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Nonminimal coupling of the scalar field and inflation
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We study the prescriptions for the coupling constant of a scalar field to the Ricci curvature of spacetime in
specific gravity and scalar field theories. The results are applied to the most popular inflationary scenarios of
the universe; their theoretical consistency and certain observational constraints are discussed.@S0556-
2821~96!02110-8#

PACS number~s!: 98.80.Cq, 98.80.Hw
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I. INTRODUCTION

The concept of inflation has dominated the cosmology
the early universe for the past 15 years. Despite the succ
of the inflationary paradigm in resolving the problems of th
standard big-bang model and in providing a mechanism
the formation of structures in the universe, there is no un
versally accepted model for inflation: rather, many differe
inflationary scenarios have been proposed. Moreover, it h
not been possible to unambiguously identify the inflaton wi
any known field from a particle physics theory. A compar
son of the inflationary models with observations has be
made possible in recent years by the discovery of anisot
pies in the cosmic microwave background@1#. A difficulty
that is often encountered in comparing theory and obser
tions is that a specific inflationary scenario typically contain
several free parameters and anad hocchoice of their values
may render the scenario viable, sometimes at the price of fi
tuning the parameters or the initial conditions of the mod
~see, e.g., Refs.@2–4#!. In the present paper, we study th
possible prescriptions for one of the parameters appearing
many inflationary scenarios, namely, the coupling consta
j of the inflaton with the Ricci curvature of spacetime. To fi
the ideas, let us consider the Lagrangian density for Einst
gravity and a nonminimally coupled scalar field as the on
form of matter:

L5F R
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f22
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Rf2GA2g,

~1.1!

whereR denotes the Ricci curvature of spacetime,g is the
determinant of the metricgmn , ¹m is the covariant derivative
operator, andm andV(f) are, respectively, the mass and th
potential of the scalar fieldf. f obeys the Klein-Gordon
equation

hf2jRf2m2f2
dV

df
50. ~1.2!

The term2jRf2/2 in the Lagrangian density~1.1! describes
the nonminimal coupling of the fieldf to the curvature@5#.
It is well known@6,2,4# that the viability of inflationary mod-
els is deeply affected by the value of the parameterj. Al-
though a popular choice is settingj50 ~minimal coupling!
in order to simplify the calculations, this prescription forj is
5356-2821/96/53~12!/6813~9!/$10.00
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often unacceptable. In quantum field theory in curved spa
times it is argued that a nonminimal coupling is to be e
pected when the spacetime curvature is large. Nonminim
couplings are generated by quantum corrections even if t
are not present in the classical action@7#. The coupling is
actually required if the scalar field theory is to be renorma
izable in a classical gravitational background@8,9#. When the
problem of the correct value ofj is not ignored, the prevail-
ing point of view in the literature on inflation is that the
coupling constantj is a free parameter and that the values
j that are acceptable are those that,a posteriori, make a
specific inflationary scenario viable. In this paper, we sho
that this point of view is unacceptable in many cases and t
often there exist definite prescriptions for the coupling co
stant. The value ofj depends on the nature of the inflato
f and on the theory of gravity under consideration. With t
value of j known a priori, specific scenarios are analyze
and their theoretical consistency is discussed, before com
ing their predictions with the available observations.

The plan of the paper is as follows. In Sec. II we illustra
the various prescriptions for the value ofj in different theo-
ries and we study their applicability to inflation. Emphasis
given to metric theories of gravity, in particular general rel
tivity and theories formulated in the Einstein conform
frame. In Sec. III we examine the consequences of th
prescriptions for the most popular inflationary scenarios p
posed so far. Section IV contains considerations on the
fects of nonminimal coupling in power-law inflation and ob
servational constraints on a specific model. In Sec. V
provide further constraints on chaotic and new inflation. Se
tion VI contains the conclusions.

II. PRESCRIPTIONS FOR THE COUPLING CONSTANT j

The coupling constantj is often regarded as a free param
eter in inflationary scenarios. This view arises from the fa
that there is no universal prescription for the value ofj.
Indeed, some prescriptions forj do exist in specific theories,
although they are not widely known, and they depend on
nature of the scalar fieldf and on the theory of gravity. In
this section, we will review the prescriptions for the couplin
constant, before applying them to cosmology in Sec. III.

A. Quantum theories of the scalar fieldf

The available prescriptions for the coupling constantj
differ depending on whether the scalar is a fundamental fi
6813 © 1996 The American Physical Society
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6814 53VALERIO FARAONI
or is associated with a composite particle. In Ref.@10# it was
argued that, iff is a Goldstone boson in a theory with
spontaneously broken global symmetry, thenj50. It has
been pointed out that if the scalar fieldf is associated with a
composite particle, the value ofj should be fixed by the
known dynamics of its constituents@11#. In particular, in
Ref. @11#, the Nambu–Jona-Lasinio model was analyz
and, in the large-N approximation, the valuej51/6 was
found for this specific model. Reuter@12# considered the
O(N)-symmetric model with a quartic self-interaction, i
which the constituents of thef boson are scalars themselve
The resultingj depends on the coupling constants of th
elementary scalars@12#. Other arguments restrict the range
allowed values ofj; Hosotani@13# examined the back reac
tion of gravity on the stability of the scalar fieldf assuming
the Lagrangian of Einstein gravity with a general couplin
jRf2/2 and a potential

V~f!5V01
m2

2
f21

h

3!
f31

l

4!
f4. ~2.1!

He found that, for cubic self-interactions,j50 is the only
value allowed. For Higgs scalar fields in the standard mo
@14#, it must bej<0 or j>1/6. However, the results of Ref
@13# are based on the use of canonical gravity and the c
clusions may change if an alternative theory is adopted
the background gravity.

To our knowledge, no other prescriptions for the coupli
constantj are available from quantum theories of the fie
f. It is likely that every theory that provides a candidate f
the inflaton will provide a specific value, or range of value
for j. To make things worse, in a quantum theoryj is sub-
ject to renormalization, like masses, or other coupling co
stants@12,15#. It appears, therefore, that the prospects for
unambiguous determination ofj are not promising. How-
ever, this would be a pessimistic conclusion because infla
is essentially aclassical, low-energy, phenomenon. It ha
been argued that ‘‘the tensor contribution to the cosmic m
crowave background quadrupole implies that the vacuum
ergy that drives inflation is not a quantum-gravitational ph
nomenon’’ @16#. To be more specific, the potential energ
density of the scalar field 50e-folds before the end of infla-
tion is subject to the constraintV50<6310211mPl

4 @16#.
Hence gravity is classical during inflation. In many sc
narios, the inflatonf is agravitationalfield ~e.g., the field of
Brans-Dicke theory! and hence it is classical. What if th
inflaton is nongravitational in origin? The problem whether
classical treatment of the inflaton is appropriated has b
studied in a number of papers~@17–19# and references
therein!. Under certain conditions, the distribution of th
field is peaked around classical trajectories and the evolu
of the scalar field can be considered as classical. This ju
fies the use ofclassicalequations to describe inflation and
is not inconsistent with the fact that quantum fluctuations
f around its classical value provide seeds for density per
bations@18,19#. Therefore, the problem of the determinatio
of the correct value of the coupling constantj may be re-
stricted to the consideration of classical theories of grav
andof the inflatonf.
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B. Classical theories off and metric theories of gravity

According to the previous discussion, we will assume th
gravity is described by a classical theory based on a spa
time manifold and that the inflaton fieldf is classical. There
exists a prescription for the coupling constantj of a scalar
field with the Ricci curvature and for the coupling constan
with other curvature scalars that can, in principle, be consi
ered. The generalization of the flat space Klein-Gordon equ
tion to a curved spacetime includes couplings with the Ric
curvature, as well as couplings with the other scalars co
structed from the curvature tensor:

hf2m2f2~jR1a1R
21a2R

abRab1a3R
abgdRabgd

1••• !f2
dV

df

50. ~2.2!

In Ref. @20# it was proved that, under the assumptions that~i!
the scalar fieldf satisfies Eq.~2.2!, and ~ii ! the field f
satisfies the Einstein equivalence principle@~EEP!; see Ref.
@22# for a formulation#, i.e., the propagation off resembles
locally the propagation in flat space, the coupling constan
are forced to assume the values

j51/6, a15a25a35•••50. ~2.3!

This result arises from the study of wave propagation an
tails of radiation in a curved spacetime and was derived
requiring that the structure of tails of radiation become clos
and closer to that occurring in flat spacetime when th
curved manifold is progressively approximated by its tange
space~i.e., by imposing the EEP on the fieldf). Although
the requirement of Eq.~2.3! reproduces the usual case o
conformal coupling in four spacetime dimensions, the der
vation of this result is completely independent of conforma
transformations, the conformal structure of spacetime, t
particular spacetime metric, and the field equations for th
metric tensor in the particular theory@20#. The conclusions
of Ref. @20# were confirmed in Ref.@21#. If assumption~i! is
satisfied but~ii ! is not, there is, in principle, the disturbing
possibility that massive scalar particles propagate on t
light cone in a space in which the Ricci curvature is differen
from zero@20#.

A question arises naturally: can we impose the EEP on t
scalar field~inflaton! f in a particular theory of gravity~in-
flationary scenario!? The answer depends on the gravita
tional theory under consideration. If the nature of the fiel
f is gravitational ~e.g., the scalar field of Brans-Dicke
theory!, the statement that its physics resembles locally th
physics in flat spacetime goes beyond the EEP, which r
gards onlynongravitationalphysics@22#. Metric theories of
gravity @22# @including general relativity~GR!# satisfy the
EEP. Therefore, if the correct theory of gravity during infla
tion is GR, or any metric theory in which the inflaton field
f is nongravitational, then the EEP holds and the couplin
constant assumes the valuej51/6. GR is widely used in the
construction of inflationary scenarios, but it is not the onl
theory used for this purpose. Almost all the existing sce
narios of inflation employ a metric theory of gravity; how-
ever, the inflaton fieldf can have gravitational origin, like in
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53 6815NONMINIMAL COUPLING OF THE SCALAR FIELD AND INFLATION
scalar-tensor theories~of which Brans-Dicke theory is the
simplest example!. The prescriptionj51/6 clearly does not
apply to the latter case for the above-mentioned reason@23#
and also for a second reason: the fieldf in these theories
satisfies an equation more complicated than Eq.~2.2! @22#.
However, if the fieldf satisfies an equation of the kind~2.2!
and is massive (mÞ0 is assumed in many inflationary sce
narios!, any value ofj different from 1/6 leaves the possi
bility that the massivef propagates along the light cone
whenRÞ0 @20#. This argument supports the choicej51/6
for anymassive field satisfying Eq.~2.2!. However, in the
following, we will regard the prescription~2.3! as valid only
for GR and all the metric theories of gravity in which th
inflaton fieldf is nongravitational.

C. Theories formulated in the Einstein frame

A wide class of theories of gravity can be grouped in
this category. They have the common feature that the fi
formulation of the theory is made in the ‘‘Einstein frame
conformally related to the ‘‘Jordan frame,’’ in which th
theory was formulated at the start~for definitions and termi-
nology, we refer the reader to@24# and references therein!.
This class of theories includes Kaluza-Klein,R2, supergrav-
ity and string-inspired theories and many generalized sca
tensor theories. The conformal transformation to the Einst
frame has also been used as a mathematical techniqu
transform a nonminimally coupled scalar field to the~com-
putationally much easier! case of a minimally coupled field
In the literature, there is plenty of ambiguity on which co
formal frame should be regarded as physical. For some th
ries, it has been proved that the ‘‘original’’ formulation i
the Jordan frame is physically unacceptable because the
netic energy of the scalar field is negative-definite and
unique conformal transformation to the Einstein frame
singled out. In these cases, the formulation in the Einst
frame is the only acceptable possibility. The necessity~and
uniqueness! of the conformal transformation has been esta
lished for Brans-Dicke @25# and Kaluza-Klein theories
@26,27# and has been generalized to a wider class of theo
@24#. The theory in the Einstein frame is, in general, ve
different from the Jordan frame formulation. The conform
transformation to the Einstein frame~and the associated re
definition of the scalar field; see@27,24#! has the conse-
quence that the ‘‘new’’ scalar field in the Einstein frame
minimally coupled to the curvature,j50, irrespective of the
value of the coupling constant in the Jordan frame. This p
diction applies to all theories formulated in the Einste
frame, which have been used extensively to construct in
tionary cosmologies.

We remark that, according to Ref.@20#, the minimally
coupled scalar field of a theory formulated in the Einste
frame violates the EEP. Therefore, strictly speaking, t
theory is not Einstein gravity, in which the EEP~and also the
strong equivalence principle! are satisfied. This fact conflicts
with the current use of the term ‘‘Einstein gravity’’ in man
papers. The violation of the EEP in a theory formulated
the Einstein frame is not surprising, since also the we
equivalence principle is violated in these theories. In fact
a form of matter~let us say a fieldc, to fix the ideas! other
than the inflaton is included in the Jordan frame Lagrangi
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then the stress-energy tensor ofc in the Einstein frame is
nonminimally coupled to the inflaton. This causes the pre
ence of a fifth force violating the equivalence principle@27#
and a time dependence of the coupling constants of phys
which is actually regarded as an important low-energy ma
festation of string~and other! theories. When the weak
equivalence principle is violated by the conformally tran
formed fieldc, the violation of the EEP~a stronger version
of the equivalence principle! by the inflaton does not appea
to be surprising. It is to be noted that if the scalar fie
decays and disappears from the universe during the radia
era, or at an early time during the matter-dominated era@28#
~or even earlier@29#!, the violation of the equivalence prin
ciple leaves no trace in present day experiments performe
the Solar System.

III. CONSEQUENCES OF THE PRESCRIPTIONS
OF j FOR INFLATION

In this section, we apply the predictions of Sec. II to co
mology. We examine the inflationary scenarios most stud
in the literature and we answer the two following question
~i! Are any of the prescriptions examined in Sec. II for th
value of j applicable?~ii ! If the answer to question~i! is
affirmative, what are the consequences for the specific in
tionary scenario?

It is well known that the viability of a particular inflation-
ary model can depend strongly on the value of the coupl
parameterj. The following arguments have been used
argue against or in favor of specific scenarios: the existe
of inflationary solutions, the amount of inflation necessary
solve the problems of the standard big-bang model, and
fine-tuning of initial conditions for the inflaton. These con
ditions regard the unperturbed model of the universe.
fourth argument to be taken into account is the evolution
density perturbations generated during inflation.

Many results on the viability of inflationary scenario
with a nonminimally coupled scalar field are already ava
able in the literature. In these papers, the choice of the va
of j was motivateda posterioriby the viability of the infla-
tionary scenario, according to the prevailing point of vie
that seesj as a free parameter. Our point of view is radical
different from previous works: whilej was a free parameter
for the previous authors, we have the prescriptionj51/6 for
the metric theories of gravity in which the inflaton is non
gravitational. We review the results available in the literatu
from our new point of view. The scenarios analyzed in t
following are the most well studied, but do not constitute
complete list of the models proposed in the literature.

A. New inflation

The new inflationary scenario@30,31# currently is not re-
garded as a successful one because of the extreme fine tu
of parameters in the effective potential required to reprodu
the observable universe@32–34#. However, the study of new
inflation provides insight in the way nonminimal couplin
affects a slow-roll inflationary scenario. The backgroun
gravity for new inflation is assumed to be GR and the~un-
perturbed! inflaton fieldf is treated as classical and is non
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6816 53VALERIO FARAONI
gravitational. The prescriptionj51/6 applies. Abbott@6#
considered this scenario with the Coleman-Weinberg pot
tial

V~f!5Bf4F lnS f2

s2D2
1

2G1
Bs4

2
, ~3.1!

whereB is constant ands51015 GeV, and realized that, if
j.0, the termjRf2/2 in the Lagrangian density acts like a
extra term in the scalar field potential and creates a bar
that prevents the grand unified theory~GUT! phase transition
from being completed. During the slow roll of the inflaton o
the flat section of the potential, the universe behaves v
much like de Sitter space (R5 const! and the termjRf2/2
behaves like a mass term for the scalar field@35#, destroying
the flatness of the potential. This happens, in particular,
j51/6. It is to be concluded that this version of the ne
inflationary scenario is not theoretically consistent, rega
less of the fine-tuning problems.

Flat potentials different from~3.1! can also achieve new
inflation. For example, the potentials

V~f!5V02af22bf31lf4, ~3.2!

W~f!5W02af41bf6 ~3.3!

~whereV0 , W0 , a, b, andl are constants! have been em-
ployed @37,16#. The effect of nonminimal coupling appear
to be the same in this potential as in the Coleman-Weinb
potential. In general,the argument of Ref. [6] applies to al
scenarios with a slow-rollover inflationary potential: th
flatness of the potential is destroyed by the nonminimal c
pling of the inflaton.What about nonflat potentials~used,
e.g., in chaotic or power-law inflation!? In principle there is
the possibility that the termjRf2/2 in the Lagrangian den-
sity balances a suitable potentialV(f) in such a way that a
section of the resulting ‘‘effective potential’’ is almost fla
thus giving again slow-roll of the inflaton field. The energ
density and pressure of a nonminimally coupled scalar fi
are given by

r5~128pGjf2!21F ~ḟ !2

2
1V~f!16jHfḟG , ~3.4!

P5~128pGjf2!21F S 1222j D ḟ22V~f!22jff̈

24jHfḟ G . ~3.5!

It is possible to consider a suitable potential such that
equation of state approachesP52r and thus achieves in-
flation in the presence of a nonminimal coupling. A concre
example was given in Ref.@38# in the context of GR with
conformal coupling (j51/6), by assuming the equation o
stateP5(g21)r and deriving numerically~for small values
of the constantg) the necessary potential. This potential
very different from the corresponding potential derived an
lytically for j50 for the same values ofg in Ref. @39#.
Unfortunately, when the effective potentialV1jRf2/2 has a
flat section on which the inflaton rolls slowly, the complica
tion of the Friedmann and the Klein-Gordon equations p
en-
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vents us from developing an elegant slow-roll formalism in
terms of slow-roll parameters such as the one available for
minimally coupled scalar field@37#. The introduction of an
effective potential mimicking the effects of nonminimal cou-
pling does not appear to be possible, as will be shown in Se
IV.

B. Power-law inflation

For a minimally coupled scalar field, power-law inflation
@40–43# arises from an exponential potential

V~f!5V0expS 6A16p

p

f

mPl
D , ~3.6!

where p.1 is constant and the scale factor has the time
dependence

a~ t !5a0t
p. ~3.7!

It was recognized in Ref.@41# that the potential~3.6! is mo-
tivated in the context of Kaluza-Klein cosmologies. Actually,
exponential potentials arise in string theories, supergravity
and, in general, any theory that is obtained by means of
conformal transformation to the Einstein frame. As discusse
in Sec. II C, the prescriptionj50 is the only possibility in
this case. The expression ‘‘power-law inflation’’ generically
denotes a scenario in which the scale factor has the tim
dependence~3.7! rather than a realization of inflation in a
particular theory of particle physics. Most of the time, the
particular theory in which power-law inflation is considered
is not specified in the literature. We conclude that the power
law inflationary scenarios based on a theory formulated in
the Einstein frame are theoretically consistent only ifj50.
Examples are given by the class of models@44# ~representa-
tive of Kaluza-Klein cosmologies and other theories! of Ref.
@46# and by extended inflation reformulated in the Einstein
frame @47#.

C. R2 inflation

Higher derivative theories of gravity have the peculiar
feature that inflation is generated by theR2 term in the La-
grangian density for gravity and a scalar field is not neede
@48,49#, thus bypassing the problem of the value ofj. How-
ever, a scalar field is sometimes included in the scenario t
‘‘help’’ inflation ~see, e.g., Ref.@50#!. Since gravity is not
Einstein gravity, a prescription for the coupling constantj is
not available. To give an idea, we consider the propose
form of the Lagrangian density:

L5
mPl
2

16p SR1
R2

6M2D1Lnongravitational; ~3.8!

the justification for this Lagrangian density comes from su-
pergravity@51#. There is no point in imposing the EEP in the
context of supergravity: in fact it is known that already the
weak equivalence principle is violated at least inN52 and
N58 supergravity@52# even in the low-energy, weak-field
limit, with consequences testable by current experiment
~which are actually used to constrain these theories@53#!. In



ot

to
r
t
ly
w

nd

d

n

f.

he
e

e
it

ts

e

e-
f

-

tial

o is

53 6817NONMINIMAL COUPLING OF THE SCALAR FIELD AND INFLATION
any case, it appears that both isotropic and anisotropic c
mologies have inflationary solutions as attractors, irresp
tive of the value ofj @54#.

By means of a conformal transformation to the Einste
frame,R2 inflation can be recast as ‘‘standard’’ gravity wit
a minimally coupled scalar field@55#. This version of the
theory is theoretically consistent.

D. Extended and hyperextended inflation

Extended inflation in its original formulation@56# made
use of Brans-Dicke theory; the original scenario was so
abandoned due to the ‘‘big bubble problem.’’ Extended i
flation can be recast as power-law inflation after a conform
transformation to the Einstein frame, withp in Eq. ~3.7!
given byp5v/213/4 ~wherev is the Brans-Dicke param-
eter! @47#. In this formulation, the scenario is theoreticall
consistent.

A version of extended inflation in which the inflatonx is
different from the Brans-Dicke fieldf and is coupled non-
minimally to the spacetime curvature (jxÞ0) has been pro-
posed@57#. The fieldx is nongravitational and Brans-Dicke
theory is a metric theory of gravity, hence the prescripti
jx51/6 applies. However, there are two other paramet
(x0 , v), which make it difficult to draw conclusions on th
viability of this scenario, and a conformal transformation
the Einstein frame may be necessary@24#.

Hyperextended inflation@58–61# is based on scalar-tenso
theories that generalize Brans-Dicke theory. The inflaton i
gravitational scalar field that is not subject to the prescripti
j51/6. f is directly coupled to the Ricci curvature via
termRf(f), where f (f) is an arbitrary function off, and
the equation satisfied byf is different from Eq.~1.2!.

E. Induced gravity inflation

Induced gravity inflation@62# is also based on a scalar
tensor theory and the inflaton has gravitational origin. A no
minimal couplingjÞ0 has been used@63# in conjunction
with the Coleman-Weinberg potential~3.1!. Chaotic inflation
has been achieved in the context of induced gravity@64#. No
prescription forj is available in these cases. Induced grav
inflation has also been reformulated in the Einstein fram
@65#; this scenario withj50 is theoretically consistent, a
explained in Sec. II C.

F. Chaotic inflation

Several results on chaotic inflation with a nonminim
coupling are available in the literature. The chaotic inflatio
ary scenario originally introduced by Linde@66# employs GR
and the Einstein equations are generally used in papers
the subject~e.g.,@67#!.

Futamase and Maeda@2# considered this scenario with a
massive or massless scalar field, with the potential

V~f!5lf4 ~3.9!

~the same potential originally introduced by Linde@66#! and
a nonminimal coupling of the inflaton,jÞ0. They found that
if j>1023, chaotic inflation requires fine tuning in the initia
conditions for the scalar field. They concluded that ‘‘the ch
os-
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otic scenario in the nonminimally coupled model does n
work unless the coupling constantj is negative or suffi-
ciently small (j<1023). Thus, in order to know whether the
chaotic inflationary scenario does really work, one has
investigate first whether the inflaton couples minimally o
nonminimally with the spacetime curvature. If it turns ou
that the inflaton couples nonminimally classically or possib
through quantum corrections, one has to investigate ho
strong the coupling is’’@2#. It is clear from our discussion of
Sec. II B that the scenario considered by Futamase a
Maeda is theoretically consistent only ifj51/6@1023 and
hence fine tuning in the initial conditions for the scalar fiel
cannot be avoided. For the particular valuej51/6, Futamase
and Maeda gave an additional proof that chaotic inflatio
cannot be realized@2#. The nonexistence of inflationary so-
lutions for the potential~3.9! with a conformally coupled
scalar field and Einstein gravity was also pointed out in Re
@68#.

Chaotic inflation with the potential~3.9! for a nonmini-
mally coupled scalar field was considered in Ref.@3#. The
purpose of that paper was to reduce the fine tuning of t
parameterl in the potential imposed by observations of th
cosmic microwave background:l<10212. A nonminimal
coupling of the inflaton achieves this goal, but the price to b
paid is a fine tuning in the value of the coupling constant:
has to beuju.104 @3#. However, the prescriptionj51/6 to
be applied to the model rules out this possibility.

Chaotic inflation with the potential

V~f!5m2S f2

2
1

l

2n
f2nD ~3.10!

(m2,l.0) andjÞ0 was studied in Ref.@4# with a dynami-
cal systems approach. Consistently with Ref.@2#, the authors
found that, forj51/6, no trajectory in the phase space exis
that corresponds to inflation@4#.

Chaotic inflation with the Ginzburg-Landau potential

V~f!5
l

8
~f22v2!2 ~3.11!

and the Einstein Lagrangian for the pure gravity part of th
action was considered in Ref.@69#. In the casej51/6, the
authors of Ref.@69# deduced that there are no inflationary
solutions. However, their analysis was performed in the r
gimef2@v2, in which the potential reduces to the case o
the quartic self-interaction~3.9!.

Chaotic inflation can be achieved in the context of in
duced gravity@64#. No prescription forj can be given in this
case.

G. Natural inflation

In the natural inflationary scenario@70#, the inflaton is a
massless pseudo Nambu-Goldstone boson with the poten

V~f!5L4F11cosS f

f D G , ~3.12!

which exhibits two energy scales:f;mPl andL;1025f is
the scale of spontaneous symmetry breaking. This scenari
motivated by superstring theories@16# and therefore there
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seems to be little indication on what prescription forj is
correct, apart from the fact that GR is used in this scena
This would imply that inflation occurs in the low-energ
limit, in which the prescriptionj51/6 applies. Since the
analysis of the potential is difficult, two regimes are cons
ered @16#: ~i! f<mPl , V.2L4, which is extremely fine
tuned @37#, and ~ii ! f@mPl , V(c)5m2c2/2 ~where
c5f2s, s5 const!, which is equivalent to the chaotic
inflationary scenario already considered.

H. Double field inflation

Inflation with two ~or more! scalar field has been consid
ered@71–74#; in Ref. @72# the potential is

V~f,c!5
l

4
~c22M2!21

m2

2
f21

l8

2
f2c2. ~3.13!

A particular realization forc is a Peccei-Quinn field. Like in
many other papers, the theory considered isclassical, but it
is supposed to simulate the full quantum theory of the infl
ton~s! by choosing a suitable potential. Such a hybrid theo
may not be inconsistent for some values of the coupli
constant~s! of the scalar field~s! with the Ricci curvature. For
example, in Ref.@74#, Brans-Dicke theory is used and th
inflaton is an extra~other than the Brans-Dicke! scalar field
nonminimally coupled to the curvature. The coupling co
stant isj,0, uju!1. This scenario is inconsistent: in fac
Brans-Dicke theory is a metric theory of gravity and an
scalar field other than the Brans-Dicke field is nongravi
tional; therefore the EEP and the prescriptionj51/6 apply to
the inflaton in the scenario of Ref.@74#.

In the scenario of Ref.@75# the Lagrangian for Einstein
gravity and two minimally coupled scalar fields are use
The theory is supposed to be ‘‘a toy model for the sca
field sector of the string-derived supergravity theory’’@75#;
in supergravity there is no point in imposing the EEP~in
fact, the weak equivalence principle is already violated in
least some realizations of the theory@52#!, which would
guarantee the conformal coupling. We can only say that
GR, the minimal coupling for the two scalar fields of Re
@75# is not acceptable, since they must be conforma
coupled according to Ref.@20#. The same conclusion applie
to the soft inflation of Ref.@76#.

I. Anisotropic cosmologies

The occurrence of inflation has been studied also in
isotropic spaces for a nonminimally coupled inflaton fiel
Starobinski@77# showed that, forj51/6 ~and therefore in
GR!, the anisotropic shear diverges as the inflatonf ap-
proaches the critical valuefc5(3/4p)1/2mPl . This result
was recovered in Ref.@78#, in which it was also shown tha
the divergence of the anisotropic shear also occurs ifj.0
and for almost all initial conditionsf0.fc ~which do not
reproduce the present universe!. In general, the addition of
anisotropy rules out the possibility of chaotic inflation fo
j.1022 @78#.
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IV. POWER-LAW INFLATION
WITH THE POTENTIAL V„f…5lfn

In Ref. @2#, the case of a potential

V~f!5lfn, n.6 ~4.1!

andjÞ0 was considered: power-law inflation~3.7! was ob-
tained, with

p52
11~n210!j

~n24!~n26!uju
. ~4.2!

By substituting Eq.~3.7! in Eq. ~1.2!, one obtains

f̈1
3p

t
ḟ1

dV

df
1
6jp~2p21!

t2
f50, ~4.3!

which has the solution

f5f̄ta, ~4.4!

where

a5
2

22n
~4.5!

(a,0). It is to be noted that, in this particular case, it
possible to write

j

2
Rf25bV~f!, ~4.6!

where

b53jp~2p21!l21f̄22n. ~4.7!

Usually, power-law inflation is associated with an expone
tial potential for a minimally coupled field. The possibility o
obtaining power-law inflation with a power-law potential i
due to the nonminimal coupling of the inflaton to the Ric
curvature and shows the effect of nonminimal coupling
the physics of the scalar field and the dynamics of the u
verse. From Eq.~4.6!, it may appear that one could substitu
the physical system under consideration with an ‘‘equiv
lent’’ Friedmann universe dominated by a minimally couple
scalar field with the effective potential

Veff~f!5V~f!1
j

2
Rf25Lfn, ~4.8!

whereL511b. However, Eqs.~3.7!, ~4.2!, ~4.4!, and~4.5!
do not constitute a solution of the coupled Friedmann-Kle
Gordon equations forj50. To see this, it is sufficient to
consider the Friedmann equations for the ‘‘equivalent u
verse’’:

ȧ2

a2
5
8p

3
r, ~4.9!

ä

a
52

4p

3
~r13P!; ~4.10!
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these, together with Eqs.~3.4! and ~3.5! for j50 and~4.5!
and~4.8! givep}t4/(22n), which contradicts the constancy o
p. Therefore, the introduction of the effective potential~4.8!
is not useful even when Eq.~4.6! is satisfied. The conforma
technique used in Ref.@79# appears more promising.

In order to achieve inflation, it must bep.1. In the space
of parameters (n,j), the inequalityp.1 is satisfied only in
the regions

n.6, 0,j,
2

n2212n144
, ~4.11!

6,n,412A3.7.464, j,0, ~4.12!

n5412A3, j,
1

4~32A3!
.0.197, ~4.13!

n.412A3,
22

n228n14
,j,0. ~4.14!

The range of values 6<n<10 is interesting for superstring
theories@80#; only a very narrow range of values ofj is
allowed for highn. However, it must be kept in mind tha
fine-tuning arguments rule out the scenario forj.0 @2#.

V. OBSERVATIONAL CONSTRAINTS
ON THE COUPLING PARAMETER j

As discussed in the preceding section, many inflation
scenarios are not viable for certain ranges of values ofj.
Other scenarios are viable, with the parameterj spanning a
range of values, which can be constrained by the availa
observations of cosmic microwave background anisotrop

Kaiser@79# considered chaotic inflation with the potentia
V(f)5lf4 and a nonminimally coupled scalar field an
computed the spectral index of density perturbations a
function of j @81#:

ns512
32j

1116aj
, ~5.1!

wherea is the number ofe folds of the scale factor before
the end of inflation. In the following, we will use the valu
a560 adopted in Ref.@79#. This model is different from the
one given by Eqs.~3.7! and ~4.2!. The statistical analysis of
data from the Cosmic Background Explorer~COBE! experi-
ment detecting anisotropies in the cosmic microwave ba
ground givesns51.160.5 @1# and the combined statistica
analysis of the COBE and Tenerife observations yields th
s limit n>0.9 @82#. We adopt the limits

0.9<ns<1.6, ~5.2!

which, using Eq.~5.1!, yield the constraints onj:

j<21.5631023, j>29.8731024. ~5.3!

The GR predictionj51/6 impliesns50.967. However, val-
ues of j greater than;1023 lead to fine-tuning problems
@2,68,3,4#, as explained in Sec. III.
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Chaotic inflation with a nonminimally coupled scalar field
and the Ginzburg-Landau potential~3.11! was also consid-
ered in Ref.@79#. The spectral index of density perturbation
was computed in the two regimes:~a! fend

2 @v2 and ~b!
fend
2 .v2, respectively, wherefend is the value of the scalar

field at the end of inflation. Case~a! is reduced to the case,
already considered, of a quartic potential and of Eq.~5.1!.
Case~b! yields @79#

ns~j,d!512
16j~11d2!

8aj~11d2!2d2
. ~5.4!

From Eqs.~70! and ~71! of Ref. @79#, one derives

d2~j,v !52
8pGjv2

118pGjv2
, ~5.5!

whereG5mPl
22 is the present value of Newton’s constant

Althoughns was given in Ref.@79# for a range of values of
d andj, it turns out thatns depends only on the square of the
parameterv and not fromj @83#. Using Eq.~5.5!, one ob-
tains

ns~v !512
2

a1p~v/mPl!
2 . ~5.6!

The limits ~5.2! are satisfied for all values ofv, hence Eq.
~5.6! does not constrain the parameterv.

The last scenario considered in Ref.@79# is the case of a
nonminimally coupled scalar field, the Ginzburg-Landau po
tential ~3.11!, fend

2 .v2, and new inflationary initial condi-
tions, which give

ns5118j
11d2

d2
. ~5.7!

Again, the use of Eq.~5.5! reveals thatns is independent of
j and is a function ofv2 only:

ns~v !512
1

p~v/mPl!
2 . ~5.8!

The limits ~5.2! provide a constraint on the parameterv of
the Ginzburg-Landau potential:

uvu>S 10p D 1/2mPl.1.78m Pl . ~5.9!

We are not aware of other viable scenarios in which th
spectral indexns has been computed as a function of th
coupling constantj. In the last two scenarios considered in
this section, the independence ofns of j rules out the possi-
bility of determining this parameter with the data currentl
available.

VI. DISCUSSION AND CONCLUSIONS

The problem of the correct value of the coupling param
eter j in any given inflationary scenario containing scala
fields cannot be neglected if the scenario is to be theore
cally consistent. We have analyzed the inflationary scenari
which are the most studied in the literature: some of them a
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theoretically consistent, while some others are not, and
other cases the value~or range of values! of j is unknown. A
clear prescription for the value ofj emerges in GR, and it
has been shown that GR is an attractor for scalar-tensor th
ries @28,61,29#. If scalar-tensor theories approach GR durin
the matter-dominated epoch of the universe, as suggeste
Ref. @28#, these arguments are irrelevant for inflationary sc
narios. It has also been proposed that the ‘‘GR as an att
tor’’ behavior occursduring inflation @61,29#; in this case the
coupling parameterj assumes the value 1/6 before the end
inflation. The relevance of this phenomenon depends on
time during inflation at which the scalar-tensor theory a
proaches GR and is worth studying in the future.

It is also to be remarked that, if GR is the correct theo
of gravity during inflation or if the inflaton field is confor-
mally coupled to the Ricci curvature in some other theory
gravity, the universe has a peculiar feature: the cosmolog
tail problem@84# for thef field ~i.e., the backscattering off
the background curvature of spacetime! is trivially resolved
in some cases: due to the conformal flatness of the Fri
mann universe and to the conformal invariance of the Kle
Gordon equation, a massless scalar field with poten
V50 orV5lf4 ~chaotic inflation! propagates without tails.
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It should also be kept in mind that, in the inflationary
scenarios not based on GR, there is, in principle, the pos
bility ~not explored so far! that the inflaton couples nonmini-
mally to scalars constructed from the Riemann tensor a
different fromR. These couplings are not allowed in GR o
in any metric theory of gravity in which a nongravitationa
inflaton satisfies Eq.~1.2!.

Finally, we remark that it is believed that particles asso
ciated with the inflaton field may survive as dark matter i
boson stars. In this case, the correct value of the coupli
constantj in a specific inflationary scenario must also b
used in the study of the structure and stability of boson sta
both of which depend onj. Another possible application of
the prescriptions of Sec. II is the field of classical and qua
tum wormholes.
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