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Chaotic behavior of particle production in branching processes
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The notion of chaotic behavior is examined for particle production in branching processes. Two types of
branching are considered: non-Abelian gauge interaction and an Abelian cascade model. Properties of the
production processes are investigated by Monte Carlo simulation. The “temporal” behavior is studied by
following the fluctuations in the multiplicities of each generation as the branching evolves. The “spatial”
behavior is described in terms of the fluctuations of the normalized factorial moments from event to event. The
information dimension and a new entropy index are determined. When all the measures are taken together, they
collectively give a strong suggestion that the QCD branching process is chaotic, while the Abelian cascade
model is not[S0556-282(196)00111-7

PACS numbse(s): 13.85.Hd, 05.45tb, 12.38.Bx, 24.60.Lz

I. INTRODUCTION In such a search it is necessary to keep in mind the special
features of QCD. There are many processes that involve
Recently, we reported on the results of an investigation irbranching in real time, such as cell division in biological
the possible signatures of chaos in branching procdddes systems. The emission of photons by an accelerated charge
The aim is to determine whether the nonlinear, non-Abeliarcan be regarded as a branching process with sequential or-
dynamics of the quantum Yang-Mills field possesses chaotidering. However, for gluons reproducing gluons in the pure
behavior. Since in such a dynamical system the number ajauge theory, the time variable plays no role in the descrip-
degrees of freedom increases with time evolution, when th&on of a state withn gluons whose momenta are precisely
notion of time is not even well defined in the branching specified. In multiparticle production one works with mo-
process, new measures of trajectory, distance, entropy, etenenta(or their variants such as rapidjtysince they are what
must be introduced. We have found that the perturbativean be measured in a collision process. Then in the momen-
QCD branching shows signs indicative of chaos, whereas aum space the concept of trajectory for a system of increasing
model lacking the characteristics of QCD does not. In thisnumber of gluons becomes ill defined. Without trajectories
paper we give the details of our study. the notion of distance between trajectories is untenable and
In the case of classical non-Abelian dynamics, speciathe conventional method of examining chaos in classical
simplifying conditions that reduce the equations of motion tononlinear problems is inapplicable. It will therefore be nec-
manageable size have been considered and chaotic solutioessary for us to look for other quantities that can describe the
have been founf2,3]. A more complete investigation of the difference between states, which evolve from what corre-
gauge equations has to be done on the lattice, and it has bespond to nearby initial conditions in the classical problem.
shown that the classical non-Abelian gauge theory generally The major difficulty with the study of chaotic behavior of
exhibits deterministic chaos, whose Lyapunov exponents canonlinear gauge dynamics is that the gauge fields are not
be numerically computef4-6. directly measurable and that the branching processes cannot
The extension of the above classical problem to the quarbe tracked experimentally. In collisions at high energies,
tum theory of Yang-Mills fields is extremely difficult. The where the question of chaos in gauge dynamics arises, only
current state of knowledge about quantum chaos hoverhe particles in the final states can be measured. Thus, to
around semiclassical problems in which classical trajectorieserify any theoretical predictions about chaotic behavior, the
are generalized to wav¢g,8]. That is totally inadequate for loss of information at the end of the branching process must
treating quantum fields, the proliferation of which in a colli- be quantified and presented in a form suitable for experimen-
sion process involves issues that are untouched in solvinal determination. To that end we shall introduce an entropy
wave equations. The first step toward formulating a feasibléndex u,, which is measurable and describes the degree of
program to attack the problem is to dissociate the complicafluctuation of the final particles from event to event.
tions of nonperturbative QCD from the quantum dynamics of Before going into details, it may be helpful to state the
non-Abelian fields. In the perturbative domain where thegeneral idea underlying the work. In classical dynamics, if
QCD coupling is small, the nature of nonlinear, non-Abelianthe coordinateg,(t) and momentg (t) specify the sys-
dynamics is fully present so that the signature of chaotidem, then the trajectory in phase space is well defined in the
behavior in gauge theory should nevertheless show up ifamiliar way. In classical field theory the fields,,(x,t) and
hard processes. That is an important step of simplificatioB,(x,t), say, form a field configuration defined over all
that renders the problem manageable. More specifically, ongpacex at any given time and the change of the configuration
can narrow the scope and focus on branching processes wi#ts time evolves specifies a trajectory in a generalized sense.
QCD splitting functions. The issue then becomes the searchor quantized fields one works in the Fock space so that the
for measures that can reveal chaoticity in branching pronumber of quanta becomes a variable that specifies an im-
cesses. portant aspect of the state of the system. The distance be-
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among other quantities, the difference between the numbers A(Q,Qf) =ex dz A(z)
of quanta in the system. Thus, in particle production at high 3
energy where the multiplicityy of produced particles is an )

essential observable, the fluctuationnofrom event to event oo the limits of the integration define what is meant by

must be viewed as the consequence of_s_,wings_of trajectoriggsvable. The first step of the simulation is to set
that _hav_e aIr_nos'F t_he same initial cond_ltlon. With that _Con'zo=Q§/Q2 and calculate fromA(Q2,Q2) whether a parton
nection in mind it is natural to generalize the Conve”t'onalstarting fromQ? evolves toQ2 without branching. If not

treatment of nonIir_1ear dynam?csf to an appr.oach that placefﬁen the value ofj? at which the branching occurs is deter-
emphasis on tracking the multiplicity fluctuations from event inaq by solving

to event in high-energy collisions. After describing the QCD

tween two trajectories in that case must therefore involve, r{ sz dt’ ag(t’) [1-zyt")

Q(Z) t" 2w 2(t")

dynamics of branching and a simplemodel in Sec. I, we 1—A(Q?Q2)/A (42, Q2)

treat the temporal behavior of the branching processes in > =Ry, 4
Sec. lll. Then in Secs. IV and V we consider the spatial 1-A(Q% Qo)

properties of the final state. Concluding remarks are given in

whereR, is a random number between 0 and 1. With it
the value ofz is then generated in accordance to the distri-
bution P(z) given in (1), keeping only what is in the range
Il. GLUON BRANCHING AND THE y MODEL Q3/g?<z=1-Q}%/g? With thatz, the daughter partons are
. L assigned the maximum virtualitest;=zg® and
To carry out this investigation it is necessary to use comy__ 1—2)q?, from which further evolutions are carried out

. . . . 2
puter simulation to generate events of particle productlorby repeating the above procedure starting withand t,.
through branching. Only then is it possible to study the nawyhen the virtuality of a descendant reactigs<QZ, then
ture of fluctuations of the final-state particles. For the simusnat branch of the tree terminates. We shall QY1 GeV

lation we shall use algorithms based on two opposite types g}, pe definite. In the simulation we shall $61=3, N;=0 so
dynamics. One is, of course, the QCD dynamics. For simg,5¢

plicity we shall focus on only the pure gauge theory without

quarks. At the end of the evolution we shall identify the as(g?) =411 In(q¥/A?), (5)
partons as particles to avoid the complication of hadroniza-

tion, which is inessential to the question of whether the gluoryhere A2 will be set at 250 MeV.

branching dynamics is chaotic. The other is a cascade model, e have also tried to simulate the parton shower using
to be called they model, which has none of the features of the algorithm of Webbef10] and found that the result dif-
the QCD; in particular, it does not have infrared and collin-fers very little from that based on the above algorithm of
ear divergences. It is studied in order to provide a contrast t@dorico [9] for the type of measures we calculate. Since
the gauge theory so that our measures for chaoticity can bgdorico’s method is far more efficient, we have chosen to
tested on these two contrasting branching dynamics. use it throughout this work.

In both branching processes the initial parton has virtual- |n the y model, because of no infrared and collinear di-
|ty Q2 and successive branChingS continue until the Virtua”'\/ergenceS, there is no automaﬁé evolution. However, in
ties of all partons are=Qj. In pure-gauge QCD the splitting order to compare its properties with those of QCD, we intro-
function at each vertex of branching {®r g—gg) duce by hand &2 dependence of the branching process by

requiring that at each vertex the two daughter partons have
1-7 7z virtualities zg? and (1-2)g? when the mother virtuality is
P(2)=6——+ 15 tz1-2)|, (1) g% andz is generated by using?) for 0<z<1. As with
QCD, we require branching to continue successively until
the virtualities of all partons becomeQ3. Sinceq? is not
wherez is the momentum fraction of the daughter parton indegraded along a parton line, there are far more particles
the frame where the mother parton’s momentum is 1. In thgroduced in they model than in QCD for the san@?, but

Sec. VI.

x model we keep only the last term ¢f), that is immaterial, since our measure of chaoticity will not
depend ormQ/Qg. Clearly, the dynamics of branching in the
P(2)=62(1-2) 2 X model is very different from QCD. We use it to exemplify
' the Abelian dynamics that has no infrared and collinear di-
vergences.
so that it has no divergenceszt0 and 1. The presence of
those divergences is, of course, the source of complication IIl. TEMPORAL BEHAVIORS OF BRANCHING
for QCD that must be treated carefully.
We follow Odorico’s procedurg9] to develop the algo- Each branching process can be represented by a tree dia-

rithm for Monte Carlo simulation of parton shower in QCD. gram, since recombination of partons is not considered. The
Because of the soft gluon and collinear divergences, manyertices of the tree could be ordered vertically in accordance
partons are emitted at smailand small angles, but are not to the values ofg? of the mother partons. Then there are

resolvable. The probability that a partoncggft=Q? can sur- many diagrams with the same topology that can describe
vive without emitting a resolvable parton urgit=Q3 isthe  different evolution processes leading to the same number of
Sudakov form factof9,10] particles at the end, but belonging to different final states. If
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FIG. 2. Trajectory ofx; .

be different. In general, for any two trajectoriesindx’ one
FIG. 1. A tree diagram fob=(1,2,3,3,). can defined,=|x;—x/| at everyi wherex; and x/ exist
simultaneously. Obviouslyd; can be regarded as the dis-
we defer the considerations of the momenta of the final partance between the two trajectories. Since two trajectorigs in
ticles until the next section, we can simplify the problem bYSpace can crossl, may vanish at nonzera Sincei is an
focusing on only the topology of the tree diagram. In thatinteger x; has discrete values. Thus the trajectories cannot be
way we study the fluctuation of the particle multiplicity at gense in the continuum spaceidadndx; , but for the discrete
the expense of ignoring their momenta. What is gained is thgupport of the trajectories we may regard the collection of all
possibility of defining a trajectory in the multiplicity space possible trajectories as being dense in the sense that a trajec-
for a branching process. tory can pass through any allowed value o().

In emphasizing the topology of a diagram, let us draw all  Tq relate the description even more closely to the classi-
diagrams in such a way that all partons of the same generag| treatment of chaos, we now address the question of sen-
tion are placed at the same level regardless of th&iAn sitivity to initial condition. In classical nonlinear dynamics
example is shown in Fig. 1. The positions where the partongne can specify the point in phase space where a trajectory
are horizontally have no significance in that diagram. Verti'begins and vary that point in as small a neighborhooN,
cally, the branching points of the same generation are placegs one chooses. In non-Abelian gauge dynamics or inythe
at the same level. All partons that reach the final ste¢p-  model, the initial condition is that the initial parton has vir-
resented by the dashed linbaveq*<Qj. No information  tyality 2= Q2. Being quantum mechanical, it is not neces-
Concerninm2>Q% is carried by the vertical pOSition of the sary to Varyq2 in a small neighborhood OQZ. Quantum
lines in the diagram. Let denote the generation, starting flyctuation is sufficient to guarantee that the final state of the
with i =0 for the initial parton atj’=Q?. Let b; denote the  pranching process will vary from event to event, even if all
number of branching points at théh generation. In Fig. 1 events start out at precisely the sa@@ Thus the relation-
we haveb;=1,2,3,3,1 fori=0,...,4. We can define a vector ship to the classical consideration of initial condition is as
b=(bg,b;,...) with as many components as there are non+o|lows. Consider /" random points in the neighborhodd,
vanishing b; . Thus, for the diagram in Fig. 1, we have of the initial point in phase space of a classical trajectory.
b=(1,2,3,3,3. If this description were to be applied to an aAny such point can be mapped to the beginning of a particu-
electron radiating photons, then a bremsstrahlung diagramar pranching process. A set.of events in the Monte Carlo
would haveb=(1,1,1,.). On the other hand, for cell repro- sjmulation all starting out at the sar@¥ then corresponds to
duction where every cell subdivides into =(1,2,4,8,.). ;" trajectories beginning in the neighborholidin the clas-

The description can be further simplified, if we define sical case. With this correspondence between the two prob-
lems, it is then sensible to suggest that instead of studying
X;=logyb; (6)  the distance between two neighboring trajectories, one

should consider all/” events in the Monte Carlo simulation

and the corresponding vectoE(Xg,Xq,...). Since the mini- and examine the mean deviation from the average of the
mum x; is 0 and the maximunx; is i, the two extreme parton multiplicities. Indeed, the study of fluctuations of ob-
vectors arex=(0,0,0,..), which is like bremsstrahlung, and servable quantities will be the main theme of our approach to
x=(0,1,2,3,.), which is like cell reproduction. They are analyzing chaotic behavior of branching processes.
shown in Fig. 2 by the thick lines, wherg is plotted against In Fig. 3 we show schematically several possible trajec-
i. All possible tree diagrams of branching processes are regeries of the branching processes, all starting out at the same
resented by a line in between the two boundainick) lines, Q2 Not only can trajectories that have the saimg, be
as illustrated by the thin line in Fig. 2. Such a line specifiesdifferent, those with different,,,, are even more dissimilar.
a trajectory. For the purpose of studying “temporal” behavior, which

For finite Q2 the branching cannot go without end, and socorresponds to the dependence on the generationthe
there is always a maximui which we denote by,,... The  branching process, only trajectories with the sampg can
value ofi,,, varies from event to event, evenQf is fixed be compared. Thus it is necessary to know the distribution
for all events. Two paths with the samg,, may differ for  P(i ya,) Of i may fOr all events. Figure 4 shows the result oP10
0<i<ipax and the total numbers of partons produced wouldsimulations for each of the two types of branching processes
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FIG. 3. Several possible trajectories.

discussed in the previous section. The initial virtualities are
such thaQ/Qy= 10° for QCD and 15 for they model. These
values are chosen so that the average multiplicities are com- 2 4 6 8 10 12 14 16
parable, as we shall show below. Bd®fi ,,,,) are Gaussian-
like distributions, with the width being larger for QCD. This
is the first indication of more .fluctuatlon for QCD as CoM- G, 5. Simulated results for the average multiplicities at vari-
pared tp th@(_mofje'- In choosing a narrow ba”‘?' 'QrfaX, for_ ous generations for fixed values ofQ/Qq indicated by the num-
further investigation, we select the shaded regions in Fig. 4qrs.

that are situated at the maximum Bfi ,,5,).

As mentioned before, time is not a well-defined variablewheren;e is the value of; ati for theeth event and the sum
in the branching process. It is deemphasized when we focyg gver all/ " events having the sanig,, chosen. This quan-
on the topology of the tree diagrams. The generation label tity (n.) may be taken to play the role of time in the branch-
carries only a rough notion of time, since it is well known, aSing process, although no linear dependence is implied. In
in family genealogy, that a son can be younger than a grandkjg. 5 we show the simulated results ¢m) as functions of
son. However, there is one quantity that increases monotonj- for various values 0RQ/Q,. In both types of branching
cally with i; it is the parton multiplicityn; , processeg,n;) increases monotonically with the rate being
_ fastest at midrange of The values oQ/Q, are chosen such
-1 -1 that(n;) are roughly in the same range for the two types.
n=1+ 2 bj=1+ E 2%, (7) For the measure that describes the fluctuations of the tra-
1=0 1=0 jectories, and therefore of the multiplicities, we use the nor-

. L i malized variance
even thoughx; may rise and fall withi. Define the average

parton multiplicity(n;) at generation by (n?y—(n;)?
Vi=—F——, 9
(n;)?
Ve !
— 1 e
<ni>_./1””e21 N (imax)» ®  which clearly gives a measure of the average “distance”

between trajectories. It is always positive, as a distance func-
tion should be. In Fig. 6 is shown the results of simulation
for the two cases. The sustained increase in the lower half of
i range for QCD is a distinctive feature that is not shared by
the y model.

03l i A more transparent way of presenting this result is to plot

0.4 T T T T T

% model Q/Qy=15

~ V; vs{n;), as shown in Fig. 7. It corresponds to plotting the
g distanced(t) againstt in the classical problem, except that
ot here(n;) is not exactlyt, but some representation of it. Now,
021 - the behavior for QCD appears universal, i.e., independent of
QCD QIQ,=1000 Q/Qg, over a wide range. In the log-log plot the behavior is

approximately linear. The same is not true for the
model: V, increases initially and then drops precipitously
as(n;) is increased. Furthermore, the maximum decreases
with increasingQ/Qg. Thus the uncertainty in the parton
multiplicity increases with(n;) in the former case, but satu-
| rates and then decreases in the latter case. If that uncertainty
0 5 10 15 2 2 30 can be regarded as a measure of chaos, then the QCD dy-
1max namics is chaotic, while thg model is not. We can express
the dependence &f; on(n;) in the QCD case in the form of
FIG. 4. Distribution ofi . for QCD and they model. a power law

01 -
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experimental verification of any theoretical prediction, it is
necessary to focus on the final state, which is the subject of
the next two sections.

IV. FACTORIAL MOMENTS, ENTROPY,
AND INFORMATION DIMENSION

In the final state the complete information about the par-
tons, now identified as observable particles, is registered by
their momenta. If the branching trajectories never change,
then there is certainty in where to find those patrticles in the
momentum space and the entrofty be defined beloyis
zero, corresponding to no loss of information. However,
quantum fluctuation alone is sufficient to cause fluctuation in
the final-state momenta, and so entropy is not expected to
vanish. In multifractal analysis of complex patterns, the in-
formation dimension is a compact way of summarizing the
dependence of the entropy on the resolution sicElg Since

i multifractal analysis of the multiplicity fluctuation in high-
energy collisions has been propog4d@,13 and carried out
FIG. 6. Simulated results for the normalized variandeor the ~ [14,19, it is natural to examine the information dimension

same parameters as in Fig. 5. for the branching processes considered here.
If p; denotes the fraction of particles in an event that falls
Vi ()~ (10 into thejth bin of sizes, then in the limit of many such bins

in the system under study the entropy is defined 18}
Then from Fig. 7 we find¢ to be =0.4. Writing (10) in the
form of an exponential S— _E p, Inp, (12)
Vicexp(  In(n;)), (12) !
we may compare it to the definition of Lyapunov exponent and the information dimensioB, is [16]
in d(t)~eM. If In(n;) can be interpreted to correspondtto D.=—limSin & (13)
then x may be said to play the role of the Lyapunov expo- ! 550 '
nent. However, nothing firm can be proved about these cor-
respondences, and so the above remarks should only behe study of the self-similar behavior of particle production
taken as a possible orientation in interpreting the implicatiorhas been greatly facilitated by the use of normalized factorial
of the result obtained. momentaF ;, suggested by Bialas and Peschar$ki, who

From what has so far been done, it is not possible for us tdirst showed that the statistical fluctuations are filtered out by

find a criterion on the magnitude afto signify robust chao- those moments. However, sindg, is defined for integer
ticity. Furthermore,(n;) and V; are aspects of the parton q=2, it cannot be used to determine the information dimen-
state at generationbefore the completion of the branching sion, which involves the derivative &%, with respect tay at
processes. Thus they are not experimentally measurable. FQe=1. For that reason th&, moments for all reat|, positive
particle production in high-energy collisions, the temporaland negative, were introduced for analyzing the multifractal
behavior of branching is primarily a theoretical problem. Forstructure of particle production daf42,13,13. Their draw-

back is that the statistical fluctuations must be taken out of

0 . G, explicitly by hand. More recently, a method for continu-

g QCD % model ] ing F to nonintegerg, while maintaining its virtue of not
iQ/Qo=§88 - ] being contaminated by statistical fluctuations, has been de-
1000 15 aco 1 veloped[18]. We shall therefore make use of it to determine
Dl.

Before describing the details of the calculations, let us
first make clear the space in which the self-similar behavior
is examined. Withg; denoting the momentum fraction of an
ith-generation daughter parton at a branching vertex, where
the mother parton has momentum 1, the momentum fraction
of a final particle is then

¥ model

e x=I1 z, (14

10 10" 10 10 i

where the product is taken over all generations of a particular
FIG. 7. Temporal behaviors depicted By vs (n;). path in the branching tree, leading from the initial parton to
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FIG. 8. Momentum distribution in terms @f= —log x for QCD
branching.

the final particle under consideration. Sincezlare known
in a simulated event, the values xffor all particles can be
calculated; they are all crowded in the=0 region, since
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FIG. 10. Momentum distribution in terms of the cumulative

variableX for QCD branching.

wherex; andx, are two extreme points in the distribution
p(X), between whichX varies from 0 to 1. In terms of the

their sum is 1. This is especially true for QCD branchinginclusive distributionp(X) is constant. For QCD branching

because of the soft gluon divergencg 1. If we expand the
x=0 region by using the variablg=—log,x, we get a broad

we shall takep(x') to be the{ distribution as in Fig. 8; for
the y model, p(x") will be just thex distribution as in Fig. 9.

Gaussian-like distribution, as shown in Fig. 8, with the peakAn illustration of thep(X) distribution for QCD is shown in
at {=3 corresponding ta=10"3. The situation is not as bad Fig. 10 after simulating 510 events atQ/Q,=10°. Note
for the y model, but still most particles are found in the small the expanded scale along the vertical axis.

X region, as shown in Fig. 9. This highly uneven distribution

Now, in X space we divide the intervakgX<1 into M

of x is inappropriate for data analysis that involves the parbins of width5=1/M. Letn; be the number of final particles

tition of the space into small bins.

One can define another variabfg in terms of which the
distribution is much smoothdi9]. Let the inclusive distri-
bution in x, averaged over many events, pgx). Then the
cumulative variableX is defined by

X Xp
X(x)=f p(x")dx’ /f p(x")dx’, (15
X1 X1
1600 T T T
1400 -
1200~ -
1000~ —
E‘ >
R ACEE ¥ model 7
2 00/ Q/Qy=10 .
400 -
200~ .
0 i | 1
[} 0.01 0.02 0.03 0.04

FIG. 9. Momentum distribution in terms of for the y model.

in the jth bin in any given event. The factorial moment of
gth order is

M
fq(lvl)zlvrljzl n(nj—1)---(nj—q+1). (16

The normalized factorial moment after averaging over all
events is

Fq:<fq>/<fl>q-

Since(f,) is the average of;!/(n;—q)! over all bins and
over all events, we may write it as

17

©

n!

(f=2 g Pr (18

whereP,, is the multiplicity distribution in a bin. In general,
P, may be expressed as a convolution of the statisti€al (
and the dynamicalld) contributions to the multiplicity fluc-

tuations:

0 n

t
Pn=S®D=J dt e 'D(v), (19

0

where a Poissonian distribution has been usedfdrutting
(19 into (18) yields



6614

<fq>:fo°°dt 9D (1). 20

This is the standard moment of the dynamical distribution
that has no statistical contaminatifiiz]. If D(t)= 8(t—n),

so thatP,, is Poissonian, theff,)=n% andF,=1. Any de-
viation of Fq from 1 is an indication of the presence of
dynamical fluctuation.

Phenomenologically, one does not have accedsd (t.
Using P,, as input from experiment or from simulation, one
can determinéf), but only for integerg. One may replace
the factorials in(18) by gamma functions in order to con-
tinue (18) to nonintegery [20]. But that procedure does not

P 04
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result inF =1 for a Poisson distribution for alf. In Ref.

[18] a continuation procedure is developed that guarantees 5

Fq=1 for allg whenD(t) is trivial. That method will not be
described here, but will be used to determifg for our
branching processes.

For notational brevity let us write the right-hand side of

(20) as(t% . Then we have

Fo=((t/{t)p)Do=((PM)Hp, (21)

wherep is the fraction of event multiplicity in a bin, as in

(12). Thus, from(12), we get

d
S=—M(p In p)p=In M—d—qln Fq i (22
q=1
If Fq has a power-law behavior near-1, i.e.,
Fq*M*a, (23
it then follows from(13) that, in the largeM limit,
d
Dlzl—% . (24)
q q=1

Note that this relationship is derived under the assumptio

that (22) is meaningful, which demands th&t, be well de-
fined in a range of] aroundq=1 and thatdF,/dq contain

only dynamical information without spurious contribution

arising from improper continuation procedyrs].

If dynamically the bin multiplicity is evenly distributed

among allM bins so thaD(t) = 6(t—t,), thenF,=1 for all
g (including nonintegeq) and (22) gives S=In M. On the
other hand, if dynamically only a fracticen of the M bins is
populated, the rest empty, i.e.,

D(t)=ad(t—ty)+(1—a)d(t), (25

then(f,)=at{ and F,=a'"% for all . Hence(22) yields

S=In(aM). If, in particular, only one bin is nonempty, i.e.,
a=1/M, thenS=0. Thus(25) offers a simple way of seeing

how the entropy increases from O toNh, as the fraction of
nonempty bins increases fromM./to 1. If there is only one

nonempty bin, the dynamics is like one with a classical tra-

0.1 10 1

FIG. 11. Multiplicity distributions in bins of size>=1/M for
QCD branching.

We now apply this method of analysis to our simulated
branching processes. First, we show in Fig. 11 the multiplic-
ity distributions in QCD for various bin siz€$=1/M) after
10° events. It should be understood that Fig. 10 shows the
inclusive X distribution after summing over all events. But,
event by event, the fluctuation X space is much greater.
Upon dividing the interval &X<1 into M bins and counting
the multiplicity in each bin, one then obtaif%,(M) after
averaging over all the events. The degree of fluctuation
around the decreasing), relative to that average, &4 is
increased,’ is what is measured by the normalized factorial
momentsF, defined by(17) and (18). This is unlike our
theoretical calculation based ¢B0) and (25) becauseD (t)
is not known explicitly in the simulation. The results are
shown in Fig. 12 for both QCD and thg model. Since
Fq=1=1 by definition, we see thd, increases withg in

CD, but decreases with increasingin the y model. It
means that the distributiorf3,(M) for QCD are wider than

100 T T

=

QCD -

L9=2N, o ___ .

------------- ::-—~X model

(O8]

jectory that has no dispersion in where the particles are to be
found in the momentum space. Without loss of information
the entropy is zero. If there is maximum dispersion corre-
sponding to all bins being equally likely to be populated,
then the entropy is maximum.

01

1000

FIG. 12. Fy vs M for q=2-5.



FIG. 13. F, vs continuougy.

Poisson, but for thgg model they are sub-Poissonian. Figure

12 also shows that there is very litf\@ dependence in either
case. For noninteger values a substantial amount of work is
needed to continug, according to the method ¢1.8]. The
result is shown in Fig. 13. It is clear that fqr>1 all F, are
greater in QCD than in thg model. It corresponds to more
fluctuations in QCD than in thg model, a result that is
consistent with the finding of the previous section.

It is also evident from Fig. 13 thatF,/dq|,_, is essen-
tially independent ofM in both cases. WheredS is still
dependent oM according to(22), the M independence of

dInFy/dgl,-; requires, on account of(23), that
deg/da|q-,=0. This together with(24) entails

in both cases. Thus there is no interesting multifractal prop
erty. This particular approach to finding a useful signature o

chaotic behavior ends in failure.
The smoothing of the phase space by use oftlvariable
in place of the momentum fraction variablehas undoubt-

edly contributed to eliminating some aspect of the fractal®
structure. But what has not been removed is the more inter-

esting consequences of the dynamics. The trivialityDgf

states only that there is no nontrivial self-similarity in the

fluctuations measured. The latter are quantifiedrpywhich
involves both the bin and event averages of the factori

product in(16). The result suggests that some of the fluctua
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a ) ; ;
real number not restricted to integers. The normalized mo-
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FIG. 14. Distributions oFg calculated event by event.

Let F 5 denote the normalized factorial moment of tith
event:
Fe=f2/(f$)q, 27)
wheref g is as defined in16) for the eth event. ClearlyF g
changes withe for fixed g andM. In Fig. 14 we show the
distribution P(F,) after 10 simulated events of QCD
branching, the labet being omitted. For clarity, onlyg=2
and 3 are exhibited for a wide range i values. At small
M the distribution has a peak Bf,~1. Indeed, ifM =1 and
event multiplicity is large, ther, should be very nearly 1
for all events. At largeM a peak atF,=0 is developed,
especially at highg, because the bin multiplicity for smadl
is small and may in many events be less thafor all bins,
in which case~ g=0. This large fluctuation ifP(F ) is what
we want to capture and would be lostHf, is averaged over

fall events. Clearly, we should take the moments ghefore

performing the average.

We may think ofF g as the horizontal moments in the
space and then define the vertical moments in the event
pace as follows:

1
(FO =7 2 (FOP, (28)

yhere./"is the total number of events ammlis a positive

tions have been lost by the averaging process. In the neXpents of moments are

section we develop a scheme to recapture that which has

been lost.

V. ENTROPY INDEX

We know that event by event there are large fluctuations

where the produced patrticles are in tKespace. What we

want to do now is to find a way to register the fluctuation

(from event to eventof the fluctuation(in the X distribu-
tion).

Cp.q(M)=(FG(M))/(Fq(M))P. (29
If Cpq(M) has a power-law behavior i, i.e.,
Cp.q(M)cM¥aP), (30)
then we can define
d
K= dp Pa(P)lp=1, (31
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which will be referred to as the entropy index.

To see the connection betwegn and entropy, let us p=05__ 10 5. T T Te0T T an]zdel
define 0014 : 0.14 08
/- 0.012f , 1onr I/
- 00| q=2 S o1k q=3 06 =4 ,”
PSZ Fg /Z Fg (32 & ooos ] ooy K 04t ! g
e=1 0% 0.006F IR 1 006+ P .
. < o00sf -7 A s . AR R
and a(new) entropy in the event space, 000k _ =7 Lot 1 T
P - 0 T -
0 =T 1] e
YT
-0.002 L -0.02 + -0.2
— e e
Sy=— 2, PgIn PG, (33 I A
Furthermore, define the moments FIG. 15. Moments of moment§, , vs M for p=0.5-2.0 and
L q=2,34.
Hp,q:;1 (Pg)p’ (34) namics is chaotic. In order for the eventropy to be sma]l,
must be large. Thus large entropy index implies chaotic be-
which are related t&, by havior.
In Fig. 15 the results of our simulation are shown for
_ g=2,3,4 andp=0.5, 1.0, 1.5, 2.0. From the log-log plots one
Sq=— d_p InHpglp-1- (39 can identify approximate scaling behavior. We used the re-
gion M =5-20 to determine the value pf,, for whichC_ ,
On the other handi,, , can be related t€, , by for an incremental region gf aroundp=1 has to be exam-
ined. We obtairf21]
Cp,qz./l/’p’lH p.q (36)
(QCD) _ —
Mg~ =0.0027, 0.026, 0.15(q=2,3,9, (39
and so we have
d | ng>=0.0011, 0.0087, 0.038(9=2,3,4. (40
—InCyglp=1=In.1"=S,. 37

dp Clearly, u{°“" is significantly larger tham. (Y. It is sugges-

tive that the QCD dynamics is chaotic, while teanodel is
not. However, at this point we have no quantitative criterion
Sy=In(./ M~ #a), (38)  on how largeu, must be in order to be chaotic. In classical
nonlinear problems there is also no criterion on how long the
apart from a possible additive term that is independent’of time lapse must be in order for the distance between nearby
andM. trajectories to become sufficiently far apart to qualify for
This entropy, as defined i(83), is clearly different from divergent behavior. Nevertheless, the positivity of the
the entropyS defined in(12). To emphasize thad, is de-  Lyapunov exponent is a simple condition, the counterpart of
fined in the event space, we may call it “eventropy.” We which for the entropy index is lacking.
can think of the event space as a one-dimensional space with The above results are based on the same simulations that
/)" sites. At each site we can register a numléér If Fg is  have produced all the quantitative results shown in Figs.
the same at each site, thég=1./" and Sy=In./". We  5-15. It should be recalled that in Sec. Ill, where we studied
should think of this as being highly disordered in the eventthe temporal behaviors of branching, it is possible to con-
space, sinc& g is spread out uniformly over all space. The sider the notion of distance between different trajectories
larger the number of events, the larger is the eventropy. Thisnly if the trajectories have the same maximum generation
is very similar to the situation whei®=In M, when the bin  numberi,,,. For that reason we selected only the sample of
multiplicity is uniformly distributed in theX space that has events that are in the narrow shaded regions in Fig. 4. All
M bins. A branching dynamic that results in the saffgfor ~ subsequent results are based on those events having essen-
every event does not fluctuate in the branching processes. tilly the same ., in each model. The rationale is, we re-
corresponds to nearby trajectories staying nearby throughoyteat, to facilitate temporal analysis. For spatial analysis,
In short, the dynamics is not chaotic. Fgyto be In./", we  there is, however, no necessity to restrict the trajectories to
see from(38) that u, must vanish. Thus smali, corre- having the same,,,. That is, all simulations in the whole
sponds to large eventropy, which in turn implies no chaoticspectrum of ,,,,, Shown in Fig. 4 are acceptable. In that case

In then follows from(30) and (31) that

behavior. we expect more fluctuations. We now consider that case and
On the other hand, if we consider the other extreme whergresent only the results obtained for the entropy indices.
all Fg are zero except one eveef, then P3=6,¢ and In the y model, sinceP(i 5 is not much wider than the

S,=0. This is highly ordered in the event space, but theshaded regior(see Fig. 4, we do not expect very much
fluctuation ofF g from zero to a nonzero value is large. Gen- difference in the result when all simulated events are used in
erally speaking, if the distributioP(F ) is broad, the fluc- the determination o€, ;. Butin QCD,P(i n,y is very wide,
tuation is large, initially nearby trajectories become widelyand so we should expect larger valuesyf, compared to
separated in the final states of different events, and the dythe corresponding curves in Fig. 15, reflecting larger fluctua-
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T QCD For fluctuations in the final state where experimental ob-

“““ | o X model servations are feasible, we have considefgd D4, Cp, ,
! o ; and u, as possible measures of chaoticity. It turns out that
/; oq=a /S the information dimension is not effective, but the entropy

index can be. What emerges is a realization that one should

I S, study the phase space and the event space simultaneously.
More specifically, consider a two-dimensional lattice, where
the horizontal axis ha¥l sites, corresponding to thd bins
in the X space, and where the vertical axis hds sites,
corresponding to the/” events in the event space. For every
event there is a horizontal array Mf numbers, indicating the
FIG. 16. Same as in Fig. 15, but for all events simulated, re-Particle multiplicities in theM bins. The moments of mo-
gardless of gy, 1.€., for the entire ranges (i, in Fig. 4. mentsC, , summarize the distribution on this whole lattice
without significant loss of information. The entropy index
tions. The results are shown in Fig. 16. The new values oextracts from this lattice of numbers a simple numerical
the entropy indices for the full spectra are quantity that can characterize the degree of fluctuations on
the lattice. The larger, is, the more chaotic the system is.
Unfortunately, we do not have at this point a criterion on the
threshold value ofu,, above which chaotic behavior will
definitely occur. Further investigation on this aspect of the
problem is undoubtedly warranted.
Evidently, these values qi{>“® are much larger than the = Each of the features studied reveals some aspect of the
corresponding ones if89), but those ofu{¥) are nearly the chaotic behavior of QCD dynamics. Taken together collec-
same as the ones i#0). Hence the differences between tively, they present a strong contrast from the results ofythe
w2 and w{Y are even greater, when all events are con-model. One may wonder what the mechanisms are in the
sidered. This further supports the suggestion that the QCbranching processes that can lead to such diverse outcomes.
dynamics is chaotic. Our view is that in QCD branching there is a tension be-
tween two opposing forces that is absent in ghmmodel. The
collinear divergence implies a strong preference for small-
angle emission of partons in the branching process. But if the
We have explored various ways of measuring chaoticityemission angle is too small to be resolved, there is no
of branching processes. Because the problem is far mongranching. Since evolution without branching is suppressed
complicated than a classical nonlinear problem, the searchy the Sudakov form factor, there is a competition between
has not been a Straightforward extension of the Convention%V(ﬂution by em|tt|ng a resolvable g|uon and a preference for
ideas. Our approach has been based on a simple premise: dhhitting a collinear unresolvable gluon. It is this tension that
a branching process is chaotic, then it should be hard t@ads to large fluctuations in the number of branching points
predict what the likely outcome of an event would be, givenand hence to chaotic behavior. Thenodel has no collinear
the knowledge of the result of a previous event. It means thf:ﬂivergence and nq2 evolution, and so there is no tension to
there are large fluctuations from event to event. cause large fluctuations. What we learn here may lay the
To be more concrete, we have focused first on the tempdpundation for finding ways to treat nonperturbative pro-
ral development of branching. The varianéeof the multi-  cesses, for which chaotic behavior may play a crucial role in
plicities at a particular generation can be regarded as a the evolution of a large system of quarks and gluons, such as

measure of the mean distance between “trajectories.” Wehose produced in a heavy-ion collision at high energy.
have found thaV, increases witqn;) in a power-law fash-

ion for QCD branching, but not for the model, an example

of Abelian branching dynamics. That is the first indication
that the QCD dynamics has the characteristics of being cha-
otic. We have not investigated the behavior of the higher One of us(R.C.H) is grateful to C. B. Chiu, K. Geiger, B.
moments,V; being related to only the second moment. It isL. Hao, S. G. Matinyan, and B. Mier for helpful discus-
probably safe to predict that the higher moments would insions. This work was supported in part by the U.S. Depart-
crease even more rapidly with;). ment of Energy under Grant No. DE-FG06-91ER40637.

p°?'=0.0043, 0.044, 0.20 (q=2,3,4, (41)

©’=0.0010, 0.0089, 0.039(q=2,34. (42

VI. CONCLUSION

ACKNOWLEDGMENTS

[1] Z. Cao and R. C. Hwa, Phys. Rev. Lett, 1268(1995.

[2] S. G. Matinyaret al, Sov. Phys. JETB3, 421(198J). Phys. C5, 113(1994.

[3] S. G. Matinyan, Sov. J. Part. Nud6, 226 (1985, and other [6] C. Gong, Phys. Lett. R98 257(1993; Phys. Rev. D419, 2642
references quoted therein. (1994).

[4] B. Muller and A. Trayanov, Phys. Rev. Let68, 3387 [7] M. Tabor, Chaos and Integrability of Nonlinear Dynamics
(1992. (Wiley, New York, 1989.

[5] T. S. Birg C. Gong, B. Miier, and A. Trayanov, Int. J. Mod.



6618 ZHEN CAO AND RUDOLPH C. HWA 53

[8] Quantum Chagsedited by H. A. Cerdeir&t al. (World Sci- [17] A. Bialas and R. Peschanski, Nucl. Ph$273 703 (1986);

entific, Singapore, 1991 B308 867 (1988.
[9] E. Odorico, Nucl. PhysB172, 157 (1989. [18] R. C. Hwa, Phys. Rev. B1, 3323(1995.
[10] B. R. Webber, Annu. Rev. Nucl. Part. S86, 253 (1986. [19] A. Bialas and M. Gardzicki, Phys. Lett. B52 483
[11] H. G. SchusterPeterministic Chaos3rd ed.(Physik-Verlag, (1990.
Weinheim, 1995 [20] M. Blazek, Phys. Lett. 47, 576 (1990; P. Duclos and J.-L.
[12] R. C. Hwa, Phys. Rev. @1, 1456(1990; C. B. Chiu and R. Meunier, Z. Phys. B4, 295(1994); I. M. Dremin, Pisma Zh.
C. Hwa, ibid. 43, 100(199)). Eksp. Teor. Fiz59, 561 (1994 [JETP Lett.59, 585(1994];
[13] For a review see R. C. Hwa, iQuark-Gluon Plasmaedited Usp. Fiz. Naukl64, 785(19949.
by R. C. Hwa(World Scientific, Singapore, 1990 [21] We remark that both the curves in Fig. 15 and the valugg,of
[14] C. B. Chiu and R. C. Hwa, Phys. Rev. 45, 2276(1992. obtained are lower than those reportedih The discrepancy
[15] For a review, see E. A. De Wolf, I. M. Dremin, and W. Kittel, is due to a computational error discovered when we performed
Phys. Rep. Qto be published the calculation in a different way. The conclusion[f is not

[16] J. FederFractals (Plenum, New York, 1988 changed.



