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Chaotic behavior of particle production in branching processes

Zhen Cao and Rudolph C. Hwa
Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, Oregon 974
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The notion of chaotic behavior is examined for particle production in branching processes. Two types
branching are considered: non-Abelian gauge interaction and an Abelian cascade model. Properties o
production processes are investigated by Monte Carlo simulation. The ‘‘temporal’’ behavior is studied
following the fluctuations in the multiplicities of each generation as the branching evolves. The ‘‘spatia
behavior is described in terms of the fluctuations of the normalized factorial moments from event to event.
information dimension and a new entropy index are determined. When all the measures are taken together
collectively give a strong suggestion that the QCD branching process is chaotic, while the Abelian casc
model is not.@S0556-2821~96!00111-7#

PACS number~s!: 13.85.Hd, 05.45.1b, 12.38.Bx, 24.60.Lz
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I. INTRODUCTION

Recently, we reported on the results of an investigation
the possible signatures of chaos in branching processes@1#.
The aim is to determine whether the nonlinear, non-Abel
dynamics of the quantum Yang-Mills field possesses chao
behavior. Since in such a dynamical system the numbe
degrees of freedom increases with time evolution, when
notion of time is not even well defined in the branchin
process, new measures of trajectory, distance, entropy,
must be introduced. We have found that the perturbat
QCD branching shows signs indicative of chaos, wherea
model lacking the characteristics of QCD does not. In th
paper we give the details of our study.

In the case of classical non-Abelian dynamics, spec
simplifying conditions that reduce the equations of motion
manageable size have been considered and chaotic solu
have been found@2,3#. A more complete investigation of the
gauge equations has to be done on the lattice, and it has
shown that the classical non-Abelian gauge theory gener
exhibits deterministic chaos, whose Lyapunov exponents
be numerically computed@4–6#.

The extension of the above classical problem to the qu
tum theory of Yang-Mills fields is extremely difficult. The
current state of knowledge about quantum chaos hov
around semiclassical problems in which classical trajector
are generalized to waves@7,8#. That is totally inadequate for
treating quantum fields, the proliferation of which in a coll
sion process involves issues that are untouched in solv
wave equations. The first step toward formulating a feasi
program to attack the problem is to dissociate the compli
tions of nonperturbative QCD from the quantum dynamics
non-Abelian fields. In the perturbative domain where t
QCD coupling is small, the nature of nonlinear, non-Abelia
dynamics is fully present so that the signature of chao
behavior in gauge theory should nevertheless show up
hard processes. That is an important step of simplificat
that renders the problem manageable. More specifically,
can narrow the scope and focus on branching processes
QCD splitting functions. The issue then becomes the sea
for measures that can reveal chaoticity in branching p
cesses.
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In such a search it is necessary to keep in mind the spec
features of QCD. There are many processes that invol
branching in real time, such as cell division in biologica
systems. The emission of photons by an accelerated cha
can be regarded as a branching process with sequential
dering. However, for gluons reproducing gluons in the pu
gauge theory, the time variable plays no role in the descri
tion of a state withn gluons whose momenta are precisel
specified. In multiparticle production one works with mo
menta~or their variants such as rapidity!, since they are what
can be measured in a collision process. Then in the mome
tum space the concept of trajectory for a system of increasi
number of gluons becomes ill defined. Without trajectorie
the notion of distance between trajectories is untenable a
the conventional method of examining chaos in classic
nonlinear problems is inapplicable. It will therefore be nec
essary for us to look for other quantities that can describe t
difference between states, which evolve from what corr
spond to nearby initial conditions in the classical problem.

The major difficulty with the study of chaotic behavior of
nonlinear gauge dynamics is that the gauge fields are n
directly measurable and that the branching processes can
be tracked experimentally. In collisions at high energie
where the question of chaos in gauge dynamics arises, o
the particles in the final states can be measured. Thus,
verify any theoretical predictions about chaotic behavior, th
loss of information at the end of the branching process mu
be quantified and presented in a form suitable for experime
tal determination. To that end we shall introduce an entrop
index mq , which is measurable and describes the degree
fluctuation of the final particles from event to event.

Before going into details, it may be helpful to state th
general idea underlying the work. In classical dynamics,
the coordinatesqa(t) and momentapa(t) specify the sys-
tem, then the trajectory in phase space is well defined in t
familiar way. In classical field theory the fields,Ea(x,t) and
Ba(x,t), say, form a field configuration defined over al
spacex at any given time and the change of the configuratio
as time evolves specifies a trajectory in a generalized sen
For quantized fields one works in the Fock space so that t
number of quanta becomes a variable that specifies an
portant aspect of the state of the system. The distance
6608 © 1996 The American Physical Society
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53 6609CHAOTIC BEHAVIOR OF PARTICLE PRODUCTION IN . . .
tween two trajectories in that case must therefore invol
among other quantities, the difference between the numb
of quanta in the system. Thus, in particle production at hi
energy where the multiplicityn of produced particles is an
essential observable, the fluctuation ofn from event to event
must be viewed as the consequence of swings of trajecto
that have almost the same initial condition. With that co
nection in mind it is natural to generalize the convention
treatment of nonlinear dynamics to an approach that pla
emphasis on tracking the multiplicity fluctuations from eve
to event in high-energy collisions. After describing the QC
dynamics of branching and a simplex model in Sec. II, we
treat the temporal behavior of the branching processes
Sec. III. Then in Secs. IV and V we consider the spat
properties of the final state. Concluding remarks are given
Sec. VI.

II. GLUON BRANCHING AND THE x MODEL

To carry out this investigation it is necessary to use co
puter simulation to generate events of particle product
through branching. Only then is it possible to study the n
ture of fluctuations of the final-state particles. For the sim
lation we shall use algorithms based on two opposite type
dynamics. One is, of course, the QCD dynamics. For si
plicity we shall focus on only the pure gauge theory witho
quarks. At the end of the evolution we shall identify th
partons as particles to avoid the complication of hadroni
tion, which is inessential to the question of whether the glu
branching dynamics is chaotic. The other is a cascade mo
to be called thex model, which has none of the features
the QCD; in particular, it does not have infrared and colli
ear divergences. It is studied in order to provide a contras
the gauge theory so that our measures for chaoticity can
tested on these two contrasting branching dynamics.

In both branching processes the initial parton has virtu
ity Q2 and successive branchings continue until the virtua
ties of all partons are<Q0

2. In pure-gauge QCD the splitting
function at each vertex of branching is~for g→gg!

P~z!56F12z

z
1

z

12z
1z~12z!G , ~1!

wherez is the momentum fraction of the daughter parton
the frame where the mother parton’s momentum is 1. In
x model we keep only the last term of~1!,

P~z!56z~12z!, ~2!

so that it has no divergences atz50 and 1. The presence o
those divergences is, of course, the source of complica
for QCD that must be treated carefully.

We follow Odorico’s procedure@9# to develop the algo-
rithm for Monte Carlo simulation of parton shower in QCD
Because of the soft gluon and collinear divergences, m
partons are emitted at smallz and small angles, but are no
resolvable. The probability that a parton atq25Q2 can sur-
vive without emitting a resolvable parton untilq25Q 0

2 is the
Sudakov form factor@9,10#
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D~Q,Q0
2!5expF2E

Q0
2

Q2 dt8

t8

as~ t8!

2p E
z0~ t8!

12z0~ t8!
dz P~z!G ,

~3!

where the limits of thez integration define what is meant by
resolvable. The first step of the simulation is to se
z05Q 0

2/Q2 and calculate fromD(Q2,Q 0
2) whether a parton

starting fromQ2 evolves toQ0
2 without branching. If not,

then the value ofq2 at which the branching occurs is deter
mined by solving

12D~Q2,Q0
2!/D~q2,Q0

2!

12D~Q2,Q0
2!

5R# , ~4!

whereR# is a random number between 0 and 1. With thatq2,
the value ofz is then generated in accordance to the distr
bution P(z) given in ~1!, keeping only what is in the range
Q 0

2/q2<z<12Q 0
2/q2. With thatz, the daughter partons are

assigned the maximum virtualities t15zq2 and
t25(12z)q2, from which further evolutions are carried out
by repeating the above procedure starting witht1 and t2.
When the virtuality of a descendant reachesq2<Q 0

2, then
that branch of the tree terminates. We shall putQ051 GeV,
to be definite. In the simulation we shall setNc53,Nf50 so
that

as~q
2!54p/11 ln~q2/L2!, ~5!

whereL2 will be set at 250 MeV.
We have also tried to simulate the parton shower usin

the algorithm of Webber@10# and found that the result dif-
fers very little from that based on the above algorithm o
Odorico @9# for the type of measures we calculate. Sinc
Odorico’s method is far more efficient, we have chosen
use it throughout this work.

In the x model, because of no infrared and collinear d
vergences, there is no automaticq2 evolution. However, in
order to compare its properties with those of QCD, we intro
duce by hand aQ2 dependence of the branching process b
requiring that at each vertex the two daughter partons ha
virtualities zq2 and (12z)q2, when the mother virtuality is
q2, and z is generated by using~2! for 0<z<1. As with
QCD, we require branching to continue successively un
the virtualities of all partons become<Q0

2. Sinceq2 is not
degraded along a parton line, there are far more partic
produced in thex model than in QCD for the sameQ2, but
that is immaterial, since our measure of chaoticity will no
depend onQ/Q0. Clearly, the dynamics of branching in the
x model is very different from QCD. We use it to exemplify
the Abelian dynamics that has no infrared and collinear d
vergences.

III. TEMPORAL BEHAVIORS OF BRANCHING

Each branching process can be represented by a tree
gram, since recombination of partons is not considered. T
vertices of the tree could be ordered vertically in accordan
to the values ofq2 of the mother partons. Then there are
many diagrams with the same topology that can descri
different evolution processes leading to the same number
particles at the end, but belonging to different final states.
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6610 53ZHEN CAO AND RUDOLPH C. HWA
we defer the considerations of the momenta of the final p
ticles until the next section, we can simplify the problem b
focusing on only the topology of the tree diagram. In th
way we study the fluctuation of the particle multiplicity a
the expense of ignoring their momenta. What is gained is t
possibility of defining a trajectory in the multiplicity space
for a branching process.

In emphasizing the topology of a diagram, let us draw a
diagrams in such a way that all partons of the same gene
tion are placed at the same level regardless of theirq2. An
example is shown in Fig. 1. The positions where the parto
are horizontally have no significance in that diagram. Ver
cally, the branching points of the same generation are plac
at the same level. All partons that reach the final state~rep-
resented by the dashed line! haveq2<Q 0

2. No information
concerningq2.Q 0

2 is carried by the vertical position of the
lines in the diagram. Leti denote the generation, starting
with i50 for the initial parton atq25Q2. Let bi denote the
number of branching points at thei th generation. In Fig. 1
we havebi51,2,3,3,1 fori50,...,4. We can define a vecto
b5(b0 ,b1 ,...) with as many components as there are no
vanishing bi . Thus, for the diagram in Fig. 1, we have
b5~1,2,3,3,1!. If this description were to be applied to an
electron radiating photons, then a bremsstrahlung diagr
would haveb5~1,1,1,...!. On the other hand, for cell repro-
duction where every cell subdivides into 2,b5~1,2,4,8,...!.
The description can be further simplified, if we define

xi5 log2bi ~6!

and the corresponding vectorx5(x0 ,x1 ,...). Since the mini-
mum xi is 0 and the maximumxi is i , the two extreme
vectors arex5~0,0,0,...!, which is like bremsstrahlung, and
x5~0,1,2,3,...!, which is like cell reproduction. They are
shown in Fig. 2 by the thick lines, wherexi is plotted against
i . All possible tree diagrams of branching processes are r
resented by a line in between the two boundary~thick! lines,
as illustrated by the thin line in Fig. 2. Such a line specifie
a trajectory.

For finiteQ2 the branching cannot go without end, and s
there is always a maximumi , which we denote byimax. The
value of imax varies from event to event, even ifQ2 is fixed
for all events. Two paths with the sameimax may differ for
0, i, imax, and the total numbers of partons produced wou

FIG. 1. A tree diagram forb5~1,2,3,3,1!.
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be different. In general, for any two trajectoriesx andx8 one
can definedi5uxi2xi8u at every i where xi and xi8 exist
simultaneously. Obviously,di can be regarded as the dis
tance between the two trajectories. Since two trajectories inx
space can cross,di may vanish at nonzeroi . Since i is an
integer,xi has discrete values. Thus the trajectories cannot
dense in the continuum space ofi andxi , but for the discrete
support of the trajectories we may regard the collection of a
possible trajectories as being dense in the sense that a tra
tory can pass through any allowed value of (i ,xi).

To relate the description even more closely to the clas
cal treatment of chaos, we now address the question of s
sitivity to initial condition. In classical nonlinear dynamics
one can specify the point in phase space where a traject
begins and vary that pointn in as small a neighborhoodN«

as one chooses. In non-Abelian gauge dynamics or in thex
model, the initial condition is that the initial parton has vir
tuality q25Q2. Being quantum mechanical, it is not neces
sary to varyq2 in a small neighborhood ofQ2. Quantum
fluctuation is sufficient to guarantee that the final state of th
branching process will vary from event to event, even if a
events start out at precisely the sameQ2. Thus the relation-
ship to the classical consideration of initial condition is a
follows. ConsiderN random points in the neighborhoodN«

of the initial point in phase space of a classical trajector
Any such point can be mapped to the beginning of a partic
lar branching process. A set ofN events in the Monte Carlo
simulation all starting out at the sameQ2 then corresponds to
N trajectories beginning in the neighborhoodN« in the clas-
sical case. With this correspondence between the two pro
lems, it is then sensible to suggest that instead of studyi
the distance between two neighboring trajectories, o
should consider allN events in the Monte Carlo simulation
and examine the mean deviation from the average of t
parton multiplicities. Indeed, the study of fluctuations of ob
servable quantities will be the main theme of our approach
analyzing chaotic behavior of branching processes.

In Fig. 3 we show schematically several possible traje
tories of the branching processes, all starting out at the sa
Q2. Not only can trajectories that have the sameimax be
different, those with differentimax are even more dissimilar.
For the purpose of studying ‘‘temporal’’ behavior, which
corresponds to the dependence on the generationi in the
branching process, only trajectories with the sameimax can
be compared. Thus it is necessary to know the distributio
P~imax! of imax for all events. Figure 4 shows the result of 10

5

simulations for each of the two types of branching process

FIG. 2. Trajectory ofxi .
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discussed in the previous section. The initial virtualities a
such thatQ/Q05103 for QCD and 15 for thex model. These
values are chosen so that the average multiplicities are co
parable, as we shall show below. BothP~imax! are Gaussian-
like distributions, with the width being larger for QCD. This
is the first indication of more fluctuation for QCD as com
pared to thex model. In choosing a narrow band ofimax for
further investigation, we select the shaded regions in Fig
that are situated at the maximum ofP~imax!.

As mentioned before, time is not a well-defined variab
in the branching process. It is deemphasized when we fo
on the topology of the tree diagrams. The generation labei
carries only a rough notion of time, since it is well known, a
in family genealogy, that a son can be younger than a gra
son. However, there is one quantity that increases monoto
cally with i ; it is the parton multiplicityni ,

ni511(
j50

i21

bj511(
j50

i21

2xj , ~7!

even thoughxi may rise and fall withi . Define the average
parton multiplicity ^ni& at generationi by

^ni&5
1

N
(
e51

N

ni
e~ imax!, ~8!

FIG. 3. Several possible trajectories.

FIG. 4. Distribution ofimax for QCD and thex model.
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wheren i
e is the value ofni at i for theeth event and the sum

is over allN events having the sameimaxchosen. This quan-
tity ^ni& may be taken to play the role of time in the branch
ing process, although no linear dependence is implied.
Fig. 5 we show the simulated results on^ni& as functions of
i for various values ofQ/Q0. In both types of branching
processes,̂ni& increases monotonically withi , the rate being
fastest at midrange ofi . The values ofQ/Q0 are chosen such
that ^ni& are roughly in the same range for the two types.

For the measure that describes the fluctuations of the t
jectories, and therefore of the multiplicities, we use the no
malized variance

Vi5
^ni

2&2^ni&
2

^ni&
2 , ~9!

which clearly gives a measure of the average ‘‘distance
between trajectories. It is always positive, as a distance fun
tion should be. In Fig. 6 is shown the results of simulatio
for the two cases. The sustained increase in the lower half
i range for QCD is a distinctive feature that is not shared b
thex model.

A more transparent way of presenting this result is to pl
Vi vs ^ni&, as shown in Fig. 7. It corresponds to plotting th
distanced(t) againstt in the classical problem, except tha
here^ni& is not exactlyt, but some representation of it. Now,
the behavior for QCD appears universal, i.e., independent
Q/Q0, over a wide range. In the log-log plot the behavior i
approximately linear. The same is not true for thex
model: Vi increases initially and then drops precipitousl
as ^ni& is increased. Furthermore, the maximum decreas
with increasingQ/Q0. Thus the uncertainty in the parton
multiplicity increases witĥ ni& in the former case, but satu-
rates and then decreases in the latter case. If that uncerta
can be regarded as a measure of chaos, then the QCD
namics is chaotic, while thex model is not. We can express
the dependence ofVi on ^ni& in the QCD case in the form of
a power law

FIG. 5. Simulated results for the average multiplicities at var
ous generationsi for fixed values ofQ/Q0 indicated by the num-
bers.
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Vi}^ni&
k. ~10!

Then from Fig. 7 we findk to be.0.4. Writing ~10! in the
form of an exponential

Vi}exp~k ln^ni&!, ~11!

we may compare it to the definition of Lyapunov exponentl
in d(t);elt. If ln^ni& can be interpreted to correspond tot,
thenk may be said to play the role of the Lyapunov expo
nent. However, nothing firm can be proved about these c
respondences, and so the above remarks should only
taken as a possible orientation in interpreting the implicati
of the result obtained.

From what has so far been done, it is not possible for us
find a criterion on the magnitude ofk to signify robust chao-
ticity. Furthermore,^ni& and Vi are aspects of the parton
state at generationi before the completion of the branching
processes. Thus they are not experimentally measurable.
particle production in high-energy collisions, the tempor
behavior of branching is primarily a theoretical problem. Fo

FIG. 6. Simulated results for the normalized variancesVi for the
same parameters as in Fig. 5.

FIG. 7. Temporal behaviors depicted byVi vs ^ni&.
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experimental verification of any theoretical prediction, it i
necessary to focus on the final state, which is the subject
the next two sections.

IV. FACTORIAL MOMENTS, ENTROPY,
AND INFORMATION DIMENSION

In the final state the complete information about the pa
tons, now identified as observable particles, is registered
their momenta. If the branching trajectories never chang
then there is certainty in where to find those particles in th
momentum space and the entropy~to be defined below! is
zero, corresponding to no loss of information. Howeve
quantum fluctuation alone is sufficient to cause fluctuation
the final-state momenta, and so entropy is not expected
vanish. In multifractal analysis of complex patterns, the in
formation dimension is a compact way of summarizing th
dependence of the entropy on the resolution scale@11#. Since
multifractal analysis of the multiplicity fluctuation in high-
energy collisions has been proposed@12,13# and carried out
@14,15#, it is natural to examine the information dimension
for the branching processes considered here.

If pj denotes the fraction of particles in an event that fal
into the j th bin of sized, then in the limit of many such bins
in the system under study the entropy is defined by@13#

S52(
j
pj ln pj ~12!

and the information dimensionD1 is @16#

D152 lim
d→0

S/ ln d. ~13!

The study of the self-similar behavior of particle productio
has been greatly facilitated by the use of normalized factor
momentaFq , suggested by Bialas and Peschanski@17#, who
first showed that the statistical fluctuations are filtered out b
those moments. However, sinceFq is defined for integer
q>2, it cannot be used to determine the information dime
sion, which involves the derivative ofFq with respect toq at
q51. For that reason theGq moments for all realq, positive
and negative, were introduced for analyzing the multifract
structure of particle production data@12,13,15#. Their draw-
back is that the statistical fluctuations must be taken out
Gq explicitly by hand. More recently, a method for continu
ing Fq to nonintegerq, while maintaining its virtue of not
being contaminated by statistical fluctuations, has been d
veloped@18#. We shall therefore make use of it to determin
D1.

Before describing the details of the calculations, let u
first make clear the space in which the self-similar behavi
is examined. Withzi denoting the momentum fraction of an
i th-generation daughter parton at a branching vertex, whe
the mother parton has momentum 1, the momentum fracti
of a final particle is then

x5)
i
zi , ~14!

where the product is taken over all generations of a particu
path in the branching tree, leading from the initial parton t
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the final particle under consideration. Since allzi are known
in a simulated event, the values ofx for all particles can be
calculated; they are all crowded in thex50 region, since
their sum is 1. This is especially true for QCD branchin
because of the soft gluon divergence in~1!. If we expand the
x50 region by using the variablez52log10x, we get a broad
Gaussian-like distribution, as shown in Fig. 8, with the pe
at z53 corresponding tox51023. The situation is not as bad
for thex model, but still most particles are found in the sma
x region, as shown in Fig. 9. This highly uneven distributio
of x is inappropriate for data analysis that involves the p
tition of the space into small bins.

One can define another variableX, in terms of which the
distribution is much smoother@19#. Let the inclusive distri-
bution in x, averaged over many events, ber(x). Then the
cumulative variableX is defined by

X~x!5E
x1

x

r~x8!dx8 YE
x1

x2
r~x8!dx8, ~15!

FIG. 8. Momentum distribution in terms ofz52log x for QCD
branching.

FIG. 9. Momentum distribution in terms ofx for thex model.
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wherex1 and x2 are two extreme points in the distribution
r(x), between whichX varies from 0 to 1. In terms ofX the
inclusive distributionr(X) is constant. For QCD branching
we shall taker~x8! to be thez distribution as in Fig. 8; for
thex model,r~x8! will be just thex distribution as in Fig. 9.
An illustration of ther(X) distribution for QCD is shown in
Fig. 10 after simulating 53104 events atQ/Q05103. Note
the expanded scale along the vertical axis.

Now, in X space we divide the interval 0<X<1 into M
bins of widthd51/M . Let nj be the number of final particles
in the j th bin in any given event. The factorial moment of
qth order is

f q~M !5M21(
j51

M

nj~nj21!•••~nj2q11!. ~16!

The normalized factorial moment after averaging over al
events is

Fq5^ f q&/^ f 1&
q. ~17!

Since^ f q& is the average ofnj !/(nj2q)! over all bins and
over all events, we may write it as

^ f q&5 (
n5q

`
n!

~n2q!!
Pn , ~18!

wherePn is the multiplicity distribution in a bin. In general,
Pn may be expressed as a convolution of the statistical (S)
and the dynamical (D) contributions to the multiplicity fluc-
tuations:

Pn5S^D5E
0

`

dt
tn

n!
e2tD~ t !, ~19!

where a Poissonian distribution has been used forS. Putting
~19! into ~18! yields

FIG. 10. Momentum distribution in terms of the cumulative
variableX for QCD branching.
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^ f q&5E
0

`

dt tqD~ t !. ~20!

This is the standard moment of the dynamical distributio
that has no statistical contamination@17#. If D(t)5d(t2n̄),
so thatPn is Poissonian, then̂f q&5n̄q andFq51. Any de-
viation of Fq from 1 is an indication of the presence o
dynamical fluctuation.

Phenomenologically, one does not have access toD(t).
UsingPn as input from experiment or from simulation, on
can determinê f q&, but only for integerq. One may replace
the factorials in~18! by gamma functions in order to con-
tinue ~18! to nonintegerq @20#. But that procedure does no
result inFq51 for a Poisson distribution for allq. In Ref.
@18# a continuation procedure is developed that guarante
Fq51 for all q whenD(t) is trivial. That method will not be
described here, but will be used to determineFq for our
branching processes.

For notational brevity let us write the right-hand side o
~20! as ^tq&D . Then we have

Fq5^~ t/^t&D!q&D5^~pM!q&D , ~21!

wherep is the fraction of event multiplicity in a bin, as in
~12!. Thus, from~12!, we get

S52M ^p ln p&D5 ln M2
d

dq
ln FqU

q51

. ~22!

If Fq has a power-law behavior nearq51, i.e.,

Fq}M
wq, ~23!

it then follows from~13! that, in the largeM limit,

D1512
dwq

dq U
q51

. ~24!

Note that this relationship is derived under the assumpti
that ~22! is meaningful, which demands thatFq be well de-
fined in a range ofq aroundq51 and thatdFq/dq contain
only dynamical information without spurious contribution
arising from improper continuation procedure@18#.

If dynamically the bin multiplicity is evenly distributed
among allM bins so thatD(t)5d(t2t0), thenFq51 for all
q ~including nonintegerq! and ~22! givesS5ln M . On the
other hand, if dynamically only a fractiona of theM bins is
populated, the rest empty, i.e.,

D~ t !5ad~ t2t1!1~12a!d~ t !, ~25!

then ^ f q&5at 1
q and Fq5a12q for all q. Hence~22! yields

S5ln(aM). If, in particular, only one bin is nonempty, i.e.
a51/M , thenS50. Thus~25! offers a simple way of seeing
how the entropy increases from 0 to lnM , as the fraction of
nonempty bins increases from 1/M to 1. If there is only one
nonempty bin, the dynamics is like one with a classical tr
jectory that has no dispersion in where the particles are to
found in the momentum space. Without loss of informatio
the entropy is zero. If there is maximum dispersion corr
sponding to all bins being equally likely to be populated
then the entropy is maximum.
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We now apply this method of analysis to our simulated
branching processes. First, we show in Fig. 11 the multiplic
ity distributions in QCD for various bin sizes~d51/M ! after
105 events. It should be understood that Fig. 10 shows th
inclusiveX distribution after summing over all events. But,
event by event, the fluctuation inX space is much greater.
Upon dividing the interval 0<X<1 intoM bins and counting
the multiplicity in each bin, one then obtainsPn(M ) after
averaging over all the events. The degree of fluctuatio
around the decreasinĝn&, relative to that average, asM is
increased,‘ is what is measured by the normalized factor
momentsFq defined by~17! and ~18!. This is unlike our
theoretical calculation based on~20! and ~25! becauseD(t)
is not known explicitly in the simulation. The results are
shown in Fig. 12 for both QCD and thex model. Since
Fq5151 by definition, we see thatFq increases withq in
QCD, but decreases with increasingq in the x model. It
means that the distributionsPn(M ) for QCD are wider than

FIG. 11. Multiplicity distributions in bins of sized51/M for
QCD branching.

FIG. 12. Fq vsM for q52–5.
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Poisson, but for thex model they are sub-Poissonian. Figur
12 also shows that there is very littleM dependence in either
case. For nonintegerq values a substantial amount of work is
needed to continueFq according to the method of@18#. The
result is shown in Fig. 13. It is clear that forq.1 all Fq are
greater in QCD than in thex model. It corresponds to more
fluctuations in QCD than in thex model, a result that is
consistent with the finding of the previous section.

It is also evident from Fig. 13 thatdFq/dquq51 is essen-
tially independent ofM in both cases. WhereasS is still
dependent onM according to~22!, theM independence of
d ln Fq/dquq51 requires, on account of ~23!, that
dwq/dquq5150. This together with~24! entails

D151 ~26!

in both cases. Thus there is no interesting multifractal pro
erty. This particular approach to finding a useful signature
chaotic behavior ends in failure.

The smoothing of the phase space by use of theX variable
in place of the momentum fraction variablex has undoubt-
edly contributed to eliminating some aspect of the fract
structure. But what has not been removed is the more int
esting consequences of the dynamics. The triviality ofD1
states only that there is no nontrivial self-similarity in th
fluctuations measured. The latter are quantified byFq , which
involves both the bin and event averages of the factor
product in~16!. The result suggests that some of the fluctu
tions have been lost by the averaging process. In the n
section we develop a scheme to recapture that which
been lost.

V. ENTROPY INDEX

We know that event by event there are large fluctuatio
where the produced particles are in theX space. What we
want to do now is to find a way to register the fluctuatio
~from event to event! of the fluctuation~in the X distribu-
tion!.

FIG. 13. Fq vs continuousq.
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Let F q
e denote the normalized factorial moment of theeth

event:

Fq
e5 f q

e/~ f 1
e!q, ~27!

where f q
e is as defined in~16! for theeth event. Clearly,F q

e

changes withe for fixed q andM . In Fig. 14 we show the
distribution P(Fq) after 105 simulated events of QCD
branching, the labele being omitted. For clarity, onlyq52
and 3 are exhibited for a wide range ofM values. At small
M the distribution has a peak atFq'1. Indeed, ifM51 and
event multiplicity is large, thenFq should be very nearly 1
for all events. At largeM a peak atFq50 is developed,
especially at highq, because the bin multiplicity for smalld
is small and may in many events be less thanq for all bins,
in which caseF q

e50. This large fluctuation inP(Fq) is what
we want to capture and would be lost ifFq is averaged over
all events. Clearly, we should take the moments ofFq before
performing the average.

We may think ofF q
e as the horizontal moments in theX

space and then define the vertical moments in the eve
space as follows:

^Fq
p&5

1

N
(
e51

N

~Fq
e!p, ~28!

whereN is the total number of events andp is a positive
real number not restricted to integers. The normalized m
ments of moments are

Cp,q~M !5^Fq
p~M !&/^Fq~M !&p. ~29!

If Cp,q(M ) has a power-law behavior inM , i.e.,

Cp,q~M !}Mcq~p!, ~30!

then we can define

mq5
d

dp
cq~p!up51 , ~31!

FIG. 14. Distributions ofF q
e calculated event by event.
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which will be referred to as the entropy index.
To see the connection betweenmq and entropy, let us

define

Pq
e5Fq

e Y(
e51

N

Fq
e ~32!

and a~new! entropy in the event space,

Sq52 (
e51

N

Pq
e ln Pq

e . ~33!

Furthermore, define the moments

Hp,q5 (
e51

N

~Pq
e!p, ~34!

which are related toSq by

Sq52
d

dp
ln Hp,qup51 . ~35!

On the other hand,Hp,q can be related toCp,q by

Cp,q5N p21Hp,q , ~36!

and so we have

d

dp
ln Cp,qup515 ln N 2Sq . ~37!

In then follows from~30! and ~31! that

Sq5 ln~N M2mq!, ~38!

apart from a possible additive term that is independent ofN

andM .
This entropy, as defined in~33!, is clearly different from

the entropyS defined in~12!. To emphasize thatSq is de-
fined in the event space, we may call it ‘‘eventropy.’’ W
can think of the event space as a one-dimensional space
N sites. At each site we can register a numberF q

e. If F q
e is

the same at each site, thenPq
e51/N and Sq5ln N . We

should think of this as being highly disordered in the eve
space, sinceF q

e is spread out uniformly over all space. Th
larger the number of events, the larger is the eventropy. T
is very similar to the situation whereS5ln M , when the bin
multiplicity is uniformly distributed in theX space that has
M bins. A branching dynamic that results in the sameF q

e for
every event does not fluctuate in the branching processe
corresponds to nearby trajectories staying nearby through
In short, the dynamics is not chaotic. ForSq to be lnN , we
see from~38! that mq must vanish. Thus smallmq corre-
sponds to large eventropy, which in turn implies no chao
behavior.

On the other hand, if we consider the other extreme wh
all F q

e are zero except one evente8, then Pq
e5dee8 and

Sq50. This is highly ordered in the event space, but t
fluctuation ofF q

e from zero to a nonzero value is large. Ge
erally speaking, if the distributionP(Fq) is broad, the fluc-
tuation is large, initially nearby trajectories become wide
separated in the final states of different events, and the
e
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namics is chaotic. In order for the eventropy to be small,mq
must be large. Thus large entropy index implies chaotic b
havior.

In Fig. 15 the results of our simulation are shown fo
q52,3,4 andp50.5, 1.0, 1.5, 2.0. From the log-log plots one
can identify approximate scaling behavior. We used the r
gionM55–20 to determine the value ofmp , for whichCp,q
for an incremental region ofp aroundp51 has to be exam-
ined. We obtain@21#

mq
~QCD!50.0027, 0.026, 0.15 ~q52,3,4!, ~39!

mq
~x!50.0011, 0.0087, 0.038 ~q52,3,4!. ~40!

Clearly,mq
(QCD) is significantly larger thanm q

(x). It is sugges-
tive that the QCD dynamics is chaotic, while thex model is
not. However, at this point we have no quantitative criterio
on how largemq must be in order to be chaotic. In classica
nonlinear problems there is also no criterion on how long th
time lapse must be in order for the distance between near
trajectories to become sufficiently far apart to qualify for
divergent behavior. Nevertheless, the positivity of the
Lyapunov exponent is a simple condition, the counterpart o
which for the entropy index is lacking.

The above results are based on the same simulations t
have produced all the quantitative results shown in Fig
5–15. It should be recalled that in Sec. III, where we studie
the temporal behaviors of branching, it is possible to con
sider the notion of distance between different trajectorie
only if the trajectories have the same maximum generatio
numberimax. For that reason we selected only the sample o
events that are in the narrow shaded regions in Fig. 4. A
subsequent results are based on those events having es
tially the sameimax in each model. The rationale is, we re-
peat, to facilitate temporal analysis. For spatial analysi
there is, however, no necessity to restrict the trajectories
having the sameimax. That is, all simulations in the whole
spectrum ofimax shown in Fig. 4 are acceptable. In that cas
we expect more fluctuations. We now consider that case a
present only the results obtained for the entropy indices.

In thex model, sinceP~imax! is not much wider than the
shaded region~see Fig. 4!, we do not expect very much
difference in the result when all simulated events are used
the determination ofCp,q . But in QCD,P~imax! is very wide,
and so we should expect larger values ofCp,q compared to
the corresponding curves in Fig. 15, reflecting larger fluctua

FIG. 15. Moments of momentsCp,q vs M for p50.5–2.0 and
q52,3,4.
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tions. The results are shown in Fig. 16. The new values
the entropy indices for the full spectra are

mq
~QCD!50.0043, 0.044, 0.20 ~q52,3,4!, ~41!

mq
~x!50.0010, 0.0089, 0.039 ~q52,3,4!. ~42!

Evidently, these values ofmq
(QCD) are much larger than the

corresponding ones in~39!, but those ofm q
(x) are nearly the

same as the ones in~40!. Hence the differences between
mq
(QCD) andm q

(x) are even greater, when all events are co
sidered. This further supports the suggestion that the QC
dynamics is chaotic.

VI. CONCLUSION

We have explored various ways of measuring chaotic
of branching processes. Because the problem is far m
complicated than a classical nonlinear problem, the sea
has not been a straightforward extension of the conventio
ideas. Our approach has been based on a simple premise
a branching process is chaotic, then it should be hard
predict what the likely outcome of an event would be, give
the knowledge of the result of a previous event. It means th
there are large fluctuations from event to event.

To be more concrete, we have focused first on the temp
ral development of branching. The varianceVi of the multi-
plicities at a particular generationi can be regarded as a
measure of the mean distance between ‘‘trajectories.’’ W
have found thatVi increases witĥni& in a power-law fash-
ion for QCD branching, but not for thex model, an example
of Abelian branching dynamics. That is the first indicatio
that the QCD dynamics has the characteristics of being c
otic. We have not investigated the behavior of the high
moments,Vi being related to only the second moment. It
probably safe to predict that the higher moments would i
crease even more rapidly witĥni&.

FIG. 16. Same as in Fig. 15, but for all events simulated, r
gardless ofimax, i.e., for the entire ranges ofP~imax! in Fig. 4.
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For fluctuations in the final state where experimental ob-
servations are feasible, we have consideredFq , D1, Cp,q ,
andmq as possible measures of chaoticity. It turns out that
the information dimension is not effective, but the entropy
index can be. What emerges is a realization that one shoul
study the phase space and the event space simultaneous
More specifically, consider a two-dimensional lattice, where
the horizontal axis hasM sites, corresponding to theM bins
in the X space, and where the vertical axis hasN sites,
corresponding to theN events in the event space. For every
event there is a horizontal array ofM numbers, indicating the
particle multiplicities in theM bins. The moments of mo-
mentsCp,q summarize the distribution on this whole lattice
without significant loss of information. The entropy indexmq
extracts from this lattice of numbers a simple numerical
quantity that can characterize the degree of fluctuations o
the lattice. The largermq is, the more chaotic the system is.
Unfortunately, we do not have at this point a criterion on the
threshold value ofmq , above which chaotic behavior will
definitely occur. Further investigation on this aspect of the
problem is undoubtedly warranted.

Each of the features studied reveals some aspect of th
chaotic behavior of QCD dynamics. Taken together collec-
tively, they present a strong contrast from the results of thex
model. One may wonder what the mechanisms are in th
branching processes that can lead to such diverse outcome
Our view is that in QCD branching there is a tension be-
tween two opposing forces that is absent in thex model. The
collinear divergence implies a strong preference for small-
angle emission of partons in the branching process. But if the
emission angle is too small to be resolved, there is no
branching. Since evolution without branching is suppressed
by the Sudakov form factor, there is a competition between
evolution by emitting a resolvable gluon and a preference for
emitting a collinear unresolvable gluon. It is this tension that
leads to large fluctuations in the number of branching points
and hence to chaotic behavior. Thex model has no collinear
divergence and noq2 evolution, and so there is no tension to
cause large fluctuations. What we learn here may lay the
foundation for finding ways to treat nonperturbative pro-
cesses, for which chaotic behavior may play a crucial role in
the evolution of a large system of quarks and gluons, such a
those produced in a heavy-ion collision at high energy.

ACKNOWLEDGMENTS

One of us~R.C.H.! is grateful to C. B. Chiu, K. Geiger, B.
L. Hao, S. G. Matinyan, and B. Mu¨ller for helpful discus-
sions. This work was supported in part by the U.S. Depart-
ment of Energy under Grant No. DE-FG06-91ER40637.

e-
@1# Z. Cao and R. C. Hwa, Phys. Rev. Lett.75, 1268~1995!.
@2# S. G. Matinyanet al., Sov. Phys. JETP53, 421 ~1981!.
@3# S. G. Matinyan, Sov. J. Part. Nucl.16, 226 ~1985!, and other

references quoted therein.
@4# B. Müller and A. Trayanov, Phys. Rev. Lett.68, 3387

~1992!.
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