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Search templates for gravitational waves from inspiraling binaries: Choice of template spacing
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Gravitational waves from inspiraling, compact binaries will be searched for in the output of the LIGO-
VIRGO interferometric network by the method of “matched filtering”—i.e., by correlating the noisy output of
each interferometer with a set of theoretical wave form templates. These search templates will be a discrete
subset of a continuous, multiparameter family, each of which approximates a possible signal. The search might
be performedhierarchically, with a first pass through the data using a low threshold and a coarsely spaced,
few-parameter template set, followed by a second pass on threshold-exceeding data segments, with a higher
threshold and a more finely spaced template set that might have a larger number of parameters. Alternatively,
the search might involve a single pass through the data using the larger threshold and finer template set. This
paper extends and generalizes the Sathyaprakash-Dhurd&d)dormalism for choosing the discrete, finely
spaced template set used in the fitaf sole pass through the data, based on the analysis of a single
interferometer. The SD formalism is rephrased in geometric language by introducing a metric on the continu-
ous template space from which the discrete template set is drawn. This template metric is used to compute the
loss of signal-to-noise ratio and reduction of event rate which result from the coarseness of the template grid.
Correspondingly, the template spacing and total num¥esf templates are expressed, via the metric, as
functions of the reduction in event rate. The theory is developed for a template family of arbitrary dimension-
ality (whereas the original SD formalism was restricted to a single nontrivial dimendibe theory is then
applied to a simple postNewtonian template family with two nontrivial dimensions. For this family, the
number of templated/in the finely spaced grid is related to the spacing-induced fractionalla$svent rate
and to the minimum mas# ., of the least massive star in the binaries for which one searches by
N~2X10°(0.1/£)(0.2Mo IMy)>”  for the first LIGO interferometers and by N~8
X 108(0.1/£)(0.2M ¢ /M i) > for advanced LIGO interferometers. This is several orders of magnitude greater
than one might have expected based on Sathyaprakash’s discovery of a near degeneracy in the parameter space,
the discrepancy being due to that paper’s high choicMgf, and less stringent choice df. The computa-
tional powerP required to process the steady stream of incoming data from a single interferometer through the
closely spaced set of templates is given in floating-point operations per secondP-b$
X10%90.1/£)(0.2M o IM i)>? for the first LIGO interferometers and byP~4x10'%0.1/L)
X(0.2M o /M i) %7 for advanced LIGO interferometers. This will be within the capabilities of LIGO-era
computers, but a hierarchical search may still be desirable to reduce the required computind POBES-
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[. INTRODUCTION events per year. These distances correspond to a signal
strength which is within the target sensitivities of the Laser
Compact binary star systems are likely to be an importantnterferometric Gravitational Wave ObservatdhfGO) and
source of gravitational waves for the broadband laser interVIRGO interferometerg5,6]. However, to find the signals
ferometric detectors now under construct{dn, as they are within the noisy LIGO-VIRGO data will require a careful
the best understood of the various types of postulated gravitfjitering of the interferometer outputs. Because the predicted
wave sources in the detectable frequency band and thegignal strengths lie so close to the level of the noise, it will
waves should carry a large amount of information. Withinbe necessary to filter the interferometer data streams in order
our own Galaxy, there are three known neutron-star binarieto detect the inspiral events against the background of spuri-
whose orbits will decay completely under the influence ofous events generated by random noise.
gravitational radiation reaction within less than one Hubble The gravitational wave form generated by an inspiraling
time, and it is almost certain that there are many more as yetompact binary has been calculated using a combination of
undiscovered. Current estimates of the rate of neutron-starpost-Newtonian and post-Minkowskian expansi¢As3] to
neutron-star(NS-NS binary coalescencef2,3] based on post-Newtonian order by the consortium of Blanchet,
these(very few) known systems project an event rate of threeDamour, lyer, Will, and Wisemaf®8], and will be calculated
per year within a distance of roughly 200 Mpc; and estimateso post-Newtonian order long before the LIGO and VIRGO
based on the evolution of progenitor, main-sequence binaridsterferometers come on-linga. 2000. Because the func-
[4] suggest a distance as small as roughly 70 Mpc for threéional form of the expected signal is so well known, it is an
ideal candidate for matched filtering, a venerable and widely
known technique which is laid out in detail elsewh¢i€)]
“Electronic address: owen@tapir.caltech.edu and briefly summarized here.
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FIG. 1. A schematic depiction of the manifold
formed by the continuous template family, here
represented as a two-dimensional surface lying
within a three-dimensional space. The discrete
template family, shown by the dots, resides
within this manifold. TheXx indicates the loca-
tion of an actual signal, which because it is an
exact solution to the Einstein equations does not
lie within the manifold. Thet+ marks the spot in
the manifold which is closest tthas the highest
inner product with the signal. In general, this
location falls in between the actual discrete tem-
plates.

The matched filtering strategy is to compute a cross corfold, it would not in general correspond to any of the actual
relation between the interferometer output and a templateemplates used to search the data. The parameters describing
wave form, weighted inversely by the noise spectrum of thehe search templatesnasses, spins, efacan vary continu-
detector. The signal-to-noise ratio is defined as the value adusly throughout a finite range of values. The set of tem-
the cross correlation of the template with a particular stretclplates characterized by the continuously varying parameters
of data divided by the rms value of the cross correlation ofis of course infinite, so the interferometer output must be
the template with pure detector noise. If the signal-to-noiseross correlated with a finite subset of the templates whose
ratio exceeds a certain threshold, which is set primarily tgparameter values vary in discrete steps from one template to
control the rate of false alarms due to fluctuations of thethe next. This subsdthe “discrete template family)’ has
noise, a detection is registered. If the functional form of themeasure zero on the manifold of the full set of possible tem-
template is identical to that of the signal, the mean signal-toplates(the “continuous template family); so the template
noise ratio in the presence of a signal is the highest possibMhich most closely matches a signal will generally lie in
for any linear data-processing technique, which is whybetween members of the discrete template fartatyain, see
matched filtering is also known as optimal filtering. Fig. 1). The mismatch between the signal and the nearest of

In practice, however, the template wave forms will differ the discrete templates will cause some reduction in the
somewhat from the signals. True gravitational-wave signalsignal-to-noise ratio and therefore in the observed event rate,
from inspiraling binaries will be exact solutions to the Ein- as some signals which would lie above the threshold if cross
stein equations for two bodies of non-negligible mass, whilecorrelated with a perfectly matched filter are driven below
the templates used to search for these signals will be, at beshe threshold by the mismatch. Thus, the spacing between
finite-order approximations to the exact solutions. Also, truemembers of the discrete template family must be chosen so
signals will be characterized by many parameigrg., the as to render acceptable the loss in event rate, without requir-
masses of the two objects, their spins, the eccentricity, anthg a prohibitive amount of computing power to numerically
orientation of the orbjt. . .), some of which might be ne- perform the cross correlations of the data stream with all of
glected in construction of the search templates. Thus, the trube discrete templates.
signals will lie somewhat outside the submanifold formed by The high computational demands of a laser interferomet-
the search templates in the full manifold of all possible de-ic detector may in fact make it desirable to perforrhier-
tector outputgsee Fig. L archical searchlIn a hierarchical search, each stretch of data

Apostolatos[11] has defined the “fitting factor’FF to s first filtered by a set of templates which rather sparsely
guantitatively describe the closeness of the true signals to thgopulates the manifold, and the stretches which fail to ex-
template manifold in terms of the reduction of the signal-to-ceed a relatively low signal-to-noise threshold are discarded.
noise ratio due to cross correlating a signal lying outside thd'he surviving stretches of data are filtered by a larger set of
manifold with all the templates lying inside the manifold. If templates which more densely populates the manifold, and
the fitting factor of a template family is unity, the signal lies are subjected to a higher threshold. The sparseness of the
in the template manifold. If the fitting factor is less than first-pass template set ensures that most of the data need only
unity, the signal lies outside the manifold, and the fittingbe filtered by a small number of templates, while the high
factor represents the cross correlation between the signal attldreshold of the final pass reduces the false alarm rate to an
the template nearest it in the template manifold. acceptable level.

Even if the signal were to lie within the template mani- Theoretical foundations for choosing the discrete set of
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templates from the continuous family were laid by Following Cutler and Flanagali5], we define the inner
Sathyaprakash and Dhurandhar for the case of white noise joroduct between two functions of tina€t) andb(t) (which
Ref. [12], and for (colored power-recycling interferometer may be templates or interferometer outpugs

noise in Ref[13]. Both papers used a simplifi€do-called

“Newtonian”) version of the wave form which can be char- % E*(f)B(f)+'5(f)B* (f)

acterized by a single parameter, the binary’s “chirp mass” <a|b>52fo df S.(f)

M. Recently, Sathyapraka$h4] began consideration of an

improved, “post-Newtonian” set of templates characterized = &*(f)b(f)

by two mass parameters. He found that, by a judicious =4 Re{ fo de} (2.1

choice of the two parameters, the spacing between templates
can be made constant in both dimensions of the intrinsi — ey .
parameter space. Sathyaprakash’s parameters also mak&ﬁre’a(f) is the Fourier transform cd(t),
obvious (by producing a very large spacing in one of the .
dimensiong that a two-parameter set of templates can be 5(f)5f dt €27ta(t), (2.2
constructed which, if it does not populate the manifold too —
densely, need not be much more numerous than the one-
parameter set of templates used in REfR,13. and S,(f) is the detector’s noise spectrum, defined below.
In this paper | shall recast the Sathyaprakash-Dhurandhar The interferometer outpwi(t) consists of noisa(t) plus
(SD) formalism in geometric language which, | believe, sim-a signal As(t), where A is a dimensionless, time-
plifies and clarifies the key ideas. | shall also generalize théndependent amplitude ans(t) is normalized such that
SD formalism to an arbitrary spectrum of detector noise ands|s)=1. Thus, A describes the strength of a signal and
to a set of template shapes characterized by more than osét) describes its shape.
parameter. This is necessary because, as Apostdlatbkas Wave form templates are denoted bft; u,N), whereA
shown, no one-parameter set of templates can be used i®the vector of “intrinsic” or “dynamical” parameters char-
filter a post-Newtonian signal without causing an unacceptacterizing the template shape apds the vector of “extrin-
ably large loss of signal-to-noise ratio. sic” or “kinematical” parameters describing the offsets of
In one respect, my analysis will be more specialized thanhe wave form’s end point. Examples of intrinsic parameters
that of the SD formalism. My geometric analysis requires\' are the masses and spins of the two objects in a compact
that the templates of the discrete set be spaced very finely ininary; examples of extrinsic parametgr'sare the time of a
order that certain analytical approximations may be madegompact binary’'s final coalescentg and the phase of the
while the numerical methods of Sathyaprakash andvave form at coalescenck,.
Dhurandhar are valid even for a large spacing between tem- Templates are assumed to be normalized such that
plates(as would be the case in the early stages of a hierartu(u,\)|u(u,N))=1 for all u andX.
chical search The small spacing approximation is justified  Expectation values of various quantities over an infinite
on the grounds that at some point, even in a hierarchicaénsemble of realizations of the noise are denote@[dy
search, the data must be filtered by many closely spaced The interferometer’s strain spectral noise denSjtff) is
templates in order to detect a reasonable fractafnorder  the one-sided spectral density, defined by
unity) of the binary inspirals occurring in the Universe
within range of the LIGO-VIRGO network. e VT _1 _
The rest of this paper is organized as follows. In Sec. Il, | ELn(f)n" (f2)]= 2 o1 = T2)Sy(to) @23

Qevelop my generah;ed, geo_metrlc variant of the SD 1E“)rmal'for positive frequencies and undefined for negative frequen-
ism. | then apply this formalism to the general problem of

. - 2 .~ ~'cies. The noise is assumed to have a Gaussian probability
detection of gravitational waves from inspiraling binaries

and develop general formulas for choosing a discrete ter;]c_iistribution. o .
Newton’s gravitational constai®@ and the speed of light

plate family from a given continuous template family. In

Sec. lll, | detail an example of the use of my formalism,C are set equal to one.
choosing discrete templates from a continuous template fam-

ily which describes nonspinning, circularized binaries to A. Formalism

postt-Newtonian order in the evolution of the wave form’'s | developing our formalism, we begin by defining the

phase. | also estimate the computing power required for 8jgnal-to-noise ratio. For any single templaté) of unit
single-pasgnonhierarchical search using this_ discrete tem- norm, the cross correlation with pure noigeu) is a random
plate family, and compare to the previous work of yariable with mean zero and variance urity. Sec. Il B of
Sathyaprakasiil4]. Finally, in Sec. IV, | summarize my Ref, [15], wherein it is shown thaE[(n|a)(n|b)]=(a|b)].
results and suggest future directions for research on thepe signal-to-noise ratio of a given stretch of daf#), after

choice of discrete search templates. filtering by u(t), is defined to be
_ (ou)
Il. THEORY OF MISMATCHED FILTERING p= rms(—n|U—<o|u>. (2.9

In this section, a geometric, multiparameter variant of the
SD formalism is developed. Unless otherwise stated, the folThis ratio is the statistic which is compared to a predeter-
lowing conventions and definitions are assumed. mined threshold to decide if a signal is present.
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If the templateu is the same as the signg) it optimally ~ Here, the maximization is over all continuously varying val-
filters the signal, and the correspondirimean optimal ues of the extrinsic parameters. Then, the logical measure of

signal-to-noise ratio is the effectiveness of the entire discrete family of templates in
searching for the signal shape is
E[p]=E[(n+ Aulu)]= A. (2.5
maxy max s|u( s, , 2.9
If the templateu used to filter the data is not exactly the k A u XslulanAgo))] @9
same as the signa, the mean signal-to-noise ratio is de-
creased somewhat from its optimal value: which is simply (2.8) maximized over all the discrete tem-
plate shapes.
E[p]l=E[(n+ As|u)]=A(s|u). (2.6) In order to focus on the issue of discretization of the tem-

) o plate parameters rather than on the inadequacy of the con-
The inner producgs|u), which is bounded between zero and tinyous template family, let us assume that the signal shape
one, is the fraction of the optim&l[ p] retained in the mis- s js jdentical to some template. The discussion of the preced-
matched filtering case, and as such is a logical measure of thﬁg paragraphs suggests that in discussing the discretization
eﬁectiveness Of the templalﬂé in SearChing for the Signal of the template parameters we will want to make use
shapes. of the match between two templatest(f;u,A) and

Now, suppose that we search for the signal with a familygj(f; + A g, A+ AN) which we will define as
of templates specified by an extrinsic parameter veatand

an intrinsic parameter vectar. Let us denote the values of M(N,AN)=maxu(u,N)|u(pu+Ap,A+AN)).
the parameters of the actual templates Iy ,A)). For mAu
example, i, might be the value of the timg, of coales- (2.10

cence for thekth template in the family, angda(zk) might be
the phase of th&th template wave form at coalescence.
The search entails computing, via fast Fourier transform
(FFT's), all the inner products(olu(mgy) A)) for
k=1,2,... . Inthese numerical computations, the key dis
tinction between the extrinsic parametgrsand the intrinsic
parametera is this: One explores the whole range of values
of u very quickly, automatically, and efficiently for a fixed
value ofA; but one must do these exploratiqns separat_ely_fogitA)\: 0, we can expand in a power series abAdt=0 to
each of thehy,. In this sense, dealing with the extrinsic obtain
parameters is far easier and more automatic than dealing
with the intrinsic one$16].
As an example(for further detail see Sec. 16.2.2 of M()\,A)\)~1+§
Schutz[17]), for a given stretch of data one exploral
values of the time of coalescence,%u?!) of a compact
binary simultaneouslyfor fixed values of the other template
parametersvia a single FFT. If we write the Fourier trans-

This quantity, which is known in the theory of hypothesis
testing as thembiguity functionjs the fraction of the opti-
nal signal-to-noise ratio obtained by using a template with
intrinsic parameter to filter a signal identical in shape to a
“template with intrinsic parametedst+ AX.

Using the match2.10 it is possible to quantify our intui-
tive notion of how “close” two template shapes are to each
other. Since the match clearly has a maximum value of unity

(92

I ] )
JANGANT| |\

AN'AN. (2.11)

This suggests the definition of a metric

2
form (for notational simplicity as a continuous integral G(N)=— 1 _'?M_. (2.12
: 9i 2| GANGAN] :
rather than a discrete sum, we get Ark=0
(olu(mu M) so that themismatchl— M between two nearby templates is
- equal to the square of the proper distance between them:
:fo df Sh(f) 0*(f)LI(f; Otherﬂ(k),h(k)). (27) 1_M:gijA)\lA7\J- (213)
The discrete fast Fourier transfortRFT) yields the discrete ~ Having defined a metric on the intrinsic parameter space,

analogue of the function df, as shown above, an array of W& can now use it to calculate the spacing of the discrete

numbers containing the values of the Fourier transform fof€mplate family required to retain a given fraction of the
all the discrete values df,. ideal event rate. Schematically, we can think of the templates

Because, for fixed\y,, the extrinsic parameterg are as forming a Iattige in th&l-dimgnsioqal intrinsic paramelter
dealt with so simply and quickly in the search, throughoutSPace whose unit cell is aN-dimensional hypercube with
this paper we shall focus primarily on a template family’s Sides of proper lengtdl. The worst possible casgowest
intrinsic parametera, which govern the shape of the tem- E[p]) occurs if the poini describing the signal is exactly in
plate. Correspondingly, we shall adopt the following quantitythe middle of one of the hypercubes. If the templates are
as our measure of the effectiveness with which a particulaglosely spaced, i.edl<1, such a signal has a squared proper
template shape—i.e., a particular veclg, of the intrinsic distance
parameters—matches the incoming signal:

max(s|u(m, N)))- (2.9
P from the templates at the corners of the hypercube.

0i; AN'AN =N(d1/2)2 (2.19
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We define theminimal match MMto be the match be- Hz, and the “advanced LIGO noise curve” will refer to
tween the signal and the nearest templates in this worst po$2.17) with f; = 10 Hz andf, = 70 Hz. These numbers are
sible case, i.e., the fraction of the optimal signal-to-noisechosen to closely fit Fig. 7 of Ref5] for the first LIGO
ratio retained by a discrete template family when the signainterferometers and for the advanced LIGO benchmark. In
falls exactly “_in between” the nearest templates. This mini- this paper, when various quantitiésuch as the number of
mal match is the same quantity that Dhurandhar angjiscrete templat¢sre given including a scaling withy, this
Sathyaprakash in Reff13] denote as<; but since itis the  ingicates how the quantity changes whflg is varied but
central quantity governing template spacing it deserves SOME /£ is held fixed.
recognition in the form of its own name. Our choice of name ™ ¢ this point it is useful to define the moments of the
closely parallels the term “fitting factor'’FF, which Apos-
tolatos introduced in Refl1] to measure the similarity be-
tween actual signals and a continuous template family.

The minimal match, which is chosen by the experimenter It 3 It 5y~ 013
based upon what he or she considers to be an acceptable I%)Esh(fo)f <7 x :f c N
of ideal event rate, will determine our choice of spacing of foite  Sn(Xfo)  Jrgry,  XTTH2(14+X%)
the discrete template parameters and therefore the number of (2.183
discrete templates in the family. More specifically, the ex-
perimenter will choose some desired value of the minimal

noise curve(2.17), following Poisson and Wil[18], as

matchM M ; and then will achieve thiMM by selecting the J(@)=1(a/I(7). (2.18b
templates to reside at the corners of hypercubes with edge
dl given by

The upper limit of integrationf, denotes the coalescence
frequency or high-frequency cutoff of whatever template we

The number of templates in the resulting discrete templatg1re dealing with, which very roughly corresponds to the last

family will be the proper volume of parameter space diVidedstable circular orbit of a test particle in a nonspinning black

N. i hole’s Schwarzschild geometry.
by the proper volume per templati™ i.e., For both first and advanced LIGO noise curves, the ma-

MM=1-N(dl/2)2. (2.15

jority of inspiraling binary search templates will occupy re-
f d"Adet|gjj]| gions of parameter space for whidh is many timesf,.
= N (2.16 Because we will always be dealing witkq) for >0, and
(2J(1=MM)/N) because the noise term in the denominator of the integrand in
Eq. (2.183 increases a$? for f>f,, we can simplify later
B. Inspiraling binaries detected by LIGO calculations by approximatinf,=c in the definition of the

The formalism above applies to the detection of any set offoments. _ _
signals which have a functional form that depends on a set of To illustrate the metric formalism, we shall use templates
parameters which varies continuously over some range. Wased on a somewhat simplified version of the post-
now develop a more explicit formula for the metric, given anNewtonian expansion. Since the inner prod&t) has neg-
analytical approximation to the LIGO noise curve and a pardigible contributions from frequencies at which the integrand
ticular class of inspiraling binary signals. oscillates rapidly, it is far more important to get the phase of

We approximate the “initial” and “advanced” bench- u™(f) right than it is to get the amplitude dependence.
mark LIGO noise curves by the following analytical fit to Therefore, we adopt templates based on the ‘“restricted”

Fig. 7 of Ref.[5]: post-Newtonian approximation in which one discards all
multipolar components except the quadrupole, but keeps
:Sol(flfg) 44+ 2[1+(f/fp)?]}, f>fs, fairly accurate track of the quadrupole component’s phase
Sh(f)= - ft (for more details see Secs. Il C and Ill A of REL5]). Ap-
1 Sy

(2.17) plying the stationary phase approximation to that quadrupo-
' lar wave form, we obtain

wheref is the “knee frequency” or frequency at which the

interferometer is most sensitievhich is determined by the

reflectivities of the mirrors and is set by the experimentersto —~ .. _£—T/6 J_ T .

the frequency where photon shot noise begins to dominate u(fid p)=1 exp[l a Z_q)°+27rft°+q,(f’)‘)“’

the spectrumandS, is a constant whose value is not impor- (2.19

tant for our purposes. This spectrum describes photon shot

noise in the “standard recycling” configuration of the inter-

ferometer(second termsuperposed on thermal noise in the up to a multiplicative constant which is set by the condition

suspension of the test massigst term), and it approxi- (uju)=1 [19].

mates seismic noise by settilgy infinite at frequencies be- The functionW, describing the phase evolution (2.19),

low the “seismic-cutoff frequency’fs. is currently known to pogtNewtonian order for the case of
Throughout the rest of this paper, the “first LIGO noise two nonspinning point masses in a circular orbit about each

curve” will refer to (2.17 with fg = 40 Hz andf, = 200  other as
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3 20/743 11 for a fixed rate of false alarms. Note that the fraction of false
V(f;M,n)= Eyfl(ﬁl\/I f)5/3[1+ 3(ﬁ3+ 7T 77) dismissalsdue to template spacing 1—MM?3, indepen-
dently of the thresholg, (assuming,>1). This is because
o3 3058673 the scaling of absolute event rate withis independent of

X(mMf)“*=16m(7Mf)+ 10 1016064 A, as discussed in the previous paragraph.
In real life, py is affected by the total number of discrete
5429 617 a3 templates and by the minimal match of the discrete template
* 10087t 12427 (M) (2.20 family. This can be seen by the fact that the signal-to-noise

ratio,

[cf. Eq. (3.6) of Ref.[18]]. Here, the mass parameters have
been chosen to bk, the total mass of the system, angl
the ratio of the reduced mass to the total mass. p=max{maxo|u(sAg))], (2.22

The actual amplitudel of a wave form is proportional to ko
1/R, whereR is the distance to the source; and this lets us
find the relation between minimal match and event rath the maximum of a number of random variables. The co-
which we will need in order to wisely choose the minimal yariance matrix of these variables will be determined by the
match. Assuming that compact binaries are uniformly diS-minimal match, and will itself determine the probability dis-
tributed throughout space on large distance scales, thigibution of p (in the absence of a signathich is used to set
means that the rate of events with a given set of intrinsighe threshold, in order to keep the false alarm rate below a
parameters and with an amplitude greater thars propor-  certain level. However, since these effects are fairly small at
tional to 1/4° Setting a signal-to-noise thresholsh is  high signal-to-noise ratiogsuch as those to be used by
equivalent to setting a maximum distarRg>1/A to which | |GO) and the issue of choosing thresholds is a problem
sources with a given set of intrinsic parameters can be d&morthy of its own papef20], we will use(2.21) for the rest
tected. Thus, if we could search for signals with the entiregf this paper.
continuous template family, we would expect the observed For this two-parameter template family, the formula for
event rate to scale aSpf/. This ideal event rate is an upper the match(2.10 can be simplified somewhat by explicitly
limit on what we can expect with a real, discrete templateperforming the maximization over the extrinsic parameters
family. pm and Au. Since the integrand in the inner produ@t1)

We can obtain a lower bound on the observed event ratgiepends onu and A u as exgi[27fAt,—Ad,]}, there is no
by considering what happens if all signals conspire to havejependence op but only onA . Maximizing overA®, is
parameters lying exactly in between the nearest search tergasy: instead of taking the real part of the integral in the
plates. In this case, all events will have reduced signal-toinner product(2.1), we take the absolute value.
noise ratios ofMM times the optimal signal-to-noise ratio  To maximize overAt, we go back a step. Let us define
A. This is naively equivalent to optimally filtering with a \%=t,, and consider theN+ 1)-dimensional space formed

threshold ofp, /MM, so a pessimistic guess is by A% and\l. We expand the inner product between adjacent
MM 3 templates to quadratic order AN to get a preliminary
event ratex _) (2.21)  Metric y,5, where the Greek indices range from 0 b
Po (Latin indices range from 1 tdl):
|
o f77/3 ) )
df expli[27fAty+ AW (f; N, AN
1 az ’fo Sh(f) p[[ m 0 ( )]} "
’Ya,B(A):_E (QA)\D(&A)\B o f—7/3 A _0 (223)
df ——
fo Sh(f)

Here AU =W (f;\ +AN)—W(f:\)) [21].

We define the moment functiongl such that, for a func- We also define the quantitiet, such that
tion a,

1 (felfo,  x ™ IAW

Aal=im7 fs/fo X5 (xto) 2% (229 Yo=2mh. =GR 229

I3 o

and thus _ R
where the derivative is evaluatedfx'=0 andV is the part
=> a,J(7-3n). (2.29 of ¥ in Eq. (2.19 that is frequency dependefény non-
n frequency-dependent, additive parts¥fare removed when
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we take the absolute value in the maximized inner progduct A. Calculation of the two-dimensional metric
Evaluation of the derivative in Eq2.23 then shows that, in

the limit £ /f Having chosen as the continuous template family the set
e limit f./fy— oo,

of post!-Newtonian, circular, spinless binary wave forms,
we must now choose the discrete templates from within this
Yap=3 (A Watbs]— T 1T 5)). (2.27  continuous family. The first step is to calculate the coeffi-
cients of the metric on the two-dimensional dynamical pa-
rameter space.
Finally, we minimize yaBA)\“A)\ﬁ with respect toAt, It is convenient to change the mass parametrization from
(i.e., we projecty, s onto the subspace orthogonalt{) and  the variables 1, ) to the Sathyaprakash variableist]
thereby obtain the following expression for the metric of our

continuous template family: 2 -8 -8/3
T1=5567 M ™ () 7, (3.1
_ Y0i Y0 743 11
9ii=vii— - (2.28 _S Y —2

By taking the square root of the determinant of this metricNote that 7, and 7, are simply the Newtonian and
and plugging it into Eq(2.16, we can compute the number post'-Newtonian contributions to the time it takes for the
of templates\ that we need in our discrete family as a carrier gravitational wave frequency to evolve frop to
function of our desired minimal matdd M, or equivalently infinity. The advantage of these variables is that the metric
of the loss of ideal event rate. coefficients in ¢,,7,) coordinates are constafih the limit
f.>fy) for all templates. This is because the phase of the
wave formu(f) is linear in the Sathyaprakash variables, and
I1l. EXAMPLE: CIRCULARIZED NONSPINNING so the integral in the definition of the mat¢k.10 depends
BINARIES TO POST :-NEWTONIAN ORDER only on the displacement\(r,,A 7,) between the templates,

Although the phase of the inspiraling binary signal hasand not on the locationry, 7,) of the templates in the dy-

. - namical parameter space.
recently been calculated to péstlewtonian ordef9], it is b P

The dynamical parameter-dependent part of the tem-
useful to calculate the number of templates that would b , o -
required in a Universe where the wave forms evolve only t;zllates phase is given biEq. (2.20 truncated to first post

1 . O ewtonian order and reexpressed in terms gf, {,) using
post-Newtonian order and all binaries are composed of nonEqs.(S.l) and(3.2)]

spinning objects in circular orbits. There are several reasons
for this exercise.

(1) Spin effects are expected to be significant only for a
small fraction of sources. Blanchet al. [9] estimate very

small spin-orbit and spin-spin phase modulation terms for

: L , d it is easy to read offy; and ¢, [Eq. (2.26] as the
typical neutron-star binaries based on models of evolutiof o ' 1= P2 ;
%E) currently known binary pulsars. Apostolatf1] has coefficients ofr, and 7, [23]. By inserting thesey; into Eq.

shown that templates with no spin-related terms perfor 2.25, the relevant moment functionals can be expressed in

quite well when searching for “signals” with spin-induced erms of the moments of the noise:

phase modulation but no amplitude modulation, correspond- 3

ing approximately to a favorable orientation of the spin axes. Tol=27fed(4),  Tyr]=27f05I(12),

He has also shown that amplitude modulation due to spin-

orbit precession can indeed be a significant effect, but only T i)=2710d(10), T whl=(2mfe)2I(1),

for large spins and certain unfavorable orientations of the

axes. Therefore, consideration of a spinless family of tem- 7 1= (27f)22 3(9), T votrr]=(27f0)2(7),
plates is quite sufficient for a rough estimate of the comput-

ing power required to perform a search that will overlook a 2 - _ 23

small fraction of binary inspiral events due to mismatched JL¥1]1=(27f0)* 5 J(17), T ih1]=(27f0)" 5 I(15),

\I’(f, Tl,Tz): g Wfo(f/fo)_5/37'l+ Zﬂfo(f/fo)_sz,
3.3

filtering.
(2) We assume circular orbits because gravitational radia- j[t//%k (27f)23(13). (3.9
tion reaction circularizes most eccentric orbits on a time
scale much less than the lifetime of a compact birf28]. We can compute the needed moments of the noise by

(3) The phase of the templates is truncated atumerically evaluating the integra(®.18h. By setting the
posti-Newtonian order for simplicity. Although Apostolatos upper limit of integration to infinity, i.e., by approximating
has demonstrated in Refl1] that post-Newtonian tem- f./f, as infinite for all templates under consideration, we
plates will not have a large enough fitting factor to be usefulfind that the moments have the constant values given in
consideration of such a set is a first step toward obtaining aiable I; and therefore the moment functionéds4) have the
adequate set of templates—and it is a particularly importantonstant values given in Table Il. Inserting these values into
step since the metric coefficients will turn out to be constangs. (2.27 and (2.28 vyields, for the coordinates
over the template manifold. (A\°=ty,\1=17,,A?=1,), the three-metric and two-metric
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TABLE I. Numerical values of the moments of the noise in the where the first integral is the expression used in the above

limit f./fo—e, for the noise curves of the first LIGO interferom- metric coefficients and the second is the correction due to

eters  (s/fo=1/5) and advanced LIGO interferometers finite f./f,. The second integral can be expanded to lowest

(fs/fo=1/7). order infy/f. as
Noise moment First LIGO value Advanced LIGO value
(fO/fC)1+q/31

D) 1.27 1.26 2(1+al3)
J4) 0.927 0.919 and from this the errors in the momertgnd therefore in the
I7) 1 (exac) 1 (exac) metric coefficients due to approximating . as infinite are
J9) 1.24 1.26 estimated to be less than or of order ten percent for the first
J10 1.44 149 LIGO interferometers and one percent for the advanced
12 2.13 2.31 LIGO interferometers over most of the relevant volume of
J13) 2.69 3.03 parameter space. Since the two-parameter,‘pistvtonian
J(15) 4.67 >.80 continuous template family is known to be inadequate for the
J17) 8.88 12.7 task of searching for real binaries, these errors are small

enough to justify our use of thie.— o approximation in this

exploratory analysis.
+0.208 —0.220 —0.168

70(,8:(2771:0)2 . +0.784 +0.481| and (3.5 B. Number of search templates required
+0.309 Since the metric coefficients are constant in this analysis,
the formula for the required number of templafEs. (2.16)]
0552 0.30 reduces to
- 2
e R RCE
N—m dTldTZ. (39)

for the first LIGO noise curve, and
The square root of the determinant of the metric is given by
+0.209 —0.257 —0.183 (27fy)? 0.108 for the advanced LIGO noise curve and by
(27fo)? 0.058 for the initial LIGO noise curve, so once we

7“'3:(277]‘0)2 ' +1.320 +0.712) and  (3.7) have decided on the range of parameters we deem astro-
+0.407 physically reasonable we will have a formula faf as a
function of MM.
1.01 0.48 The most straightforward belief to cherish about neutron
gij= (27Tfo)2( 0 243 (3.8 stars is that they all come with masses greater than a certain

minimum M i, which might be set to OM (based on the
minimum mass that any neutron star can hagd]) or
1.0My (based on the observed masses of neutron stars in
binary pulsar systemg25]). In terms of the variables
%M ,m) the constrainM ;>M ., andM,>M ., is easily ex-
pressed as

for the advanced LIGO noise cuni@here the dots denote
terms obtained by symmeiry

We shall also estimate the errors in the metric coefficient
due to the approximatiofi;/fy,—o: The moment integrals
defined in Eq(2.18b can be rewritten as

%M(l_ V1=45)>Mpnin,

. 5X—q/3 . 5X—q/3

ffslfodxm_ ffclfodxm’ but in terms of the Sathyaprakash variablEsis. (3.1) and
(3.2] the expression becomes rather unwieldy to write

down. However, see Fig. 2 for a plot of the allowed region in
(71,7,) coordinates.

For this reason we have found it convenient to use a
Monte Carlo integration routing26] to evaluate the coordi-
nate volume integraJdr, d7,. The Monte Carlo approach

TABLE Il. Numerical values of the moment functionals, under
the same assumptions as in Table I.

Moment functional First LIGO value Advanced LIGO value

T ol (27f,)0.927 (27f,)0.919 becomes especially attractive when evaluating the proper

Tl (27fy)1.28 (2mf)1.38 volume integralfdr; d7,\/defg;;|| for cases where the inte-

T 5] (2mfy)1.44 (2mfy)1.49 grand is allowed to vary—and in fact may itself have to be

A (27fy)21.27 (27f)%1.26 evaluated numerically, as will be the case for a
T o] (27f)20.743 (27f)20.756 post-Newtonian set of templates. The integral has numeri-
T o] (27f,)? (exach (27fy)? (exac cal values of 0.18 and 24 secorid®r initial and advanced

VA (27f)23.20 (27f0)%4.56 LIGO interferometer parameters, respectively, assuming a
T bith] (27f4)?2.80 (27f0)23.48 M min Of 0.2M, and arbitrarily largeM ... The integral can

2] (277 )?2.69 (27 0)23.03 be shown(numerically to scale roughly as, ** (indepen-

dent of f) and asM .2’ for My, ranging from 0.2 to 1.0
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the shapeof the noise curvef/f, changes from 1/5 to 1J7
70 the remainder is due to the scaling witk (or, equivalently,
60 fs) asfg/fy is held fixed, which is shown in the previous
Z 5 four equations.
g 40 .
2 C. Template spacing
% > With the aid of the metric coefficients given in Eq8.6)
=20 and (3.8), it is a simple task to select the locations of the
10 templates and the spacing between them.
0 Because the metric coefficients form a constaxt2ma-
100 200 300 400 500

trix, we can easily find the eigenvectogg ande,, of gl

and use them as axes to lay out a grid of templates. The
FIG. 2. The two-dimensional region of parameter space inhabaumerical values are
ited by binaries composed of objects more massive thdp, 1 7,

74 (milliseconds)

and 7, are expressedin millisecond$ for f,=200 Hz, but the ex1:0-874371+0-48@72a
shape of the region does not change wigh The upper boundary (3.1
of the wedge is set b ,;,. The left-hand boundary is set by &,= —O.48FE71+ 0.874972

M mhax, but is essentially identical to the, axis for M., greater
than a few solar masses. The region below the wedge corresponfisr the first LIGO noise curve, and
to »>1/4, which isa priori impossible.
&, = 0.899371+ 0.437672,
solar massefthe dependence oM ., is negligible for any (3.15
value greater than a few solar masses &,=—0.43%, +0.89%,

Inserting the above numbers into ER.9), we find that
for the advanced LIGO noise curve. The infinitesimal proper

‘2-7< fo Z)‘Z-S distance is given in terms of the eigencoordinates as

200 H E;(dx;)%2+E,(dx,)?, whereE, andE, are the eigenvalues
(3.10  of the metric.
Therefore, we simply use EQR.15 to obtain the template

1-MM\ Y M
0.03 0.2M¢

N=2.7X 105(

for the first LIGO noise curve, and spacings
1-MM\ 7Y Mpyin \ 72 fy | 720 21—-MM)
/\/28.4><106( 003 ) (O.ZM@ =5 iz dx; = —E ji=1,2. (3.1
(3.1)

We find that the eigenvalues of the metri@&6) and (3.8
for the advanced LIGO noise curve. The fiducial value ofare (2rf,)? times 0.721 and 0.004 2first LIGO), and
MM has been chosen as 0.97 to correspond to an event ralgf,)? times 1.25 and 0.009 8édvanced LIGQ There-
of roughly 90 percent of the ideal event rgté. Eq. (2.21)]. fore, the template spacings are given by
In terms of the template-spacing-induced fractional l6ssf

event rate, the number of templates required is 1-MM\Y2[ £y |\t
dx;=0.22m ,
1 27 _25 0.03 200 H
L Mmin ’ fO ’ 31 (3 17)
=23 M3 7503 | 1200 H

for the first LIGO noise curve, and
for the first LIGO noise curve, and by

L -1 Mmin —-2.7 fO -25
N:76X 106 a) (OZ\A@ (70 HZ) (313 1—MM 1/2 fO -1
4 =049M$ 557~ |70 1z
for the advanced LIGO noise curvgor a minimum mass of ' (3.19
1.0M, these numbers reduce to %.10° and 9.9 10%, EVIVIEC/ S 1 :
respectively). dx,=5.6 ms( 003 ) (70 Hz)

The thirtyfold increase in the number of templates be-

tween the initial LIGO and advanced LIGO noise curves isfor the advanced LIGO noise curve. Figure 3 shows the lo-
due to the lowering of the seismic frequenty. If 1, is _cations of some possible templates superposed on a contour

lowered, a given signal evolves a greater number of cycles iB|q¢ of the match with the template in the center of the graph.
the interferometer bandwidth. Therefore, the filtered signal-

to-noise ratio is sensitive to smaller changes in the signal
parameters, and the discrete template spacing must be tight-
ened to compensate—resulting in a larger number of tem- Drawing on the previous work of Schufz7] concerning
plates. A factor of 2 in the increase is due to the difference irthe mechanics of fast-Fourier-transforming the data, we can

D. Computing power requirements
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T T T T T T T R I. Te | T T T T T T F 224 . _5/3 fs —8/3 3 2
* 7 — < lo.avg 10 Hz 70 17w &2
58 e * n
L _ The required CPU poweP for an on-line search is ob-
i | tained by dividing Eq(3.19 by the total duration of the data
- set,
2 o]
356 |- 7 Tio=D/(21y),
o | J
= to find that
E [ .- |
S f 1 P=2NT,(16+ 3 log,F). (3.22
54 | —
] | Combining Eq.(3.22 with Egs.(3.10 and(3.11) gives us
L . * * ] £ -1 M . —2.7 fO -15
o * __ -~ min
L | . . | _ P=30 Gflop:{ 01 (O.ZM@ (200 Hl) (3.23
%30 340 341 342

for an on-line search by the first LIGO interferometers, and

—2.7 f
0
(70 Hz

74 (milliseconds)
—-15

L\ 7Y Muin
FIG. 3. Locations of various discrete templates for the first P=400 Gﬂ0p£0__1) ( : (3.29

0.2M
LIGO interferometers are shown by dots. The contours indicate the ©
value of the match between a template locatedrat4,) and the for the advanced LIGO interferometers.

template located in the center of the figure. The contours are drawn Although the estimates in the paragraph above are not to
at match values of 0.97, 0.98, and 0.99. Templates are placed alorﬁ% believed beyond a factor of order unity, the magnitude of

the principal axes of the elliptical contours. However, in order tothe numbers shows that a hierarchical search strateqy mav be
make the ellipses visible the figure had to be stretched horizontally gy may

distorting the contours and making the axes appear nonorthogonzi‘?.eslrabIe to keep the computing power req_u_lr_ements at[ a
reasonable level for nonsupercomputing facilities. That is,
m’z_he data would first be filtered through a more widely spaced
: . . . low minimal match set of templates with a relatively low

eter output on-line through a single-pasmnhierarchical signal-to-noise threshold, and only the segments which ex-

search involving\V templates. ; - .
Although the data will be sampled at a rather high rateceed this preliminary threshold would be analyzed with the

(tens of kH2, frequencies above some upper limjt=4f, finely spacedhigh minimal match templates.

can be thrown awayin Fourier transforming the datavith The metric-based formalism of this paper only holds for
o . g . . the finely spaced set of templates used in the final stage of
only negligible effects on the signal-to-noise ratio. This low-

ers the effective frequency of sampling tb,2the factor of the hierarchical search; the template spacing used in the ear-
" ! . .
two is needed so that the Nyquist frequencyfig. and lier stages of the search will have to be chosen using more

thereby considerably reduces the task of performing th gomplex methods such as those of Sathyaprakash and

inner-product integrals. If the length of the array of numbers%hurandha'[lz'la'

required to store a template Fsand that required to store a

estimate the CPU power required to process the interfero

given stretch of data i®, the number of floating-point op- E. Comparison with previous results
erations required to process that data stretch thrauifjlers The only previous analysis of the problem of choosing the
is discrete search templates from the two-parameter, restricted

post'-Newtonian continuous template family is that of
Sathyaprakasf4], in which he found that the entire volume
of parameter space correspondingMg,;,=1My could be
[Cf. Eq (1633 of SChUtZ[l?], with the fractional Overlap covered by a set of temp|ates which vary 0n|y in
between data segmentschosen as roughly 1/15 .+ 7,—thereby reducing the effective dimensionality of the
Actually, F varies from filter to filtel’, but most of the mass parameter space to 1. This |mp||ed a valu/sfmilar
search templates occupy regions of parameter space whegg that obtained in the one-parametdlewtonian template
the mass is very low—and thus the storage size of the teMgnalysis of Dhurandhar and Sathyaprakash in Re].
plate, It is not possible to fairly compare my value fAf to the
values given by Dhurandhar and Sathyaprakash in Table II
F=2f,r(fo/f)® (3.20  of Ref.[13] due to our differing assumptions concerning the
sources and the desirable level of the minimal match. There-
is very large[27]. The longest filter is the one computed for fore, | will compare the assumptions.
two stars of massM.,, So by inserting n=1/4 and Dhurandhar and Sathyaprakash typically consider a mini-
M =2M,, into Eg.(3.1) and combining with Eq(3.20, we  mal match of 0.8 or 0.9 rather than 0.97, This would lead to
find that we can make a somewhat pessimistic estimate af loss of 30-50% of the ideal event rgtf. Eq. (2.21)]. If
the computational cost by using the current “best estimates” of inspiraling binary event rates

Neo=DA16+3 log,F) (3.19
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[2,3] are correct, the ideal event rate for LIGO and VIRGO noise in the detector due to both standard recycling photon
will not be more than about one hundred per year even wheshot noise and thermal noise in the suspension of the test
operating at the “advanced interferometer” noise levels, andnasses.
the loss of up to half of these events would be unacceptable. The result is that it is possible to search the data for bi-
From Eqs(3.23 and(3.24) it can be seen that the depen- naries containing objects more massive thanvi;2thor-
dence ofA on M, is the most important factor influencing oughly enough to lose only-10% of the ideal event rate
the computing power requirement. The two-parameter analywithout requiring a quantum leap in computing technology.
sis of Sathyaprakasfl4] uses a value foM , of 1M, The computational cost of such a search, conducted on-line
which is based on the statistics ¢&lectromagnetically  using a single pass through the data, is roughly 20 Gflops for
known binary pulsars. However, because there is no knownhe first LIGO interferometer&a. 2000 and 270 Gflops for
firm physical mechanism that prevents neutron stars fromhe advanced LIGO interferometefsome years latgr Due
forming with masses between 0.2 and13, LIGO and tg the nature of the approximations made in this paper, these
VIRGO should use a discrete template family with hympers should not be believed to any greater precision than
Mmin=0.2M . After all, laser interferometer gravitational g factor of order unity; but they are certainly good order-of-
wave detgctors are expected to bring us information abo%agnitude estimates. These numbers are feasilevery
astronomical objects as yet unknown. , __nearly feasiblgeven for a present-day supercomputing facil-
During the final stages of comp!ern of this manuscript, 3ity, but a hierarchical search strate@ysing as its first stage
new paper by Balasubramanian, Sathyaprakash, an widely spaced set of templates similar to that analyzed by

Dhurandhar appeard@8], applying differential geometry to ;
the problem of detecting compact binary inspiral events ant? athyaprakasfil4]) may be desirable to reduce the cost.

extracting source parameters from them. It applies the tools
of differential geometry primarily to the problem of param-
eter measurement rather than that of signal detection, and so There are several issues in this area which remain open
does not develop the geometrical formalism as far as is donfr further investigation. Generally speaking, they fall into
in Sec. Il of this paper. The metric constructed in R28]is  two categories characterized by pursuit of two different but
identical to the information matrix which was suggested forcomplementary goals: obtaining an estimate of computing
use in the construction of a closely spaced, discrete templai@quirements to a precision better than the factor of unity
family in the authors’ previous worKL3]. While this is quite  achieved by the rough estimate in this paper, and reducing
useful for parameter measurement, it neglects maximizatiothose computing requirements by using different algorithms
over kinematical parameters and thus is not very useful foto cover the templates’ parameter space.
the construction of search templates. Also, the assumptions (1) A thorough investigation of hierarchical search strate-
aboutMM and M, are no different from those made in gies is in order. How should the threshold and the minimal
previous work up to and including Ref14], and so the match of the first stage be set in order to minimize the CPU
result for AVis no different. power required while keeping the false alarm and false dis-
The main difference between the results of R88] and  missal rates at acceptable levels? How would non-Gaussian
previous analyses by the same authors—and therefore thwise statistics affect the first stage threshold and minimal
most important part of their paper as far as the detectiomatch? Would a hierarchical search benefit by using more
problem is concerned—is the introduction of the possibilitythan two stages? How is the threshold affected by the mini-
of choosing search templates to lie outside the manifold ofnal match when the approximation of high signal-to-noise
the continuous template family. Using ad hocexample, ratio can no longer be made?
the authors show that such a placement of templates can (2) The formalism of this paper should be applied to
result in a spacing roughly double that between discrete tenmehoose discrete templates from a better continuous template
plates chosen from the manifold formed by the continuougamily than the one considered here. The best two-parameter
template family. My analysis in this paper does not considetemplates will be based on the highest post-Newtonian order
this possibility, but the formalism of Sec. Il can easily be computations that have been performed for circularized,

B. Future directions

extended to investigate this problem in the future. spinless binaries, augmented perhaps by terms of still higher
order from the theory of perturbations of Schwarzschild or
IV. CONCLUSIONS Kerr spacetime. | plan to soon apply my geometric formal-

ism to the post®>-Newtonian templates which are currently
the best available.

This paper has presented a method for semianalytically (3) In order to detect some of the more interesting signals,
calculating the number of templates required to detect gravit will be necessary to consider templates with more than two
ity waves from inspiraling binaries with LIGO as a function intrinsic parameters. Apostolatos has shown in [REf] that
of the fraction of event rate lost due to the discrete spacing ofvhen the objects comprising the binary are no longer con-
the templates in the binary parameter space. This methodtrained to have negligible spins, large volumes of the result-
based on differential geometry, emphasizes that ultimately ing five-dimensional parameter space are very poorly de-
finer template spacing is required than has previously beetected by spinless templates. It remains to be seen how many
taken as typical in the literature, in order to retain a reasonsources are expected by astrophysicists to populate those re-
able fraction of the event rate. This paper details the firsgions of parameter space, although current estimf@¢s
calculation of this kind that uses post-Newtonian templategplace the number at a small fraction of all compact binaries.
and a noise curve which takes into account the coloration ot would also be wise to consider the effect of an

A. Summary of results
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eccentricity parameter, since binaries formed by close capment, but they may have a noticeable effect when a very low

ture (which may be common in globular clustgmsould not  loss of ideal event rate is desired.

be guaranteed to have circularized orbits. (6) Finally, a systematic investigation of the optimal
(4) The fact that the wave form templates are close buthoice of search templates outside the continuous template

not exact solutions to the general relativistic two-body probfamily is in order. This problem has been addressed in a

lem (i.e., the fitting factor of even the best continous tem-preliminary way in Ref[28], but it deserves further scrutiny,

plate family will be slightly less than unifywill change this  especially since it relates to ited) above.
paper’s estimates of computing power somewhat. Clearly,

the spacing between templates must be tightened to some
degree in order to compensate for the imperfection, but a
more detailed analysis of this correction has not yet been
done. My thanks to Theocharis Apostolatos and Eanna Flanagan

(5) The effect of nonquadrupolar harmonics of the gravi-for helping me get started. | am most indebted to Kip Thorne
tational wave on the construction of search templates shoulfbr his guidance and his patience in reading the manuscript.
be considered. These harmonics have been ignored in previhis work was supported in part by the NSF graduate pro-
ous analyses of detection and even of parameter measurgram and in part by NSF Grant No. PHY-9424337.
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