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Search templates for gravitational waves from inspiraling binaries: Choice of template spacing

Benjamin J. Owen*

Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125
~Received 8 November 1995!

Gravitational waves from inspiraling, compact binaries will be searched for in the output of the LIGO-
VIRGO interferometric network by the method of ‘‘matched filtering’’—i.e., by correlating the noisy output of
each interferometer with a set of theoretical wave form templates. These search templates will be a discrete
subset of a continuous, multiparameter family, each of which approximates a possible signal. The search might
be performedhierarchically, with a first pass through the data using a low threshold and a coarsely spaced,
few-parameter template set, followed by a second pass on threshold-exceeding data segments, with a higher
threshold and a more finely spaced template set that might have a larger number of parameters. Alternatively,
the search might involve a single pass through the data using the larger threshold and finer template set. This
paper extends and generalizes the Sathyaprakash-Dhurandhar~SD! formalism for choosing the discrete, finely
spaced template set used in the final~or sole! pass through the data, based on the analysis of a single
interferometer. The SD formalism is rephrased in geometric language by introducing a metric on the continu-
ous template space from which the discrete template set is drawn. This template metric is used to compute the
loss of signal-to-noise ratio and reduction of event rate which result from the coarseness of the template grid.
Correspondingly, the template spacing and total numberN of templates are expressed, via the metric, as
functions of the reduction in event rate. The theory is developed for a template family of arbitrary dimension-
ality ~whereas the original SD formalism was restricted to a single nontrivial dimension!. The theory is then
applied to a simple post1-Newtonian template family with two nontrivial dimensions. For this family, the
number of templatesN in the finely spaced grid is related to the spacing-induced fractional lossL of event rate
and to the minimum massMmin of the least massive star in the binaries for which one searches by
N;23105(0.1/L)(0.2M( /Mmin)

2.7 for the first LIGO interferometers and by N;8
3106(0.1/L)(0.2M( /Mmin)

2.7 for advanced LIGO interferometers. This is several orders of magnitude greater
than one might have expected based on Sathyaprakash’s discovery of a near degeneracy in the parameter space,
the discrepancy being due to that paper’s high choice ofMmin and less stringent choice ofL. The computa-
tional powerP required to process the steady stream of incoming data from a single interferometer through the
closely spaced set of templates is given in floating-point operations per second byP;3
31010(0.1/L)(0.2M( /Mmin)

2.7 for the first LIGO interferometers and byP;431011(0.1/L)
3(0.2M( /Mmin)

2.7 for advanced LIGO interferometers. This will be within the capabilities of LIGO-era
computers, but a hierarchical search may still be desirable to reduce the required computing power.@S0556-
2821~96!02112-1#

PACS number~s!: 04.80.Nn, 04.30.2w, 07.05.Kf, 97.80.2d
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I. INTRODUCTION

Compact binary star systems are likely to be an importa
source of gravitational waves for the broadband laser int
ferometric detectors now under construction@1#, as they are
the best understood of the various types of postulated grav
wave sources in the detectable frequency band and th
waves should carry a large amount of information. With
our own Galaxy, there are three known neutron-star binar
whose orbits will decay completely under the influence
gravitational radiation reaction within less than one Hubb
time, and it is almost certain that there are many more as
undiscovered. Current estimates of the rate of neutron-st
neutron-star~NS-NS! binary coalescences@2,3# based on
these~very few! known systems project an event rate of thre
per year within a distance of roughly 200 Mpc; and estimat
based on the evolution of progenitor, main-sequence binar
@4# suggest a distance as small as roughly 70 Mpc for thr
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events per year. These distances correspond to a sig
strength which is within the target sensitivities of the Lase
Interferometric Gravitational Wave Observatory~LIGO! and
VIRGO interferometers@5,6#. However, to find the signals
within the noisy LIGO-VIRGO data will require a careful
filtering of the interferometer outputs. Because the predicte
signal strengths lie so close to the level of the noise, it wi
be necessary to filter the interferometer data streams in ord
to detect the inspiral events against the background of spu
ous events generated by random noise.

The gravitational wave form generated by an inspiralin
compact binary has been calculated using a combination
post-Newtonian and post-Minkowskian expansions@7,8# to
post2-Newtonian order by the consortium of Blanchet
Damour, Iyer, Will, and Wiseman@9#, and will be calculated
to post3-Newtonian order long before the LIGO and VIRGO
interferometers come on-line~ca. 2000!. Because the func-
tional form of the expected signal is so well known, it is an
ideal candidate for matched filtering, a venerable and wide
known technique which is laid out in detail elsewhere@10#
and briefly summarized here.
6749 © 1996 The American Physical Society
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FIG. 1. A schematic depiction of the manifold
formed by the continuous template family, here
represented as a two-dimensional surface lyin
within a three-dimensional space. The discret
template family, shown by the dots, resides
within this manifold. The3 indicates the loca-
tion of an actual signal, which because it is an
exact solution to the Einstein equations does no
lie within the manifold. The1 marks the spot in
the manifold which is closest to~has the highest
inner product with! the signal. In general, this
location falls in between the actual discrete tem
plates.
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The matched filtering strategy is to compute a cross c
relation between the interferometer output and a templ
wave form, weighted inversely by the noise spectrum of t
detector. The signal-to-noise ratio is defined as the value
the cross correlation of the template with a particular stre
of data divided by the rms value of the cross correlation
the template with pure detector noise. If the signal-to-no
ratio exceeds a certain threshold, which is set primarily
control the rate of false alarms due to fluctuations of t
noise, a detection is registered. If the functional form of t
template is identical to that of the signal, the mean signal-
noise ratio in the presence of a signal is the highest poss
for any linear data-processing technique, which is w
matched filtering is also known as optimal filtering.

In practice, however, the template wave forms will diffe
somewhat from the signals. True gravitational-wave sign
from inspiraling binaries will be exact solutions to the Ein
stein equations for two bodies of non-negligible mass, wh
the templates used to search for these signals will be, at b
finite-order approximations to the exact solutions. Also, tr
signals will be characterized by many parameters~e.g., the
masses of the two objects, their spins, the eccentricity,
orientation of the orbit, . . . ), some of which might be ne-
glected in construction of the search templates. Thus, the
signals will lie somewhat outside the submanifold formed
the search templates in the full manifold of all possible d
tector outputs~see Fig. 1!.

Apostolatos@11# has defined the ‘‘fitting factor’’FF to
quantitatively describe the closeness of the true signals to
template manifold in terms of the reduction of the signal-t
noise ratio due to cross correlating a signal lying outside
manifold with all the templates lying inside the manifold.
the fitting factor of a template family is unity, the signal lie
in the template manifold. If the fitting factor is less tha
unity, the signal lies outside the manifold, and the fittin
factor represents the cross correlation between the signal
the template nearest it in the template manifold.

Even if the signal were to lie within the template man
or-
ate
he
of

tch
of
ise
to
he
he
to-
ible
hy

r
als
-
ile
est,
ue

and

true
by
e-

the
o-
the
If
s
n
g
and

i-

fold, it would not in general correspond to any of the actua
templates used to search the data. The parameters descri
the search templates~masses, spins, etc.! can vary continu-
ously throughout a finite range of values. The set of tem
plates characterized by the continuously varying paramet
is of course infinite, so the interferometer output must b
cross correlated with a finite subset of the templates who
parameter values vary in discrete steps from one template
the next. This subset~the ‘‘discrete template family’’! has
measure zero on the manifold of the full set of possible tem
plates~the ‘‘continuous template family’’!, so the template
which most closely matches a signal will generally lie in
between members of the discrete template family~again, see
Fig. 1!. The mismatch between the signal and the nearest
the discrete templates will cause some reduction in t
signal-to-noise ratio and therefore in the observed event ra
as some signals which would lie above the threshold if cro
correlated with a perfectly matched filter are driven belo
the threshold by the mismatch. Thus, the spacing betwe
members of the discrete template family must be chosen
as to render acceptable the loss in event rate, without requ
ing a prohibitive amount of computing power to numericall
perform the cross correlations of the data stream with all
the discrete templates.

The high computational demands of a laser interferome
ric detector may in fact make it desirable to perform ahier-
archical search. In a hierarchical search, each stretch of da
is first filtered by a set of templates which rather sparse
populates the manifold, and the stretches which fail to e
ceed a relatively low signal-to-noise threshold are discarde
The surviving stretches of data are filtered by a larger set
templates which more densely populates the manifold, a
are subjected to a higher threshold. The sparseness of
first-pass template set ensures that most of the data need o
be filtered by a small number of templates, while the hig
threshold of the final pass reduces the false alarm rate to
acceptable level.

Theoretical foundations for choosing the discrete set
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templates from the continuous family were laid b
Sathyaprakash and Dhurandhar for the case of white nois
Ref. @12#, and for ~colored! power-recycling interferometer
noise in Ref.@13#. Both papers used a simplified~so-called
‘‘Newtonian’’ ! version of the wave form which can be char
acterized by a single parameter, the binary’s ‘‘chirp mass
M. Recently, Sathyaprakash@14# began consideration of an
improved, ‘‘post-Newtonian’’ set of templates characterize
by two mass parameters. He found that, by a judicio
choice of the two parameters, the spacing between templa
can be made constant in both dimensions of the intrin
parameter space. Sathyaprakash’s parameters also ma
obvious ~by producing a very large spacing in one of th
dimensions! that a two-parameter set of templates can
constructed which, if it does not populate the manifold to
densely, need not be much more numerous than the o
parameter set of templates used in Refs.@12,13#.

In this paper I shall recast the Sathyaprakash-Dhurand
~SD! formalism in geometric language which, I believe, sim
plifies and clarifies the key ideas. I shall also generalize t
SD formalism to an arbitrary spectrum of detector noise a
to a set of template shapes characterized by more than
parameter. This is necessary because, as Apostolatos@11# has
shown, no one-parameter set of templates can be used
filter a post-Newtonian signal without causing an unacce
ably large loss of signal-to-noise ratio.

In one respect, my analysis will be more specialized th
that of the SD formalism. My geometric analysis require
that the templates of the discrete set be spaced very finely
order that certain analytical approximations may be mad
while the numerical methods of Sathyaprakash a
Dhurandhar are valid even for a large spacing between te
plates~as would be the case in the early stages of a hier
chical search!. The small spacing approximation is justified
on the grounds that at some point, even in a hierarchi
search, the data must be filtered by many closely spac
templates in order to detect a reasonable fraction~of order
unity! of the binary inspirals occurring in the Universe
within range of the LIGO-VIRGO network.

The rest of this paper is organized as follows. In Sec. II
develop my generalized, geometric variant of the SD forma
ism. I then apply this formalism to the general problem o
detection of gravitational waves from inspiraling binarie
and develop general formulas for choosing a discrete te
plate family from a given continuous template family. In
Sec. III, I detail an example of the use of my formalism
choosing discrete templates from a continuous template fa
ily which describes nonspinning, circularized binaries
post1-Newtonian order in the evolution of the wave form’
phase. I also estimate the computing power required fo
single-pass~nonhierarchical! search using this discrete tem
plate family, and compare to the previous work o
Sathyaprakash@14#. Finally, in Sec. IV, I summarize my
results and suggest future directions for research on
choice of discrete search templates.

II. THEORY OF MISMATCHED FILTERING

In this section, a geometric, multiparameter variant of th
SD formalism is developed. Unless otherwise stated, the f
lowing conventions and definitions are assumed.
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Following Cutler and Flanagan@15#, we define the inner
product between two functions of timea(t) andb(t) ~which
may be templates or interferometer outputs! as

^aub&[2E
0

`

d f
ã* ~ f !b̃~ f !1ã~ f !b̃* ~ f !

Sh~ f !

54 ReF E
0

`

d f
ã* ~ f !b̃~ f !

Sh~ f !
G . ~2.1!

Here,ã( f ) is the Fourier transform ofa(t),

ã~ f ![E
2`

`

dt ei2p f ta~ t !, ~2.2!

andSh( f ) is the detector’s noise spectrum, defined below.
The interferometer outputo(t) consists of noisen(t) plus

a signal As(t), where A is a dimensionless, time-
independent amplitude ands(t) is normalized such that
^sus&51. Thus,A describes the strength of a signal and
s(t) describes its shape.

Wave form templates are denoted byu(t;m,l), wherel
is the vector of ‘‘intrinsic’’ or ‘‘dynamical’’ parameters char-
acterizing the template shape andm is the vector of ‘‘extrin-
sic’’ or ‘‘kinematical’’ parameters describing the offsets of
the wave form’s end point. Examples of intrinsic parameters
l i are the masses and spins of the two objects in a compa
binary; examples of extrinsic parametersm i are the time of a
compact binary’s final coalescencet0 and the phase of the
wave form at coalescenceF0 .

Templates are assumed to be normalized such th
^u(m,l)uu(m,l)&51 for all m andl.

Expectation values of various quantities over an infinite
ensemble of realizations of the noise are denoted byE@ #.

The interferometer’s strain spectral noise densitySh( f ) is
the one-sided spectral density, defined by

E@ ñ~ f 1!ñ* ~ f 2!#5 1
2 d~ f 12 f 2!Sh~ f 1! ~2.3!

for positive frequencies and undefined for negative frequen
cies. The noise is assumed to have a Gaussian probabili
distribution.

Newton’s gravitational constantG and the speed of light
c are set equal to one.

A. Formalism

In developing our formalism, we begin by defining the
signal-to-noise ratio. For any single templateu(t) of unit
norm, the cross correlation with pure noise^nuu& is a random
variable with mean zero and variance unity@cf. Sec. II B of
Ref. @15#, wherein it is shown thatE@^nua&^nub&#5^aub&#.
The signal-to-noise ratio of a given stretch of datao(t), after
filtering by u(t), is defined to be

r[
^ouu&

rmŝ nuu&
5^ouu&. ~2.4!

This ratio is the statistic which is compared to a predeter
mined threshold to decide if a signal is present.
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If the templateu is the same as the signals, it optimally
filters the signal, and the corresponding~mean! optimal
signal-to-noise ratio is

E@r#5E@^n1Auuu&#5A. ~2.5!

If the templateu used to filter the data is not exactly th
same as the signals, the mean signal-to-noise ratio is de
creased somewhat from its optimal value:

E@r#5E@^n1Asuu&#5A^suu&. ~2.6!

The inner product̂suu&, which is bounded between zero an
one, is the fraction of the optimalE@r# retained in the mis-
matched filtering case, and as such is a logical measure o
effectiveness of the templateu in searching for the signal
shapes.

Now, suppose that we search for the signal with a fam
of templates specified by an extrinsic parameter vectorm and
an intrinsic parameter vectorl. Let us denote the values o
the parameters of the actual templates by (m(k) ,l(k)). For
example,m (k)

1 might be the value of the timet0 of coales-
cence for thekth template in the family, andm (k)

2 might be
the phase of thekth template wave form at coalescence.

The search entails computing, via fast Fourier transfor
~FFT’s!, all the inner products ^ouu(m(k) ,l(k))& for
k51,2, . . . . Inthese numerical computations, the key di
tinction between the extrinsic parametersm and the intrinsic
parametersl is this: One explores the whole range of valu
of m very quickly, automatically, and efficiently for a fixed
value ofl; but one must do these explorations separately
each of thel(k) . In this sense, dealing with the extrinsi
parameters is far easier and more automatic than dea
with the intrinsic ones@16#.

As an example~for further detail see Sec. 16.2.2 o
Schutz @17#!, for a given stretch of data one exploresall
values of the time of coalescence (t0[m1) of a compact
binary simultaneously~for fixed values of the other template
parameters! via a single FFT. If we write the Fourier trans
form ~for notational simplicity! as a continuous integra
rather than a discrete sum, we get

^ouu~m~k! ,l~k!!&

5E
0

`

d f
ei2p f t0

Sh~ f !
õ* ~ f !ũ~ f ; otherm~k! ,l~k!!. ~2.7!

The discrete fast Fourier transform~FFT! yields the discrete
analogue of the function oft0 as shown above, an array o
numbers containing the values of the Fourier transform
all the discrete values oft0 .

Because, for fixedl(k) , the extrinsic parametersm are
dealt with so simply and quickly in the search, througho
this paper we shall focus primarily on a template family
intrinsic parametersl, which govern the shape of the tem
plate. Correspondingly, we shall adopt the following quant
as our measure of the effectiveness with which a particu
template shape—i.e., a particular vectorl(k) of the intrinsic
parameters—matches the incoming signal:

max
m

^suu~m,l~k!!&. ~2.8!
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Here, the maximization is over all continuously varying val-
ues of the extrinsic parameters. Then, the logical measure
the effectiveness of the entire discrete family of templates in
searching for the signal shape is

max
k

@max
m

^suu~m,l~k!!&#, ~2.9!

which is simply ~2.8! maximized over all the discrete tem-
plate shapes.

In order to focus on the issue of discretization of the tem
plate parameters rather than on the inadequacy of the co
tinuous template family, let us assume that the signal shap
s is identical to some template. The discussion of the preced
ing paragraphs suggests that in discussing the discretizatio
of the template parameters we will want to make use
of the match between two templatesũ( f ;m,l) and
ũ( f ;m1Dm,l1Dl) which we will define as

M ~l,Dl![max
m,Dm

^u~m,l!uu~m1Dm,l1Dl!&.

~2.10!

This quantity, which is known in the theory of hypothesis
testing as theambiguity function,is the fraction of the opti-
mal signal-to-noise ratio obtained by using a template with
intrinsic parametersl to filter a signal identical in shape to a
template with intrinsic parametersl1Dl.

Using the match~2.10! it is possible to quantify our intui-
tive notion of how ‘‘close’’ two template shapes are to each
other. Since the match clearly has a maximum value of unit
at Dl50, we can expand in a power series aboutDl50 to
obtain

M ~l,Dl!'11
1

2 S ]2M

]Dl i]Dl j D
Dlk50

Dl iDl j . ~2.11!

This suggests the definition of a metric

gi j ~l!52
1

2 S ]2M

]Dl i]Dl j D
Dlk50

~2.12!

so that themismatch12M between two nearby templates is
equal to the square of the proper distance between them:

12M5gi jDl iDl j . ~2.13!

Having defined a metric on the intrinsic parameter space
we can now use it to calculate the spacing of the discret
template family required to retain a given fraction of the
ideal event rate. Schematically, we can think of the template
as forming a lattice in theN-dimensional intrinsic parameter
space whose unit cell is anN-dimensional hypercube with
sides of proper lengthdl. The worst possible case~lowest
E@r#) occurs if the pointl̃ describing the signal is exactly in
the middle of one of the hypercubes. If the templates ar
closely spaced, i.e.,dl!1, such a signal has a squared proper
distance

gi jDl iDl j5N~dl/2!2 ~2.14!

from the templates at the corners of the hypercube.
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We define theminimal match MMto be the match be-
tween the signal and the nearest templates in this worst p
sible case, i.e., the fraction of the optimal signal-to-noi
ratio retained by a discrete template family when the sig
falls exactly ‘‘in between’’ the nearest templates. This min
mal match is the same quantity that Dhurandhar a
Sathyaprakash in Ref.@13# denote ask21; but since it is the
central quantity governing template spacing it deserves so
recognition in the form of its own name. Our choice of nam
closely parallels the term ‘‘fitting factor’’FF, which Apos-
tolatos introduced in Ref.@11# to measure the similarity be-
tween actual signals and a continuous template family.

The minimal match, which is chosen by the experimen
based upon what he or she considers to be an acceptable
of ideal event rate, will determine our choice of spacing
the discrete template parameters and therefore the numb
discrete templates in the family. More specifically, the e
perimenter will choose some desired value of the minim
matchMM ; and then will achieve thisMM by selecting the
templates to reside at the corners of hypercubes with e
dl given by

MM512N~dl/2!2. ~2.15!

The number of templates in the resulting discrete templ
family will be the proper volume of parameter space divid
by the proper volume per templatedlN: i.e.,

N5

E dNlAdetigi j i

~2A~12MM !/N!N
. ~2.16!

B. Inspiraling binaries detected by LIGO

The formalism above applies to the detection of any se
signals which have a functional form that depends on a se
parameters which varies continuously over some range.
now develop a more explicit formula for the metric, given a
analytical approximation to the LIGO noise curve and a p
ticular class of inspiraling binary signals.

We approximate the ‘‘initial’’ and ‘‘advanced’’ bench-
mark LIGO noise curves by the following analytical fit t
Fig. 7 of Ref.@5#:

Sh~ f !5H 1
5 S0$~ f / f 0!

2412@11~ f / f 0!
2#%, f. f s ,

`, f, f s ,
~2.17!

wheref 0 is the ‘‘knee frequency’’ or frequency at which th
interferometer is most sensitive~which is determined by the
reflectivities of the mirrors and is set by the experimenters
the frequency where photon shot noise begins to domin
the spectrum! andS0 is a constant whose value is not impo
tant for our purposes. This spectrum describes photon s
noise in the ‘‘standard recycling’’ configuration of the inte
ferometer~second term! superposed on thermal noise in th
suspension of the test masses~first term!, and it approxi-
mates seismic noise by settingSh infinite at frequencies be-
low the ‘‘seismic-cutoff frequency’’f s .

Throughout the rest of this paper, the ‘‘first LIGO nois
curve’’ will refer to ~2.17! with f s 5 40 Hz andf 0 5 200
os-
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Hz, and the ‘‘advanced LIGO noise curve’’ will refer to
~2.17! with f s 5 10 Hz andf 0 5 70 Hz. These numbers are
chosen to closely fit Fig. 7 of Ref.@5# for the first LIGO
interferometers and for the advanced LIGO benchmark.
this paper, when various quantities~such as the number of
discrete templates! are given including a scaling withf 0 , this
indicates how the quantity changes whilef 0 is varied but
f s / f 0 is held fixed.
At this point it is useful to define the moments of the

noise curve~2.17!, following Poisson and Will@18#, as

I ~q![Sh~ f 0!E
f s / f0

f c / f0
dx

x2q/3

Sh~x f0!
5E

f s / f0

f c / f0
dx

5x2q/3

x2412~11x2!
,

~2.18a!

J~q![I ~q!/I ~7!. ~2.18b!

The upper limit of integrationf c denotes the coalescence
frequency or high-frequency cutoff of whatever template w
are dealing with, which very roughly corresponds to the la
stable circular orbit of a test particle in a nonspinning blac
hole’s Schwarzschild geometry.

For both first and advanced LIGO noise curves, the m
jority of inspiraling binary search templates will occupy re
gions of parameter space for whichf c is many timesf 0 .
Because we will always be dealing withI (q) for q.0, and
because the noise term in the denominator of the integrand
Eq. ~2.18a! increases asf 2 for f@ f 0 , we can simplify later
calculations by approximatingf c5` in the definition of the
moments.

To illustrate the metric formalism, we shall use template
based on a somewhat simplified version of the pos
Newtonian expansion. Since the inner product~2.1! has neg-
ligible contributions from frequencies at which the integran
oscillates rapidly, it is far more important to get the phase
u˜( f ) right than it is to get the amplitude dependence
Therefore, we adopt templates based on the ‘‘restricted
post-Newtonian approximation in which one discards a
multipolar components except the quadrupole, but kee
fairly accurate track of the quadrupole component’s pha
~for more details see Secs. II C and III A of Ref.@15#!. Ap-
plying the stationary phase approximation to that quadrup
lar wave form, we obtain

ũ~ f ;l,m!5 f27/6expH i F2
p

4
2F012p f t01C~ f ;l!G J ,

~2.19!

up to a multiplicative constant which is set by the conditio
^uuu&51 @19#.

The functionC, describing the phase evolution in~2.19!,
is currently known to post2-Newtonian order for the case of
two nonspinning point masses in a circular orbit about ea
other as
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C~ f ;M ,h!5
3

128
h21~pM f !25/3F11

20

9 S 743336
1
11

4
h D

3~pM f !2/3216p~pM f !110S 30586731016064

1
5429

1008
h1

617

144
h2D ~pM f !4/3G ~2.20!

@cf. Eq. ~3.6! of Ref. @18##. Here, the mass parameters ha
been chosen to beM , the total mass of the system, andh,
the ratio of the reduced mass to the total mass.

The actual amplitudeA of a wave form is proportional to
1/R, whereR is the distance to the source; and this lets
find the relation between minimal match and event ra
which we will need in order to wisely choose the minim
match. Assuming that compact binaries are uniformly d
tributed throughout space on large distance scales,
means that the rate of events with a given set of intrin
parameters and with an amplitude greater thanA is propor-
tional to 1/A3. Setting a signal-to-noise thresholdr0 is
equivalent to setting a maximum distanceR0}1/A to which
sources with a given set of intrinsic parameters can be
tected. Thus, if we could search for signals with the ent
continuous template family, we would expect the observ
event rate to scale as 1/r0

3 . This ideal event rate is an uppe
limit on what we can expect with a real, discrete templa
family.

We can obtain a lower bound on the observed event r
by considering what happens if all signals conspire to ha
parameters lying exactly in between the nearest search t
plates. In this case, all events will have reduced signal-
noise ratios ofMM times the optimal signal-to-noise ratio
A. This is naively equivalent to optimally filtering with a
threshold ofr0 /MM , so a pessimistic guess is

event rate}SMM

r0
D 3 ~2.21!
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for a fixed rate of false alarms. Note that the fraction of fal
dismissalsdue to template spacingis 12MM3, indepen-
dently of the thresholdr0 ~assumingr0@1). This is because
the scaling of absolute event rate withA is independent of
A, as discussed in the previous paragraph.

In real life, r0 is affected by the total number of discret
templates and by the minimal match of the discrete templ
family. This can be seen by the fact that the signal-to-no
ratio,

r[max
k

@max
m

^ouu~m,l~k!!&#, ~2.22!

is the maximum of a number of random variables. The c
variance matrix of these variables will be determined by t
minimal match, and will itself determine the probability dis
tribution ofr ~in the absence of a signal! which is used to set
the thresholdr0 in order to keep the false alarm rate below
certain level. However, since these effects are fairly smal
high signal-to-noise ratios~such as those to be used b
LIGO! and the issue of choosing thresholds is a proble
worthy of its own paper@20#, we will use~2.21! for the rest
of this paper.

For this two-parameter template family, the formula fo
the match~2.10! can be simplified somewhat by explicitly
performing the maximization over the extrinsic paramete
m and Dm. Since the integrand in the inner product~2.1!
depends onm andDm as exp$i@2pfDt02DF0#%, there is no
dependence onm but only onDm. Maximizing overDF0 is
easy: instead of taking the real part of the integral in t
inner product~2.1!, we take the absolute value.

To maximize overDt0 we go back a step. Let us defin
l0[t0 , and consider the (N11)-dimensional space formed
by l0 andl j . We expand the inner product between adjace
templates to quadratic order inDla to get a preliminary
metric gab , where the Greek indices range from 0 toN
~Latin indices range from 1 toN):
gab~l!52
1

2F ]2

]Dla]Dlb H UE
0

`

d f
f27/3

Sh~ f !
exp$ i @2p fDt01DC~ f ;l j ,Dl j !#%U

E
0

`

d f
f27/3

Sh~ f !
J G Dla50. ~2.23!

HereDC[C( f ;l j1Dl j )2C( f ;l j ) @21#.
We define the moment functionalJ such that, for a func-
tion a,

J@a#5
1

I ~7!
E
f s / f0

f c / f0
dx

x27/3

Sh~x f0!
a~x!, ~2.24!

and thus

JF(
n

anx
nG5(

n
anJ~723n!. ~2.25!
We also define the quantitiesca such that

c0[2p f , c j[
]DĈ

]Dl j , ~2.26!

where the derivative is evaluated atDl j50 andĈ is the part
of C in Eq. ~2.19! that is frequency dependent~any non-
frequency-dependent, additive parts ofC are removed when
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we take the absolute value in the maximized inner produc!.
Evaluation of the derivative in Eq.~2.23! then shows that, in
the limit f c / f 0→`,

gab5 1
2 ~J@cacb#2J@ca#J@cb#!. ~2.27!

Finally, we minimizegabDlaDlb with respect toDt0
~i.e., we projectgab onto the subspace orthogonal tot0) and
thereby obtain the following expression for the metric of ou
continuous template family:

gi j5g i j2
g0ig0 j

g00
. ~2.28!

By taking the square root of the determinant of this metr
and plugging it into Eq.~2.16!, we can compute the numbe
of templatesN that we need in our discrete family as
function of our desired minimal matchMM , or equivalently
of the loss of ideal event rate.

III. EXAMPLE: CIRCULARIZED NONSPINNING
BINARIES TO POST 1-NEWTONIAN ORDER

Although the phase of the inspiraling binary signal ha
recently been calculated to post2-Newtonian order@9#, it is
useful to calculate the number of templates that would
required in a Universe where the wave forms evolve only
post1-Newtonian order and all binaries are composed of no
spinning objects in circular orbits. There are several reaso
for this exercise.

~1! Spin effects are expected to be significant only for
small fraction of sources. Blanchetet al. @9# estimate very
small spin-orbit and spin-spin phase modulation terms f
typical neutron-star binaries based on models of evoluti
for currently known binary pulsars. Apostolatos@11# has
shown that templates with no spin-related terms perfo
quite well when searching for ‘‘signals’’ with spin-induced
phase modulation but no amplitude modulation, correspon
ing approximately to a favorable orientation of the spin axe
He has also shown that amplitude modulation due to sp
orbit precession can indeed be a significant effect, but on
for large spins and certain unfavorable orientations of t
axes. Therefore, consideration of a spinless family of te
plates is quite sufficient for a rough estimate of the compu
ing power required to perform a search that will overlook
small fraction of binary inspiral events due to mismatche
filtering.

~2! We assume circular orbits because gravitational rad
tion reaction circularizes most eccentric orbits on a tim
scale much less than the lifetime of a compact binary@22#.

~3! The phase of the templates is truncated
post1-Newtonian order for simplicity. Although Apostolatos
has demonstrated in Ref.@11# that post1-Newtonian tem-
plates will not have a large enough fitting factor to be usefu
consideration of such a set is a first step toward obtaining
adequate set of templates—and it is a particularly importa
step since the metric coefficients will turn out to be consta
over the template manifold.
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A. Calculation of the two-dimensional metric

Having chosen as the continuous template family the s
of post1-Newtonian, circular, spinless binary wave forms
we must now choose the discrete templates from within th
continuous family. The first step is to calculate the coeffi
cients of the metric on the two-dimensional dynamical pa
rameter space.

It is convenient to change the mass parametrization fro
the variables (M ,h) to the Sathyaprakash variables@14#

t15
5

256
h21M25/3~p f 0!

28/3, ~3.1!

t25
5

192
~hM !21S 743336

1
11

4
h D ~p f 0!

22. ~3.2!

Note that t1 and t2 are simply the Newtonian and
post1-Newtonian contributions to the time it takes for the
carrier gravitational wave frequency to evolve fromf 0 to
infinity. The advantage of these variables is that the metr
coefficients in (t1 ,t2) coordinates are constant~in the limit
f c@ f 0) for all templates. This is because the phase of th
wave formũ( f ) is linear in the Sathyaprakash variables, an
so the integral in the definition of the match~2.10! depends
only on the displacement (Dt1 ,Dt2) between the templates,
and not on the location (t1 ,t2) of the templates in the dy-
namical parameter space.

The dynamical parameter-dependent part of the tem
plates’ phase is given by@Eq. ~2.20! truncated to first post-
Newtonian order and reexpressed in terms of (t1 ,t2) using
Eqs.~3.1! and ~3.2!#

C~ f ;t1 ,t2!5 6
5 p f 0~ f / f 0!

25/3t112p f 0~ f / f 0!
21t2 ,

~3.3!

and it is easy to read offc1 and c2 @Eq. ~2.26!# as the
coefficients oft1 andt2 @23#. By inserting thesec j into Eq.
~2.25!, the relevant moment functionals can be expressed
terms of the moments of the noise:

J@c0#52p f 0J~4!, J@c1#52p f 0
3
5 J~12!,

J@c2#52p f 0J~10!, J@c0
2#5~2p f 0!

2J~1!,

J@c0c1#5~2p f 0!
2 3
5 J~9!, J@c0c2#5~2p f 0!

2J~7!,

J@c1
2#5~2p f 0!

2 9
25 J~17!, J@c1c2#5~2p f 0!

2 3
5 J~15!,

J@c2
2#5~2p f 0!

2J~13!. ~3.4!

We can compute the needed moments of the noise
numerically evaluating the integrals~2.18b!. By setting the
upper limit of integration to infinity, i.e., by approximating
f c / f 0 as infinite for all templates under consideration, w
find that the moments have the constant values given
Table I; and therefore the moment functionals~3.4! have the
constant values given in Table II. Inserting these values in
Eqs. ~2.27! and ~2.28! yields, for the coordinates
(l05t0 ,l

15t1 ,l
25t2), the three-metric and two-metric
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gab5~2p f 0!
2S 10.208 20.220 20.168

. 10.784 10.481

. . 10.309
D and ~3.5!

gi j5~2p f 0!
2S 0.552 0.304

. 0.173D ~3.6!

for the first LIGO noise curve, and

gab5~2p f 0!
2S 10.209 20.257 20.183

. 11.320 10.712

. . 10.407
D and ~3.7!

gi j5~2p f 0!
2S 1.01 0.486

. 0.246D ~3.8!

for the advanced LIGO noise curve~where the dots denote
terms obtained by symmetry!.

We shall also estimate the errors in the metric coefficien
due to the approximationf c / f 0→`: The moment integrals
defined in Eq.~2.18b! can be rewritten as

E
f s / f0

`

dx
5x2q/3

x2412~11x2!
2E

f c / f0

`

dx
5x2q/3

x2412~11x2!
,

TABLE I. Numerical values of the moments of the noise in th
limit f c / f 0→`, for the noise curves of the first LIGO interferom-
eters (f s / f 051/5) and advanced LIGO interferometer
( f s / f 051/7).

Noise moment First LIGO value Advanced LIGO value

J~1! 1.27 1.26
J~4! 0.927 0.919
J~7! 1 ~exact! 1 ~exact!
J~9! 1.24 1.26
J~10! 1.44 1.49
J~12! 2.13 2.31
J~13! 2.69 3.03
J~15! 4.67 5.80
J~17! 8.88 12.7

TABLE II. Numerical values of the moment functionals, unde
the same assumptions as in Table I.

Moment functional First LIGO value Advanced LIGO value

J@c0# (2p f 0)0.927 (2p f 0)0.919
J@c1# (2p f 0)1.28 (2p f 0)1.38
J@c2# (2p f 0)1.44 (2p f 0)1.49
J@c0

2# (2p f 0)
21.27 (2p f 0)

21.26
J@c0c1# (2p f 0)

20.743 (2p f 0)
20.756

J@c0c2# (2p f 0)
2 ~exact! (2p f 0)

2 ~exact!
J@c1

2# (2p f 0)
23.20 (2p f 0)

24.56
J@c1c2# (2p f 0)

22.80 (2p f 0)
23.48

J@c2
2# (2p f 0)

22.69 (2p f 0)
23.03
ts

where the first integral is the expression used in the abo
metric coefficients and the second is the correction due
finite f c / f 0 . The second integral can be expanded to lowe
order in f 0 / f c as

5

2~11q/3!
~ f 0 / f c!

11q/3,

and from this the errors in the moments~and therefore in the
metric coefficients! due to approximatingf c as infinite are
estimated to be less than or of order ten percent for the fi
LIGO interferometers and one percent for the advanc
LIGO interferometers over most of the relevant volume o
parameter space. Since the two-parameter, post1-Newtonian
continuous template family is known to be inadequate for th
task of searching for real binaries, these errors are sm
enough to justify our use of thef c→` approximation in this
exploratory analysis.

B. Number of search templates required

Since the metric coefficients are constant in this analys
the formula for the required number of templates@Eq. ~2.16!#
reduces to

N5
Adetigi j i
2~12MM !

E dt1dt2 . ~3.9!

The square root of the determinant of the metric is given b
(2p f 0)

2 0.108 for the advanced LIGO noise curve and b
(2p f 0)

2 0.058 for the initial LIGO noise curve, so once we
have decided on the range of parameters we deem as
physically reasonable we will have a formula forN as a
function ofMM .

The most straightforward belief to cherish about neutro
stars is that they all come with masses greater than a cert
minimumMmin , which might be set to 0.2M( ~based on the
minimum mass that any neutron star can have@24#! or
1.0M( ~based on the observed masses of neutron stars
binary pulsar systems@25#!. In terms of the variables
(M ,h) the constraintM1.Mmin andM2.Mmin is easily ex-
pressed as

1
2 M ~12A124h!.Mmin ,

but in terms of the Sathyaprakash variables@Eqs. ~3.1! and
~3.2!# the expression becomes rather unwieldy to writ
down. However, see Fig. 2 for a plot of the allowed region i
(t1 ,t2) coordinates.

For this reason we have found it convenient to use
Monte Carlo integration routine@26# to evaluate the coordi-
nate volume integral*dt1dt2 . The Monte Carlo approach
becomes especially attractive when evaluating the prop
volume integral*dt1dt2Adetigi j i for cases where the inte-
grand is allowed to vary—and in fact may itself have to b
evaluated numerically, as will be the case for
post2-Newtonian set of templates. The integral has nume
cal values of 0.18 and 24 seconds2 for initial and advanced
LIGO interferometer parameters, respectively, assuming
Mmin of 0.2M( and arbitrarily largeMmax. The integral can
be shown~numerically! to scale roughly asf 0

24.5 ~indepen-
dent of f 0) and asMmin

22.7 for Mmin ranging from 0.2 to 1.0
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solar masses~the dependence onMmax is negligible for any
value greater than a few solar masses!.

Inserting the above numbers into Eq.~3.9!, we find that

N.2.73105S 12MM

0.03 D 21S Mmin

0.2M(
D 22.7S f 0

200 HzD
22.5

~3.10!

for the first LIGO noise curve, and

N.8.43106S 12MM

0.03 D 21S Mmin

0.2M(
D 22.7S f 0

70 HzD
22.5

~3.11!

for the advanced LIGO noise curve. The fiducial value
MM has been chosen as 0.97 to correspond to an event
of roughly 90 percent of the ideal event rate@cf. Eq. ~2.21!#.
In terms of the template-spacing-induced fractional lossL of
event rate, the number of templates required is

N.2.43105S L0.1D
21S Mmin

0.2M(
D 22.7S f 0

200 HzD
22.5

~3.12!

for the first LIGO noise curve, and

N.7.63106S L0.1D
21S Mmin

0.2M(
D 22.7S f 0

70 HzD
22.5

~3.13!

for the advanced LIGO noise curve.~For a minimum mass of
1.0M( , these numbers reduce to 3.13103 and 9.93104,
respectively.!

The thirtyfold increase in the number of templates b
tween the initial LIGO and advanced LIGO noise curves
due to the lowering of the seismic frequencyf s . If f s is
lowered, a given signal evolves a greater number of cycle
the interferometer bandwidth. Therefore, the filtered sign
to-noise ratio is sensitive to smaller changes in the sig
parameters, and the discrete template spacing must be t
ened to compensate—resulting in a larger number of te
plates. A factor of 2 in the increase is due to the difference

FIG. 2. The two-dimensional region of parameter space inh
ited by binaries composed of objects more massive than 1M( . t1
and t2 are expressed~in milliseconds! for f 05200 Hz, but the
shape of the region does not change withf 0 . The upper boundary
of the wedge is set byMmin . The left-hand boundary is set by
Mmax, but is essentially identical to thet2 axis for Mmax greater
than a few solar masses. The region below the wedge corresp
to h.1/4, which isa priori impossible.
of
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theshapeof the noise curve (f s / f 0 changes from 1/5 to 1/7!;
the remainder is due to the scaling withf 0 ~or, equivalently,
f s) as f s / f 0 is held fixed, which is shown in the previous
four equations.

C. Template spacing

With the aid of the metric coefficients given in Eqs.~3.6!
and ~3.8!, it is a simple task to select the locations of th
templates and the spacing between them.

Because the metric coefficients form a constant 232 ma-
trix, we can easily find the eigenvectorsex1 andex2 of igi j i
and use them as axes to lay out a grid of templates. T
numerical values are

ex150.874et1
10.485et2

,

~3.14!
ex2520.485et1

10.874et2

for the first LIGO noise curve, and

ex150.899et1
10.437et2

,

~3.15!
ex2520.437et1

10.899et2

for the advanced LIGO noise curve. The infinitesimal prope
distance is given in terms of the eigencoordinates
E1(dx1)

21E2(dx2)
2, whereE1 andE2 are the eigenvalues

of the metric.
Therefore, we simply use Eq.~2.15! to obtain the template

spacings

dxj5A2~12MM !

Ej
, j51,2. ~3.16!

We find that the eigenvalues of the metrics~3.6! and ~3.8!
are (2p f 0)

2 times 0.721 and 0.004 27~first LIGO!, and
(2p f 0)

2 times 1.25 and 0.009 84~advanced LIGO!. There-
fore, the template spacings are given by

dx150.22 msS 12MM

0.03 D 1/2S f 0
200 HzD

21

,

~3.17!

dx252.9 msS 12MM

0.03 D 1/2S f 0
200 HzD

21

for the first LIGO noise curve, and by

dx150.49 msS 12MM

0.03 D 1/2S f 0
70 HzD

21

,

~3.18!

dx255.6 msS 12MM

0.03 D 1/2S f 0
70 HzD

21

for the advanced LIGO noise curve. Figure 3 shows the l
cations of some possible templates superposed on a con
plot of the match with the template in the center of the grap

D. Computing power requirements

Drawing on the previous work of Schutz@17# concerning
the mechanics of fast-Fourier-transforming the data, we c

ab-
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estimate the CPU power required to process the interfero
eter output on-line through a single-pass~nonhierarchical!
search involvingN templates.

Although the data will be sampled at a rather high ra
~tens of kHz!, frequencies above some upper limitf u.4 f 0
can be thrown away~in Fourier transforming the data! with
only negligible effects on the signal-to-noise ratio. This low
ers the effective frequency of sampling to 2f u ~the factor of
two is needed so that the Nyquist frequency isf u), and
thereby considerably reduces the task of performing t
inner-product integrals. If the length of the array of numbe
required to store a template isF and that required to store a
given stretch of data isD, the number of floating-point op-
erations required to process that data stretch throughN filters
is

NFO.DN~1613 log2F ! ~3.19!

@cf. Eq. ~16.37! of Schutz@17#, with the fractional overlap
between data segmentsx chosen as roughly 1/15#.

Actually, F varies from filter to filter, but most of the
search templates occupy regions of parameter space wh
the mass is very low—and thus the storage size of the te
plate,

F.2 f ut1~ f 0 / f s!
8/3, ~3.20!

is very large@27#. The longest filter is the one computed fo
two stars of massMmin , so by insertingh51/4 and
M52Mmin into Eq.~3.1! and combining with Eq.~3.20!, we
find that we can make a somewhat pessimistic estimate
the computational cost by using

FIG. 3. Locations of various discrete templates for the fir
LIGO interferometers are shown by dots. The contours indicate
value of the match between a template located at (t1 ,t2) and the
template located in the center of the figure. The contours are dra
at match values of 0.97, 0.98, and 0.99. Templates are placed a
the principal axes of the elliptical contours. However, in order
make the ellipses visible the figure had to be stretched horizonta
distorting the contours and making the axes appear nonorthogo
m-
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F.224S Mmin

0.2M(
D 25/3S f s

10 HzD
28/3S f 0

70 HzD . ~3.21!

The required CPU powerP for an on-line search is ob-
tained by dividing Eq.~3.19! by the total duration of the data
set,

Ttot.D/~2 f u!,

to find that

P.2Nf u~1613 log2F !. ~3.22!

Combining Eq.~3.22! with Eqs.~3.10! and ~3.11! gives us

P.30 GflopsS L0.1D
21S Mmin

0.2M(
D 22.7S f 0

200 HzD
21.5

~3.23!

for an on-line search by the first LIGO interferometers, and

P.400 GflopsS L0.1D
21S Mmin

0.2M(
D 22.7S f 0

70 HzD
21.5

~3.24!

for the advanced LIGO interferometers.
Although the estimates in the paragraph above are not t

be believed beyond a factor of order unity, the magnitude o
the numbers shows that a hierarchical search strategy may
desirable to keep the computing power requirements at
reasonable level for nonsupercomputing facilities. That is
the data would first be filtered through a more widely space
~low minimal match! set of templates with a relatively low
signal-to-noise threshold, and only the segments which ex
ceed this preliminary threshold would be analyzed with the
finely spaced~high minimal match! templates.

The metric-based formalism of this paper only holds for
the finely spaced set of templates used in the final stage
the hierarchical search; the template spacing used in the ea
lier stages of the search will have to be chosen using mor
complex methods such as those of Sathyaprakash an
Dhurandhar@12,13#.

E. Comparison with previous results

The only previous analysis of the problem of choosing the
discrete search templates from the two-parameter, restricte
post1-Newtonian continuous template family is that of
Sathyaprakash@14#, in which he found that the entire volume
of parameter space corresponding toMmin51M( could be
covered by a set of templates which vary only in
t11t2—thereby reducing the effective dimensionality of the
mass parameter space to 1. This implied a value ofN similar
to that obtained in the one-parameter~Newtonian template!
analysis of Dhurandhar and Sathyaprakash in Ref.@13#.

It is not possible to fairly compare my value forN to the
values given by Dhurandhar and Sathyaprakash in Table
of Ref. @13# due to our differing assumptions concerning the
sources and the desirable level of the minimal match. There
fore, I will compare the assumptions.

Dhurandhar and Sathyaprakash typically consider a min
mal match of 0.8 or 0.9 rather than 0.97, This would lead to
a loss of 30–50% of the ideal event rate@cf. Eq. ~2.21!#. If
the current ‘‘best estimates’’ of inspiraling binary event rates
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@2,3# are correct, the ideal event rate for LIGO and VIRGO
will not be more than about one hundred per year even wh
operating at the ‘‘advanced interferometer’’ noise levels, a
the loss of up to half of these events would be unacceptab

From Eqs.~3.23! and~3.24! it can be seen that the depen
dence ofN onMmin is the most important factor influencing
the computing power requirement. The two-parameter ana
sis of Sathyaprakash@14# uses a value forMmin of 1M( ,
which is based on the statistics of~electromagnetically!
known binary pulsars. However, because there is no know
firm physical mechanism that prevents neutron stars fro
forming with masses between 0.2 and 1M( , LIGO and
VIRGO should use a discrete template family wit
Mmin50.2M( . After all, laser interferometer gravitationa
wave detectors are expected to bring us information ab
astronomical objects as yet unknown.

During the final stages of completion of this manuscript,
new paper by Balasubramanian, Sathyaprakash, a
Dhurandhar appeared@28#, applying differential geometry to
the problem of detecting compact binary inspiral events a
extracting source parameters from them. It applies the to
of differential geometry primarily to the problem of param
eter measurement rather than that of signal detection, and
does not develop the geometrical formalism as far as is do
in Sec. II of this paper. The metric constructed in Ref.@28# is
identical to the information matrix which was suggested f
use in the construction of a closely spaced, discrete temp
family in the authors’ previous work@13#. While this is quite
useful for parameter measurement, it neglects maximizat
over kinematical parameters and thus is not very useful
the construction of search templates. Also, the assumpti
aboutMM andMmin are no different from those made in
previous work up to and including Ref.@14#, and so the
result forN is no different.

The main difference between the results of Ref.@28# and
previous analyses by the same authors—and therefore
most important part of their paper as far as the detecti
problem is concerned—is the introduction of the possibili
of choosing search templates to lie outside the manifold
the continuous template family. Using anad hocexample,
the authors show that such a placement of templates
result in a spacing roughly double that between discrete te
plates chosen from the manifold formed by the continuo
template family. My analysis in this paper does not consid
this possibility, but the formalism of Sec. II can easily b
extended to investigate this problem in the future.

IV. CONCLUSIONS

A. Summary of results

This paper has presented a method for semianalytica
calculating the number of templates required to detect gra
ity waves from inspiraling binaries with LIGO as a function
of the fraction of event rate lost due to the discrete spacing
the templates in the binary parameter space. This meth
based on differential geometry, emphasizes that ultimatel
finer template spacing is required than has previously be
taken as typical in the literature, in order to retain a reaso
able fraction of the event rate. This paper details the fi
calculation of this kind that uses post-Newtonian templat
and a noise curve which takes into account the coloration
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noise in the detector due to both standard recycling phot
shot noise and thermal noise in the suspension of the t
masses.

The result is that it is possible to search the data for b
naries containing objects more massive than 0.2M( thor-
oughly enough to lose only;10% of the ideal event rate
without requiring a quantum leap in computing technology
The computational cost of such a search, conducted on-l
using a single pass through the data, is roughly 20 Gflops
the first LIGO interferometers~ca. 2000! and 270 Gflops for
the advanced LIGO interferometers~some years later!. Due
to the nature of the approximations made in this paper, the
numbers should not be believed to any greater precision th
a factor of order unity; but they are certainly good order-o
magnitude estimates. These numbers are feasible~or very
nearly feasible! even for a present-day supercomputing faci
ity, but a hierarchical search strategy~using as its first stage
a widely spaced set of templates similar to that analyzed
Sathyaprakash@14#! may be desirable to reduce the cost.

B. Future directions

There are several issues in this area which remain op
for further investigation. Generally speaking, they fall into
two categories characterized by pursuit of two different b
complementary goals: obtaining an estimate of computin
requirements to a precision better than the factor of uni
achieved by the rough estimate in this paper, and reduci
those computing requirements by using different algorithm
to cover the templates’ parameter space.

~1! A thorough investigation of hierarchical search strate
gies is in order. How should the threshold and the minim
match of the first stage be set in order to minimize the CP
power required while keeping the false alarm and false d
missal rates at acceptable levels? How would non-Gauss
noise statistics affect the first stage threshold and minim
match? Would a hierarchical search benefit by using mo
than two stages? How is the threshold affected by the min
mal match when the approximation of high signal-to-nois
ratio can no longer be made?

~2! The formalism of this paper should be applied t
choose discrete templates from a better continuous templ
family than the one considered here. The best two-parame
templates will be based on the highest post-Newtonian ord
computations that have been performed for circularize
spinless binaries, augmented perhaps by terms of still high
order from the theory of perturbations of Schwarzschild o
Kerr spacetime. I plan to soon apply my geometric forma
ism to the post2.5-Newtonian templates which are currently
the best available.

~3! In order to detect some of the more interesting signa
it will be necessary to consider templates with more than tw
intrinsic parameters. Apostolatos has shown in Ref.@11# that
when the objects comprising the binary are no longer co
strained to have negligible spins, large volumes of the resu
ing five-dimensional parameter space are very poorly d
tected by spinless templates. It remains to be seen how ma
sources are expected by astrophysicists to populate those
gions of parameter space, although current estimates@9#
place the number at a small fraction of all compact binarie
It would also be wise to consider the effect of an
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eccentricity parameter, since binaries formed by close c
ture ~which may be common in globular clusters! would not
be guaranteed to have circularized orbits.

~4! The fact that the wave form templates are close b
not exact solutions to the general relativistic two-body pro
lem ~i.e., the fitting factor of even the best continous tem
plate family will be slightly less than unity! will change this
paper’s estimates of computing power somewhat. Clea
the spacing between templates must be tightened to s
degree in order to compensate for the imperfection, bu
more detailed analysis of this correction has not yet be
done.

~5! The effect of nonquadrupolar harmonics of the grav
tational wave on the construction of search templates sho
be considered. These harmonics have been ignored in pr
ous analyses of detection and even of parameter meas
ap-

ut
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ure-

ment, but they may have a noticeable effect when a very lo
loss of ideal event rate is desired.

~6! Finally, a systematic investigation of the optimal
choice of search templates outside the continuous templa
family is in order. This problem has been addressed in
preliminary way in Ref.@28#, but it deserves further scrutiny,
especially since it relates to item~4! above.
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