dvK0
2~v !

52
kQ2

16e0r ln~qr !
52

kQ2

16e0r ln~2e2C r /R!
,

~5.12!

where we have performed the integral with the formula
Appendix B. Note that although the integrand in Eq.~5.12!
diverges asv→0, it does so very weakly so that the integr
from 0 to e yields a contribution of ordere lne. Thus, as
before, we expect the major contribution to come from t
region wherev is order 1 andC0@v(a/r )# is well approxi-
mated by21/ln(qr).

Differentiating this expression, and ignoring a term whic
is down in magnitude by a factor 1/ln(qr) @see the discussion
following Eq. ~4.18!#, we obtain the contribution

FR~r !52
kQ2

16e0

r̂

r 2ln~qr !
52

kQ2

16e0

r̂

r 2ln~2e2C r /R!
.

~5.13!

This is attractive, and, in the case thatR;a, will be much
greater in magnitude thanFreg over a very large range ofr
values.@We remark that for GUT scale strings, wherek is
close to 1, it would be reasonable to replacek by 1 in ~5.12!
and ~5.13!.#

As a simple model, we may consider a potentialV given
by V5` for r,a andV50 for r.a. This ensures thatw
vanishes atr5a, corresponding to a perfect conducto
boundary condition. In this case one immediately finds
o
de
c.

.
-
l

al

c-

in

al

he

h

r

Cn~sa!52
I kunu~sa!

Kkunu~sa!
~5.14!

and, correspondingly,R5a. In Fig. 3 we plot the exact cor-
rection to the renormalized self-energyWsuper, given by Eq.
~5.6! and our corresponding approximationWR given by Eq.
~5.12!.

VI. CONCLUSION

There is an important distinction between the two calcu
lations that we have not yet mentioned. The deviation
^ŵ2& from its ideal value goes away if one imagines switch
ing off gravity, that is, if the deficit angle goes to zero, an
the core becomes flat. On the other hand, for the self-for
calculation, the deviation from the ideal values does not g
away if one ignores gravity. In fact, the gravitational contri
bution in this case is tiny in comparison with the effect of th
local photon mass term and hence we may ignore gravi
tional effects and take the spatial metric to be flat in th
case.

In conclusion, the calculations presented in this pap
serve to illustrate an important general point of principle
namely, the long-range effects of cosmic strings~and more
generally of ‘‘small objects’’@12#! can sometimes depend on
the details of the structure of the string core.
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APPENDIX A: THE KREIN RESOLVENT FORMULA

In this appendix, we sketch the justification of our claim
that the expression ~4.3! for the Green function
GR
(3)(x,x8)—when supplemented with a suitable ‘‘principa

part prescription’’—is the exact Green function for the ap

FIG. 3. The solid curve is the~scaled! exact self-energy
Wsuper(r )3(4pe0 /Q

2)r and the dashed curve is the~scaled! ap-
proximate self-energyWR(r )3(4pe0 /Q

2)r for perfect conductor
boundary conditions on a superconducting string withk5100/99.
The gravitational contribution to the~scaled! self-energy is given by
the straight lineWreg3(4pe0 /Q

2)r5K (100/99)/2'0.0020.
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proximate Green function equation~3.16!:

2nRGR
~3!~x,x8!5d~3!~x,x8!. ~A1!

We recall thatnR5]2/]z21nR
(2) wherenR

(2) is the self-
adjoint extension of the two-dimensional Laplacian on th
cone with deficit angle 2p(121/k) corresponding to the
boundary condition

wR
~n50!~r !;const3 ln~r /R! as r→0, ~A2!

where wR
(n50) represents then50 sector component~i.e.,

circular average! of an ~elsewhere smooth! element of the
domain ofnR

(2) . ~See@5# for a fuller discussion.!
Writing x5(z,y), wherey5(r ,f) represents a point on

the two-dimensional cone, formally, we clearly have

GR
~3!~x,x8!5

1

2pE GR
~2!~y,y8,k!eik~z2z8!dk, ~A3!

whereGR
(2) ~which will, of course, be the Fourier transform

of GR
(3) with respect toz2z8) satisfies

~2nR
~2!1k2!GR

~2!~y,y8,k!5d~2!~y,y8! ~A4!

together with the boundary conditions

GR
~2!~y,y8,k!;const3 ln~r /R! as r→0, ~A5!

for fixed y8 and all k ~on which the ‘‘constant’’ may de-
pend!. We now observe that the above conditions amount
the statement thatGR

(2) is the resolvent kernel of the self-
adjoint extension2nR

(2) of the two-dimensional cone La-
placian. We may calculate this byKrein’s resolvent formula.
~See, for example, Appendix A in@13#.!

This states~in the case of deficiency indices^1,1&) that,
given a symmetric operatorA ~on a dense domain in some
Hilbert space!, if A1 and A2 are a pair of its self-adjoint
extensions, then the difference in their resolvents is given
the formula

~A12l!212~A22l!215 f ~l!Pf~l! , ~A6!

where~a! l belongs to the resolvent set of each operator,~b!
f(l) denotes a nonzero solution to

A*w~l!5lw~l!, ~A7!

with A* the adjoint ofA, andPw(l) the projector onto the
subspace spanned byw(l), and ~c! f (l) is an appropriate
function to be fixed~see below!.

If we identifyA with 2nR
(2) andl with k2, then Eq.~A6!

is easily seen to be solved byw(l)5K0(ukur ), so we con-
clude that our resolvent kernelGR

(2) is related to the corre-
sponding kernel with regular boundary conditions by

GR
~2!~y,y8,k!5Greg

~2!~y,y8,k!1 f R~s!K0~sr!K0~sr8! ~A8!
e

to

by

for some functionf R(s), where, as before,s5uku. Now,

Greg
~2!~y,y8,k!5

k

2p (
n52`

`

einkDfI kunu~sr,!Kkunu~sr.!, ~A9!

so thatGreg
(2) satisfies

Greg
~2!~y,y8,k!;

k

2p
K0~sr8! as r→0. ~A10!

Hence, from Eq.~A8!,

GR
~2!~y,y8,k!;H k

2p
2 f R~s!lnS eCs2 r D JK0~sr8! as r→0.

~A11!

To obtain agreement with Eq.~A5!, we must take

eCs

2
expS 2

k

2p

1

f R~s! D5
1

R
, ~A12!

that is,

f R~s!5
k

2p
@ ln~s/q!#21. ~A13!

Finally, multiplying both sides of ~A8! by
(1/2p)eik(z2z8) and integrating, we obtain~3.9!. We remark
that, because of the pole inf R(s) at s5q, the integral has to
be interpreted as a principal part integral. It is not difficult t
see that, when so interpreted, the formula~3.9! does indeed
yield a Green function which satisfies~3.16!, i.e., which sat-
isfies2nGR

(3)(x,x8)5d (3)(x,x8) together with the boundary
condition

GR
~3!~x,x8,k!;const3 ln~r /R!. ~A14!

APPENDIX B: A USEFUL IDENTITY

In deriving the approximate expressions for^ŵ2& and
^T̂m

n& given in the text, we have made frequent use of th
identity

E
0

`

dv vlKm~v !Kn~v !

5
2l22

G~11l!
GS 11l1m1n

2 DGS 11l2m1n

2 D
3GS 11l1m2n

2 DGS 11l2m2n

2 D ~B1!

valid for Re(l).uRe(m)u1uRe(n)u21. This equation may
be readily derived from Eq.~6.576.4! of Gradsteyn and
Ryzhik @14#.
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