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Statistics of the microwave background anisotropies caused
by squeezed cosmological perturbations
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It is likely that the observed large-angular-scale anisotropies in the microwave background radiation
induced by cosmological perturbations of quantum-mechanical origin. Such perturbations are now place
squeezed vacuum quantum states and, hence, are characterized by large variances of their amplitude
statistical properties of the anisotropies should reflect the underlying statistics of the squeezed vacuum q
tum states. The theoretical variances for the temperature angular correlation function are derived and desc
quantitatively. It is shown that they are indeed large and must be present in observational data if the aniso
pies are truly caused by perturbations of quantum-mechanical origin. Unfortunately, these large theoret
statistical uncertainties will make the extraction of cosmological information from the measured anisotropie
much more difficult problem than we wanted it to be.@S0556-2821~96!01312-4#

PACS number~s!: 98.70.Vc, 04.30.Nk, 42.50.Dv, 98.80.Cq
lot

t

-
al
ani-
d
e
er-

he
use
gi-
ot

of

he
n

m
ed

s
uld
vi-

be
ans
of
fer-
’’
by
a
han
I. INTRODUCTION

The line of reasoning in this paper is as follows.
We see the anisotropies in the microwave background

diation at the largest angular scales@1#. Observers convinc-
ingly argue that this is a genuine cosmological effect.

If the large-angular-scale anisotropy in the microwav
background is really produced by cosmological perturbatio
~density perturbations, rotational perturbations, gravitation
waves!, then their today’s wavelengths are of the order
and longer than today’s Hubble radiusl H . Strictly speaking,
all wavelengths give contributions to the anisotropy at eve
given angular scale. But if the spectrum of the perturbatio
is not excessively ‘‘red’’ or ‘‘blue,’’ the dominant contribu-
tion is provided by wavelengths indicated above. For i
stance, the major contribution to the quadrupole anisotropy
provided by wavelengths somewhat longer thanl H .

In the expanding Universe, the wavelengths of perturb
tions increase in proportion to the cosmological scale fact
The wavelengths that are longer than some length scale
day have always been longer than that scale in the p
Moreover, the wavelengths of the perturbations of our inte
est are much longer than the Hubble radius defined at
previous times, when one goes back in time up to the era
primordial nucleosynthesis — the earliest era of which w
have observational data. It is hard to imagine~although it
does not seem to be logically impossible! that cosmological
perturbations of our interest, with such long wavelength
could have been generated by local physical processes
ing the interval of time between the era of primordial nucle
synthesis and now. We are bound to conclude that th
perturbations were generated in the very early Universe,
fore the era of primordial nucleosynthesis. There is still 8
orders of magnitude, in terms of energy density, to go fro
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the era of primordial nucleosynthesis to the Planck era; a
of things could have happened in between.

The law of evolution of the very early Universe is no
known, but it is likely that it could have been significantly
different from the law of expansion of the radiation
dominated Universe. If so, some amount of cosmologic
perturbations must have been generated quantum mech
cally, as a result of parametric interaction of the quantize
perturbations with strong variable gravitational field of th
very early Universe. Gravitational waves have been gen
ated inevitably, while density and rotational perturbations —
if we were lucky; see@2# and references therein.~If the cos-
mological scale factor has always been the one of t
radiation-dominated Universe, we must stop here, beca
the parametric coupling vanishes in this case, and cosmolo
cal perturbations cannot be amplified classically and cann
be generated quantum mechanically.! The amount and spec-
trum of the generated perturbations depend on the law
evolution of the very early Universe~the strength and vari-
ability of the gravitational pump field!, and this is how we
can learn about what was going on there. In particular, t
law of evolution of the very early Universe could have bee
of inflationary type.

If the cosmological perturbations were generated quantu
mechanically, they should now be placed in the squeez
vacuum quantum states@3# ~for an introduction to squeezed
states see, for example, Refs.@4,5# and the pioneering works
quoted there!. Squeezing of cosmological perturbation
might have degraded by now at short wavelengths but sho
survive at long wavelengths, especially in the case of gra
tational waves.

Now, the squeezed vacuum quantum states can only
squeezed in the variances of phase which unavoidably me
increased variances in amplitude. The statistical properties
the squeezed vacuum quantum states are significantly dif
ent from the statistical properties of the ‘‘most classical
quantum states — coherent states. This is well illustrated
the fact that the variance of the number of quanta in
strongly squeezed vacuum quantum state is much larger t

u,
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53 6785STATISTICS OF THE MICROWAVE BACKGROUND . . .
the variance of the number of quanta in the coherent s
with the same mean number of quanta^N&, ^N&@1. For a
squeezed vacuum state the variance is^N2&2^N&252^N&
3(^N&11)@^N& while for a coherent state it is
^N2&2^N&25^N&. In cosmology, the mean number^N& is a
characteristic of the expected mean square amplitude of
mological perturbations, while the variance^N2&2^N&2 is a
characteristic of statistical uncertainties in the amplitud
These two characteristics are independent properties
quantum state or a stochastic process. Theoretical mo
may agree on̂ N& and disagree on variance or agree
variance and disagree on^N&.

The statistical properties of squeezed cosmological per
bations will inevitably be reflected in statistical properties
the microwave background anisotropies caused by th
Squeezing is a phase-sensitive phenomenon, and to fully
tract its properties the quantum optics experimenters use
phase-sensitive detecting techniques based on a local o
lator. In cosmology, we are very far from being able to bu
a local oscillator, except maybe, in the distant future,
short gravitational waves. In addition, in our study of th
microwave background anisotropies, we are interested
such long-wavelength perturbations that it would take b
lions of years to wait for seeing the time-dependent osci
tions of variances in the quadrature components of the p
turbation field. On the other hand, the amount
cosmological squeezing is enormously greater than wha
achieved in quantum optics laboratory experiments. In c
mology, we can only rely on the phase-insensitive, dir
detection. One can expect that the underlying large varian
of the amplitude of cosmological perturbations should res
in large statistical deviations from the mean values for
microwave anisotropies.

A detailed study and proof of this statement is the purpo
of this paper.

At this point it is necessary to comment on the possi
numerical values of̂N& ~and, hence, of the amplitude! for
cosmological perturbations of different nature which can
generated quantum mechanically in one and the same
mological model. A consistent quantum theory provides
of course, with both, the mean value ofN and its variance.
According to the calculations of Ref.@2#, the contribution of
quantum-mechanically generated gravitational waves to
large-angular-scale anisotropy is somewhat greater~even in
the limit of the de Sitter expansion! than the contribution of
quantum-mechanically generated density perturbations.
argued in@6,7,30# that the ‘‘standard’’ inflationary formula
for density perturbations, which requires in this limit an a
bitrarily large excess of density perturbations over gravi
tional waves, is based on errors. However, in this paper,
will not discuss any longer the relative contributions
dT/T supplied by cosmological perturbations of different n
ture ~density perturbations, rotational perturbations, or gra
tational waves!. Instead, we will concentrate on their stati
tical properties which are determined by their comm
origin — quantum mechanics and the phenomenon
squeezing. These properies are related to the varianceN
rather than to its mean value. Our discussion will be equa
well applicable to the perturbations of any nature if th
have the same origin.
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II. THE GENERAL EQUATIONS FOR QUANTIZED
COSMOLOGICAL PERTURBATIONS

Here, we will briefly summarize some basic informatio
about quantized cosmological perturbations~see @2,6# and
references therein!. The squeezed field operator derived
this section is a basic mathematical construction for our f
ther discussion of statistical properties.

The metric of the homogeneous isotropic universe can
written in the form

ds252a2~h!~dh22g i j dx
idxj !, ~1!

whereg i j is the spatial metric. For reasons of simplicity, w
will be considering only spatially flat universes, that
g i j5d i j .

Following Lifshitz, it is convenient to write the perturbe
metric in the form

ds252a2~h!@dh22~d i j1hi j !dx
idxj #, ~2!

wherehi j are functions ofh time and spatial coordinates. B
writing the perturbed metric in this form we do not los
anything in the physical content of the problem, but we ga
considerably in the mathematical tractability of the perturb
Einstein equations. While searching for solutions, it is c
tainly preferable to work with a simpler form of equations.
one prefers the ‘‘gauge-invariant formalisms,’’ one is we
come to take the found solution and compute with its he
whichever gauge-invariant quantity one likes. These qua
ties, being gauge invariant, have the same values in
gauges.

The componentshi j of the perturbed gravitational field
can be classified in terms of scalar, vector, and tensor eig
functions of the Laplace differential operator. The comp
nents of the perturbed energy-momentum tensor can als
classified in the same manner. After that, the linearized E
stein equations reduce to a set of ordinary differential eq
tions, separately for scalar~density perturbations!, vector~ro-
tational perturbations!, and tensor ~gravitational waves!
parts.

The number of independent unknown functions of tim
that can potentially be present~on grounds of the classifica
tion scheme! in the perturbed Einstein equations is alwa
greater than the number of independent equations. It is
functions and four equations for density perturbations, th
functions and two equations for rotational perturbations, a
two functions and one equation for gravitational waves.
order to make the system of equations closed, it is neces
to say something about the perturbed components of
energy-momentum tensor or to specify from the very beg
ning the form of the energy-momentum tensor. The popu
choices are perfect fluids and scalar fields. Even for grav
tional waves, it is not a totally trivial question what the
definition is ~see, for example, Ref.@8#!. However, after ev-
erything is being set, and as soon as the scale factora(h)
~the background solution! is known, the general solution to
the perturbed equations can be found. In practice, exact
lutions are being found piecewise, at the intervals of evo
tion where the energy-momentum tensor has simple p
scribed forms.
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We can now write the quantum-mechanical operator
the perturbations of the gravitational fieldhi j in the universal
form

hi j5
C

a~h!

1

~2p!3/2
E

2`

`

d3n(
s51

2

p
s

i j ~n!
1

A2n
@c
s

n~h!ein–x

1 c
s†

n~h!e2 in–x#. ~3!

We will start the explanation of Eq.~3! from the polariza-

tion tensorsp
s

i j . Let us introduce, in addition to the un
wave-vectorn/n, two more unit vectorsl i , mi , orthogonal
to each other and ton:

ni
n

5~sinucosf,sinusinf,cosu!, l i5~sinf,2cosf,0!,

mi56~cosucosf,cosusinf,2sinu!, ~4!

1 for u,p/2 ,2 for u.p/2 .
The two independent polarization tensors,s51,2, for

each class of perturbations, can be written as follows.
gravitational waves,

p
1

i j ~n!5~ l i l j2mimj !, p
2

i j ~n!5~ l imj1 l jmi !.

For rotational perturbations,

p
1

i j ~n!5
1
n ~ l inj1 l jni !, p

2

i j ~n!5
1
n ~minj1mjni !.

For density perturbations,

p
1

i j ~n!5A2
3d i j , p

2

i j ~n!52A3
ninj
n2

1
1

A3
d i j .

The polarization tensors of each class satisfy the conditi

p
s

i j p
s8
i j52dss8, p

s

i j (2n)5p
s

i j (n). In practical handling of the

density perturbations it proves convenient to use sometim

in addition to thescalar polarization componentp
1

i j , the
longitudinal-longitudinalcomponent~proportional toninj )

instead ofp
2

i j . The explicit functional dependence of th
polarization tensors is needed for the calculation of vario
angular correlation functions.

The evolution of the creation and annihilation operato

c
s

n(h), c
s†

n(h), for each class of perturbations and for ea
polarization state, is defined by the Heisenberg equation
motion:

dcn~h!

dh
52 i @cn~h!,H#,

dcn
†~h!

dh
52 i @cn

†~h!,H#.

~5!

The dynamical content of the problem is determined by
HamiltonianH. Its form depends on the class of perturb
tions and additional assumptions about the ener
momentum tensor which we have to make, as was discu
above.
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Under the simplest assumptions about gravitational wav
~waves interact only with the background gravitational field
there is no anisotropic material sources!, the Hamiltonian for
each polarization component takes on the form

H5ncn
†cn1nc2n

† c2n12s~h!cn
†c2n

† 12s* ~h!cnc2n ,
~6!

where the coupling functions(h) is s(h)5 ( i /2)(a8/a) .
For rotational perturbations, assuming that the primev

matter is capable of supporting torque oscillations, assumi
that the oscillations are minimally coupled to gravity, and
assuming that the torsional velocity of sound is equal to th
velocity of light, the Hamiltonian for each polarization com-
ponent reduces to exactly the same form~6! with the same
coupling functions(h).

For density perturbations, we consider specifically a min
mally coupled scalar field with arbitrary scalar field potentia
as a model for matter in the very early Universe, and perfe
fluids at the later eras. The quantization is based on thesca-
lar polarization component~the function of time responsible
for another polarization state is not independent!. There is
only one independent sort of creation and annihilation oper

tors in this case. The operatorsc
s

n(h), c
s†

n(h) are expressible
in terms of the operatorsdn(h), dn

†(h) for which the Hamil-
tonian has again the same form~6! but with the coupling
functions(h)5( i /2)(aAg)8/aAg, where

g511~a/a8!852Ḣ/H2

andH is the Hubble parameter. For density perturbations,
is the operatorsdn(h), dn

†(h) that participate in Eqs.~5! and
~6!.

Now, let us turn to the constantC in Eq. ~3!. Its value is
determined by the normalization of the field of each class
the ‘‘half of the quantum in each mode.’’ Under the assump
tions listed above, one derivesC5A16p lPl for gravitational
waves, C5A32p lPl for rotational perturbations, and
C5A24p lPl for density perturbations, wherelPl is the Planck
length, lPl5(G\/c3)1/2.

The form of the Hamiltonian~6! dictates the form of the
solution ~Bogoliubov transformation! to Eq. ~5!:

cn~h!5un~h!cn~0!1vn~h!c2n
† ~0!,

cn
†~h!5un* ~h!cn

†~0!1vn* ~h!c2n~0!, ~7!

where cn(0), cn
†(0) are the initial values of the operators

taken long before the interaction with the pump field becam
important@s(h)/n→0# and which define the vacuum state
cn(0)u0&50. The complex functionsun(h), vn(h) obey
coupled first-order differential equations following from Eq
~5! and satisfy the conditionuunu22uvnu251 which guaran-
tees that the commutator relationship
@cn(0),cm

† (0)#5d3(n2m) is satisfied at all times,
@cn(h),cm

† (h)#5d3(n2m). If one introduces the function
mn(h)5un(h)1vn* (h), one recovers from the equations for
un(h), vn(h) the classical equations of motion. For gravita
tional waves,
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mn91Fn22 a9

a Gmn50. ~8!

For rotational perturbations,

mn91Fn2 v t2c2 2
a9

a Gmn50, ~9!

where v t is the torsional velocity of sound which we as
sumed above to bec. For the scalar field density perturba
tions,

mn91Fn22 ~aAg!9

aAg
Gmn50. ~10!

If the pump field is such that theg function is independent of
time, Eq.~10! reduces to exactly the same form as Eq.~8! for
gravitational waves.

In the Schro¨dinger picture, the initial vacuum quantum
stateu0n& u02n& evolves into a two-mode squeezed vacuu
quantum state. In our problem, each of the two-mo
squeezed vacuum quantum states is a product of two ide
cal one-mode squeezed vacuum quantum states which co
spond to the decomposition of the real fieldhi j over real
spatial harmonics sinn–x and cosn–x. In the Heisenberg pic-
ture, the initial vacuum quantum state does not evolve
time and is the same now.

By using Eq.~7! one can present the field~3! in the form

hi j ~h,x!5C
1

~2p!3/2
E

2`

`

d3n(
s51

2

p
s

i j ~n!
1

A2n
@h
s

n~h!ein–xc
s

n~0!

1 h
s*

n~h!e2 in–xc
s†

n~0!], ~11!

where the functionsh
s

n(h)5@ 1/a(h)# @u
s

n(h)1 v
s*

n(h)#.
For gravitational waves and rotational perturbations, t

functionsh
s

n are simplyh
s

n5m
s

n /a wherem
s

n are solutions to
Eqs.~8! and~9! with appropriate initial conditions. For den

sity perturbations, the functionsh
s

n are derivable from solu-
tions to Eq.~10! in accord with the relationship betweenc
and d operators. In addition, for density perturbations, w

should regardc
1

n(0)5c
2

n(0), c
1†

n(0)5 c
2†

n(0) in Eq. ~11!. In
all cases, for a given cosmological model, that is for a mod
in which the scale factora(h) is known from the very early

times and up to now, the functionsh
s

n can be found from the
classical equations of motion with appropriate initial cond
tions.

It follows from Eq. ~11! that the mean quantum-
mechanical value of the fieldhi j is zero at every spatial point
and at every moment of time,^0uhi j u0&50. One can also
calculate variances of the field, that is the expectation valu
of its quadratic combinations. One useful quantity ishi j h

i j .
By manipulating with the product of two expressions~11!,
using the summation properties of the polarization tenso
and remembering that the only nonvanishing correlati
function is
-
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^0uc
s

n~0! c
s8†

n8~0!u0&5dss8d
3~n2n8!,

one can derive the formula

^0uhi j ~h,x!hi j ~h,x!u0&5
C2

2p2E
0

`

n(
s51

2

uh
s

n~h!u2dn.

~12!

Equation~12! shows that the variance is independent of th
spatial pointx but does depend on time.

The expression under the integral in formulas such as E
~12! is usually called the power spectrum~in this case, it is
the power spectrum of the quantityhi j h

i j ):

P~n!5
C2

2p2n(
s51

2

uh
s

n~h!u2. ~13!

In cosmology, it is common to use the power spectrum d
fined in terms of the logarithmic frequency interval, that is
the function

PZ~n!5
C2

2p2n
2(
s51

2

uh
s

n~h!u2 ~14!

(Z from Zeldovich!. We are mostly interested in the power
spectrum of cosmological perturbations in the present Un
verse, at the matter-dominated stage. This spectrum is ne
smooth as a function of frequency~wave number! n. Squeez-
ing of the phase variances and the associated standing w
pattern of the field make the spectrum an oscillating functio
of n for each moment of time. In their turn, the oscillations
in the power spectrum will produce oscillations in the distri
bution of the higher-order multipoles of the angular correla
tion function for the temperature anisotropies. However, th
spectrum is smooth for sufficiently long waves. At a given
moment of time, this applies to all perturbations whos
wavelengths are of the order of and longer than the Hubb
radius defined at that time. Moreover, the smooth part of th
spectrum is power-law dependent onn if the scale factor
a(h) of the very early Universe~the pump field! was power-
law dependent onh time.

Let us assume that the scale factor at the initial stage
expansion was

a~h!5 l 0uhu11b, ~15!

wherel 0 andb are constants. If the evolution is governed by
a scalar field, the Einstein equations require the constantb to
be b<22. The valueb522 corresponds to the de Sitter
expansion. At later times, the scale factor changed to t
laws of the radiation-dominated and matter-dominated un

verses. From solutions forh
s

n(h) traced up to the matter-
dominated stage, one can find

(
s51

2

uh
s

n~h!u2;
1

l 0
2n

2b12 and PZ~n!;
lPl
2

l 0
2 n

2~b12!.

It is convenient to introduce thecharacteristic amplitude
h(n) of the metric perturbations defining this amplitude a
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the standard deviation~square root of variance! of the per-
turbed gravitational field per logarithmic frequency interva
In the long-wavelength limit under discussion, this quantit
is universally expressed~both, for gravitational waves and
for density perturbations! by the formula@20#

h~n!;
lPl
l 0
nb12. ~16!

Note that the functional form ofh(n) is the same for gravi-
tational waves and density perturbations, the difference is
the numerical coefficient~omitted in this discussion! which
is somewhat in favor of gravitational waves@2,6#. The nu-
merical level ofh(n) is mainly controlled by the constant
l 0 .

The spectra of other quantities can be found in the sam
manner. For instance, in case of density perturbations, o
can derive the spectrum of perturbations in the matter dens
dr/r. Since the relationship betweendr/r and the metric
perturbations involves the factor (nh)2 and, hence, involves
two extra powers ofn, (dr/r) (n);n2h(n), one finds

K 0Udr

r

dr

r U0L ;E
0

`

PZ
r~n!

dn

n
,

wherePZ
r(n);( lPl

2 / l 0
2)n2(b14) and

dr

r
~n!;

lPl
l 0
nb14. ~17!

It follows from Eq. ~16! that h(n) is independent ofn if
b522. This independence corresponds to the original Ze
dovich’s definition of the ‘‘flat’’ spectrum: all waves enter
the Hubble radius with the same amplitude. If the gravita
tional field perturbationsh(n), regardless of their wave-
length, have equal amplitudes upon entering the Hubble
dius, the matter density perturbations (dr/r) (n) do also
have equal amplitudes@the extra factor (nh)2 is of the order
of 1 at the time when a given waven enters the Hubble
radius#. For models of the very early Universe governed by
scalar field, the spectral indexb12 in Eq.~16! can never be
positive.

Formula ~16! and the associated formula~17! should be
compared with the ‘‘standard’’ inflationary formula which
requires that the amplitudes of density perturbations taken
the time of entering the Hubble radius should go to infinity i
the limit of the de Sitter inflation,b→22. It should also be
noted that a ‘‘disgusting convention’’~the term is borrowed
from Ref. @9#! is often being used according to which one
and the same Harrison-Zeldovich spectrum is described
the spectral indexnt50 for gravitational waves and by the
spectral indexns51 for density perturbations. Of course,
there is no need in this convention. In both cases, the met
perturbations with the Harrison-Zeldovich spectrum are d
scribed by the same spectral index~zero!, see Eq.~16!.

We will finish this section with a short discussion of co
herent states. There is no natural mechanism for the gene
tion of cosmological perturbations in coherent states, but
there were one it would be reflected in many parts of th
theory. The interaction part of the Hamiltonian~6! would be
l.
y

in

e
ne
ity

l-

-

ra-

a

at
n

by

ric
e-

-
ra-
if
e

linear ~not quadratic! in the creation and annihilation opera
tors. The analogue of Eq.~7! would read

cn~h!5e2 inhcn~0!1an~h!,

cn
†~h!5einhcn

†~0!1an* ~h!, ~18!

where the complex functionan(h) is determined by the cou-
pling function in the Hamiltonian. On the position — mo
mentum diagram, the evolution~18! of the field operators
corresponds todisplacing the vacuum state withoutsqueez-
ing whereas the evolution~7! corresponds tosqueezingthe
vacuum state withoutdisplacing. In terminology of mechan-
ics, coherent states are produced by a force acting on
oscillator whereas squeezed vacuum states are produced
parametric influence. In coherent states, the mean value
the field is not zero. The correlation functions~at least, for
some quantities! would also be different from the squeeze
state case. In cosmological context, this would eventually
reflected in the differing statistical properties of perturbation
and induced microwave background anisotropies.

The calculations of the next section are based in an ess
tial way on the field operator~11! for the squeezed vacuum
perturbations.

III. QUANTUM-MECHANICAL EXPECTATION VALUES
FOR THE MICROWAVE BACKGROUND

ANISOTROPIES

The microwave background anisotropies are a subject
intense study@21#.

In absence of cosmological perturbations, the temperat
of the microwave background radiation seen in all directio
on the sky would be the sameT. Let us denote a direction on
the sky by a unit vectore. The presence of cosmologica
perturbations makes the temperature seen in the directioe
differing from T. The temperature perturbation produced b
density perturbations or gravitational waves can be describ
by the formula@10#

dT

T
~e!5

1

2E0
w1]hi j

]h
eiejdw, ~19!

where]hi j /]h is taken along the integration pathxi5eiw,
h5hR2w, from the event of receptionw50 to the event of
emissionw5w15hR2hE . The formula for rotational per-
turbations is more complicated than~19! @10#, and we will
leave rotational perturbations aside.

For quantized cosmological perturbations, the
dT
T
(e) be-

comes a quantum-mechanical operator. Using Eq.~11! we
can write this operator as

dT

T
~e!5

C

2

1

~2p!3/2
E
0

w1
dwE

2`

`

d3n(
s51

2

p
s

i j ~n!eiej

3@c
s

n~0! f
s

n~w!eiwn–e1 c
s†

n~0! f
s*

n~w!e2 iwn–e#

~20!
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where

f
s

n~w![
1

A2n
dh
s

n

dh
U

h5hR2w

.

Having defined the observable (dT/T)(e) and knowing
the quantum stateu0& we can compute various quantum
mechanical expectation values. In the laboratory quant
mechanics, the verification of theoretical predictions e
pressed in terms of the expectation values would require
periments on many identical systems. An immediate gen
alization of this principle to cosmology would require
speculations about outcomes of experiments performed
‘‘many identical universes.’’ Without having access t
‘‘many universes’’ we can only rely on the mean~expected!
values of the observables and on the probability distributi
functions as indicators of what is likely or not to be observe
in our own single Universe. We will return to this point in
Sec. IV.

The expected value of the temperature perturbation to
observed in every fixed direction on the sky is zero:

K 0UdTT ~e!U0L 50.

One particular measured temperature map is the result of
measurement performed over one particular realization of
random process describing cosmological perturbations
quantum-mechanical origin. For this realization, the tem
perature perturbations may, should, and in fact are, pres
Many measurements will not help~except reducing the in-
strumental noises! in the sense that they all should give iden
tical results, because the time scale of the perturbations un
discussion is so enormously larger than an interval of tim
between the experiments. If the Cosmic Background E
plorer ~COBE! map is correct, we will have to live with this
map practically forever.

Let us now compute the expected angular correlati
function for the temperature perturbations seen in two giv
directions on the sky,e1 ande2 . This correlation function is
defined as the mean value for the product of (dT/T)(e1) and
(dT/T)(e2):

K~e1 ,e2!5 K 0U dT

T
~e1!

dT

T
~e2!U0L . ~21!

By manipulating with the product of two expressions~20!
one can derive the formula

K~e1 ,e2!5
1

4
C2

1

~2p!3
E
0

w1
dwE

0

w1
dw̄E

2`

`

d3nein•~e1w2e2w̄!

3(
s51

2

~p
s

i j ~n!e1
i e1

j !~p
s

i j ~n!e2
i e2

j ! f
s

n~w! f
s*

n~w̄!.

~22!
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The next step is the formidable task of taking the integra
over angular variables in three-dimensional wave-vectorn
space. However, it can be done~see Ref.@11# for gravita-
tional waves, Ref.@12# for rotational perturbations, and Ref
@2# for density perturbations!. The final expression reduces
without making any additional assumptions whatsoever,
the form

K~e1 ,e2!5K~d!5 lPl
2 (
l5 lmin

`

KlPl~cosd!. ~23!

We see that the correlation function depends only on t
angled between the directionse1 ,e2 , not directions them-
selves. The coefficientlPl

2 is taken fromC2, other numerical
coefficients are included inKl . The quantitiesKl involve the

integration off
s

n(w) over the parameterw and the remaining
integration over the wave numbersn. The numerical values
of Kl depend on a chosen sort of cosmological perturbatio
and a chosen cosmological model; so far, the formula~23! is
totally general.Pl(cosd) are the Legendre polynomials. The
lowest multipolelmin follows automatically from the theory
and it turns out to be, not surprisingly,lmin50 for density
perturbations,lmin52 for gravitational waves~andlmin51 for
rotational perturbations!. For the separation angled50, Eq.
~23! reduces to the variance ofdT/T (e), that is

K 0U dT

T
~e!

dT

T
~e!U0L 5K~0!5 lPl

2 (
l5 lmin

`

Kl . ~24!

Formula~23! gives the expected value of the observab
(dT/T)(e1)(dT/T)(e2). If the experimenter measured this
observable in ‘‘many universes’’ and averaged the measu
numbers, he/she would get the result~23!. Moreover, for-
mula ~23! says that if the experimenter made the measu
ments at any other pair of directions, but with the same sep
ration angled, he/she would again get, after the averagin
over ‘‘many universes,’’ the same result~23!. Without hav-
ing access to ‘‘many universes,’’ we can ask what is th
theoretical standard deviation of the quantity (dT/T)(e1)
3(dT/T)(e2). @In practice, for derivingK(d) we need a
kind of ergodic hypothesis allowing us to replace the ave
aging over ‘‘universes’’ by the averaging over pixels on
single map.# The varianceV(e1 ,e2) of this quantity is, by
definition,

V~e1 ,e2!5 K 0U dT

T
~e1!

dT

T
~e2!

dT

T
~e1!

dT

T
~e2!U0L

2F K 0U dT

T
~e1!

dT

T
~e2!U0L G2. ~25!

The standard deviation is the square root of this number.
The calculation ofV(e1 ,e2) requires us to deal with the

product of four expressions~20!. However, the mean values
of the products of four creation and annihilation operato
are easy to handle. One can show thatV(e1 ,e2) depends only
on the separation angled and
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V~e1 ,e2!5V~d!5F K 0U dT

T
~e1!

dT

T
~e2!U0L G2

1F K 0U dT

T
~e!

dT

T
~e!U0L G2, ~26!

that is

V~d!5K2~d!1K2~0!. ~27!

The standard deviation for the observable
dT
T
(e1)

dT
T
(e2) is

s~d!5@V~d!#1/25AK2~d!1K2~0!. ~28!

In a similar fashion one can derive the higher-order corre
tion functions for two directionse1 , e2 and the correlation
functions for larger number of directions, but we will no
need this information.

In the limit d50, Eqs.~25! and ~26! say that

K 0UFdTT ~e!G4U0L 53F K 0US dT

T
~e!G2U0L G2. ~29!

The familiar factor 3 relating the fourth-order moment wit
the square of the second-order moment~given that the first-
order moment is equal to zero! is the reflection of the under-
lying Gaussian nature of the squeezed vacuum wave fu
tions associated with the Hamiltonian~6!.

By examining Eq.~28! one can conclude that for each
separation angled the standard deviation of the angular co
relation function is very big. Even at those separation ang
at whichK(d) vanishes, the standard deviation is as big
the variance for (dT/T) (e) itself. However, the value of the
standard deviation for a given variable is not very inform
tive per se, as long as the probability density function for thi
variable is not known. If the probability density function
~PDF! were normal, we could say that the probability to fin
a result outside of 1s interval is 32%. Without knowing the
PDF we could resort to the Chebyshev inequality, but
would only tell us that this probability is less than 1. To g
more information about possible deviation of the angul
correlation function from its mean values we will consider
Sec. IV a classical random model which will reproduce th
expectation values calculated above and will allow us to co
struct the PDF for the variable (dT/T) (e1) (dT/T) (e2). On
the other hand, the quantum-mechanical calculations of S
III will shed light on the classical model. As is known
‘‘quantum mechanics helps us understand classical mech
ics,’’ see on this subject a paper by Zeldovich signed by t
pseudonym Paradoksov@13#.

IV. CLASSICAL MODEL FOR THE STATISTICS OF THE
MICROWAVE BACKGROUND ANISOTROPIES

A distribution of the microwave background temperatu
over the sky is a real function of the angular coordinate
Assuming thatdT/T is a sufficiently smooth function on a
sphere, one can expand it over the set of orthonormal co
la-

t
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,
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m-

plex spherical harmonicsYlm(u,f) @14#:

dT

T
~e!5(

l50

`

(
m52 l

l

@almYlm~e!1alm* Ylm* ~e!#. ~30!

We want to formulate a statistical hypothesis about the c
efficientsalm , so it is better to write them first in terms of
real (r ) and imaginary (i ) components:

alm5alm
r 1 ialm

i , alm* 5alm
r 2 ialm

i ,

Ylm5Ylm
r 1 iYlm

i , Ylm* 5Ylm
r 2 iYlm

i ,

dT

T
~e!52(

l50

`

(
m52 l

l

@alm
r Ylm

r ~e!2alm
i Ylm

i ~e!#. ~31!

Our statistical hypothesis is as follows:~i! all members of
the set of random variables$alm

r ,alm
i % are statistically inde-

pendent,~ii ! each individual variable is normally distributed
and has a zero mean,~iii ! all variables with the same index
l have the same standard deviations l . All said is expressed
by the probability density function~PDF! for individual vari-
ables,

f ~alm
r !5

1

A2ps l

e2 ~alm
r

!2/2s l
2
,

f ~alm
i !5

1

A2ps l

e2 ~alm
i

!2/2s l
2
, ~32!

and by the PDF for the entire set of variables, which is sim
ply a product of all PDF’s for all individual variables,

f ~$alm
r ,alm

i %!5u l ,mf ~almr ! f ~alm
i !. ~33!

Having postulated the PDF’s, we can now compute th
expectation values of certain functions of the random var
ables. Below, the angular brackets will denote the expect
tion values calculated with the help of the PDF~33!, unless
other definition is stated.

Obviously, all linear functions have a zero mean:

^alm
r &50, ^alm

i &50. ~34!

For quadratic combinations we have

^al1m1

r al2m2

r &5s l1
2 d l1l2dm1m2

,

^al1m1

i al2m2

i &5s l1
2 d l1l2dm1m2

,

^al1m1

r al2m2

i &50,

^al1m1

i al2m2

r &50. ~35!
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All triple products have zero means. Among quartic comb
nations, only those can survive which have four indic
(r ), or four indices (i ), or two indices (r ) and two indices
( i ). Two representative expressions are

^al1m1

r al2m2

r al3m3

r al4m4

r &5s l1
2 s l3

2 d l1l2dm1m2
d l3l4dm3m4

1s l1
2 s l2

2 d l1l3dm1m3
d l2l4dm2m4

1s l1
2 s l2

2 d l1l4dm1m4
d l2l3dm2m3

,

~36!

^al1m1

r al2m2

r al3m3

i al4m4

i &5s l1
2 s l3

2 d l1l2dm1m2
d l3l4dm3m4

.

~37!

Other quartic combinations can be obtained by the repla
ment (r )↔( i ) in Eqs. ~36! and ~37! @or by permutation of
pairs (lm) in case of Eq.~37!#. The higher-order correlations
can be derived in a similar way, but we will not need them

In our further calculations related to the random variabl
(dT/T)(e) and (dT/T)(e1)(dT/T)(e2) it is easier to deal
with the complex coefficientsalm , so we will first translate
the above relationships to them. By using the available
formation one can derive

^alm&50, ^al1m1
al2m2
* &52s l

2d l1l2dm1m2
,

^al1m1
al2m2

al3m3
* al4m4

* &54s l1
2 s l2

2 ~d l1l3dm1m3
d l2l4dm2m4

1d l1l4dm1m4
d l2l3dm2m3

).
~38!

The mean values of the complex conjugated quantities
given by the same formulas~38!. Other nonvanishing quartic
combinations can be obtained from the one in Eq.~38! by the
permutation of pairs (lm).

Now, even before deriving the PDF’s for the random va
ables (dT/T)(e) and (dT/T)(e1)(dT/T)(e2), we can find
some expectation values. It is clear from the definition~30!
and Eq.~38! that

K dT

T
~e!L 50. ~39!

When calculating the angular correlation function one shou
remember that

(
m52 l

l

Ylm~e1!Ylm* ~e2!5
2l11

4p
Pl~cosd! ~40!

~note the origin of the factor 2l11 which will accompany us
often!. By taking the product of two expressions~30! and
using Eqs.~38! and~40! one can find the angular correlation
function
i-
es

ce-

.
es

in-

are

ri-

ld

K dT

T
~e1!

dT

T
~e2!L 5

1

p (
l50

`

s l
2~2l11!Pl~cosd!. ~41!

If the separation angled is zero, we obtain

K dT

T
~e!

dT

T
~e!L 5

1

p (
l50

`

s l
2~2l11!. ~42!

@One may notice that the mean value of the random variab
al
2 defined asal

25(m52 l
l almalm* is ^al

2&52(2l11)s l
2 , that

is the same expression which enters Eq.~41!. This may sug-
gest an interpretation of the quantity^al

4&2^al
2&2 as the vari-

ance of the multipole moments. One should be careful wi
this interpretation, see Appendix.#

We can also find the fourth-order expectation values. Th
product of four expressions~30! in conjunction with Eq.~38!
gives

K dT

T
~e1!

dT

T
~e2!

dT

T
~e1!

dT

T
~e2!L 2 K dT

T
~e1!

dT

T
~e2!L 2

5 K dT

T
~e1!

dT

T
~e2!L 21 K dT

T
~e!

dT

T
~e!L 2. ~43!

If d50, it follows from Eq.~43! that

K FdTT ~e!G4L 53K FdTT ~e!G2L 2. ~44!

Up to the difference in the meaning of the angular brack
ets, the formulas~39!, ~43!, and ~44! reproduce the analo-
gous results of the previous section. Moreover, from com
parison of Eqs.~23! and~24! with Eqs.~41! and~42! we can
relate the quantitiesKl , derivable from a given cosmological
model plus perturbations, with the abstract quantitiess l .

We can now engage in our major enterprise — the co
struction of the PDF for the random variablev[(dT/T)
3(e1)(dT/T)(e2). We will start from the PDF for the ran-
dom variablez[(dT/T)(e). When it is necessary to distin-
guish directionse1 ande2 , we will use the notationsz1 and
z2 .

The variablez is a function of the variables$alm
r ,alm

i %
whose PDF’s are known, Eqs.~31! and ~32!. There exist
regular methods~see, for example, an excellent book@15#!
allowing one to derive rigorously the PDF of a function
However, in our case where the function is linear and a
PDF’s are normal, we can partially rely on a guesswork
Combining formulas and guessing, we can write

f ~z!5
1

A2psz

e2 z2/2sz
2
, ~45!

where

sz
25

1

p (
l50

`

s l
2~2l11!. ~46!
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The PDF ~45! certainly leads to Eqs.~39!, ~42! and ~44!.
Moreover, it allows us to say that the probability to findz
outside of 1sz interval is approximately 32%:

P~ uzu.sz!'0.32.

We now introduce two variables,z1 andz2 , and ask about
the PDF in the two-dimensional space (z1 ,z2). Again, par-
tially relying on a guesswork, we find that

f ~z1 ,z2!5
1

2psz
2A12r2

expH 2
1

2sz
2~12r2!

@z1
21z2

2

22rz1z2#J , ~47!

where

rsz
25

1

p (
l50

`

~2l11!s l
2Pl~cosd!, uru<1. ~48!

@See Eq.~5.11.1! in Ref. @15##. First, we can check that the
marginal distributions are correct. Forf (z1), one obtains

f ~z1!5E
2`

`

f ~z1 ,z2!dz25
1

A2psz

e2 z1
2/2sz

2

and one obtains a similar expression forf (z2). Second, one
can check that

^z1
2&5sz

2 , ^z2
2&5sz

2 , ^z1z2&5rsz
2 ,

where the angular brackets mean the integration with th
PDF ~47!. These equalities are Eqs.~42! and ~41! which we
must have obtained.

Finally, we shall derive the PDF for the variable
v5z1z2 . We will do this in some detail following the pre-
scriptions of@15#.

Let us introduce the two new variables (z1 ,v) instead of
(z1 ,z2) according to the transformation

z15z1 , z25
v
z1
.

The Jacobian of this transformation isJ51/z1 . The PDF
f (v) is the result of the integration

f ~v !5
1

2psz
2A12r2

E
2`

` 1

uz1u
expH 2

1

2sz
2~12r2! Fz121 v2

z1
2

22rvG J dz1 .
The integral overz1 can be taken with the help of 3.471.9
from @16#. The resulting PDF can be written in the form
f ~v !55
1

psz
2A12r2

erv/sz
2
~12r2!K0S v

sz
2~12r2! D for v.0,

1

psz
2A12r2

erv/sz
2
~12r2!K0S 2v

sz
2~12r2! D for v,0,

~49!
al
whereK0 is the modified Bessel function of its argumen
@17#.

The functionf (v) is quite complicated, and the distribu-
tion is obviously not normal. The functionf (v) goes to zero
for v→6` and diverges logarithmically at the pointv50.
Even a verification of the normalization condition

E
2`

`

f ~v !dv51 ~50!

is not trivial. However, with the help of 6.621.3, 9.131.1
9.121.7, 1.624.9, and 1.623.2 from@16# one can prove the
validity of Eq. ~50!.

The mean value and the standard deviation of the variab
v are known, see Eqs.~41! and ~43!:

^v&5rsz
2 , sv5@^v2&2^v&2#1/25sz

2Ar211. ~51!
t

,

le

We already knew that the standard deviation is big. We now
see again thatsv5sz

2 at the separation angles at which the
angular correlation function vanishes,r50, andsv5A2sz

2

at zero separation angle,r51. For other separation angles,
sv lies between these two numbers.

Now, that we know the PDF, we can assign probabilities
to the different ranges of the variablev. For instance, we can
calculate the probability that the measuredv will be found,
say, outside of thelsv interval surrounding the mean value
of v, wherel is an arbitrary fixed number. The probability
of our interest is

P~ uv2^v&u.lsv!5E
2`

sz
2
~r2lAr211!

f ~v !dv

1E
sz
2
~r1lAr211!

`

f ~v !dv. ~52!

To get a qualitative estimate of the associated theoretic
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uncertainties for the observablev, we will ask a slightly
different question. What should the numberl be in order to
have the 0.32 chance of findingv outside thelsv interval
and, hence, the 0.68 chance to find it inside the interval?

To evaluate the size of the disaster, we will start from t
caser50. In this case, the PDF~49! is symmetric with re-
spect to the originv50 ~this is why^v& is zero in this case!
and

P~ uvu.lsz
2!5

2

pEl

`

K0~x!dx. ~53!

We want this number to be approximately equal to 0.3
Judging from the Fig. 9.7 in Ref.@17#, one half of the area
under theK0(x) function is accumulated when integratin
from approximatelyx51/2 and up to infinity. This means
thatl should approximately be equal to 1/2 .

If rÞ0 the evaluation ofP is more complicated. Forr
Þ0, the function~49! is not symmetric with respect to the
origin v50. It has larger values at positivev ’s if r.0 ~this
is why ^v&.0 in this case! and it has larger values at nega
tive v ’s if r,0 ~this is why^v&,0 in this case!. The graph
of the functionexK0(x) plotted in Fig. 9.8 in Ref.@17# is
helpful. A qualitative analysis shows again thatl is approxi-
mately equal to 1/2.~More accurate estimates can, of cours
be reached by numerical methods.!

At any rate, the1
2 sv interval gives approximately the

same probability estimates as if the distribution~49! were
normal.

V. CONCLUSIONS

A particular cosmological model plus perturbations giv
unambiguous predictions with regard to the expectation v
ues of the measurable quantities. Differing models give d
ferent predictions. We want to distinguish them observatio
ally and to learn about physics of the very early Univers
However, the quantum-mechanical origin of the cosmolo
cal perturbations is reflected in the theoretical statistical u
certainties surrounding the expectation values. One imp
tant measurable quantity is the angular correlation functi
of the microwave background anisotropies. Its mean value
the zero separation angle was denotedsz

2 in this paper. It
was shown that the standard deviation for the correlat
function is very big. The 68% confidence level correspond
approximately, to1

2 sz
2 at the separation angles where th

correlation function vanishes, to (A2/2)sz
2 at the zero sepa-

ration angle, and to intermediate numbers for other sepa
tion angles.

The angular correlation function has actually been me
sured. It is presented in Fig. 3 in the paper@18#. The authors
surround the measured points by a narrow shaded reg
which they address as follows: ‘‘The shaded region is t
68% confidence region . . . including cosmic variance a
instrument noise.’’ It is not quite clear what the authors
Ref. @18# ~see also Ref.@19#! mean by ‘‘cosmic variance,’’
but if they mean the theoretical statistical uncertainties f
the correlation function variablev, these uncertainties are
significantly larger than what is plotted. According to th
calculations presented above, the half width of the shad
he
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region should be approximately 600 (mK) 2 near the points
where the correlation function vanishes and approximately
840 (mK) 2 near the point marking the zero separation angle

The conclusion is a bit disappointing. Apparently, the mi-
crowave background anisotropies tell us something impor
tant about the very early Universe, but thechannel of infor-
mation is so noisy that it will be hard to understand the
message.
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APPENDIX

The set of random variables$alm
r ,alm

i % defined by Eqs.
~32! and ~33! lives its own independent life regardless of
whether or not the variables are considered random coeffi
cients in the expansion of some function over spherical har
monics. Being such, it allows introduction of new functions
and calculation of their expectation values. One interesting
variable is defined by the equation

al
25 (

m52 l

l

almalm* 5 (
m52 l

l

ualmu25 (
m52 l

l

@~alm
r !21~alm

i !2#.

~A1!

By using Eq.~38! one can calculate the expectation value of
al
2:

^al
2&5~2l11!2s l

2 . ~A2!

The factor 2(2l11) reflects the number of independent ‘‘de-
grees of freedom’’ associated with the indexl in the repre-
sentation~30!. One can also introduce the variableal

4 and
calculate its expectation value:

^al
4&5~2l11!~ l11!8s l

45^al
2&2

2~ l11!

2l11
. ~A3!

The differencê al
4&2^al

2&2 is, by definition, the variance of
the variableal

2 . From Eqs.~A3! and ~A2! one finds

^al
4&2^al

2&25
1

2l11
^al

2&2. ~A4!

This formula, as it stands, expresses a well-known fact
the variance of the random variablex2 defined as the sum of
squares ofn independent random variables~degrees of free-
dom! with the same normal density, isn/2 times smaller
than the square of the mean value ofx2 @15#. There is noth-
ing ‘‘cosmological’’ or ‘‘inflationary’’ in this fact. Knowing
the PDF‘s for the set$alm

r ,alm
i % one can calculate the higher-

order correlation functions for the variableal
2 and its distri-

bution function @22–28#. In the recent literature, formula
~A4! became known as the ‘‘cosmic variance.’’ Formula
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~A4! and a possibility~or lack of! to extract complete infor-
mation about a stochastic process from its single realizat
are, in general, different issues. For ergodic processes,
existence of a definitely true relationship~A4! prevents in no
way the extraction of complete information about the proce
from a single realization@29#.

It is important to realize that it is the mean value of th
random variableal

2 , and notal
2 itself, that enters the ex-

pected angular correlation function in front of the Legend
polynomials and which is often called the multipole momen
The al

2 is a random variable and its variance has meanin
the ^al

2& is a number and its variance has no meaning. S
cifically, one can notice that the angular correlation functio
~41! can be written in the form

K dT

T
~e1!

dT

T
~e2!L 5

1

2p (
l50

`

^al
2&Pl~cosd!. ~A5!

On this ground, there may be a temptation to write the ra
dom variable (dT/T) (e1)(dT/T) (e2) in the form

dT

T
~e1!

dT

T
~e2!5

1

2p (
l50

`

al
2Pl~cosd! ~A6!

and to interpret Eq.~A4! as the variance for the multipole
moments of the correlation function. One should resist to t
temptation.

Let us show that the definition~A6! is incorrect despite
the fact that it gives correct expectation value~A5!. It fol-
lows from the definition~A6! that
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Using ~A3! and ~A5! and remembering thatal
2 andal 8

2 are
statistically independent forlÞ l 8, one can find the expecta-
tion value of the quantity~A7!:
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It follows from ~A8! that the variance of the variable
(dT/T) (e1)(dT/T) (e2) would read@if ~A6! were correct#:

1

p2(
l50

`

~2l11!s l
4@Pl~cosd!#2. ~A9!

This expression should be compared with the correct var
ance following from Eq.~43!:

1

p2 F(
l50

`

~2l11!s l
2Pl~cosd!G21 1

p2 F(
l50

`

~2l11!s l
2G2.
~A10!

Formulas~A9! and ~A10! disagree even ford50, and even
in their first l50 term. This shows that thead hocdefinition
~A6! is incorrect. The correct definition of the random vari-
able (dT/T) (e1)(dT/T) (e2) is the one following from the
definition ~30! and which we have used in this paper.
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