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It is likely that the observed large-angular-scale anisotropies in the microwave background radiation are
induced by cosmological perturbations of quantum-mechanical origin. Such perturbations are now placed in
squeezed vacuum quantum states and, hence, are characterized by large variances of their amplitude. The
statistical properties of the anisotropies should reflect the underlying statistics of the squeezed vacuum quan-
tum states. The theoretical variances for the temperature angular correlation function are derived and described
guantitatively. It is shown that they are indeed large and must be present in observational data if the anisotro-
pies are truly caused by perturbations of quantum-mechanical origin. Unfortunately, these large theoretical
statistical uncertainties will make the extraction of cosmological information from the measured anisotropies a
much more difficult problem than we wanted it to p80556-282196)01312-4

PACS numbe(s): 98.70.Vc, 04.30.Nk, 42.50.Dv, 98.80.Cq

[. INTRODUCTION the era of primordial nucleosynthesis to the Planck era; a lot
of things could have happened in between.
The line of reasoning in this paper is as follows. The law of evolution of the very early Universe is not

We see the anisotropies in the microwave background raknown, but it is likely that it could have been significantly
diation at the largest angular scald3. Observers convinc- different from the law of expansion of the radiation-
ingly argue that this is a genuine cosmological effect. dominated Universe. If so, some amount of cosmological

If the large-angular-scale anisotropy in the microwaveP€riurbations must have been generated quantum mechani-
background is really produced by cosmological perturbation§ally. as a result of parametric interaction of the quantized
(density perturbations, rotational perturbations, gravitationaPerturbations with strong variable gravitational field of the
waves, then their today’s wavelengths are of the order ofVery early Universe. Gravitational waves have been gener-

and longer than today’s Hubble radils. Strictly speaking, _ated inevitably, \{vhlle density and rotational p_erturbatlons
. o ; if we were lucky; se¢2] and references thereifif the cos-
all wavelengths give contributions to the anisotropy at every ;
mological scale factor has always been the one of the

given angular_ scale. But if the spectrum of .the perturt?atiOn?‘adiation—dominated Universe, we must stop here, because
is not excessively “red” or "blue,” the dominant contribu- o 3 ametric coupling vanishes in this case, and cosmologi-
tion is provided by wavelengths indicated above. For in-.o neryrhations cannot be amplified classically and cannot
stance, the major contribution to the quadrupole anisotropy igq generated quantum mechanicalljhe amount and spec-
provided by wavelengths somewnhat longer than trum of the generated perturbations depend on the law of
In the expanding Universe, the wavelengths of perturbagyolution of the very early Universghe strength and vari-
tions increase in proportion to the cosmological scale factorapility of the gravitational pump fiekd and this is how we
The wavelengths that are longer than some length scale t@an learn about what was going on there. In particular, the
day have always been longer than that scale in the pasaw of evolution of the very early Universe could have been
Moreover, the wavelengths of the perturbations of our interof inflationary type.
est are much longer than the Hubble radius defined at the If the cosmological perturbations were generated guantum
previous times, when one goes back in time up to the era ahechanically, they should now be placed in the squeezed
primordial nucleosynthesis — the earliest era of which wevacuum quantum stat¢8] (for an introduction to squeezed
have observational data. It is hard to imagif@though it states see, for example, Ref4,5] and the pioneering works
does not seem to be logically impossibthat cosmological quoted there Squeezing of cosmological perturbations
perturbations of our interest, with such long wavelengthsmight have degraded by now at short wavelengths but should
could have been generated by local physical processes dwurvive at long wavelengths, especially in the case of gravi-
ing the interval of time between the era of primordial nucleo-tational waves.
synthesis and now. We are bound to conclude that these Now, the squeezed vacuum quantum states can only be
perturbations were generated in the very early Universe, besqueezed in the variances of phase which unavoidably means
fore the era of primordial nucleosynthesis. There is still 80increased variances in amplitude. The statistical properties of
orders of magnitude, in terms of energy density, to go fromthe squeezed vacuum quantum states are significantly differ-
ent from the statistical properties of the “most classical”
guantum states — coherent states. This is well illustrated by
“Electronic address: grishchu@howdy.wustl.edu,the fact that the variance of the number of quanta in a
grishchuk@astro.cf.ac.uk strongly squeezed vacuum quantum state is much larger than
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the variance of the number of quanta in the coherent state Il. THE GENERAL EQUATIONS FOR QUANTIZED
with the same mean number of quaritd), (N)>1. For a COSMOLOGICAL PERTURBATIONS

squeezed vacuum st_ate the var|ance{M§)—<N>2=2<_N)_ Here, we will briefly summarize some basic information
X(§N>+1)2><N> while for a coherent state it is 4p4ut quantized cosmological perturbatiaisee[2,6] and
(N%)—(N)*=(N). In cosmology, the mean numbg) is &  references therejn The squeezed field operator derived in
characteristic of the expected mean square amplitude of cogjs section is a basic mathematical construction for our fur-
mological perturbations, while the varian@d?)—(N)?is a  ther discussion of statistical properties.

characteristic of statistical uncertainties in the amplitude. The metric of the homogeneous isotropic universe can be
These two characteristics are independent properties of gritten in the form

guantum state or a stochastic process. Theoretical models

may agree on(N) and disagree on variance or agree on ds?=—a¥( n)(dnz—yijdxidxj), (1)
variance and disagree @i).

The statistical properties of squeezed cosmological perturv‘vhereyr is the spatial metric. For reasons of simplicity, we
bations will inevitably be reflected in statistical properties of || pe ]considering only spatially flat universes, that is
the microwave background anisotropies caused by the =5
Squeezing is a phase-sensitive phenomenon, and to fully ex-"Following Lifshitz, it is convenient to write the perturbed
tract its properties the quantum optics experimenters use th@etric in the form
phase-sensitive detecting techniques based on a local oscil-
lator. In cosmology, we are very far from being able to build ds?=—a?(p)[dn?—(8;+h;)dx'dx], 2
a local oscillator, except maybe, in the distant future, for

short gravitational waves. In addition, in our study of the_wherehij are functions ofy time and spatial coordinates. By
microwave background anisotropies, we are interested Qriting the perturbed metric in this form we do not lose
such long-wavelength perturbations that it would take bil-gnything in the physical content of the problem, but we gain
lions of years to wait for seeing the time-dependent oscillazonsiderably in the mathematical tractability of the perturbed
tions of variances in the quadrature components of the pelinstein equations. While searching for solutions, it is cer-
turbation field. On the other hand, the amount oftainly preferable to work with a simpler form of equations. If
cosmological squeezing is enormously greater than what igne prefers the “gauge-invariant formalisms,” one is wel-
achieved in quantum optics laboratory experiments. In coseome to take the found solution and compute with its help
mology, we can only rely on the phase-insensitive, directwhichever gauge-invariant quantity one likes. These quanti-
detection. One can expect that the underlying large variancees, being gauge invariant, have the same values in all
of the amplitude of cosmological perturbations should resulgauges.

in large statistical deviations from the mean values for the The component$;; of the perturbed gravitational field

microwave anisotropies. can be classified in terms of scalar, vector, and tensor eigen-
A detailed study and proof of this statement is the purposéunctions of the Laplace differential operator. The compo-
of this paper. nents of the perturbed energy-momentum tensor can also be

At this point it is necessary to comment on the possibleclassified in the same manner. After that, the linearized Ein-
numerical values ofN) (and, hence, of the amplitudéor  stein equations reduce to a set of ordinary differential equa-
cosmological perturbations of different nature which can betions, separately for scalédensity perturbationsvector(ro-
generated quantum mechanically in one and the same cotational perturbations and tensor(gravitational waves
mological model. A consistent quantum theory provides usparts.
of course, with both, the mean value Mfand its variance. The number of independent unknown functions of time
According to the calculations of R€i2], the contribution of that can potentially be presefdn grounds of the classifica-
guantum-mechanically generated gravitational waves to theéon schemg in the perturbed Einstein equations is always
large-angular-scale anisotropy is somewhat gre@een in  greater than the number of independent equations. It is six
the limit of the de Sitter expansipithan the contribution of functions and four equations for density perturbations, three
guantum-mechanically generated density perturbations. It iunctions and two equations for rotational perturbations, and
argued in[6,7,30 that the “standard” inflationary formula two functions and one equation for gravitational waves. In
for density perturbations, which requires in this limit an ar-order to make the system of equations closed, it is necessary
bitrarily large excess of density perturbations over gravitato say something about the perturbed components of the
tional waves, is based on errors. However, in this paper, wenergy-momentum tensor or to specify from the very begin-
will not discuss any longer the relative contributions toning the form of the energy-momentum tensor. The popular
STIT supplied by cosmological perturbations of different na-choices are perfect fluids and scalar fields. Even for gravita-
ture (density perturbations, rotational perturbations, or gravitional waves, it is not a totally trivial question what their
tational waves Instead, we will concentrate on their statis- definition is(see, for example, Ref8]). However, after ev-
tical properties which are determined by their commonerything is being set, and as soon as the scale fa{tg)
origin — quantum mechanics and the phenomenon ofthe background solutigris known, the general solution to
squeezing. These properies are related to the variande of the perturbed equations can be found. In practice, exact so-
rather than to its mean value. Our discussion will be equalijutions are being found piecewise, at the intervals of evolu-
well applicable to the perturbations of any nature if theytion where the energy-momentum tensor has simple pre-
have the same origin. scribed forms.
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We can now write the quantum-mechanical operator for Under the simplest assumptions about gravitational waves
the perturbations of the gravitational fidig in the universal  (waves interact only with the background gravitational field,
form there is no anisotropic material souriébe Hamiltonian for

each polarization component takes on the form

_ C 1 ” 3 : S 1 S in-x
hi =acm mf_md ”521 Pij(”)J—z—n[Cn( 7)€ H=nclca+nc’ c_n+20(mclct +20* (m)cac s,
sT | (6)
+cn(me ™. () where the coupling function(7) is o(7)= (i/2)(a'/a) .

For rotational perturbations, assuming that the primeval
s matter is capable of supporting torque oscillations, assuming
tion tensorsp;;. Let us introduce, in addition to the unit that the oscillations are minimally coupled to gravity, and
wave-vectom/n, two more unit vectors;, m;, orthogonal assuming that the torsional velocity of sound is equal to the
to each other and to: velocity of light, the Hamiltonian for each polarization com-
ponent reduces to exactly the same foi@h with the same

We will start the explanation of E¢3) from the polariza-

n . - L coupling functiona( 7).
n (sinfcosp,sinfsing, cosd), 1= (sing, - cosp,0), For density perturbations, we consider specifically a mini-
mally coupled scalar field with arbitrary scalar field potential
m, = = (cos#cosp,coFsing, — sind), (4 as a model for matter in the very early Universe, and perfect
fluids at the later eras. The quantization is based orsthe
+ for 6<m/2,— for 6> /2. lar polarization componerthe function of time responsible

The two independent polarization tensosss 1,2, for  for another polarization state is not independefthere is

each class of perturbations, can be written as follows. Fopnly one independent sort of creation and annihilation opera-
gravitational waves, o s st )
tors in this case. The operatary( ), ¢,(7) are expressible

in terms of the operatord,( 7), d;ﬂ(n) for which the Hamil-
tonian has again the same forf@ but with the coupling
For rotational perturbations, function () = (i/2)(a\'y)'/a\y, where

1 2
pij (M =(lilj—mm;),  py;(n)=(I;m;+1;m;).

1 1 2 1 — N — k.
pij(N) =R (linj+1ny),  pij(n) = 5 (min;+m;n;). y=1+(ala’)'=—HIH*

andH is the Hubble parameter. For density perturbations, it
is the operatorsl,(7), d(#) that participate in Eqg5) and
1 2 2 ninj 1 (6) i .
pij(M=\3d;, pij(n)=- \/374— — & - Now, let us turn to the constaf in Eq. (3). Its value is
V3 determined by the normalization of the field of each class to
o . ... the “half of the quantum in each mode.” Under the assump-
The polarization tensors of each class satisfy the cond|t|ont°rons listed above, one deriv&= \16xl o for gravitational
S S’__ S S 1 ] P .
pij P! =285, Pij(—n)=p;;(n). In practical handling of the waves, C=327l Pl for rotatl_onal pertur_banons, and
density perturbations it proves convenient to use sometime é:gtﬁ zllwl_m(fGo;i(/jg%Sl,gy perturbations, whelg, s the Planck
1 W p1= .
in addition to thescalar polarization componenp;;, the The form of the Hamiltoniar{6) dictates the form of the
Iongitudinai—longitudinal component(proportional ton;n;)  solution (Bogoliubov transformationto Eq. (5):

instead ofp;;. The explicit functional dependence of the

For density perturbations,

_ t
polarization tensors is needed for the calculation of various Cnl(17) =Un(7)Cn(0) +vn(7m)C,(0),
angular correlation functions.

The ?volution of the creation and annihilation operators cﬁ( 7;)=u’,§(77)C§(0)+v:(77)c_n(0), )
S

S
cn(7m), cn(n), for each class of perturbations and for each

polarization state, is defined by the Heisenberg equations (yyhere €n(0), €,(0) are the |r_1|t|al yalues of the_ operators
taken long before the interaction with the pump field became

motion: important[ o(7%)/n— 0] and which define the vacuum state
dea(7) dcl(7) cy(0)[0)=0. The complex functionsi,(7), va(7) obey

g =—i[cn(7n),H], q = —i[cl(n),H]. coupled first-order differential equations following from Eq.
K K g (5 and satisfy the conditiofu,|?—|v,|2=1 which guaran-

®) tees that the commutator relationship

The dynamical content of the problem is determined by thd Ca(0).ch(0)]=6%(n—m) is satisfied at all times,
HamiltonianH. Its form depends on the class of perturba-[C(7%).Ch(7)1=8°(n—m). If one introduces the function
tions and additional assumptions about the energymn(7)=U,(7)+v}(75), one recovers from the equations for
momentum tensor which we have to make, as was discusseti(7), v,(#%) the classical equations of motion. For gravita-
above. tional waves,
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” 2 a” s s/t
Mot | N7 — | 10 =0. ®) (0]cn(0) € 1 (0)]0) = 85g 3(n—n"),
For rotational perturbations, one can derive the formula
2 ”n C2 o0 2 S
” t ij — 2
Mnt nzp—g un=0, 9 <0|hij(77,X)h”(77,X)|0>—ﬁfo n;l [hn(27)|%dn.

(12
where v, is the torsional velocity of sound which we as-

sumed above to be. For the scalar field density perturba- Equation(12) shows that the variance is independent of the

tions, spatial pointx but does depend on time.
The expression under the integral in formulas such as Eq.
Y ) (a\/§)” (12) is usually called the power spectrufim this case, it is
Mt | M7= avy un=0. (100 the power spectrum of the quantity;h')):

2 2 s

If the pump field is such that the function is independent of P(n)= ﬁ”; h, ()2

time, Eq.(10) reduces to exactly the same form as (B).for
gravitational waves.

In the Schrdinger picture, the initial vacuum quantum In cosmology, it is common to use the power spectrum de-
state|0,,) |0_,) evolves into a two-mode squeezed vacuumfined in terms of the logarithmic frequency interval, that is
quantum state. In our problem, each of the two-modghe function
squeezed vacuum quantum states is a product of two identi-
cal one-mode squeezed vacuum quantum states which corre-
spond to the decomposition of the real figlg over real
spatial harmonics sim-x and cos-x. In the Heisenberg pic-
ture, the initial vacuum quantum state does not evolve iZ from Zeldovich. We are mostly interested in the power
time and is the same now. spectrum of cosmological perturbations in the present Uni-

By using Eq.(7) one can present the fie(@) in the form  verse, at the matter-dominated stage. This spectrum is never
smooth as a function of frequen@yave numbern. Squeez-
ing of the phase variances and the associated standing wave
pattern of the field make the spectrum an oscillating function
of n for each moment of time. In their turn, the oscillations
in the power spectrum will produce oscillations in the distri-

(13

2 2 s

C
Po(n)=52n2, [ha(n)[? (14

1 ” 3 : > 1 > in~xS
hij(ﬂyx)zcmf_wd ngl pij(n)ﬁ[hn(ﬂ)e Cn(0)

* \

+ (e e (0)], (11)

*

where the functionsh(7)=[ 1/a(»)][Un(7)+ v 1(7)].

bution of the higher-order multipoles of the angular correla-
tion function for the temperature anisotropies. However, the
spectrum is smooth for sufficiently long waves. At a given

For gravitational waves and rotational perturbations, themoment of time, this applies to all perturbations whose
wavelengths are of the order of and longer than the Hubble

functionsh,, are simplyh,= x,/a whereu,, are solutions to  "adius defined at that time. Moreover, the smooth part of the
Egs.(8) and(9) with appropriate initial conditions. For den- SPectrum is power-law dependent anif the scale factor
S a(#) of the very early Universé&he pump fieldl was power-
sity perturbations, the functiorfs, are derivable from solu- law dependent om time. o
tions to Eq.(10) in accord with the relationship between Let us assume that the scale factor at the initial stage of
and d operators. In addition, for density perturbations, we€Xpansion was
T

1 2 1 2

should regarc,(0)=c,(0), c,(0)=c,(0) in Eq.(11). In

all cases, for a given cosmological model, that is for a model o

in which the scale factoa() is known from the very early Wherelo andg are constants. If the evolution is governed by
s a scalar field, the Einstein equations require the congtdat

times and up to now, the functiots, can be found from the be B=<—2. The values=—2 corresponds to the de Sitter

classical equations of motion with appropriate initial condi-€Xxpansion. At later times, the scale factor changed to the

tions. laws of the radiation-dominated and matter-dominated uni-

It follows from Eq. (11) that the mean quantum- . s

mechanical value of the field; is zero at every spatial point Verses. From solutions fd,(z) traced up to the matter-

and at every moment of tim&0|h;;|0)=0. One can also dominated stage, one can find

calculate variances of the field, that is the expectation values

of its quadratic combinations. One useful quantityhjgh".

By manipulating with the product of two expressiofidl),

using the summation properties of the polarization tensors,

and remembering that the only nonvanishing correlationt is convenient to introduce theharacteristic amplitude

function is h(n) of the metric perturbations defining this amplitude as

S S S S

a(n)=lo|n|**, (15

s 2

2

1 |
> Iha(m]?~ 50?2 and Py(n)~ 5 n?#+2),
s=1 1o 1§
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the standard deviatiofsquare root of variangeof the per- linear (not quadratigin the creation and annihilation opera-
turbed gravitational field per logarithmic frequency interval.tors. The analogue of Eq7) would read
In the long-wavelength limit under discussion, this quantity A
is universally expressetboth, for gravitational waves and c(n)=e """ (0)+ a,(7),
for density perturbationsby the formula[20] .

| ci(m)=e""ci(0)+aj (7), (18)

Pl

h(n)~ Enmz- (16 \where the complex functioa,( ) is determined by the cou-

pling function in the Hamiltonian. On the position — mo-
Note that the functional form df(n) is the same for gravi- mentum diagram, the evolutiofi8) of the field operators
tational waves and density perturbations, the difference is i§orresponds talisplacingthe vacuum state withowsiqueez-
the numerical coefficientomitted in this discussionwhich ~ ing whereas the evolutiofi7) corresponds tequeezinghe
is somewhat in favor of gravitational wavé®,6]. The nu-  vacuum state withoulisplacing In terminology of mechan-

merical level ofh(n) is mainly controlled by the constant I€S, coherent states are produced by a force acting on the
oscillator whereas squeezed vacuum states are produced by a

The spectra of other quantities can be found in the sam@arametric influence. In coherent states, the mean value of
manner. For instance, in case of density perturbations, on@€ field is not zero. The correlation functiotet least, for
can derive the spectrum of perturbations in the matter densityo™e quantitiéswould also be different from the squeezed
Splp. Since the relationship betweein/p and the metric State case. In cosmological context, this would eventually be
perturbations involves the facton )2 and, hence, involves reflected in the differing statistical properties of perturbations

two extra powers oh, (8p/p) (n)~nh(n), one finds and induced microwave background anisotropies.
' ' The calculations of the next section are based in an essen-

Sp Sp o dn tial way on the field operatofl1) for the squeezed vacuum
<0_7 0> Nf Pﬁ(n)F,

lo.

perturbations.

p 0

Pl (12712) m2(B+4)
wherePz(n)~(Ip/lg)n and IIl. QUANTUM-MECHANICAL EXPECTATION VALUES

s | FOR THE MICROWAVE BACKGROUND
o]
Fm)w I_P'nﬁ+4. 17) ANISOTROPIES
0 The microwave background anisotropies are a subject of

It follows from Eq. (16) thath(n) is independent of if ~ Intense study21]. _ _
B=—2. This independence corresponds to the original Zel- In absence of cosmological perturbations, the temperature
dovich’s definition of the “flat” spectrum: all waves enter of the microwave background radiation seen in all directions
the Hubble radius with the same amplitude. If the gravita-On the sky would be the sarffe Let us denote a direction on
tional field perturbationsh(n), regardless of their wave- 1€ SKy by a unit vectoe. The presence of cosmological

length, have equal amplitudes upon entering the Hubble rdgferturbations makes the temperature seen in the direetion
dius, the matter density perturbationp(p) (n) do also differing from T. The temperature perturbation produced by
have equal amplituddghe extra factorif7)? is of the order density perturbations or gravitational waves can be described

of 1 at the time when a given wawe enters the Hubble PY the formula[10]

radiug. For models of the very early Universe governed by a

scalar field, the spectral indg&+ 2 in Eq.(16) can never be ﬂ(e)= lfwlﬂeiejdw (19
positive. T 2Jo dn '

Formula(16) and the associated formu(a7) should be o
compared with the “standard” inflationary formula which wheredh;; /97 is taken along the integration pakh=e'w,
requires that the amplitudes of density perturbations taken ap= »g—w, from the event of receptiow=0 to the event of
the time of entering the Hubble radius should go to infinity inemissionw=w; = ng— 7. The formula for rotational per-
the limit of the de Sitter inflation3— — 2. It should also be turbations is more complicated th&h9) [10], and we will
noted that a “disgusting convention(the term is borrowed leave rotational perturbations aside.

from Ref.[9]) is often being used according to which one ) ) ) oT
and the same Harrison-Zeldovich spectrum is described by FOr quantized cosmological perturbations, the(e) be-

the SpeCtral indeXlt=O for gra.Vitational waves and by the comes a quantum_mechanica| Operator_ Using (Eq) we
spectral indexns=1 for density perturbations. Of course, can write this operator as

there is no need in this convention. In both cases, the metric
perturbations with the Harrison-Zeldovich spectrum are de- ST c 1 2

. . W1 ® s -
scribed by the same spectral indeero, see Eq(16). —(e)== _l_f dwf dn>, pii(nee
We will finish this section with a short discussion of co- T 2 (2m)* o =
herent states. There is no natural mechanism for the genera- . s g e
tion of cosmological perturbations in coherent states, but if X[Cn(0)F,(W)E™™ et ¢ (0) f (w)e ]

there were one it would be reflected in many parts of the
theory. The interaction part of the Hamiltoni&) would be (20
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where The next step is the formidable task of taking the integrals
over angular variables in three-dimensional wave-vector
space. However, it can be dofigee Ref[11] for gravita-
s 1 d; tional waves, Ref[12] for rotationa] perturbatio_ns, and Ref.
S(w)=— _n ) [2] for density perturbations The final expression reduces,
Van dm| without making any additional assumptions whatsoever, to
TR the form

Having defined the observableST/T)(e) and knowing
the quantum stat¢0) we can compute various quantum- ~
mechanical expectation values. In the laboratory quantum K(er,&)=K(8)=13 > KP(cos). (23
mechanics, the verification of theoretical predictions ex- =min
pressed in terms of the expectation values would require ex- . .
periments on many identical systems. An immediate gene>ri—Ne see that the corre_lathn function depend; only on the
alization of this principle to cosmology would require angle § between the directions, &, not directions them-

speculations about outcomes of experiments performed iﬁe“’e_s'_ The coeff|C|er1ﬁ| ',S taken fromC ','othe.r numerical
“many identical universes.” Without having access to coefficients are included i, . The quantitie¥, involve the

“many universes” we can only rely on the meéexpected ) s -
values of the observables and on the probability distributiodntegration off ,(w) over the parameter and the remaining

functions as indicators of what is likely or not to be observedntegration over the wave numbens The numerical values
in our own single Universe. We will return to this point in ©f Ki depend on a chosen sort of cosmological perturbations

Sec. IV. and a chosen cosmological model; so far, the fornt28 is
The expected value of the temperature perturbation to biPtally generalP (coss) are the Legendre polynomials. The
observed in every fixed direction on the sky is zero: lowest multipolel ,;, follows automatically from the theory

and it turns out to be, not surprisingly,,=0 for density
perturbationsl ;=2 for gravitational wavegandl ,;,=1 for

0 ﬂ )10} =0 rotational perturbationsFor the separation anglé=0, Eq.
T (e - (23) reduces to the variance ofT/T (€), that is

One particular measured temperature map is the result of the ST oT %
measurement performed over one particular realization of the <0‘ —(e)—(e) O> =K(0)=13, K,. (24)
random process describing cosmological perturbations of T T 1=1min

guantum-mechanical origin. For this realization, the tem-

perature perturbations may, should, and in fact are, present. Formula(23) gives the expected value of the observable
Many measurements will not hel@xcept reducing the in- (5T/T)(e)(5T/T)(e,). If the experimenter measured this
strumental noisgsn the sense that they all should give iden- observable in “many universes” and averaged the measured
tical results, because the time scale of the perturbations undsumbers, he/she would get the res(#8). Moreover, for-
discussion is so enormously larger than an interval of timemula (23) says that if the experimenter made the measure-
between the experiments. If the Cosmic Background Eximents at any other pair of directions, but with the same sepa-
plorer (COBE) map is correct, we will have to live with this ration angled, he/she would again get, after the averaging
map practically forever. over “many universes,” the same resyft3). Without hav-

Let us now compute the expected angular correlatioring access to “many universes,” we can ask what is the
function for the temperature perturbations seen in two giveriheoretical standard deviation of the quantityT(T)(e,)
directions on the skyg, ande,. This correlation function is  X(8T/T)(e,). [In practice, for derivingK(5) we need a
defined as the mean value for the product&TAT)(e,) and  kind of ergodic hypothesis allowing us to replace the aver-

(6TIT)(e): aging over “universes” by the averaging over pixels on a
single map|] The varianceV(g;,e,) of this quantity is, by
definition,

ST 6T
K(el,e2)=<0‘7(e1)7(ez)0>- (21)

ST 6T 6T 6T
V(el,ez)=<0’7(61)7(@)7(%)7(%)

d

By manipulating with the product of two expressiof&0)
one can derive the formula

2
. (25

oT oT
0 ?(61)7(92) 0

The standard deviation is the square root of this number.
The calculation ofV(e;,e,) requires us to deal with the
2 s s . s s product of four expression?0). However, the mean values
X >, (pij(n)ehel) (pij(n)esed) fo(w) f o(w). of the products of four creation and annihilation operators
s=1 are easy to handle. One can show &, ,e,) depends only
(22 on the separation angk& and

K(e e)=EC2 ! “aw| aw]| denen ew-em
=24 (2m)3), 0 e
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ST ST 2 plex spherical harmonic¥,,( 4, ¢) [14]:
V<e1,e2>=vw)=[<0’?<el>?<e2>‘0>}
|

oT OC
2 _— = * *
+ o”, 26) FO=2 2 [anYim(®+alYi(@] (30

oT oT
0 ?(e)?(e)

We want to formulate a statistical hypothesis about the co-
efficientsa,,,, so it is better to write them first in terms of
real (r) and imaginary ) components:

that is

V(8)=K?(8)+K?0). (27

ST ST alm:alrm+ia:m' aikm:alrm_ia:mi
The standard deviation for the observabite(el)7(e2) is

Ylm:YIrm+iY:mv I*m:YIrm_iY:m!
a(8)=[V(8)]"?=VK?(5) +K*(0). (28)

©
In a similar fashion one can derive the higher-order correla- —(e=2> > [a.Y (e—a Y (e]. (31
tion functions for two direction®;, e, and the correlation T 1=0 m=—1

functions for larger number of directions, but we will not - I .
need this information. Our statistical hypothesis is as follows} all members of

4

In the limit 5=0, Egs.(25) and (26) say that the set of random variablds! . ,al .} are statistically inde-
2
by the probability density functiofPDF for individual vari-

pendent(ii) each individual variable is normally distributed
0 or 0)=3({0 il
< (®© = < (©
ables,

5 and has a zero meatfiii) all variables with the same index
OH (29) | have the same standard deviatign All said is expressed

The familiar factor 3 relating the fourth-order moment with

the square of the second-order momegitven that the first-

order moment is equal to zeris the reflection of the under- f(al )= 1 o (%20}
lying Gaussian nature of the squeezed vacuum wave func- Im V2o '

tions associated with the Hamiltoni#®).

By examining Eq.(28) one can conclude that for each
separation anglé the standard deviation of the angular cor- f(a‘ )= 1 o @ )220
relation function is very big. Even at those separation angles Im \/ﬁm '
at whichK( ) vanishes, the standard deviation is as big as
the variance for §T/T) (€) itself. However, the value of the and by the PDF for the entire set of variables, which is sim-
standard deviation for a given variable is not very informa-ply a product of all PDF’s for all individual variables,
tive per se as long as the probability density function for this
variable is not known. If the probability density function roai 1y — r [
(PDPF) were normal, we could say that the probability to find F({@im aimb) = mf (@im) f(3im)- 33
a result outside of & interval is 32%. Without knowing the Having postulated the PDF’s, we can now compute the
PDF we could resort to the Chebyshev inequality, but itexpectation values of certain functions of the random vari-
would only tell us that this probability is less than 1. To get gples. Below, the angular brackets will denote the expecta-

more information about possible deviation of the angularjon values calculated with the help of the PL83), unless
correlation function from its mean values we will consider in gther definition is stated.

expectation values calculated above and will allow us to con-
struct the PDF for the variablesT/T) (e;) (8T/T) (&,). On

(32

ro\ _ i\
the other hand, the quantum-mechanical calculations of Sec. (am)=0, (ajm)=0. (34)
[l will shed light on the classical model. As is known, or quadratic combinations we have
“*quantum mechanics helps us understand classical mechaﬁ- q
ics,” see on this subject a paper by Zeldovich signed by the )
r r —
pseudonym Paradoksd¥3]. <a|1mla|2m2>— 7, 01,1, 0m,my:
i i _ 2
IV. CLASSICAL MODEL FOR THE STATISTICS OF THE (@1, m,@1,m,) = 01, 911, Oy,
MICROWAVE BACKGROUND ANISOTROPIES
A distribution of the microwave background temperature <alr1m1a:2m2>:o!
over the sky is a real function of the angular coordinates.
Assuming thatST/T is a sufficiently smooth function on a <ai al =0 (35
sphere, one can expand it over the set of orthonormal com- 11my Fom, .
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All triple products have zero means. Among quartic combi- ST ST 17
nations, only those can survive which have four indices <?(e1)?(e2)>=—2 a|2(2I+1)P|(c055). 41
(r), or four indices {), or two indices ¢) and two indices mi=0

i). Two representative expressions are . . :
() P P If the separation anglé is zero, we obtain

r r r r _ 2 2
<allmlalzmzalgm3al4m4> = 0'|10'|35I 1I25m1m25I3I45m3m4 < 5-'-( ) 5T( > 1 i 2| . w2
+UI2 U|225I | 5mlm35I2I45m2m4 TI=0
+(r| 0,25, | 6m1m45|2|35m2m3, [One may notice that the mean value of the random variable

a? defined as’==! __ amal, is (a?)=2(21+1)0?, that
is the same expression which enters &{). This may sug-
gest an interpretation of the quantiig’) — (a?)? as the vari-
ance of the multipole moments. One should be careful with
37) this interpretation, see Appendjx.

We can also find the fourth-order expectation values. The

Other quartic combinations can be obtained by the replaceQ.rodUCt of four expression@0) in conjunction with Eq(38)
ment ()« (i) in Egs.(36) and (37) [or by permutation of gives
pairs (m) in case of Eq(37)]. The higher-order correlations
can be derived in a similar way, but we will not need them. 2

In our further calculations related to the random variables <7(e1) (92) (el) (& )> - <7(e1)?(e2)>
(6TIT)(e) and (ST/T)(e)(STIT)(ey) it is easier to deal

(36)

<allmlalzm2al3m3al4m4> O'I 0'|35I I 5m1m26I3I45m3m4-

with the complex coefficients,,,, so we will first translate _joT 6T 2 or T 2 43
the above relationships to them. By using the available in- (&) (&) (& =(© (43)
formation one can derive
If 6=0, it follows from Eq.(43) that
— 2
(am)=0, (ay,mal m,) =207 ,1,0mmy JRE st 12,2
[Fef)sllFef].

<allm1aI2m2al > 40'Ilo'l (6 ! 5m1m35I2I45m2m4

m. m
s Up to the difference in the meaning of the angular brack-
ets, the formulag39), (43), and (44) reproduce the analo-
+61,1,6mm, 00,1 ,0m,m,) - gous results of the previous section. Moreover, from com-
(38 parison of Eqs(23) and(24) with Egs.(41) and(42) we can
relate the quantitiek, , derivable from a given cosmological
The mean values of the complex conjugated quantities arsmodel plus perturbations, with the abstract quantities
given by the same formuld88). Other nonvanishing quartic We can now engage in our major enterprise — the con-
combinations can be obtained from the one in B88) by the  struction of the PDF for the random variable=(S5T/T)
permutation of pairsim). X(€)(STIT)(&). We will start from the PDF for the ran-
Now, even before deriving the PDF’s for the random vari-dom variablez=(8T/T)(€). When it is necessary to distin-
ables @¢T/T)(e) and (6T/T)(e)(6T/T)(ey), we can find guish directions,; ande,, we will use the notationg; and
some expectation values. It is clear from the definitidf)  z,. _
and Eq.(38) that The variablez is a function of the variable$a], ,a;n}
whose PDF’s are known, Eq$31) and (32). There exist
regular methodgsee, for example, an excellent bofls])
oT ; ! . :
<—(e)> (399  allowing one to derive rigorously the PDF of a function.
However, in our case where the function is linear and all
PDF's are normal, we can partially rely on a guesswork.
When calculating the angular correlation function one shouldCombining formulas and guessing, we can write
remember that

1 2 2
| l f(z)= e ¥l203, (45)
3 Yim(e)Yin(e) ="~ “hcos) (40 V2ma,

where
(note the origin of the factorl2-1 which will accompany us
often). By taking the product of two expressioi30) and o
using Eqs(38) and(40) one can find the angular correlation 02:£2 o221 +1) (46)
function 2 mish '
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The PDF(45) certainly leads to Eqs(39), (42) and (44). and one obtains a similar expression f¢e,). Second, one
Moreover, it allows us to say that the probability to fiad can check that
outside of Ir, interval is approximately 32%:

(B)y=07, (By=07, (2z)=po?,

where the angular brackets mean the integration with the

We now introduce two variableg; andz,, and ask about PDF (47). These equalities are Eqgl2) and(41) which we
the PDF in the two-dimensional spacs, (z,). Again, par- Must have obtained.
tially relying on a guesswork, we find that Finally, we shall derive the PDF for the variable
v=12,Z,. We will do this in some detail following the pre-
scriptions of{15].

P(|z|>0,)~0.32.

1 1 : . .
f(zy.2,)= expl — 22472 Let us introduce the two new variables, (v) instead of
(21,22 2ol 1—p? p[ 202(1—;02)[ 12 (z4,2,) according to the transformation
— v
2p2122]} ' (47) 2,=124, Zzzz—_
1
where The Jacobian of this transformation &= 1/z;. The PDF

f(v) is the result of the integration

l o
poi=_2 (A+1)o{P(cosd), |pl<1. (49

o) 1 = 1 1 2, v?
O 2102 2ﬁmz_ex T 202199 |7 2
[See Eq.(5.11.) in Ref.[15]]. First, we can check that the 2mazN1=p 1zl (1207 !
marginal distributions are correct. Fbfz;), one obtains
—2pv le.
o 1
f(zl)zf f(z,,2,)dz,= e 720} The integral overz; can be taken with the help of 3.471.9
— V2mo, from [16]. The resulting PDF can be written in the form
2 2 1%
e m—— UL ] 4 (—) for v=>0,
mo2\1-p? o o2(1—p?)
f(v)= (49

ot epv"’i(l"’z)K()(—z—_U ) for v<0
770'3\/1—p2 o5(1-p?)

where K, is the modified Bessel function of its argument We already knew that the standard deviation is big. We now
[17]. see again thadrvzaﬁ at the separation angles at which the
The functionf(v) is quite complicated, and the distribu- angular correlation function vanishess=0, ando,= \/Eo'g

tion is obviously not normal. The functioi{v) goes to zero  at zero separation anglp=1. For other separation angles,

for v— = and diverges logarithmically at the point=0. ¢  lies between these two numbers.

Even a verification of the normalization condition Now, that we know the PDF, we can assign probabilities
to the different ranges of the variahle For instance, we can
calculate the probability that the measuredavill be found,

J"” f(o)do=1 (50) say, outside of thao, interval_ surrounding the mean vque
—w of v, where\ is an arbitrary fixed number. The probability
of our interest is

is not trivial. However, with the help of 6.621.3, 9.131.1,

9.121.7, 1.624.9, and 1.623.2 fror6] one can prove the _ 2o+
validity of Eq. (50). P(lv=(u)[>\oy)= | * f(v)dv
The mean value and the standard deviation of the variable
v are known, see Eq$41) and(43): f *
+ f(v)dv. 52
a'g(p+)\\p2+l) (v) v ( )

<U>:PU§' Uv:[<02>_<v>2]1/2: U%VP2+1- B To get a qualitative estimate of the associated theoretical
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uncertainties for the observablg we will ask a slightly  region should be approximately 60@K)? near the points
different question. What should the numbebe in order to  where the correlation function vanishes and approximately
have the 0.32 chance of finding outside theh o, interval 840 (uK)? near the point marking the zero separation angle.
and, hence, the 0.68 chance to find it inside the interval? The conclusion is a bit disappointing. Apparently, the mi-

To evaluate the size of the disaster, we will start from thecrowave background anisotropies tell us something impor-
casep=0. In this case, the PDH9) is symmetric with re-  tant about the very early Universe, but ttieannel of infor-
spect to the origin =0 (this is why(v) is zero in this case  mation is so noisy that it will be hard to understand the
and message.
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under theKy(x) function is accumulated when integrating

from approximatelyx=1/2 and up to infinity. This means APPENDIX
that\ should approximately be equal to 1/2 . ] C ]
If p#0 the evaluation of is more complicated. Fop The set of random variablefy, &} defined by Egs.

#0, the function(49) is not symmetric with respect to the (32) and (33) lives its own independent life regardiess of
origin v=0. It has larger values at positivés if p>0 (this  Whether or not the variables are considered random coeffi-
is why (v)>0 in this casgand it has larger values at nega- Cl€Nts in the expansion of some function over spherical har-
tive v’s if p<<O (this is why(v)<0 in this casg The graph Monics. Being such, it allows introduction of new functions
of the functione*Ko(x) plotted in Fig. 9.8 in Ref[17] is anq calcglatlop of their expectation values. One interesting
helpful. A qualitative analysis shows again thais approxi-  variable is defined by the equation
mately equal to 1/2(More accurate estimates can, of course,
be reached by numerical methods. !

At any rate, the3 o, interval gives approximately the af= > A =
same probability estimates as if the distributi@®) were m=-1
normal.

| |
2 laml*= 2 [(@im)?+(@m)?].
(A1)

By using Eq.(38) one can calculate the expectation value of
V. CONCLUSIONS a’:

A particular cosmological model plus perturbations give ) )
unambiguous predictions with regard to the expectation val- (af)=(21+1)207. (A2)
ues of the measurable quantities. Differing models give dif- _
ferent predictions. We want to distinguish them observation h€ factor 2(2+ 1) reflects the number of independent “de-
ally and to learn about physics of the very early Universedrees of freedom” associated with the indein the repre-
However, the quantum-mechanical origin of the cosmologiSentation(30). One can also introduce the varialeg and
cal perturbations is reflected in the theoretical statistical uncalculate its expectation value:
certainties surrounding the expectation values. One impor-
tant measurable quantity is the angular correlation function 2(1+1)
of the microwave background anisotropies. Its mean value at (afy=(21+1)(1+1)80=(a})? I
the zero separation angle was denoté'din this paper. It
was shown that the standard deviation for the correlatiorrpg difference(a’) —(a?)? is, by definition, the variance of
funcnon is very b|9. Ihe 68% conflde.nce level correspondsy,o variableaf. From Egs.(A3) and (A2) one finds
approximately, to; o; at the separation angles where the
correlation function vanishes, tcx/é/Z)oﬁ at the zero sepa-

(A3)

1

{iaotrl]ognZTg;e, and to intermediate numbers for other separa- (aﬁ)—(a,z)2=2| +1(a|2>2. (A4)
The angular correlation function has actually been mea- . )
sured. It is presented in Fig. 3 in the pap#8]. The authors This formula, as it stands, expresses a well-known fact:

surround the measured points by a narrow shaded regidhe variance of the random variatyé defined as the sum of
which they address as follows: “The shaded region is thesquares ofi independent random variablegegrees of free-
68% confidence region ... including cosmic variance andlom with the same normal density, is/2 times smaller
instrument noise.” It is not quite clear what the authors ofthan the square of the mean valueysf[15]. There is noth-
Ref. [18] (see also Ref{19]) mean by “cosmic variance,” ing “cosmological” or “inflationary” in this fact. Knowing
but if they mean the theoretical statistical uncertainties fothe PDF's for the sefa,,aj,,} one can calculate the higher-
the correlation function variable, these uncertainties are order correlation functions for the variakéé and its distri-
significantly larger than what is plotted. According to the bution function[22-2§. In the recent literature, formula
calculations presented above, the half width of the shadet®A4) became known as the “cosmic variance.” Formula
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(A4) and a possibilityor lack off to extract complete infor-  Using (A3) and (A5) and remembering tha? anda’, are
mation about a stochastic process from its single realizatiostatistically independent fdr#1’, one can find the expecta-
are, in general, different issues. For ergodic processes, th@n value of the quantityA7):
existence of a definitely true relationshifs4) prevents in no
way the extraction of complete information about the procesy §T
from a single realizatiofi29]. ? (91) (e ) (91) (e2)>
It is important to realize that it is the mean value of the
random variablea?, and nota? itself, that enters the ex- 1=
pected angular correlation function in front of the Legendre = 4—2 (a))[P)(coss)]?
polynomials and which is often called the multipole moment. -

The a? is a random variable and its variance has meaning, 1 * ,
the (a?) is a number and its variance has no meaning. Spe- + 1.2 > (a,z)(al,>P|(cosé)P|,(co§)
cifically, one can notice that the angular correlation function LIT=0l=I'

(41) can be written in the form 2

2, (af)Py(cos)

LS 1
B 4_17220 (@[ P(cosd)]?+ —

<ﬂ<e>ﬂ<e2>>—i§ (a®)P(cosd).  (A5)
T 27 T 2<a>2[P<cos6>]2

On this ground, there may be a temptation to write the ran-

dom variable §T/T) (&) (8T/T) (&) in the form oT oT 2150
1 2 —<_(e1) ( )> mlgo m<a|2>2[P,(0055)]2.
oT oT 1
T () (e)=5-2 aPi(cow)  (A6) (A8)

It follows from (A8) that the variance of the variable

and to interpret Eq(A4) as the variance for the multipole (8T/T) (e)(8T/T) (&) would read[if (A6) were correck

moments of the correlation function. One should resist to this 1"

temptation. il 21+ 1) TP 2 A
Let us show that the definitiofA6) is incorrect despite WZZB ( JoiLPi(cosp)J". (A9)

the fact that it gives correct expectation val(ib). It fol- ] ] ) ]
lows from the definition(A6) that This expression should be compared with the correct vari-

ance following from Eq(43):
2

oT oT oT oT 1]z 2 *
T (@) (&) (&) (&) 72| & I DetPicod) | + 5| X (21 +1)of
L - (A10)
= mz af‘[P|(c035)]2 Formulas(A9) and (A10) disagree even fo6=0, and even
1=0 in their firstl =0 term. This shows that thed hocdefinition
1 o (AB) is incorrect. The correct definition of the random vari-
+—-— > a|2P|(c055)a|2,P,,(cos5)_ (A7) able (6T/T) (e)(ST/T) (&) is the one following from the
4T 1 25141 definition (30) and which we have used in this paper.
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