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We present an averaging scheme in general relativity which allows us to study the effect of local 
inhomogeneity on the global behavior of the universe. The scheme uses 3+1 splitting of spacetime 
and introduces Isaacson averaging on the spatial hypersurface to get the averaged geometry. As a 
result of the averaging, the Friedmann-Robertson-Walker (FRW) g eometry is derived in the first- 
order approximation for a wide class of inhomogeneous nonlinear matter distribution. The deviation 
from the FRW expansion is derived to the next order in terms of the anisotropic distribution of an 
effective stress-energy tensor. Using a simple model of inhomogeneity we show that the average 
effect of the inbomo~eneitv behaves like a negative spatial curvature term and thus has a tendency _ 
to extend the age of the universe. 

PACS number(s): 98.80.Hw, 98.8O.Cq 
I. INTRODUCTION 

The recent observation of the isotropy of the cosmic 
microwave background radiation [l] indicates that the 
universe is remarkably isotropic over the horizon scale if 
one interprets the observed dipole anisotropy as the re- 
sult of the peculiar motion in the Earth. Thus it is nat- 
ural to describe the large scale spatial geometry of the 
universe by a homogeneous and isotropic metric, namely, 
the Friedmann-Robertson-Walker (FRW) model. Homo- 
geneity and isotropy are two principles on which the stan- 
dard big bang model is based. However, the universe is 
neither isotropic nor homogeneous on local scales and the 
local metric may not be approximated by a FRW metric. 
It has been naively regarded that the FRW model is a 
large scale average of a locally inhomogeneous real uni- 
verse. There have been some studies which make some 
sense of such a naive expectation, where a simple spatial 
averaging is introduced to determine the averaged ex- 
pansion law of the universe [Z-4]. Although these studies 
have shown some interesting results, such as the back 
reaction of the local inhomogeneity on the global expan- 
sion [5], the averaging is not treated mathematically rig- 
orously. An attempt to make a rigorous statement for 
averaging out the Einstein equation has been proposed 
by Zalaletdinov [6,7], but the scheme has not yet proved 
useful for a realistic situation such as our universe. 

The averaging problem in general relativity in cmmo- 
logical circumstances has not only theoretical but also 
practical importance. It has been sometimes questioned 
whether the FRW model is appropriate for the study 
of the propagation of light rays in the real universe [S]. 
The smoothed out FRW metric coincides nowhere with 
the real metric on which light rays propagate. This has 
fundamental importance in observational cosmology. In 
fact there have been many studies about the effects of 
the local inhomogeneity on the distance-redshift relation 
[9-111. 

The aim of this present paper is to present a reason- 
ably rigorous and yet practical scheme for the averag- 
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ing problem in general relativity in view of the appli- 
cation for cosmology. For this purpose we employ the 
3+1 formalism of general relativity [12]. It allows us 
to project four-dimensional tensorial quantities onto the 
tensorial quantities defined on the spacelike hypersurface. 
To make the scheme practical we further simplify the 
basic equations by applying an approximation based on 
two small parameters. In the course of the approxima- 
tion, the background geometry is introduced. Then the 
Isaacson averaging [13] is performed on the background 
spatial hypersurface. 

The organization of the paper is as follows. In Sec. II, 
we shall introduce the scale factor and present the ba- 
sic equations in 3+1 formalism. In Sec. III, we shall 
introduce two small parameters to characterize the inho- 
mogeneities and present the basic equations neglecting 
higher order terms. In Sec. IV, we introduce the spa- 
tial averaging according to Isaacson. The averaged equa- 
tions and the lowest order calculation for the perturbed 
quantities will be given there. A new condition for the 
applicability of the present approximation is derived. It 
improves the condition derived in the previous study [6]. 
It also will be shown that the averaged equations are 
invariant under gauge transformations which leave the 
structure of the background. In Sec. V, we take a simple 
model of inhomogeneity to calculate explicitly its effect 
on the global expansion law and point out that its effect 
behaves as a negative curvature term. Finally we shall 
give some discussion+ 

II. THE BASIC EQUATIONS 
IN 3+1 FORMALISM 

Here we shall present the basic equations in our scheme 
using the 3+1 formalism. Let us first assume that there 
exists a congruence of timelike geodesics from which the 
spacetime looks isotropic. We shall call these ‘geodesics 
the basic observers. These may be defined as the world 
lines of the observer who sees the isotropy of the cosmic 
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microwave background. We shall take any one of these 
observers and assume that the geodesic is parametrized 
by proper time t without loss of generality, so that the 
tangent vector 1~“ is normalized, n++ = -1. This ob- 
server’s proper time will be the cosmic time and it allows 
use to foliate the spacetime by his simultaneous surfaces: 
t = const. We shall assume that the three surfaces form 
hypersufaces and define the vector field 72“ as the unit 
normal to the hypersurfaces. 

Then we define the spatial metric h,, on the surface 

by 

hp, = g,m + n,,nv. (1) 

This is the projection operator onto the spatial surface 
perpendicular to np. Then by introducing the lapse func- 

tion a = lm and the shift vector 0; = SO<, the unit 

normal vector is written as nLl = (-a, 6) and the space- 
time metric may be written as 

as2 = -2dP + ^iij(dZ” + P”&)(drj + pcit) , (2) 

where 7;j = g;j is the spatial metric of the hypersurface. 
We may define the extrinsic curvature of the hypersur- 

face by 

Kij = -n+j (3) 

where 1 means the covariant derivative with respect to 
7;j. The basic variables in the 3+1 formalism are the 
spatial metric 7ij and the extrinsic curvature K;j. The 
lapse function and the shift vectors will be freely specified 
as the coordinate conditions. The basic equations are 
then obtained by projecting the Einstein equation 

G,w + Ag,,, = 8nTfiv (4) 

onto the normal and tangential direction to the hyper- 
surface: 

Rc3) + K2 - K”jKij = 167rp~ + 211 , (5) 

Kjilj -K,; = SnJi , (‘5) 

$ij = -2aKij + L07ij I (7) 

gK$j = -al<j + o(R(~) + KKsj - 2K;kKt) 

-8m[Sij + ;7ij(p~ - S)] -cYA;~ + LpKij , 

(8) 

where 1 means the covariant derivative with respect to 

7ij, Lp is the Lie derivative along 0, R$’ is the Ricci 
curvature of the hyperwface, and 

pb = T’“ngt~ , J. = -T’“h;,n, , S, = Tw”hi,hj, I 

(9) 

Now we shall introduce the scale factor. Let us 
consider a one-parameter family of Y.(T) of timelike 
geodesics (world lines of galaxies), and let 11” be the or- 
thogonal deviation vector from 70 which is defined to be 
our basic observer. Thus 0” represents a spatial displace- 
ment from the basic observer to another galaxy. To see 
how the distance between galaxies changes, we define the 
spatial distance by 

61 = (h,,qfif)l/Z 00) 

Then the change of the distance along 7,, is calculated to 
be [ll] 

(81) = “‘(csl);, = -[$K + uijeie$5~ , (11) 

where ei = vi/H, with vi = hf,$‘, is the unit spatial 
vector and r;j is the trace-free part of the extrinsic cu- 
vature: 

Kij = c’ij + $Krij (12) 

Thus it is natural to interpret the above Eq. (11) as ex- 
pressing the cosmic expansion, and the first and second 
terms on the right hand side represent the isotropic and 
anisotropic expansion, respectively. Motivated by this 
interpretation we shall introduce the scale factor as 

K-3$, (13) 

where a = a(t) is the scale factor of the function of the 
cosmic time t. This choice of the trace of the extrinsic 
curvature corresponds to the maximal slicing condition in 
the asymptotically flat case, namely, with a = 1. Thus, 
instead of using the extrinsic curvature itself, we shall use 
the scale factor and the trace-free part of the extrinsic 
curvature as our basic variables. 

It turns out that it is convenient to use the following 
variables instead of the original variables: 

qij = a-‘yij , p” = a-Zp” , k(3) = a2R(3) (14) 

Using the above variables the basic equations may be 
written as 
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where we have defined Aa = qjalij, and a quantity 
with a caret means the trace-free part of it, for example, 
Sij = Sij - $$jTk’Sbl. It is straightforward to write 
down the equations for the conservation of the stress- 
energy tensor in terms of the above variables. We shall 
write them down after we have introduced the explicit 
form of the stress-energy tensor. 

If we assume a homogeneous and isotropic distribution 
for the matter and gravitational fields, then the above 
equations may easily be solved to obtain the usual FRW 
model. We may proceed to solve the above set of equa- 
tions perturb&i&y taking such a solution as the back- 
ground solution [14]. This is certainly a possibility. How- 
ever, such an approach may not be able to treat the sit- 
uation we are interested in here, namely, the situation 
with nonlinear matter distribution. Thus we shall take 
another approach in this paper; namely, we regard the 
expansion of the universe as generated by the coherent 
effect of the material distribution and thus the equation 
which governs the time dependence of the scale factor 
may be obtained from the above equations by a suitable 
averaging procedure. In fact, recent numerical results 
have shown that inhomogeneity in the gravitational field 
increases the rate of cosmic expansion [S]. We shall ex- 
press this fact by introducing a spatial averaging of the 
Einstein equation. Before discussing the averaging, how- 
ever, we need to introduce an approximation to simplify 
the above set of basic equations. 

III. APPROXIMATION METHOD 

We have obtained our basic equations in the previous 
section. These are regarded as scalar, vector, and tensor 
equations on the spatial hypersurface. We could define 
the spatial averaging of these equations at this stage, 
but the actual calculation may not be straightforward 
because of the lack of the background geometry. Instead 
we shall here introduce the background geometry by in- 
troducing an approximation scheme appropriate for the 
present situation, namely, a locally inhomogeneous uni- 
verse. As explained below, the introduction of the back- 
ground geometry does not imply a small density contrast. 

The approximation we are going to employ is moti- 
vated by the following consideration. It seems that the 
metric perturbation in the present universe remains small 
almost everywhere even when the density contrast is 
much larger thati unity. Thus it is natural to assume that 
the metric structure of the universe may be described by 
a small perturbation from the FRW universe in an ap- 
propriate coordinate system. 

We shall therefore introduce a small parameter e to 
characterize the order of the gravitational potential of the 
material clumps. It will be convenient to introduce an- 
other small parameter I(. to characterize the ratio between 
the horizon scale and the scale of the density fluctuation. 

The relative size of 6 and n depends on the system we 
have in mind. In this paper we are mainly interested in 
the nonlinear stage where the typical scale of the density 
fluctuation is smaller than the horizon scale. Then the 
metric fluctuation is generated by the density contrast bp 
via the Poisson equation and the density contrast hp/ps 
may be evaluated from A$/(Gpb) N c”/n”, where pb is 
the averaged density and 4 is the Newtonian potential 
generated by the density contrast. Thus the linear and 
nonlinear stages may be characteriied by the conditions 
e < n and 6 > n, respectively. We wish to describe a 
spacetime where there me fully nonlinear density fluctu- 
ations, but the metric perturbation remains small. Thus 
the condition K < E < 1 will be assumed in the following 
analysis. 

For convenience we give some examples of the typi- 
cal values of 6 and n. If we take a supercluster whose 
size is about 30h-1 Mpc, then n will be - lo-‘. The 
density contrast between the supercluster and the aver- 
aged density seems to be of the order of unity. Thus 
the gravitational potential would be ez - n2 N low4 for 
such a system. The size of the supercluster seems to be 
the boundary between the linear and nonlinear regions. 
Typical values for galaxies are e - 1O-3 and n - 10-4.5. 

According to the above discussion we shall decompose 
the lapse function and the spatial metric as 

a=l+$, (20) 

Tij = kJ]?) + iLij ) (21) 

where as stated above the quantities 4 and hij are both 
of the order of E’, and j@) is the spatial metric of the 
standard FRW geometry: 

d12 = 7,ij%,z”dzj = dr2 + r2d2Q , 
1 - kr2 (22) 

where k = *l, 0 is the normalized spatial curvature cor- 
responding to closed, open, and flat spatial sections, and 
d%2 is the standard metric on the unit two-sphere. 

Now we are able to regard tensorial quantities in our 
equations as tensors with respect to the background spa- 

tial metric TjJ?“‘. For example, the spatial Ricci tensor 

R@) may be written as 

where 

where iL; = y(B)kmi,l and AcB)iL = j(B)“ji+j. The 
subscript 11 means the covariant derivative with respect 

to the background metric y,$?‘. Thus the above quan- 
tities are second-rank tensors with respect to the back- 
ground metric. It should be remarked that the relative 
order of magnitude of the right hand side of Eq. (23) is 
1, ?K-~, e4nm2, respectively. We have ignored the third- 
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order terms in iL. 
Our approximation consists of neglecting higher order 

terms in e and n under the assumption 

IE < e < 1 (24) 

In doing so, we have to estimate the order of magnitude 
for various quantities. Since we know that deviation from 
the background metric is of the order of e2, and the time 
derivative gives another factor of e/l in the slow-motion 
situation, the evolution equation of the spatial metric 
(17) tells us the following ordering for oij and p’: 

2 
c7ij = 0 - 

0 1 
, p” = O(2) (25) 

,Thus the quadratic term in ~;j is of the order O(E~/~~) 
which may be safely ign?red in our approximation. Like- 
wise terms like hu;j, hp”, hf?,, and terms of more than 
third order in the small quantities may be neglected. 

Neglecting higher order terms we arrive at the equa- 
tions 
(27) 

(30) 
where we have defined w2 = j+?vj, and in the above 
equations the trace and trace-free parts are defined in 
terms of the background metric: for example, 

(31) 

3.. = s.. = L-!B)S 
ZJ “I 37*3 1 (32) 

In the above equations we have not yet introduced 
an explicit form for the material stress-energy tensor 
2”“. For consistency with the approximation introduced 
above, one should understand that the higher order terms 
in JQ and .5’, are ignored in the above equations. 

In the following argument it is convenient to have equa- 
tions for the trace-free part and trace part of the per- 
turbed metric and the second fundamental form g<j with 
respect to the background metric rather than the full 
metric: 

qj = $ij + g?~ , (33) 

where & = Tij?& and 5 = j$F)g<j. However, since we 
nnposed the maximal slicing condition, i.e., 

-ij 7 oij = 0 , 

it can be shown that the trace part of Q is of the order 

O(~CT) which may be neglected in our approximation and 
we may simply regard g<j as the trace-free part Bij with 
respect to the background metric. Equation (29) takes 
the form 
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IV. DERIVATION OF FRW GEOMETRY 
BY AVERAGING 

In the previous section we obtained our basic equations 
as perturbed equations around the background FRW 
model. The perturbed quantities are classified as scalar, 
vector, and tensor with respect to the background spa- 
tial geometry. Thus is would be natural to introduce the 
following averaging over the background spatial hyper- 
surface according to Isaacson [lo]: 

(Qij(z)) = Ss”‘(e,1’)s:‘(~,2’)Qk,jl(a’)f(r,1’)d’1’ , 

(36) 

where &(z, z’) is the bivector of geodesic parallel dis- 
placement and f(.z, z’) is a weighting function which falls 
smoothly to zero when 2 and +’ differ more than the av- 
eraging region, and with 
(37) 

Since our background spatial geometry is that of the 
FRW metric, there will be no problem about the global 
existence of a unique geodesic from z needed in the con- 
struction of 9;‘. 

Then the following rules derived by Isaacson apply also 
here. 

(1) Under integrals, the divergence becomes reduced 
by a factor of n. Thus we may drop the divergence and 
similar terms. 

(2) Under integrals we may “integrate by parts” if we 
ignore terms reduced by a factor of n. 

(3) Covariant derivatives commute on the perturbed 
quantities if we ignore terms reduced by a factor of 6’. 

Before taking the average, we have to specify the aver- 
aged properties of our basic variables. We shall assume 

(44 = 0 (33) 

Under this assumption,‘we obtain the averaged equations 
(40) 

(41) 

(42) 

(43) 

(44) 
The equations for the local perturbations are obtained 
from the original equations (26)-(30) by subtracting the 
above averaged equations. The above averaged equations 
take simpler forms on inspecting the local equations. 

At this stage we need an explicit form of the stress- 
energy tensor. For simplicity we shall take the dust 
model which will be a good approximation of the present 
universe. The generalization for other cases should be 
straightforward: 
T’” = pu%? , (45) 

where 2~“ may be calculated to be 

dx’ 

-?== 

1 dx’ 
a-Tic (46) 

with y = [l - a-‘yij(v” + p”)(vj + @)I-‘I”, and vi = 
dx’/dt is the coordinate velocity which is supposed to be 
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of the order of E in our approximation. The stress-energy 
tensor may also be decomposed as a scalar, vector, and 
tensor with respect to the background metric. 

Then the conservation laws for the stress-energy tensor 
up to the relevant order are 

$4 = -,$,A + ~~B’(pviA) - @ + 2) pui 

(47) 

$$<A) = -5$A + ~~)(,&v~A) - a-@$ 

(48) 

Neglecting higher order terms, the local equations ob- 
tained from (27) and (30) takes the simple form 

-g + $w + 0 
( > 
g, ; = $2[Sp + 2&d)] , 

(49)

w+fJ - $4 = 4na2[6p + 6(pqs + 2a2&)] 

where we have defined the density fluctuation as 

b-P-Pb (51) 

with (p) s pb the averaged density. 

Remembering the explicit expression for RcL), namely, 

jp) = pr ,,kl - A(B , (52) 

the following relation is obtained for the consistency be- 
tween the above two equations at the lowest order: 

7&j = -2&,;B) + 0(2,&) , (53) 

4 = 4N + O(2, Key , (54) 

where the higher order terms are the usual post- 
Newtonian terms of order e4 and the terms of order ne2 
arising from the effect of the background curvature. We 
shall not need the explicit expression for the first post- 
Newtonian term, namely, O(@), below because we are 
only interested in the lowest order nontrivial correction 
to the usual expansion law. Note that the covariant 
derivative with respect to the background metric con- 
 

tains Christoffkl symbols of order l/L. The lowest order 
term in r$ is of order e2 and is satisfied by the Poisson 
equation 

Ad = 4?ra%p , (55) 

where A is the flat Laplacian. Thus it is the usual New- 
tonian potential. The effects of the spatial curvature ap- 
pear in the next order KC’. 

This relation is then used for the calculation of @” 

and #” 
$3 and we obtain th& averaged equations 

2 
2 + ; = ;(A! + (p&v + 2a2pvZ)) + a 

8 8 
+&ahv,k) + 0 - - 

( > Ll’P ’ (56) 

ii 
- = -;(Pb + (Phv + 2a2PJ2)) + ; -&&Av,d 
a 

8 8 
+0 g’z I 

( > 
(57) 

One can show the consistency between Eqs. (56) and (57) 
by using the equations of motion (47) and (48). 

Now we shall consider the conditions for the validity of 
the above approximation. In this respect it is important 
to notice that the averaged equations above contain only 
partial derivatives, not covariant derivatives, by making 
use of the rule (2) above, namely, “integration by parts,” 

&4 

Thus the averaged quantities such as (&~,k) in the 
source terms of Eqs. (56)-(58) are of the order 0(@/1’). 
For the validity of the approximation, it is necessary 
that neglected terms of order ce/l2 and 8/Ll should be 
smaller than the terms not neglected. If one compares 
terms like ~6 = Gps - l/L2 with the neglected terms, we 
have 

8 8 
&qp 

namely, we have the following restriction for the validity 
of the above approximation method: 

2 < n (59) 

This condition improves that derived in the earlier stud- 
ies [2,3]. This was possible because of the careful defini- 
tion of the spatial averaging. 
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Finally it should be noted that these expressions agree 
exactly with the previous results in which the harmonic 
gauge is employed. Here we have used the maximal slic- 
ing condition for the lapse function. We have not spec- 
ified any particular gauge for the shift vector because 
their contributions may be negligibly small or vanish in 
the course of the averaging. In fact we could also choose 
the nonmaximal slicing condition and take the following 
form for the trace of the second fundamental form: 

K=-3 ;+fl 
(’ > 

0-W 

Then Eq. (35) becomes 

This shows that o is of the order 0($/1) as long as a = 
1 + O(E). We can also assume that the average of u 
vanishes: 

(u) = 0 (62) 

This is because the nonzero average of CJ is absorbed into 
the newly defined scale factor. Then it is easily shown 
that the terms containing s are of higher orders which 
we have ignored. The choice of a will also not modify 
the averaged equations since the terms containing 01 are 
averaged out or of sufficiently higher order. Thus the 
averaged equations up to the order we are interested in 
this paper are invariant against the following family of 
gauge transformations: 

a = 1 + O(e) , p” = O(2) (63) 

These are the transformations which leave the structure 
of the background space. 

V. AVERAGED EXPANSION OF A LOCALLY 
INHOMOGENEOUS UNIVERSE 

In this section we shall take a simple model of inhomo- 
geneity to calculate explicitly its effect on the global ex- 
pansion law. For simplicity we shall consider an Einstein- 
de Sitter background (k = 0, A = 0). In this case our av- 
eraging reduces to a simple volume averaging. We shall 
here recover the velocity of light c and the gravitational 
constant G in the equation, and moreover, work with 
the physical frame; namely, the physical velocity is taken 
as G = (l/a)z. The following analysis is essentially the 
same as that of Bildhauer ind Futamax 1151. Here we 
shall correct some mistakes in Se earlier treatment and 
include it for completeness. 

To the lowest order, the local equations for inhomoge- 
neous distributed matter are 

$+3$p++(pq=o, (64) 

(‘35) 
A$, = 4?rGa2(p -pb) (66) 

The averaged metric takes the form 

(ds’) = -c2dt2 + a”(&, + (hii))dz”dzj , (67) 

where the scale factor and (hij) are determined as 

(h;j) = 16nG li: dt’ae3 lr dt”a-’ (%j) 7 (69) 

with 

The model we chose is the Zeldovich approximate 
ansatz of pancake theory [16]. This is constructed by 
a transformation from Eulerian coordinates 9’ to La- 
grangian coordinates 2, depending on the initial con- 
ditions for the peculiar velocity G(z). Then our model 
for inhomogeneity to the lowest order may be written as 

a= F(d,t) = 2 + gti”rl(li)g(t) , (72) 

72 = $&,6(&j(t) , (73) 

+C#J= T(l + g)tini7(2) , (74) 

PGf, t) = Pb 
1 + C(2) 

det[F<,j(2, t)] ’ 
(75) 

g(t) = a(t) - 1 , (73) 

and 

(79) 

A potential for the initial velocity is given by .sin(2) and 
the initial value for the density contrast is denoted by 

bin(~). 
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with 

Then the Hubble equation (68) becomes 

Here (. .)* is the spatial average over q space. Using 
background relationships such as ti,‘= 2/[3i%(l+z@] 
and pb = c*/6vrGt2, pinhorn may be written as 

In this expression, after transformation to X space, 
the determinant cancels, and the first term is a time- 
independent number. In the second term c(y) = 

c(2, tin) = Z(<, ti.) is used to perform the Q integration. 
Thus the averages are time-independent numbers. This 
means that the scale factor dependence of the correction 
term behaves like a (negative) curvature term. Therefore 
the age of the universe gets greater thari in the exact ho- 
mogeneous model, but not more than the age of the open 
FRW model. 

If we specify the initial peculiar-velocity potential, the 
correction term may be explicitly calculated. As a simple 
example, let us take the plane-wave model 

where Cs is a sum over the different modes and d is the 
comoving length of the inhomogeneity. The normaliza- 
tion constant Z/(3&) = Ho(l +sn) is chosen so that the 
amplitude of the density contrast at the starting time ti, 
of the nonlinear stage equals 1. 

Then the correction to the averaged density pc may be 
explicitly evaluated as 

pc = $10-6(1+&#L; (64) 

M= 
4 

+;(~a? (=+ (85) 
If we take the simple example p} = {(l, O,O), 
(o,l,O), (O,O, l)}, then we have M = 2. 

VI. DISCUSSION 

We have proposed an averaging scheme in general rel- 
ativity which is mathematically well defined and prac- 
tical for application to cosmology. After decomposing 
the spacetime into 3+1 geometry and introducing an ap- 
proximation scheme, the locally inhomogeneous spatial 
section is averaged in the .sense of Isaacson. 

The resultant spacetime is the FRW model in the low- 
est order of approximation and the equati&s governing 
the averaged expansion coincide with previous studies 
by the author. Moreover, these equations are invariant 
under the gauge transformation which keeps the back- 
ground structure fixed. We have also improved the con- 
dition for the approximation to be valid. The new con- 
dition (59) appears to be satisfied almost everywhere in 
the present universe. We have shown that the effect of 
local inhomogeneity behaves like a negative curvature in 
a simple situation. Thus, even if the averaged space has 
zero spatial curvature, the age of such an inhomogeneous 
universe is greater than that of the spatially flat FRW 
universe, but less than that of the open FRW universe. 
Further study is necessary to gain some insight into the 
age problem since the age estimation suffers from various 
biasing effects. 

It would be interesting to use the present formalism to 
see the effects of local inhomogeneity on the ‘isotropy of 
the cosmic background radiation. A preliminary study 
has been done using a simple model of the inhomogene- 
ity and an induced anisotropy is used to impose an upper 
limit on the redshift when the density contrast gets into 
the nonlinear stage [17]. A similar analysis should be 
done using a more realistic analytical model of the inho- 
mogeneity [18]. 

Since the present approximation makes use of the 3+1 
formulation of general relativity which is used in numer- 
ical study of the Einstein equation, our approximation 
may be examined by the numerical analysis developed in 
this framework. 
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