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We develop winding number correlation functions that allow us to assess the role of field fluctua- 
tions on vortex formation in an Abelian gauge theory. We compute the behavior of these correlation 
functions in simple circumstances and show how fluctuations are important in the vicinity of the 
phase transition. We further show that, in our approximation, the emerging population of long or 
infinite string is produced by the classical dynamics of the fields alone, being essentially unaffected 
by field fluctuations. 
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I. INTRODUCTION 

The production of topological defects seems to be an 
inescapable consequence of phase transitions in field theo- 
ries with a topologically nontrivial vacuum manifold [l,Z]. 
This is observed experimentally in numerous condensed 
matter systems from superfluid helium [3] and supercon- 
ductors to ordinary liquid crystals [4] and is expected to 
occur in the early universe for most theories of grand 
unification. Defects produced at such energy scales are 
strong candidates to generate the observed large scale 
structure of the universe, competing with fluctuations 
arising from inflationary models to match the observa- 
tions [5]. 

In spite of their universality, the problem of predict- 
ing the details of networks of defects emerging &om a 
phase transition is still unsolved, being necessarily en- 
tangled with the more general question of how to deter- 
mine the dynamical evolution of fields throughout the 
transition. Our qualitative picture of defect production 
is given by the well-known Kibble mechanism [l]. With 
the U(1) theory of a complex scalar field in mind, it essen- 
tially assumes that the phase transition proceeds by the 
formation of domains, which are characterized by some 
random value of the field phase, which later coalesce to 
complete the transition. Such domains, at the time of 
coalescence, can, in turn, be characterized by their av- 
erage radial length scale 5, which in most applications 
is taken to be the correlation length as computed for a 
massive scalar field in thermal equilibrium [l]. As do- 
mains coalesce phase gradients must be minimized and 
integer windings can be formed. Because of its simplic- 
ity this picture has great appeal and is amenable to a 
straightforward approximate numerical implementation 
by the so-called Vachaspati-Vile&n algorithm [6], which 
in turn constitutes the usual starting point for numerical 
network evolutions. 

As it stands the Kibble mechanism fails to answer any 
questions regarding the role of fluctuations in the fields. 
If important enough, such fluctuations will necessarily 
alter the number and distribution of defects produced 
by the dynamics of domain coalescence and could thus 
distort seriously the predictions solely based upon it. 
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A change in initial string density and especially in the 
amount of long strings versus that in small closed loops, 
for example, necessarily affects the transient regime that 
characterizes a string network prior to scaling. Moreover, 
it is precisely the point at which thermal fluctuations 
ceax to be able to change string configurations apprecia- 
bly that determines the emerging defect network. This 
problem has been attracting great enthusiasm, leading to 
a number of different approaches [7-g]. 

Our aim in this paper is to develop quantities and asso- 
ciated criteria for evaluating the role of such fluctuations 
on cosmic string distributions. 

We focus ow analysis on cosmic strings in the Abelian 
Higgs model and consider correlation functions of the 
winding number (defined as the number of quantized 
units of magnetic flux) in several circumstances. Even 
though the present study is motivated by cosmological 
questions the analogy with superconducting systems is 
almost complete because of the role of the gauge fields in 
both models. As such our results should apply equally 
well there, where contact with experiment can prove a 
good test on the ideas developed herein. In principle 
the interpolation between both pictures can be obtained 
essentially by replacing cosmic strings with vortex lines 
and discarding some specific aspects of relativistic self- 
energies in Sec. III. In practice we have yet to do so. 

The outline of the paper is as follows. We start, in 
Sec. II, by describing the qualitative aspects of the clas- 
sical dynamics of the fields during the phase transition 
and determine under which conditions the measurement 
of quantized units of magnetic flux becomes a reliable 
estimate of the number of strings present. We then pro- 
ceed, in Sec. III, to compute the fluctuations in winding 
number in the simplest scenario, namely, that of a con- 
stant background scalar field with an equilibrium distri- 
bution, and under thk assumption that the gauge field, 
too, displays a thermal spectrum. In Sec. IV we show 
that the computations of Sec. III can easily be extended 
to the calculation of correlation functions of the winding 
number threading through two different contours with 
relative specific geometries. We use these correlation 
functions to answer questions concerning the conditional 
probability of finding strings crossing a given surface in 
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12 WINDING NUMBER CORRELATION FUNCTIONS AND COSMIC.. 669 
space, subject to the condition it has crossed another, 
with a given separation and orientation relative to the 
former. In Sec. V, we return to the computation of wind- 
ing number fluctuations, by including inhomogeneities in 
the scalar field. We show how a systematic expansion 
around a homogeneous background can be performed, 
generating as a zeroth order term the result of Sec. III, 
and compute the first order correction resulting from the 
presence of strings. By comparing their relative magni- 
tude we can formulate well-defined criteria for the break- 
down of such an expansion and consequently for the non- 
validity of our results computed about the homogeneous 
background. In Sec. VI we present our conclusions and 
compare our results with those of other recent approaches 
to the sane problem. 
II. PHASE TRANSITION FIELD DYNAMICS 
AND DEFECTS 

We begin with the seiniclassical analysis of the simplest 
theory that admits gauged strings, the Abelian Higgs 
model. We consider it in the symmetry broken phase so 
that the decomposition of the complex scalar field into 
modulus p and phase a is possible as 

$J(z) = (o(s)e-“a(=) (1) 

for nonzero p(r). Thus the classical action, including the 
gauge-fixing term, can be written as 
I 

S[v, a, Awl = 
J 1 

d4z -;F,,vF”’ + ; [+x5”rp + $(eA, - &,a)(eA’ -Pa)] 
 

where the last term enforces gauge fixing explicitly. Our 
objective is to compute string formation in gauge theo- 
ries, as a dynamical process occurring as a by-product 
of th& symmetry breaking in the theory, by measuring 
units ‘of the quantized magnetic flux crossing a surface 
bounded by the contour 7, given by 

The idea of using the magnetic flux as an indicator of 
the net winding number springs from the vacuum field 
configurations in the broken phase: namely, 

(Ap-y) =(A:)=O. 

This guarantees that the gauge field indeed traces the 
gradient in phase of the scalar field. In a situation 
where ,the scalar modulus is constant, however, this be- 
comeg simply a gauge transformation, corresponding to 
the residual freedom in defining A, in the Lorentz gauge 
(t&A“ = 0). However, it is the case of a nonconstant 
scalar modulus that is relevant for our purposes, cor- 
responding to the presence of strings. In this case the 
phase can change around a closed contour in space by a 
nonzero multiple of 23r, implying the existence of a singu- 
larity in its gradient as the contour is shrunk to a point 
(at which there is a necessary restoration of symmetry). 
The gauge field at such a point, the core of the string, 
exhibits therefore its expectation value in the symmet- 
ric phase, i.e., (A,) = 0. The approximate solution of 
the static Euler-Lagrange equation interpolating between 
these two regimes is well known to be [lo] 

AB = ; - n(~Kl(etpr) (6) 
for a homogeneous scalar modulus ‘p. At large distances 
from the core of the string (Y >> &), the modified Bessel 
function Kl becomes exponentially decreasing and the 
vacuum of the spontaneously broken theory is rapidly 
approached. In this limit, applying the form (6) in (3) 
gives precisely n units of flux with exponentially small 
corrections. 

As the phase transition proceeds and the fields become 
smooth we therefore expect A, to trace the overall differ- 
ences in phase left over from the dynamics of the scalar 
field with increasing accuracy. To see in more qualitative 
detail how this happens we need to consider the actual 
Euler-Lagrange equations of the theory, 

a,aHp = ‘p 
[ 
(Ed, - apcr)(d - apa) - $v2 - $) 1 , 

(7)

and 

ap 
( 

F,,+ $A, = J,, 
> 

(8) 

where 

a@J, = 0, (9) 

Jp = @+A,, - apa). (10) 

The phase transition is triggered by an instability in the 
long wavelength modes of the scalar field,’ whose ampli- 
tudes then start growing exponentially towards II. This 

‘The details of the triggering mechanism depend crucially 
on the hierarchy of the couplings in the theory determining 
thereby the order of the transition, as seen from thermody- 
namic effective potential constructions. 
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is expected to happen independently in regions of space 
which are causally disconnected for the time scales in- 
volved. As a result a domain structure is expected to 
form, leading to an inhomogeneous scalar modulus on 
a scale of several domains. These inhomogeneous field 
configurations do not minimize energy and will therefore 
evolve in time so as to coarsen and smooth out.’ 

What is the behavior of the phase and vector potential 
during this dynamical process? The vector potential is 
characterized initially, in the symmetric phase, by (A,) = 
0. During the transition A, is sensitive to the change in 
expectation values of ‘p and a in quite a different manner. 
Whereas the change in the expectation value of ‘p gives a 
mass to A,, without changing its expectation value, the 
presence of a gradient in phase does act as a source for 
the latter. This can be seen by writing (8) as 
I 

where JExt is any external source, imposed on the system. 
The general (AJ can, in principle, be computed fxom the generating functional for the theory which in turn follows 

from expanding the action (2) around a fiild configuration that satisfies the Euler-Lagrange equations with boundary 
conditions characterizing the fields at some given time, as discussed above. 

By introducing (11) in the action, we obtain 

S[rp,a,A,] = -i/d% [(e$8,a - J;"") A'+terms in cp and a] 

c i 
s 

&a: [JLA" + terms in p and a] 

This can in turn be rewritten exclusively in terms of the currents, as usual, since 

A,(z) = 6 ‘%&Y,++‘(Y), 
J 

[4=> 1 apa - I- 1 a,ap -e2p2(z) G,,(~,~,~) = -s,(z-y). 

In the absence of external sources A, then becomes 

A,(~) = Id% G~“(z,y,lp)e~(y)a”a(~). 

(l-4 

(13) 

(14) 

As the phase transition approaches completion the scalar field should become smoother, both in modulus and phase, 
leading to small derivative terms relative to the mass scale. This allows us to perform a small derivative expansion of 
the gauge propagator, leading to the result 

- + derivative terms in cp and a,,a. (16) 
I 
In the case of a homogeneous and static scalar modulus, 
this reduces to the vacuum in the spontaneously broken 
phase (5). Unlike its higher derivative corrections, the 
first term in (16) is gauge independent. 

Having understood qualitatively from this semi- 
classical analysis how the gauge field reacts to a differ- 
ence in phase, it is important to discuss how a gradient in 
phase itself can occur and how it will evolve. Departing 
from the symmetric phase, where (A,,) = 0, Eq. (9) can 
be written as 

‘This is explicitly observed in condensed matter systems, 
such as specific types of liquid crystals, which display a large 
relaxation time [4]. 
a,ab + (ap lI$) aco, N 0. (17) 

Equation (17) is homogeneous in Pa, showing that a 
gradient in phase must exist initially for the phase to 
change in space-time. Simultaneously, given that (A,) = 
0, the energy of a given configuration is minimized for a 
constant value of 01. We therefore expect the field phase 
to be approximately constant inside each domain formed 
by the dynamics of the scalar mod&a3 Differences in 

3By domains we mean the volume associated with the scale 
over which the phase typically changes. This is dependent 
on the actual dynamics of the fields and will correspond to 
quite different configurations in the context of a first or second 
order transition. 
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phase can then only occur when different domains come 
into causal contact, and then should evolve so as to be 
minimized. This picture corresponds to the well-known 
Kibble mechanism, in a gauge theory.4 In particular, 
according to (17) and under plane wave Anslitze for the 
fields the amplitudes of the small frequency modes of o( 
will decrease exponentially, given an exponential growth 
in the amplitudes of p. As domains coalesce and @,lp 
tends to zero the remaining gradients in phase are frozen 
in and the gauge field catches up with them, in the sense 
of (16). 

Having this qualitative picture in mind for the descrip- 
tion of the field dynamics during the phase transition we 
proceed, in the next sections, to compute the effect of 
fluctuations on the total winding number using the quan- 
tized magnetic flux (3) as a probe. These are given by 
WY’?) = i l, dl”dl’j(A&)Aj(y)). (18) 

In most of what follows we will be concerned solely 
with thermal fluctuations. Quantum fluctuations can be 
readily included but are known to be subleading. Their 
effect is to change the value of the vacuum expectation 
value of the ‘p field as well as the couplings in the theory. 
We will in general adopt the position of treating ‘p as 
providing a classical temperature-dependent background 
field (rp) in which the fields can be quantized. In general 
this background will include strings. We then need to 
know the form of the two-point function for the gauge 
fields, which in the absence of external sources, is given 

by 

I 

(TA&)A~Y)) = G,&,~tip) + (JP(z)Gp~(~,~,~)Ju(~‘)Gby(~‘,y,~)), (19) 
I 
where GM, is given by (14) and P(z) = elp(z)&~(z). If 
we assume that the contours do not run over any strings,5 
the dominant term will be 

(TJ~&+L(Y)) = %&,Y,v). (20) 

We stress that we are not just quantizing A,. Scalar- 
field radiative corrections about (p) will be taken into 
account in the calculation of G,,. The remaining uncer- 
tainty in defining the gauge propagator explicitly results 
from the unknown form of ~(2). Having (16) in mind 
we will treat the situation of a quasihomogeneous back- 
ground, expanding the propagator in the perturbations. 
The time dependence of p remains ,a problem, however. 
We deal with it approximately by considering the fields 
in equilibrium and changing the corresponding temper- 
ature. In the next section we treat the simplest case, 
i.e., that of a homogeneous background where the fields 
display equilibrium distributions. 

III. FLUCTUATIONS IN WINDING NUMBER 
IN THERMAL EQUILIBRIUM 

In this section we specialize the previous discussion to 
the case of a homogeneous scalar modulus background 
and assume the fields to have equilibrium distributions. 
The iirst of these conditions will be lifted later, in Sec. V. 
Dropping the condition of equilibrium, however, would 
require the knowledge of the time dependence of the 
fields, in closed form, which is unknown in the necessary 
detail.6 

‘We see that the geodesic rule comes about naturally from 
dynamical considerations. Ambiguities [ll] result from con- 
sidering the static gauge theory in its spontaneously broken 
phase, where the phase decouples and loses physical meaning. 

‘This seems reasonable if the string density is not too high, 
See sec. v. 
‘More is known for the theory of a simple scalar field nu- 

merically, e.g., (121, but this proves of little use in our present 
context. 
The degree of approximation actually involved in 
adopting a thermal distribution for the fields will nec- 
essarily depend on the dynamics of the phase transition, 
which in turn will be determined by the hierarchy of cou- 
plings in the theory. First, for a theory with strong gauge 
couplings (type I) one expects the system to depart gig- 
nificantly from equilibrium (by bubble nucleation) and 
our approximation will probably grossly misrepresent the 
actual fluctuations in the system. In the opposite limit, 
however (strong type II), it should hold as a good ap- 
proximation more or less throughout the whole dynam- 
ics. The latter is the case of the most high temperature 
superconducting systems. Second, in any case, the late 
stages of the transition should be characterized by the 
approach to a thermal distribution and consequently the 
estimates below should describe the actual fluctuations 
in the system increasingly more accurately. This expec- 
tation is also consistent with the indications of when the 
magnetic flux becomes a good indicator of the number 
of strings crossing a given surface, as seen in the last 
section. 

A strictly homogeneous scalar field is of course a nec- 
essary and suflicient condition for the existence of no 
strings. It then becomes necessary to be able to estimate 
how the values of the fluctuations computed below relate 
to those in more realistic inhomogeneous backgrounds. 
This issue will be addressed in Sec. V, where we will 
show that under well-defined circumstances the fluctua- 
tions computed here are the first term in a systematic 
expansion about a homogeneous background and consti- 
tute, in general, the dominant contribution. 

In order to compute the thermal fluctuations in wind- 
ing number, given by (18), we need to know the form 
of the time-ordered thermal correlation function of the 
A,,. There are only two symmetric tensors in the spa- 
tial indices which can be made in the covariant and RC 
gauges, namely, b*j, k”kj. The Ward or Becchi-Rouet- 
Stora (BRS) identities and the Lorentz structure at finite 
temperature then tell us that the most general form in 
covariant and RC gauges is 
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iG”j(t - t’,? - 2) = (TA”@, i?)Aj(t’,>)) (21) 

=‘EJ 
8n-v n=-m 

d3k’ exp{-i[k,,(t - t’) - i. (3 - z?)]}@(k) (22) 

-G”(k) = k2--e2~2_nT(Y-~)+(k2--e2~2_nL+f(k,M,C))~, (23) 

where the energy kc, = 2nin/p. The f f unction varies with the gauge chosen while the other IIT and ll, terms 
correspond to the physical modes of the photon, two transverse (magnetic) and a single longitudinal (electric) mode. 

From (18) and (21)-(23), taking the integrals over circular paths of radius L, we see that we require two sorts of 
integration, 

Since the latter is zero, we only pick up the term in the propagator with the 6,. This is not surprising as we are really 
looking at the magnetic field correlations, and the term with 6~ is associated with magnetic fields and its self-energy 
IIT contains information about the magnetic screening. Thus we have that 

(25) 
Note that this form is independent of the gauge chosen 
and the only source of gauge dependence is in the ex- 
pression used for IIT. Proceeding with (25), we use the 
leading term in the high temperature expansion of the 
one-loop self-energy. In this we are working to leading 
order in the resummation scheme of Bra&en and Pis- 
arski 1131 which is necessary at high temperatures. Per- 
forming the energy sum leads to two terms. There is a 
pole contribution which corresponds to propagation of a 
“plasmon.” The pole is found at ko = *w(k) where 

0 = w(k)’ - &(T)’ - II,@(k), k) 

IIT(kO, k) = F 

(26) 

where we have worked with respect to the vacuum 

(27) 

The usual O(e2) result is ~(‘2’)’ = 7’ (1 - &$), which 

vanishes at the critical temperature Z’,. The value of Mp 
is 

2T2 
M;=T’ (28) 
for a U(1) theory with a single charged scalar or 
fermion. While the position of the pole for general three- 
momentum is given by a nontrivial dispersion relation, 
to within about 10% this is approximately expressible as 
k,2 = k= + rn= where 

rn2 = e2q(T)2 + Ms. (29) 

The difference in the final results, between choosing this 
approximate dispersion relation or the true one, has been 
studied numerically in some of the cases below and is 
found to be negligible (less than 1%). 

The real complication is encountered with the cut 
term, running across the zero energy point, seen in the 
imaginary part of IIT for lkol < k. This corresponds to 
the physical process of Landau damping allowed in a heat 
bath. This must be treated numerically as in this case 
we are not able to use any sum rules of [14], which can 
be seen in the logarithmic dependence on temperature. 
Equivalently, trying to look at possible O(T) terms by 
including only the n = 0 term in the energy sum (e.g., 
see the Appendix of [15]) leads to divergent integrals and 
to the breakdown of the calculation. 

Doing the energy sum gives 
j&g I&+&e-‘Pi12 ($? + (cut terms) ) + (T = 0 terms). 

On computing the integral in (25) we find 

($2) = $2 J klldkl@&(f+) + (cut terms) 
> 

+ (T = 0 terms), 

(30) 

(31) 



53 WINDING NUMBER CORRELATION FUNCTIONS AND COSMIC.. 673 
where kll is the momentum component on the plane de- 
fined by the contours and J1 is the usual Bessel func- 
tion of order 1. This last integral cannot be fully com- 
puted analytically. For large enough loops (kllL < 1) we 
can take the large argument form of the Bessel function. 
Looking only at the pole contribution and wing the good 
approximation that w2 = k2 + Ms leads to 

This estimate is indeed confirmed by computing the inte- 
gral (31), for the pole term, numerically.’ Figures 1 and 2 
show the result of a numerical integration looking at just 
the pole term with the approximate dispersion relation 
w2 = k2 + rn2 on the dependence of (N;) on LT and $, 

respectively. The i coefficient results from the best fit, 
given the functional form (32). Using the exact disper- 
sion relation for the pole contribution makes only a very 
slight difference to the results. The cut term shows a sim- 
ilar sensitivity on 1)(T) which acts as an infrared cutoff. 
For Lv(T) < 1 the cut contribution to N,” rises as LlnL. 
However, for Lq(T) N 1 and larger, a similar qu+litative 
behavior to (32) is found, with magnetic screening ma.ss’ 
mmag = en(T) replacing the plasmon mass in the formula 
above to give 

15 ,,,,,,.,i,,,,,,,,,,,,,,,,,,,,,,,,,.,,,, 

L (I/T) 

FIG. 1. The dependence of the winding number fluctua- 
tions on the contour radius L from the pole contribution, for 
rn = O.ZT, O.ST, and 0.82’. 

‘The magnetic screening mass for Abelian theories only has 
a contribution from the scalar field shift. 
FIG. 2. The dependence of the winding number fluctua- 
tions on the gauge field mass from the pole contribution, for 
L = l/T, 5/T, and 15/T. 

with a coefficient of proportionality comparable (typi- 
cally, a few times larger) to that of the pole in (32). 
Thus we see that the contributions from the pole and cut 
terms essentially generate the same form for the winding 
number fluctuations away from the critical temperature, 
when n(T) < Mp. As such the influence of the cut term, 
in these circumstances, is to change the overall coefficient 
in the functional form (32). In most of what follows we 
will therefore restrict ourselves to computing pole contri- 
butions. 

Qualitatively the results above can be thought of as fol- 
lows. The dependence of (N,2) on L can be understood in 
terms of a random walk in the field fluctuations along the 
contour perimeter. This is commensurate with the Kib- 
ble inechanism of domain formation, with random phases 
correlate$ on a scale E = l/e’T (up to logarithms). This 
should not be surprising as thermal fluctuations ensure 
that fields are correlated on scales smaller or equal to t, 
and not on longer scales. The precise correlation function 
is therefore not relevant as a first guess and the random 
walk paradigm is a suitable starting point. 

The quasilinear dependence on the temperature en- 
sures that, as the system cools, fluctuations in winding 
number become less and less relevant. The logarithmic 
dependence on the field thermal ma.ss, in turn, guarantees 
that as one approaches the critical temperature and the 
mean field mass q(T) vanishes, the magnitude of wind- 
ing number fluctuations diverges. This is certainly the in- 
stance when thermal fluctuations can significantly change 
any underlying expected winding number. The actual di- 
vergence of (N$) at the critical temperature for the pole 
term, however, is an artifact of our best fit since, as can 
be seen in Fig. 2, as the mass vanishes (for Mp N 0) the 
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fluctuations in winding number remain finite even though 
maximal. This is not the case for the cut contribution, 
as far as we could find numerically where the logarithmic 
behavior persists, with extraordinary accuracy, down to 
mmag = 10-4. 

By themselves, however, the magnitude of fluctua- 
tions tell us little about how string configurations can 
be changed. This then takes us to the crucial issue of 
comparing the magnitude of fluctuations to the underly- 
ing expected winding number. The magnitude of relative 
fluctuations is given by 

where (m) is the total string number, without distin- 
guishing strings from antistrings. In principle (N’) and 
(N)z must be computed self-consistently given a specific 
field background. To estimate the behavior of (34) in 
ow specific setting, however, we can take our values for 
(Nz) and borrow the value for (n)2, obtained using the 
!&hasp&-Vilenkin algorithm, for the number of strings 
crossing a disk of area TL’. As required, this algorithm 
does not distinguish between strings and antistrings. Us- 
ing this value in (34) should clearly yield an underes- 
timate for the value of the relative fluctuations. The 
expected value of the winding number thus computed 
crossing a disk of radius L is [6] 

where 5 is the average domain radius at coalescence. This 
can be written as an inverse of a mass scale [ = &, 

whence 

(AN)’ 82 T 1 -N--- In T -1. 
0 (Iv)2 - 37r2nz<rn~L rn (36) 

The identification of this scale with the mean domain 
radius at coalescence springs directly Corn its numerical 
implementation. Its computation from the field theory, 
however, implies a knowledge of the domain dynamics 
which is, in general, very poor [16]. The original pro- 
posal by Kibble [l] was to identify this scale with th: in- 
verse Ginzburg temperature which is a well-defined quan- 
tity in a field theory undergoing a second order phase 
transition.* More recently, Kibble and Vilenkin [7] ar- 
gued that a more suitable scale could be found by in- 
voking the scaling of the string network emerging from 
the phase transition. They discuss carefully the differ- 
ent length scales in the problem and essentially conclude 
that individual strings can then be identified once this 
typical string separation scale becomes larger than the 
Ginzbwg length. Before then fluctuations in the fields 

*The corresponding, though in general not computable, nat- 
ural scale in a first order transition is obviously the bubble 
radius at coalescence. 
are argued to be very large and coherent long-lived field 
configurations cannot persist., Looking at (36) we can 
indeed observe that fluctuations become large for tem- 
peratures larger than rn< and for length scales smaller 
than its inverse. At the critical temperature the relative 
fluctuations should diverge due to the cut contribution 
discussed above. 

Our present analysis thus lends support to several of 
their qualitative arguments and clarifies the emergence 
of some scales &-am field theory propagators. 

IV. STRING SPATIAL DISTRIBUTION AND 
OTHER CORRELATION FUNCTIONS 

One interesting question to ask about string formation 
that is of the upmost importance for the subsequent evo- 
lution of a string network is what is the fraction of string 
in loops as opposed to long strings. We will see in this 
section that winding number correlation functions can 
give us some insights into this problem. 

Since we expect to be dealing with a complicated back- 
ground in which many string configurations will thread 
through our contour, these questions can only be an- 
swered statistically. Intuitively, then, the question of how 
a string is distributed in space assumes the form of a con- 
ditional probability question; i.e., knowing the amount of 
string that crosses a given surface, what is the amount of 
string that crosses a second surface with a given orienta- 
tion relative to the former? Answers to these questions 
are naturally provided in terms of correlation functions 
and the natural way ahead, in the context of our present 
discussion, is to take our two-point function for the wind- 
ing number (18) through two different contours. In so do- 
ing we expect that the correlations between net winding 
number threading through the two loops in a given geo- 
metrical configuration can also give us information about 
how the string is distributed relative to that geometry. 
The general case is too difficult, but there are two natu- 
ral extensions of (25) that are solvable, namely, that for 
which the two circles remain concentric, but now have 
different radii 1 and L > 1, and that of two coaxial cir- 
cles of equal radius L separated by a distance h. These 
are shown in Figs. 3 and 4, respectively. Intuitively we 
would expect the first of these correlation functions to 
give us information about the population of strings with 
curvature radius greater than that of the longest contour 
whereas the second should provide a measure of straight- 
ness on the scale of separation between the contours. 

We start with the former. In what follows we compute 
the contributions to the correlation functions due to the 
pole term only. As discussed above the cut contributidn 
should not change any qualitative aspect of our results 
but merely the overall coefficient by a number of order 1. 
As before in order to compute the two-point function for 
the winding number we can show that only the integrals 
of the type I1 survive, i.e., we have to compute 
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FIG. 3. A schematic view of the two concentric contours 
and of the strings that contribute to the winding number cm- 
relation function between them. 

This can be shown to yield 

11 = 4n21LJl(k,,L)Jl(k,,1). (33) 

We then see that in this case the correlation function is no 
longer, necessarily, positive definite but rather depends 
on the interplay between the radius of the two contours. 

FIG. 4. The same as in Fig. 3 for the two coaxial circular 
contours. 
The expression for the correlation function then becomes 

Figure 5 shows the result of the numerical integration of 
(39), having fixed the radius of one of the contours to be 
1= +, $, and $! and rn = 0.27’. It shows that the wind- 
ing number is most correlated when the radius of the two 
contours is comparable. Moreover, when the difference 
between the radii of the two contours becomes appre- 
ciable the correlation function exhibits the approximate 
behavior 

(N7N,s) N &T0.05e-1~-‘). (40) 

Thus, for radial separations larger than essentially a few 
units of the inverse mass, the winding number through 
the two contours becomes essentially uncorrelated, show- 
ing that it should correspond to different strings. Strings, 
if produced by a thermal fluctuation, would therefore be 
expected to have a curvature radius smaller than that 
scale, corresponding necessarily to loops of that form. 

Another possible generalization of (25) corresponds to 
translating the two contours, in the direction perpendic- 
ular to the plane they define, relative to each other so 
that they now define the two basis of a cylinder of height 
h; see Fig. 4. In this case the form of the original integral 
still holds but the Fourier transform corresponding to the 
z direction ceases to be trivial. We then obtain 

(N,N,,) = ;I? Jdm k,,dk,,J,2(k,,L) Lm dk,+‘q, 

(41) 

FIG. 5. The dependence of the winding number correlation 
function between the two concentric contours on one of the 
contour’s radius L, for rn = 0.2T and 1 = l/T, 5/T, and 
10/T. 
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where h is the separation between the two contours along 
the vertical axis. This gives 

(N,N,r) = 2;LZJdm k,,dk,,J,2(k,,L) 

x J II -dk,cos(kJ$$ 

Figure 6 shows the result of these integrations for several 
values of L and rn = 0.27’. Again an approximate ana- 
lytical behavior can be found for (42). The best f7.t on 
the mass and h dependences yields 

Both correlation functions (39) and (42) above exhibit 
exponential falloffs with contour separation, determined 
by a correlation length multiple of the inverse gauge field 
mass. This behavior strictly holds for m(L - 1) and mh 
both larger than 1 Together with the result of the pre- 
vious section about the magnitude of fluctuations, these 
allow us to characterize the temperature for which wind- 
ing number fluctuations are relevant on a given length 
scale that can in turn be compared to the string’s proper 
length. It is clear that, as the temperature drops, only 
the population of string loops smaller than 5 = O(h) 

will be affected. Thus any long or infinite string emerg- 
ing from the phase transition will be very little changed 
by fluctuations. This is an important result as it states 
that the formation of long strings is essentially a classi- 
cal process occurring at the level of the Euler-Lagrange 
equations for the theory. 

V. FLUCTUATIONS IN WINDING NUMBER 
IN THE PRESENCE OF STRINGS 

In this section we investigate how a nonhomogeneous 
scalar modulus changes the fluctuations in winding num- 
ber, as computed in Sec. III. This is an obvious require- 
ment of any description of fluctuations taking place dur- 
ing a phase transition. Inhomogeneities occur naturally 
in the dynamics of domain growth and coalescence, cor- 
responding to their interfaces as well as to topological 
defects.8 As the phase transition approaches completion 

‘In the early stages of this dynamics such a distinction prob- 
ably fails to apply. 
rn=02 T 

FIG. 6. The different curves exhibit the dependence of the 
winding number correlation function between the two circular 
coaxial contours on their separation h, for 7n = 0.2T and 
L = 5/T, 10/T, and 15/T. 

we expect the domain structure to coarsen and smooth 
away and the only inhomogeneities left behind should 
correspond to topological defects. At all stages, thermal 
fluctuations in winding number will occur and a freeze- 
out in defect number will correspond to the instant in 
time when their role is rendered negligible, in .some well- 
specified way. 

In what follows we will attempt to give a general treat- 
ment of fluctuations in the presence of a weakly inhomo- 
geneous scalar modulus by systematically expanding the 
gauge field propagator in a small perturbation around a 
homogeneous scalar field. We will later specialize to the 
case where strings constitute such inhomogeneities. As 
before we will only keep the pole term in the gauge field 
propagator. 

Let us consider the case of a localized deviation from 
the otherwise homogeneous background so that we can 
write the scalar modulus as 

4%) = 7 -f(r), (44) 

where 11 is the background value of the scalar field mod- 
ulus and .f(z) the small perturbation. Then we can 
expand the gauge propagator around the homogeneous 
background field. We restrict otiselves to the relevant 
part of the transverse propagator, for the sake of clarity. 
Formally, we obtain 
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+ higher order terms 1 Iy), 

where M’(z) = e’f(r) [27 - f(z)]. The fist t erm in the expansion is just the gauge field propagator in the presence of 
a homogeneous, static scalar field in the broken phase. When used to compute winding number correlation functions 
it will generate the results of the previous two sections, when taken in thermal equilibrium. The first correction to 
that can be written as 

GI’?(z,y) = &,J/(2r)* ~d4pd4kd4zd4a’G(p)e’p~rr~Mz(~,r’)G(k)eiL~Y-z’~, 

where M’(z,z’) = M2(z’)(2?r)464(t - 2’). This leads to 

(46) 

GI:)(z,y) = &/(2+/ d4pd4kG(p)e-+M2(k -p)G(k)ei”Y, (47) 
where 

M’(k -p) = 
I 

d4ze-i4-P)J/p(z) 
(48) 

is the usual Fourier transform of M’(z). We see that the 
presence of inhomogeneities can be accounted for as the 
occurrence of sources, in the usual way. Their effect is 
naturally to change the four-momentum of photons from 
an in-going state to an out-going one. The order in the 
expansion (45) then corresponds to the number of such 
momentum transfers. To actually compute corrections 
to our previous results we have to specify the functional 
form of M’(z). As an illustration of the effect of inho- 
mogeneities we take the simplest case of associating Ma 
with one straight string at rest, placed in the center of 
the loop. That is, 

M’(2) = e’f(z) PT - f(z)1 = 2&f(r), (4% 

where we specialize the form of f(x) to correspond the 
field profiles of a string at distances larger than its width 

P71, 

where K. is the modified Bessel function of order zero 
and ks is a constant that for critically coupled strings 
can be shown to be ks = Inlq, with n .+s the string’s 
winding number. Here we assume strings to be the usual 
static solutions of the effective three-dimensional theory, 
obtained after the usual frequency summations at finite 
temperature. As such all mass scales exhibit their usual 
temperature dependence. The exponential regime corre- 
spends to the asymptotic form of the Bessel function for 
large arguments. In particular we see that, in this regime, 
the corrections to the homogeneous background propaga- 
tor will be exponentially suppressed by the distance to 
the string. 

It is straightforward to generalize the situation for one 
strine to an arbitrary number of strings or other well 
localized sources of inhomoge&ty with a definite profile. 
We simply write the scalar modulus as the superposition 
of all sources of inhomogeneity as 

N 17 - c fi + higher order terms in f. 
id 

(51) 

Let us then proceed to compute the change in fluctua- 
tions brought about by a single string, to first order. The 
form (50), corresponding to a single static cylindrically 
symmetric string placed in the center of our circular con- 
tours, actually allows us to compute its Fourier transform 
analytically; namely, 

M2(k 2 p) N /d4ee-‘(“)‘27n~Ko(m,r) 

= 4,z,zWo - PoWz - PJ 
= (k-p);+@ ’ 

(52) 

which is just the potential, in momentum space, for a 
massive cylindrically symmetric field, as it should be. Us- 
ing this form in (47) yields the correction to the winding 
number correlation functions 
(53) 
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where we have assumed that both the in-going and out- 
going momenta display thermal distributions. This fol- 
lows automatically since a static source causes no energy -. 
shift. 

The integral (53) has to be computed numerically. Its 
dependence on L, together with that of the zeroth or- 
der result of Sec. II and their sum, are depicted in Fig. 
7, for F = 0.5,% = 0.6. It shows that the effect of 
this correction is only to change winding number fluctu- 
ations significantly for small contour radius, smaller than 
or equal to the string’s width. This can also be seen by 
fixing L and rn, and varying rn,. Indeed, the magnitude 
of the correction term becomes larger the smaller scalar 
masses we take, i.e., with greater string widths, signaling 
the breakdown of the weakly inhomogeneous scalar field 
expansion for the gauge propagator. In this regime the 
sum of the two terms yields a negative quantity, showing 
the clear breakdown of the expansion (45) since the full 
quantity is positive definite. For large contour radius the 
effect of the correction becomes increasingly more negli- 
gible and the negative shift probably becomes a genuine 
feature. Tbis is an important feature as it seems to in- 
dicate that winding number fluctuations computed on 
a homogeneous background are an overestimate of their 
real values. 

Another relevant issue is to know how this correction 
term behaves close, to the critical temperature. This can 
be probed by assuming that both masses vanish approxi- 
mately as we approach the critical temperature. In prac- 
tice we know this to be untrue for the gauge field due 
to higher order effects, as discussed in Sec. III. We can 
distinguish two cases, namely, when the gauge coupling 
is larger or smaller than the scalar self-coupling. This 
differentiates between a type-1 and a type-11 theory, re- 

FIG. 7. The magnitude of the seroth order term (dotted 
line), the absolute value of its first correction, and their sum as 
a function of contour radius and for ms = 0.4T and rn = 0.2T. 
FIG. 8. The dependence of the zeroth order term in wind- 
ing number fluctuations (dotted line) and its first order cor- 
rection on the gauge field mass M, for L = 5/T and in the 
CLS~S rn, = 0.7M, M, and 1.2M. The mass scale M is in 
units of temperature. 

spectively. Figure 8 shows the dependence of the zeroth 
order term on the gauge mass as well as that of (54) 
for rn. = 1.5m.,m,,0.5m,, for fixed L = 5/T. We see 
that the magnitude of the correction term grows with the 
gauge coupling, while still remaining smaller than the ze- 
roth order term. This, however, does not hold for strong 
type-1 theories for which we see that larger values of L 
will be required for the series expansion to hold. One 
important feature of the correction term, which holds re- 
gardless of the hierarchy of the couplings in the theory, is 
that it vanishes, at critical temperature, with the scalar 
mass. This should constitute a genuine behavior of all 
correction terms since they are proportional to increas- 
ing powers of M(z). Thus as the scalar thermal mass 
goes to zero so does M(r) and we recover the usual elec- 
tromagnetic propagator. This allows us to conclude that 
the weakly inhomogeneous background expansion can al- 
ways be trusted in a sufficiently small neighborhood of 
the critical temperature and that the effect of the pres- 
ence of strings will manifest itself mostly at intermediate 
and low temperatures. These conclusions would radi- 
cally change if we do not adopt a thermal equilibrium 
mass scale (vanishing at the critical temperature) in our 
defect configurations. In assuming this we hope to mimic 
an average defect configuration in the presence of a ther- 
mal plasma and thereby render the whole picture self- 
consistent.1° 

“In the context of a first order transition, when strong devi- 
ations from equilibrium are expected, this picture will praba- 
bly, very probably, not hold. 
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VI. CONCLUSIONS 

In this paper we have developed techniques to allow 
us to study the role.of fluctuations in cosmic string for- 
mation in an Abelian gauge theory. Their application to 
the simplest case of quasihomogeneous scalar field back- 
grounds leads us to conclude that thermal fluctuations 
in winding number are strongest the closer the system is 
to the critical temperature and, further, that the relative 
winding number fluctuations diverge at that tempera- 
ture, signaling the presence of no stable defects, in these 
circumstances. This effect persists even in the presence 
of inhomogeneities in the fields, such as strings them- 
selves, if thermal equilibrium is used throughout. As 
the temperature drops the role of thermal fluctuations in 
changing winding number becomes less and less impor- 
tant. The energy scale that characterizes an approximate 
freeze-out in defect numbers is most naturally the in- 
verse mean domain size at the time of coalescence, which 
in turn is associated with the average string separation. 
From the point of view of the field theory its determina- 
tion necessarily implies a more detailed knowledge of the 
field dynamics during the transition than what is cur- 
rently known. 

On developing generalizations of our initial winding 
number correlation function we also conclude that string 
configurations can only be changed by thermal fluctu- 
ations on scales of the order of the thermal correlation 
length of the fields. As such the population of small 
string loops can be drastically modified but not that of 
long and infinite strings, which is the most relevant input 
for network numerical evolutions. A change in loop popu- 
lation is only likely, for the present cosmic string network 
implementations, to change the approach to the scaling 
regime and will therefore bring no change to the details 
of late time structure seeding in the canonical scenario. 

An analogous winding number correlation function 
over the same contour can be defined using the phase 
of the Higgs field directly 191. Using the gauge sector 
instead has great advantages in computational simplicity 
and reliability as the former is divergent as the symmetric 
phase is approached from below. This lerids to infinities 

‘IOther criteria exist to count the number of strings and 
their fluctuations, namely, those inspired in counting the den- 
sity of zeros of the scalar field [18]. However, the same meth- 
ods have yet to be applied to gauge theories. 
and computability can only be maintained by adopting 
severe approximations. Both methods will necessarily 
measure fluctuations in the gauge and scalar fields, re- 
spectively, that do not necessarily correspond to strings. 
This is because, even though one of the fields can have 
the right configuration to generate a string, it will take 
the two at the same point in space to produce a Nielsen- 
Oleson vortex. One is then over counting strings as we 
will be computing the number of strings present at B 
given instant together with that of fluctuations that van 
potentially produce a string or decay away.” 

Our methods should have other applications beyond 
the grand unified theory (GUT) transitions. The system 
considered above has obvious analogies with a supercon- 
ductor where the Ginzburg-Landau ftee energy is given 
precisely by a nonrelativistic analogue of the Abelian 
Higgs model. Our analysis for the winding number corre- 
lation functions generalizes to both models provided the 
mean field masses and self-energies get properly trans- 
lated. This has yet to be done, but would possibly consti- 
tute the natural test on the approach developed above as 
comparison with experiment seems a feasible task. The 
next closest example of string configurations in a specific 
model concerns those in the electroweak standard model. 
Their study in the simplest approach consists in treating 
the model as an effective Abelian theory of a complex 
scalar field and the Z gauge boson. Even though the sup- 
plementary field excitations that are known render them 
unstable [19], 0x1~ winding number correlation functions 
should find applicability here, too. 

The eventual applicability of this approach to gen- 
uinely out-of-equilibrium and inhomogeneous scenarios 
hinges upon a better knowledge of the corresponding 
fields and their two-point correlat<on functions. A consid- 
erable amount of effort is being devoted to this problem 
[12] and it is conceivable that the full problem will be 
tractable in the near future. 
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