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How sharp is the chiral crossover phenomenon for realistic meson masses?

Hildegard Meyer-Ortmanﬁsand Bernd-Jochen Schaefer
Institut fir Theoretische Physik der Universitiieidelberg, Philosophenweg 19, D-69120 Heidelberg, Federal Republic of Germany
(Received 31 August 1995

The mass dependence of the chiral phase transition is studied in the lingaxSW(3) o model to leading
order in a INs-expansionN; denoting the number of flavors. For realistic meson masses we find a smooth
crossover betweem~181.5 and 192.6 MeV. The crossover looks more rapid in the light quark condensate
than in thermodynamic quantities such as the energy and entropy densities. The change in the light quark
condensate in this temperature intervaHs50% of the zero-temperature condensate value, while the entropy
density increases by (5:50.8)x 10~ GeV3. Since the numerical error is particularly large in this region, we
cannot rule out a finite latent heat smaller than 0.2 GeV/ffrhe chiral transition is washed out for an average
pseudoscalar meson octet mas<203 MeV. This gives an upper bound on the first-order transition region in
the meson mass parameter space. The corresponding ratio of critical to realistic light current quark masses
mﬁf‘é/mu,d is estimated as 0.260.08. This result is by an order of magnitude larger than the corresponding
mean-field value. Therefore, the realistic quark or meson masses seem to lie less deeply in the crossover region
than it is suggested by a mean-field calculati®0556-282196)05311-§

PACS numbg(s): 13.75.Lb, 05.70.Ce, 11.30.Rd, 64.60.Fr

[. INTRODUCTION In reality, the current quark masses are neither infinite nor
zero. The masses of the charm, bottom, and top quarks are
Spontaneous symmetry breaking is frequently used as darge compared to the scale of the critical temperalyref
ansatz to explain the driving force of finite temperature phas€CD, which lies between 150 and 250 MeV. Thus, it seems
transitions in QCD. The symmetries refer to certain limitingto be justified to treat them as infinite in thermodynamic
cases of the QCD Lagrangian. In the limit of infinite quark investigations. Thérenormalization group-invariant currgnt
masses and in the case of three colors finite temperaturdasses of the up and down quarks are small compared to
QCD is invariant undeZ(3) transformationgZ(3) is the T., m,=7.6x2.2 MeV, my=13.3-3.9 MeV for A=100
center of SWU3)]. The spontaneous breakingof3) is made MeV, where A refers to the modified minimal subtraction
responsible for the phase transition from the confinemenfMS) scheme with three flavo[8]. At a first glance it seems
phase at low temperatures to the deconfinement phase at highbe well justified to set them simply to zero, although more
temperatures. In the other extreme cas@lpianishing cur-  careful investigations in the framework of chiral perturbation
rent quark masses QCD is invariant under BiJ(X theory give us a warning not to neglect their influence on the
SU(Ny) chiral transformations. The restoration of the spon-chiral transition4]. A particular role is played by the strange
taneously broken chiral symmetry at high temperatures iguark. Its mass ri;~205+50 MeV) is neither small nor
said to drive the chiral phase transition of QCD. For thelarge, but just of the order of the scale which is setThy
chiral limit the renormalization group analysis of Pisarski To get an idea about the influence of finite quark masses
and Wilczek[1] serves as a guide for conjectures about theon the phase structure of QCD it is instructive to consult
order of the chiral phase transition. Similar studies have beestatistical physics. The phase transition from a liquid to a gas
performed by Svetitsky and Yaffg2] in the other extreme s of first order below some critical value of the pressure. For
case of pure gauge theory or infinite quark masses. a critical value of the pressure it becomes of second order.
From numerous numerical simulations in lattice QCD it is Above the critical strength it turns into a smooth crossover
known that the order of the QCD transitions is rather sensibetween the liquid and the gas phase. A crossover phenom-
tive to the approximation scheme. It depends on the numbe#non means a conversion from one phase to the other with-
of colors (N¢), the number of flavorsNy), the bare coupling out any singularity in thermodynamic quantities. Similar ef-
g (in the staggered fermion formulation of lattice QCEhe  fects are known from ferromagnets under the influence of an
size of the volume, and, last but not the least, on the curreréxternal magnetic field. In an ® ferromagnet an arbi-
quark masses in the Lagrangian. Ultimately, one is interestettarily small magnetic field is sufficient to turn the second-
in the physical case of three colors, two light and one heavieorder transition with an infinite correlation length into a
flavor (m, =10 MeV, ms=~150-200 MeV) in the space- crossover without a diverging correlation length. In close
time continuum for large or infinite volumes. Conjecturesanalogy to our subsequent considerations, we should also
about the order of the QCD transitions, in these limitingmention the three-dimensionZl(3)-Potts model. The spin
cases, are no longer conclusive, if the deviations from th&ariables of this model can take three values at each lattice
symmetric limits of zero or infinite quark masses are large. site. For a vanishing external magnetic field, the Potts model
is known to have a first-order phase transition at finite tem-
perature. For a critical field strength it becomes of second
“Electronic address: ort@dhdmpi5.bitnet order and disappears for even stronger external fields.
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volume in the liquid or gas system, the external magnetisymmetry properties with QCD. We assume that the restora-
field, and the magnetization for the ferromagnet. The analotion of the spontaneously broken 8YX SU(3) symmetry is
gous pair in QCD is the current quark masses and the quatke driving mechanism for the chiral phase transition. The
condensates as the associated order parameters for the chidaviations in the spectrum from the idealized octet of pseu-
transition on the quark level. On the mesonic level we haveloscalar Goldstone bosons are parametrized by terms which
external fields rather than quark masses and mesonic conddpreak the SB)x SU(3) symmetry explicitly. We include
sates rather than quark condensates. The comparison B0 external fields to account for the finite quark masses on
tween the statistical systems and QCD goes beyond a form#l€ mesonic level. The assumption in our decimation of de-
analogy. In an S(B) lattice gauge theory it has been shown grees of freedom. is that or_wly mesons associated with Fhe
by DeGrand and DeTdi5] and Banks and Ukawgs] that ~ SU(3)X SU(3) multiplets are important for the phase transi-
dynamical fermions on the QCD level induce an externafion. The criterion is chiral symmetry rather than the size of
field coupled linearly to a spin field in an effective the meson masses. _ _
Z(3)-spin model. The spin model has bedarived from The action is constructedlln terms of QCD’s chlr.al order
QCD in a strong coupling expansion at high temperaturesparameter fieldl, whereM is a complex X3 matrix. It
The external field strength was expressed in terms of thé'ay be regarded in analogy to Landau’s free energy func-
hopping parameter of the original lattice-QCD Lagrangian. tional F. Landau’s free energy functional is also constructed
Results and conjectures on the mass dependence of tHe terms of an order parameter field to describe the phase
finite temperature transitions have been summarized in th&tructure of a system in statistical physics. In the special case
famous Columbia plof7]. The results refer to Monte Carlo of one external field and one mesonic condensate, the action
simulations. The plot shows the order of the QCD transition®f the ¢ model takes the form of Landau’s free energy func-
as a function of the strange and light quark masses in latticBonal for a liquid-gas systerfcf. Sec. V. Thus, we expect
units, mga,m, 4a, respectively. In particular, the mass point the same qualitative fgatur_e_s as we know from the liquid-gas
with two light (m,4a=0.025) and one heavier flavor System. Beyonq_certaln critical values of the meson masses,
(mga=0.1) is indicated in the crossover region. It refers to athe chiral transition should be washed out and turned into a

result of [7] which has been obtained within the staggeredcrossover phenomenon with smooth changes in the conden-
fermion formulation. This mass point comes closest to thesates, energy density, and entropy density. Therefore, the
realistic quark masses with a ratio wk,/m, y~20. The lat- Main question is, as to Whethgr the reah;tlc guark masses are
tice result suggests that the mass point with realistic quarke© large for the chiral transition to persist.
masses is not too far from the second-order transition line, !N [8] a systematic study of the mass dependence of the
although the precise values of the critical strange quariehiral transition has been proposed in the framework of the
masses, where the first-order transitions turn into second®U(3)<SU3) linear ¢ model. In a first papef8], a loose
order transitionS, are still an open question_ bound on the first-order transition region was given in terms

Thus, the conclusion from the lattice is that there is noOf the(averaggpseudoscalar octet mass. It was 100 MeV for
true chiral phase transition for physical quark masses. De2 o meson mass between 600 and 950 MeV. The qualitative
pending on the reliability of this result it may have far- conclusion was that realistic meson masses lie deeply in the
reaching consequences in view of measurable effects iffossover region. The results were obtained in a laige
heavy-ion collisions. Before jumping to conclusions in this€xpansion under the omission nf#0 Matsubara frequen-
direction one should keep in mind the limitations of lattice Cies. Here, we still use the largg expansion, but include all
calculations. Matsubara frequencies, as the omission of n¥e0 modes

Lattice results are in general affected by artefacts becausgems to be justified only for high temperatures and in the
of the finite IR cutoff in numerical simulations, the UV cut- case of a second-order phase transition.
off (i.e., the finite lattice constantand finite bare quark Our main topic is to find a quantitative answer to the
masses. Since the mass point with two light and one heavidpllowing two questions. The first one refers to the particular
flavor has been obtained for a lattice extension of only fourri- or multicritical mass values for which the chiral transi-
slices in the imaginary time direction, the result may not yettion is of second order even in the case of three flajiith
reflect continuum physics. A further obstacle in the staggere®U(3) < SU(3) symmetry in the chiral limit Once these val-
fermion formulation applies, in particular, to the case ofues are known, it is of interest how far the physical quark or
three flavors. The effective fermionic action, which projectsmeson masses are from critical masses. This distéince
on three flavors, must be regarded as a prescription; it canntass parameter spade more than a quantity of academic
be derived from the staggered fermion action. The error beinterest. Its physical relevance can be seen as follows. As-
cause of this prescription seems to be difficult to control.sume that the physical masses are not identical but very close
These warnings should suffice as arguments in favor of alto the critical mass values where the chiral transition is of
ternative approaches, which include different approximaseCOI’ld order. The ratio of critical to physical light current
tions, to study the phase structure of QCD. Such alternativguark massemsSy/m, 4 would be close to 1.
approaches areffective models There are several reasons why a rati f'f,/muydml is

In this paper, we consider the 8)xSU(3) linear ¢  quite attractive. First of all, the chances are then good to see
model as an effective model for QCD in the low temperaturesome remnant in heavy-ion collisions of a diverging correla-
phase for temperaturek up to the scale off .. The linear tion length for critical mass values, i.e., a rather large corre-
o model has been extensively discussed in the renormalizdation length for realistic masses. One manifestation of a
tion group analysis of Pisarski and Wilczgk| as the most large correlation length has been supposed to be large clus-
general renormalizable effective model sharing the chiraters of charged or neutral pions which are aligned in isospin
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spacq9]. The correlation volume of a cluster should be largemodel at zero temperature. We give a prescription to trans-
enough so that the number of emitted pions is sufficient fotate the meson condensates and meson masses to quark con-
the detector to resolve the cluster structure. densates and quark masses. In Sec. lll we summarize the
Also from a theoretical point of view an almost second-€ssence of our approach. The mesonic self-interaction is
order chiral transition in the presence of finite quark masse§feated to leading order in an expansion in the number of
is very appealing, because it justifies the decimation of QCuark flavorsN¢. On the mesonic level we have nine scalar
to ac model, when both theories share the same universalitp!us nine pseudoscalar mesons. Theg3k SU(3) o model
class. Finally, a finite mass scaling analysis for a secondreduces to an @8) model in the limit of two vanishing
order transition could be performed with physical masses agouplings. Thus, the leading order of &l¢xpansion should
“perturbations” of (tri-)critical masses. A finite mass scaling b€ @ good starting point. The thermodynamic effective po-
analysis has been used by Bogtlal. [10] for the case of tential is evaluated in a high-temperature expansion and in a
two masslesfiavors in the chiral limit, see al§d1]. As long ~ fully numerical approach. The numerical approach is cer-
as the strange quark mass is implicitly set to infinity for twotainly more appropriate to the phase transition region. To
massless flavors, we do not expect a final answer from suctiscuss the mass dependence of the order of the chiral tran-
type of investigation. This is the reason why we have favoredition we distinguish three regions in mass parameter space:
SUB) X SU(3). the chiral limit (Sec. 1V), several mass points on the first-
The second question has been raised in the title: Howrder transition boundary, so-called critical mass poi§ec.
sharp is the chiral crossover phenomenon for realistic meso¥), and realistic meson massé3ec. V), which come close
masses? Also, the vicinity of the first-order transition regiont0 the experimental masses. We describe the crossover phe-
could leave observable effects if the crossover for realistiddomenon in the meson and quark condensates as a function
masses is still sharp enough. A sharp crossover is associatéfitemperature. The crossover is also manifest in thermody-
with a rapid change in the condensates and their inducefl@mic quantities such as the energy densitythe entropy
masses, and/or a rapid change in the entropy and enerdlgnsitys, and the pressure. We derives,s andp from the
densities in a small temperature interval. In our case thiartition function of theo model in a saddle-point approxi-
interval turns out to be=182—192 MeV, (cf. Sec. V). It mation. Upper bounds on a finite latent heat during the chiral
makes then still some sense to call the “midpoint” of this transition are predicted. In Sec. VIl we summarize our re-
interval of rapid change T..” Average transverse momen- Sults and draw some conclusions in view of physical appli-
tum distributions of charged particles could be flattened as &ations.
function of the multiplicitydN/dy of final state particles in a
given rapidity interval[12]. Pronounced fluctuations in the Il. TREE-LEVEL PARAMETRIZATION
particle multiplicities would show up, if the crossover is OF THE SU(3)x SU(3) LINEAR ¢ MODEL
strong enough to induce deflagration processes during the . . .
phase conversiorf13]. True singularitigs of a first- or The Euchdean Lagrangian density of the BIXSU(3)
second-order transition will be anyway rounded in real ex_lmeara model is given as
periments because of the finite volume. 1 1
On the other hand, a ratio'¢/m,, 4 of 3% (cf. our mean-  £=-Tr(9,M3,M*)— = u2TrMM * + g(detM +deM *)
field result in Sec. ¥ would mean that there should not be 2
any remnant of the singularity structure of the transition in
the chiral limit. Experimentalists should not be surprised not
to see any “effect” of a hypothetical phase transition. i . .
If the physical masses turn out to lie far outside the first—Where the (3¢3)-matrix fieldM (x) is written as
order transition region, nonuniversal features of ¢gheodel 1 8
may influence the results, and predictions from this model M=-—=> (o, +im/)\,. (2
are of little impact on real experiments. V2/=0
It may be academic to ask as to whether chiral symmetry
restoration in the infinite volume limit proceeds via a weakly Here, o, and 7, denote the nonets of scalar and pseudosca-
first-order transition or a smooth crossover phenomenon. Iir mesons, respectivelyy, (/=1,...,8) are the Gell-
view of physical applications, it is certainly more sensible toMann  matrices, o= J2/3diag(1,1,1). The chiral
pose the question in the following way: Is the gap in entropySU(3) X SU(3) symmetry is explicitly broken by the term
densities in the transition or crossover region sufficient to—eqop—egog), which is linear in the external fields
induce multiplicity fluctuations in the observed pion yield, €q,eg. A nonvanishing value o, gives a common mass
lying clearly above the statistical noise? A reliable answer tovalue to the octet of pseudoscalar Goldstone bosons
this question can be expected only from full QCD. In thism_,,m,,m,. When alscg+ 0, it can be adjusted such that it
paper, we try to give a partial answer: Which part of the totalleads to a realistic mass splitting inside ttpseudgscalar
(yet unknown gap in the entropy and energy densities comesneson octets.
from chiral symmetry? We find a quantitative measure for The Lagrangiar(l) appears as a natural candidate for an
how sharp the chiral crossover phenomenon is for realistieffective model, which is designed to describe the phenom-
meson masses if gluonic degrees of freedom are completeBnon of chiral symmetry restoration. If the mass parameters
neglected. are chosen to induce a second-order phase transition, the
The paper is organized as follows. In Sec. Il we introduceactionS= [d3xdrL£(x) with £ of Eq. (1) may be regarded as
the tree-level parametrization of the &JUX SU(3) linear o a candidate for an effective action for QCD. It is constructed

+f (TIMM )2+, TAMM *)2—gpog—egog, (1)
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in terms of a chiral order parameter fieM for the chiral The idea now is to parametrize tipseudgscalar meson
transition and is supposed to share its universality class witmasses by two parameters such as the quark masses, hereby
QCD. As order parameters for the chiral transition, wethe external fieldg, andeg.

choose the meson condensateg) and{og). The expecta- A relation betweenm, 4,mg and gq,eg is obtained by
tion value ofM is then parametrized in terms 66),{og) identifying terms of the Lagrangian on the mesonic and on
according to the quark level which transform identically under QU
X SU(3). We have
(M) = diag | (7o) + (o) (00) + (a5}, () ( ) onthe mesoniclevel,  (4)
= ala (oa —(0g),(0 —=(0g),(0 —EpO0p— €80, on the mesonic level,
9\/—§ ) 2 8)1{00 2 8/:\00 000~ €803
(myuu+mydd+mgss) on the quark level.  (5)
~V2og)|. ® Thus, we find

The construction of an actio in terms of an order param- —&o= a(2m+my),
eter field is a concept in close analogy to Landau’s free en- -
ergy functional F in terms of an order parameter field, —eg=p(M—my). (6)

coincides withS in the mean-field approximation. Quartic
terms inM have to be introduced in E@l) to allow for the
possibility of spontaneous symmetry breaking. For
g=0=¢gg=¢g the Lagrangian is still invariant under(8)
X U(3) transformations. FoN;=3 there are two indepen-
dent quartic terms, parametrized with coefficiefts and
f,. To account for a realistic #f, »')-mass splitting, a
det-term with an “instanton”-coupling has to be included
as well. It reduces the symmetry df to SU(3)XSU(3) if a=-0.1164 GeV, B=—0.1780 GeV. @
g9=0=¢gg4. Finally, the external field terms which are linear
in M are the most simple choice for an explicit symmetry Thys, a variation in4,,&4) can be mapped onto a variation
breaking accounting for the small, but finite masses of thef (m,m,).
Goldstone octet i, ,mc,m,). Thus, one arrives at the  Next, we have to find a mapping between (e5) and the
SUR)XSU(3) linear o model in a natural way if one is (pseudgscalar meson masses. As it is possible to explain the
interested in the limited aspect of chiral symmetry restoravyariety of (pseudgscalar meson masses on the basis of two
tion approaching the transition region from below. quark masses, 4 andmy, it should be similarly possible to
2|t remains to fix the Lagrangian parametersreach any pointin anni,,my ) diagram by a variation of
uo.f1.12,0,80,65 from an experimental input. The choice ¢, and 4. Thus, we start with the parametrization of the
of the input and the way of parametrization are in no waychiral limit Mg,fl’fzyg,sozo, eg=0, keep the couplings
unique, cf.[14,15,8. Since the pseudoscalar meson masseg;2 f, f, g fixed and switch oney#0, eg#0. The SU3)
are experimentally well knownm.,my,m,,m,,, andf.  symmetric case with finite, but degenerate pseudoscalar me-

. . 2
have been used ifg] tO,f'X #o:f1,f2,9,80, @ndeg. IN 500 masses is obtained fep+0, eg=0. The mass point
addition, the mass of the’ meson has been treated as inputyith realistic meson masses which come close to their ex-

parameter and varied between 600 and 950 MeV to solve foferimental values, is obtained foe,=0.0265 GeV,
w5 andfy, which occur in thepseudgscalar meson masses .= —0.0345 GeV? as mentioned abovéin principle, there
in the combinatiorf — u§+4f,(o§+03)]. Itis worth noting  is no obstacle to further optimize the valuesegf,sg such
that the order parametefs),(og) can be determined with- that they do reproduce the experimental mass valuesr.
out knowing u§ and f; separately. The equations for the chiral value2,f,,f,,g and a certain choice far, and
wd,f1,f2,0,60,84 do not admit solutions for an arbitrary &g, we first determing/o,) and (og), the condensates at

choice ofm,,m,,m,,m,,.f_, andmgﬂ, . This was the rea- zero temperature, as zeros(@8j and(9) in oy andog:

son why the input masses which have been actually used as

Here, @ and 8 are constants. They can be fixed from the
known values okg,sg,m, 4, andmg under realistic condi-
tions. Realistc meson masses are obtained for
£0=0.0265 GeV,s5=—0.0345 GeV, see below. The val-
ues for “realistic” current quark masses are taken fridi],
m=(m,+my)/2=11.25-1.45 MeV, m,=205+50 MeV.

For @« and 8 we then obtain

input in [8] were slightly deviating from the experimental g 242 fa
vafl)ues if[m]%, was cgos)én as 6oogor 950 MeV. F[I)JIJG] the g0t 1500~ ﬁ(ZUS—agﬂ— szo§—4( fit 3 o5
experimental values could be used for, ,m,,m, ,m,,.f_ )
on the price that,  was used as input with 1400 MeV. —4(t1+f3)o00=0,

In this paper, our interest goes beyond the point Wéth (8)

mos) experimental pseudoscalar meson masses. As we focus 5

on the aspect of the mass sensitivity, we have to find a pre- o4 25+ \ﬁg(ang V200038) + 22,0002
scription how to tune the masses in the high-dimensional 3

meson mass parameter space. On the quark level the mass f
parameter space is only two dimensional, the two parameters _4< fi+ 2
beingm, 4 and mg. Not only the parametrization, but also 2
the tuning in the space of meson masses is by far not unique. 9)

oo—4(f1+f,)o205=0.
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Equations(8) and (9) are the equations of motion for con- second-order phase transition. In both cases the ratio of
stant background fieldsery,05. The pseudoscalar meson B/¢ is negligible (8 is the inverse temperature aédienotes
masses are then given in termse§,f,,f,,g and as func- the largest correlation length of the sysjfemThe
tions of the condensatesry),(op). The resulting masses n#0-Matsubara modes were included[6]. In this paper,
together with the input parameters are listed in Table Il ofwe follow the same approach as[it6], but extend the work
Sec. VI. to study the aspect of the mass sensitivity of the chiral tran-
To facilitate a comparison with other work on the chiral sition. Further differences in details ff6] and the present
phase transition, it remains to translate the results for th@aper will be mentioned below. In the following, we sum-
meson condensates to the quark level. If we identify terms inmarize the main steps of our approach.
the Lagrangians on the quark level and on the mesonic level The temperature-dependent order parameters are the me-
[cf. Egs.(4) and(5)], we find son condensatesry)(T) and(og)(T). They are related to
the light and strange quark condensates according to Egs.

1 . — (12). The values of o)(T),{og)(T) are determined as the
3(2m+me)(2q9-+SS) =~ o0, 0 minima of an effective potentidll o( o, 7). The effective
potential is calculated as a constrained free energy density,
2 . - i.e., the free energy density under the constraint that the av-
3(M=M)(qq—SS) =~ 250, (11 erage fields 18V [5dr[d®xo (X, 7) take prescribed values
. o, and og, respectively, while the same averages over
with qgq= 3(uu+dd), leading to o,,/=1,...,7 andm,,/=0,...,8 should vanish. The
physical meaning is obvious. If one choosgsog# 0 in the
— —&p —&g high-temperature chiral symmetric phase, the corresponding
(qa)=5~~ ms<"0>+ 2(f—m )<"8>' free energy is certainly not minimal for such a choice. We
s consider spontaneous symmetry breaking in two directions.
ey req Accordingly, we introduce two background fieldg,og:
SS)= z=—— (o) + = og)- (12
9= 2 my (70 o (79 reror,

The coefficients are just proportional ® and =83, as a _

comparison with Eq(6) shows;a and 8 have been deter- og=og+og, (13
mined in Eq.(7). Later, we take the relationd?2) as tem-

perature independent and substit(ig)(T),(og)(T) forthe  whereay,og denote the fluctuations around the background.
corresponding condensates at zero temperature. This agtherwise, o,=0o, for /=1,...,7 and w,=x, for
sumption is consistent with our approach. We also treat the'— ... 8. As a common notation for 7, we use
couplingsud,f1,f,,9 of the Lagrangian as temperature in- M’=o,+im,. The actual minima ol (79, 078) (With
dependent. Therefore, the symmetry/ofemains unchanged , _ ' ».—5g) are denoted aboo) and (o).

under an increase of. The symmetry was on the basis of ~“1po Lagrangian is expanded in powers\df . The linear

the identification which has led to Eq&l2). (The assump- .. i M’ vanishes because of th& constraint in the

tion of temperature-independent couplings may not be justi- - . ; )
fied in the vicinity of the transition regionin the next sec- constrained-free energy density. The quadratic term defines

. . . the masses m?Z of the meson  multiplets

[l outline h Icul T T). Q
tion we will outline how to calculatéao)(T),(og)(T) K7 G O 1010, ANAQ=1,. . . Blabels the mul-
tiplets. The two quartic terms are quadratized by introducing

IIl. LARGE- Ny EXPANSION an auxiliary matrix field>(x) according tq19]

In an earlier calculation the linear $8)X SU(3) o model
has been considered in a mean-field approximdti@&h Re- exp{— B[ f(TrM'M' )2+ £,Tr(M'M’ )]}
cently, Gavin, Gocksch, and Pisargii5] have tried to lo-
calize the first-order transition boundary in an
(my 4,mg)-mass diagram in emean-fieldcalculation. The fa- =const><f _
mous renormalization group analysis of Pisarski and Wilczek e
[1] applied to the lineas- model in thechiral limit. Frei and
Patkcs [19] were the first to apply a saddle-point approxima- +2aTr(M'M")Trx}, (14
tion to the partition function of the model. Their investi-
gations were also rest[icted to the chiral limit. Meyer-whereM’(x) is anNx N-matrix field and
Ortmanns, Pirner, and Pat{8] have extended the approach
of Frei and Patks to finite meson masses. [8] only the £2=pf,
zero-Matsubara frequencies were kept. When the imaginary ’
time dependence of the fields or, equivalently, the )
n+ 0-Matsubara frequencies are dropped, it results in a di- 2eat+3a°=pt;.
mensional reduction of the four-dimensional theory to an
effective three-dimensional theory. In general, such a redudNote that Eq.(14) is a sophisticated version of the simpler
tion can be justified in the highi-limit or for an anticipated case, wherep is a scalar field

c+iow

D3 (x)exp TrE2+2eTr(SM'M' ")
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consX exp{ — af $%(x)]% 1 g
Uclas§ 00,08) = — EILLS(US+ Ué)"‘ ﬁ(ZO’S— \/Ea'g

:f°+ing(X)e?(x)—z(x)#(x)z«; (15) f,
c—iw _30'00'5)__1:20'00'2"‘ f1+_ O'g
3 3
. : f
Formula(15) can be easily generalized to the case, where the + ( fo+ _2) oA+ 2(f1+ f,) 020l — e900
left-hand side(LHS) includes also a cubic ternp3(x), but 2
we are not aware of an analogous transformation that leads to o (19
—&gUsg

a tractable expression if the cubic term occurs in the form of
ﬁ]d&tfrir:'?haemf'oﬁgiiLSQIZ?JSSESQN?%:VE@%? pm?t?i;l:glfjterrps the classical part of the potential, which is independent of
2 (x) is replaced by an S@3) symmetric diagonal matrix
3 =diag(sad,sad,sad). Thus the matrix of auxiliary fields 3
is reduced to a single field variabdad(x).

In the saddle-point approximation the path integral
/D3 (x) is dropped and the auxiliary fieldad(x) is re-
placed bysad, which maximizes the integrand. For an
O(N) model it is well known that this approximation corre-
sponds to the leading order in aNLexpansion[20]. In the
special case of,=0=g, the SU3)XSU3) o model be-
comes an O(16) model, which is invariant undeil8) ro-
tations. We havé\=18=2N?, whereN; denotes the num-
ber of quark flavors, whildN labels the number of mesonic
modes. Terms of O(IV) are dropped, as long as fluctuations U, is divergent if the three-momentum cutoff is sent to
in the auxiliary field are neglected. Thus we call our schemenfinity, while Uy, is convergent forA —o and vanishes for
a large-N¢ approximation T=0:

The resulting one-loop contribution to the free energy
density is given as

sadf
2

+udsad| (20

Usaddlésad): - 8(3f1+f2)

results from the transformatiofi4). The one-loop part con-
sists of the zero-point enerdy, and the thermal patt y,,
given by

13 A dBK
Uo(Uo,US,Sad)ZE(;lg(Q)J 2@ (21)

13 d*K
Va5, 9Q) [ Gaia—e#o) @

1 12 Ko,
- B—VInZZ ﬁQE:l G(Q)HEE:Z f W'”[ﬁ (ot wi)], Our results have been obtained for the potential
(16) Ueg=Ues— Ug, Wh_ere the divergent zero—point.en_ergy has
been dropped. It is often argued that the omission of the
zero-point energy is justified if one is finally interested in
where  g(m)=39(K)=49(7)=19(7")=19(c,)=3,  thermodynamic quantities, which are derived as derivatives
9(ok)=49(0,)=19(o,)=1 are the multiplicity factors of Inz with respect toB. Usually, U, does not depend on
of the multiplets,wj=(27n/T)? and T, and the splitting of the one-loop part bf,; according to
Uy and Uy, is a splitting in a T-independent and a
T-dependent part. Thus, the contributionldf should have
no effect on the thermodynamics. We cannot use this argu-
ment becaus&J, of Eq. (21) has an implicit temperature
XéssadJr,uéJr mé_ (17)  dependence hidden iIXZQ via sad(T), the temperature-
dependent saddle-point variable, which is finally chosen such
o that it maximizesU for sad=sad*. This was one of the
Thus the one-loop contribution to the free energy takes @easons why the, term was kept ii16]. A renormalization
form, which is f{:\mlhar from_ a f_ree fle_ld theory. The only prescription was imposed such that the stréggartio cut-
remnant of the interaction is hidden in the effective massy dependence o), was weakened to a A? dependence.
squarex3, via the auxiliary field variablead After the sum  Fyrther differences tp16] are because of corrections of two
over the Matsubara frequencies is performed, the full expreserrors in[16]. After we had removed the programming error
sion for the effective potential is given as in U ass Of [16], we found two branches in the free energy
density f (or the pressufe The branches irf of the high-
_ and low-temperature phases did not cross at some tempera-
Uei(00,08,580) =Ucasd 70,78) + Usaaad Sad ture T=T,, although the free energy should behave as a
+Uq(0g,08,5ad) + Uy, (0g,08,5ad), smooth function inT by general thermodynamic arguments.
(18) The reason was that the two minima of the potential which
exist belowT=200 MeV were erroneously associated with
the true minima in the high- and low-temperature phases. It
whereoy=0y,03=0g and was not realized that for all temperatures ug'ts 200 MeV

2 12 w2
wQ—K +XQ
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one minimum is only a local one, while the other one stays o ) b o1
the absolute minimum for all temperatures up e 200 |(Z)=J’0 dx{x“In[1—exp(—(x“+2°) ") ]}
MeV.
Thermodynamic quantitieSThermodynamic observables
are derived from the free energy densityf =—z 2 2K2(nz) (25

=limy_,.(—(1/8V)InZ) in the standard way. The partition

function Z is approximated as whereK, is a modified Bessel function. The analytic con-

2(<0-0>’<0-8>):e’BVOeff«”OxT)v("’s)(T);Sad*(T))_ 23 tinuation ofK,(nz) to complex values ohz is given as

Evaluation of U Next, let us discuss the evaluation of m(ﬂZ)—lm+l< )[Jm(iﬂZ)JriYm(inZ)], (26)
Ueﬁ in a little more detail. The expression fblreff is familiar

from the expression for a free field theory. In a high-whereJ,, are Bessel functions of the first kind aivg, are
temperature expansion it reads Weber functiond23]. This leads to the following form of
~ T 8 ot Vet
U= Uclasst Usaddie™ _22 g(Q)y = — _y2 4 8
2m44= 45 1279 - T

o=t Uet= Uclasst Usaddie™ EZQE:]_ g(Q)

+0(yQ) (24 2
X[ 5, 2 ] @

At high temperature the SB)XSU(3) linear ¢ model for X2>O. ForX2<0 andX :ii\/Wl
certainly fails to describe the quark-gluon plasma phase. The Q Q Q
critical temperature falls neither in a high- nor in a low- U= Ugiasst Usagaist R&U+i1mUy,
temperature region, the expansion parameter is of order 1 or
larger. Nevertheless, we have used the high-temperature eyith
pansion, which has been frequently applied in calculations of

a thermodynamic potential. It has the advantage that imagi- T 2Q 1 2|12
nary parts ofUg are absent to leading order Xy /T, cf,, Rthh:EZQE::L 9(Q) 5772 FZ Q| '
e.g.,[21]. We have performed a high-temperature expansion

for two sets of mass parameters, the chiral limit and the 4 X221
realistic mass point, see Secs. IV and VII. This way we got |,y "= —22 9(Q) if 7(2—2 y —|X2|1/2) _
some qualitative insight in the phase structure before we 2 T°q=1n Q

could handle the problems in a fully numerical evaluation of (29)
Ueﬁ Analytic expressions for a low-temperature expansmn
of Uy are known as wel[22]. We have used them only in
intermediate steps to check the numerics.

The condensate valuésro)(T) (0g)(T) are determined as
minima oerﬁ for XQ>0 and of R&J ¢ for XQ<O
At a first glance the numerical evaluation Gfeﬁ looks Errors arise from two sources. The first one are the imagi-

rather straightforward. For each pair afd, o) we have to nary parts inJ, when the saddle point is determined from
find sad® that maximizes Ueff The condensates the conditiondUeq/dsad=0. For small temperatures, large
§00> (0g) are then determined as minima of effec'glve_masses and/or large valuesrmofn Eq. (28), the
Upi(og, 05:5ad (00, 05)). It is well known [21] that the contributions to the sum over are so small that thgy reach
arguments K2+X ) of the logarithm_ mUeff can become the order of the numerical accuracy. The location of the

saddle point becomes inaccurate under these conditions.
negative and Iead to imaginary partsliy, which we have Similarly, for small argumenté.e., high temperatures, small

mentioned above. The original hope was that the positivg ;) es ofXo) the approximations of the Weber functions
contribution of the auxiliary fieldsad to the massesng v, i the vicinity of their singularity at vanishing arguments
helps in avoiding imaginary parts &fe. become less reliablg24]. This explains why the error in
Actually, no imaginary parts have been found18]. The  saq¢ increases with temperature, if simultaneouskg| /2
contribution ofsad* to Xg increases withT, it is positive  pecomes smaller.
for T=116 MeV, but in our case the positive contribution is  The errorAsad is estimated from the ambiguity in find-
not sufficient to avoid negativﬁ2 completely, i.e., for all ing the maximum oUeﬁ It turns out that for low tempera-
09,08, and T. It has turned olt that the actual minima tures Asad*~0, while it increases with temperature to
(00), (o) lie always in the “allowed" region of real valued Agags ~ +0.006 Ge\? in the transition region in case of the
U, Or at least at the boundary of this region, but on thechiral limit.
way of searching the maximum sad" and the minima in The uncertainty in the determination Bad* leads to
(00),{0g) the routines encounter negative mass squares irerrors in the meson condensates, the effective maxsges
dispensably. Thereford)e; is analytically continued. The and the thermodynamic quantities p, ands. In case of
integral inUy, of Uy is of the type realistic masses, the errofs(og g, which are induced in
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FIG. 1. Normalized light quark condensdtgq)+/{qq), as a function of temperatuiin the high-temperature expansi¢solid curve
and the numerical evaluatiofdashed curveof the largeN; expansion. The condensate drops to zerd at92 MeV and 177 MeV,
respectively.

(o0).(og), are estimated ad(oog<10 ' below T~50 the pseudoscalar Goldstone bosons, =850 MeV,

MeV, <10 * belowT~125 MeV,<10"3 for T<165 MeV, m, =800 MeV, f,=94 MeV. The mass of the: meson

and of the order of 10° MeV in the transjﬁon region. After  should be treated as a parameter because of the uncertainty in

the crossover =197 MeV) it stays~10"". the experimental identification. For the final parametrization
A second source for errors in the condensdtes,(os)  we choosan, =600 MeV.

IS the .fl.at sha'pelof tfhe effectlvle f_p(lJéentlaI |nhthe r:rakr]13|tlcl)n The tree-le7\7/el parametrization of the Lagrangianin the

region; in particular, for external field strengths which only e of vanishinge, andeg is then given by

admit a rather weak first-order phase transition. We estimate

A{og)(=A(ag)) from plots of Ugx(op) in the SUI) sym-

w3=5.96x10"2 Ge\?,
metric case. We find\(o()==*1.3 MeV in the chiral limit
and=+4.3 MeV for e,=2x10"* or 2.5x10™* GeV?, cf. f,=4.17,
Fig. 3 of Sec. V.
When the meson condensates are converted to the quark f,=4.48,
condensates, additional errors enter because of the current
quark masses. We ugem,, 4= *1.45 MeV[17]. g=-1.81 GeV. (29
Of particular interest are the errors in the entropy and

energy densities ande in the crossover region, as they lead The high-temperature expansion gives a first-order transition
to an upper bound on a finite latent heat which cannot bat T,=92+1 MeV, while the fully numerical evaluation
excluded from our results. Their sizes can be traced back teads toT,=177+1 MeV, cf. Fig. 1. This is in agreement
errors in the effective masse, . Itis indicated in Fig. 5 of  with the general observation that the higrexpansion gives
Sec. VI, where the curves refer to realistic meson masses. qualitatively correct results when it is extrapolated beyond
From very different approximation schemes it is knownits validity range, quantitatively it fails in precise predictions.
that the region of a phase transition is particularly difficult to The T value of the numerical calculation supports the esti-
handle. Our difficulties in localizing the saddle point and mate for theN; dependence of ., which has been derived

calculating the condensates in the transition or crossover résy Cleymans, Kocicand Scadror{25] from a pion gas
gion are just a manifestation of that. model without interactions as

~ 2— ~
IV. THE CHIRAL LIMIT Te~2f,y3N¢/(Nf—1)~200 MeV. (30
From the renormalization group analysis of Pisarski and The effective potentiaﬂeﬁ is plagued with imaginary

Wilczek [1] we expect a first-order chiral transition in the parts for all temperatures we have investigated, i.e., between
chiral limit. As mass input we choose?=mg=m>=0 for

0 and 250 MeV. When we evaluate @Qf according to Eq.



6594 HILDEGARD MEYER-ORTMANNS AND BERND-JOCHEN SCHAEFER 53

(28), we observe the same effect for higher values ofd¢he 1 2 f,

mass as it has been noticed by Goldbgtg]. Goldberg has U gaef 00) = — = udos+ —gag+(f1+ —) 05— £0070.
calculated the effective potential of the @UXSU(3) o 2 3\/5 3

model in a mean-field approximation in the chiral limit. The (31)

oscillations in the potential became stronger for larger valueﬁ_hiS form is familiar from Landau’s free energy functional in

g the o-meson rr:as];cis, which was usdedhas Input. IOT our Eals{aerms of an order parameter field. One of its applications is a
(o) strongly fluctuates around the expected parabolgyeserintion of the phase structure for a liquid-gas transition.

if m,=1 GeV. This explains our final parameter choice of o o ¢ the system has a first-order transition from the

m, =600 MeV. The approximation of R according 0 |iquid to the gas phase. The transition stays first order, until
Eqg. (28) by a finite series of Weber functionsa€25) loses the external fieldthe pressure in case of a liquid-gas system

its validity if the argument ofr, becomes too large because is increased to a critical valueg”‘, where it becomes of

of m7. second order. For values ofy>sl", the transition is
For the barrier height between the coexisting minima ofwashed out and turns into a crossover phenomenon.
the potential we find 0.1410°° GeV/fm®. The barrier In mean field the effect of a finitéand strictly speaking

height may be regarded as a measure for the strength of theigh) temperature is reduced to a renormalization of the mass
transition. It determines the tunneling rate between coexistparameter term, i.e., the coefficient of the quadratic term in
ing phases in the transition region. The barrier height igshe Lagrangian. Thus, the finite temperature effects can be
clearly smaller than the value of Frei and Patka9], who  mimicked by tuningu3 while keeping the other couplings in
found 0.36 GeV/fni in the same model, but without inclu- the Lagrangianf(;,f,,g) fixed. The potential can be Taylor
sion of then# 0-Matsubara frequencies. The higher ba”iefexpanded around its true minimuaﬂ"“ (which is different

goes along with a !arge yalue for the interface tgns&zon from zero in the symmetry broken phase particular, it
between the coexisting chirally broken and sgmmetrlc phasesan pe expanded around the “criticabT"= o™ for the
atT., a has been estimated §&0-50 MeV]*° [19]. More

 lati Its indicate that such a | e | critical field strengthe§™. In the “critical” case UgassStarts
IriekZIe;fo?(QICCeDr[eZSElSJ] S Indicate that such a large value IS NQE;y, 4 yorm quartic in go— o). From the vanishing of the

first three coefficients we obtain the critical parameters as
follows. The vanishing of the third derivative &f ;,ssWith

V. THE CRITICAL TRANSITION LINE respect too, at op= a_grit leads to

The critical transition line in anrfi,,mx, ...) diagram
consists of pseudoscalar meson masses for which the first- crit_ -9 _ )
order chiral transition becomes of second-order and turns 90~ J3X6(f,+f,/3) =3.1x107% Gev. (32

into a crossover phenomenon for meson masses exceeding
the so-called critical values. We will determine three suchThe second derivative®U ../ o3 at 3™ is the coefficient

critical points. The critical points are characterized by theirof the quadratic fluctuationse— oS™2 around o™ with

external field strengths,,eg. The first point corresponds to ¢, meaning ofn? . This is the critical mass, which goes to
an SU3) symmetric case, whereg=0, m,=my=mg#0, T’

and m,=me=m, 0. Since(og)=0 for all temperatures, zero when the second-order transition is approached. It is

the numerics considerably simplify compared to the genera‘?asily checked tha}t. the other meson masses remain finite for
case with zo#0#e5. For the second critical point we the same set of critical parameters. The vanlshmgﬁ)I, at

chooses o= —0.77 . This ratio is identical ta:o/eg for the  criticality implies for the critical value ofuj
mass point with realistic meson masses, where ,
ms/M=18.2, cf. Sec. Il. The third point is characterized by 2cit_____ 9 _
e0=(2alB)eg. It is chosen such thahs=0, m, 4#0. Be- Ko =9 (f,+1,/3)
fore we present our results for the critical field strengths in . .
the largeN; expansion, we calculatel™, &S in a mean-  Finally, the extremum condition for§™ determiness§™ as
field approximation.

—-6.44<10 2 Ge\V2. (33

3
crit_ _ 1 g

_ —4
A. Critical meson masses in a mean-field approximation 0 27x6x+/3 (f1+ f,/3)? 6.6<107* GeVY.

Recently, Gavin, Gocksch and Pisar§kb] have calcu- (34)
lated a set of critical quark masses in the linear(3U ; _ :
X SU(3) o model. The calculation has been performed in alhe value foreg"=6.6x10* GeV(sg"'=0) leads to a
mean-field approximation. Since we use a different tree-levepSeudoscalar octet mass mf, =my=m, =146 MeV and a
parametrization of ther model, we have performed the CUreéntquark mass ah,=mg=ms=1.9 MeV. _
mean-field calculation for our parameter choice. Here, we, On€ should keep in mind that the tree-level parametriza-
summarize the main steps for the simpler(3Usymmetric 10N of the SU3)x SU(3) o model is arbitrary to some ex-
case. tent. If we would chooseg=-1.39 GeV, f;=5.3,

The SU(3) symmetric casi mean field we have to deal f2=0-93 withm, =600 MeV (the values which have been
with the classical part of the potential,s, which follows  used in[8] for the tree-level parametrizatipre§™ turns out
from the Lagrangian(l) for a constant background field as 3x10 * Ge\® or my qs=0.9 MeV leading to
oo=0o(0g=0), andeg=0. We have (mp)=115 MeV. For the same parameter choice, but
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f,=2.35 and m, =950 MeV, ng comes out as The case of =0 or eq/eg=2al/B. If we replace 0.77 in

1.3x10°3 Ge\A. The same tendency has been observed iffd: (38) by —2a/=—1.31 corresponding tms=0, m, 4
[15]. An increase of the input mass, shifts the critical #0, we obtain, from Eqs(35)—(39),

field strength to larger value(sedum_ng the discrepancy to oi=3.4x10"2 GeV, o"=2.9x10"3GeV (43
the lattice resujt The parameter choice which has been used

in [16] leads tos{"=4x10"* Ge\f. Gavin, Gocksch, and p2oM= —6.4x1072 Ge\? (44)
Pisarski [15] obtain for the corresponding critical field

strength ~ in the  SUB)  symmetric  case ed"=6.7x10"* GeV?, &J"=5.14x10"* Ge\’,
hi"=1.6x10"* Ge\®. Because of their different param- (45)

etrization it is only of the same order of magnitude as ours. _
Thus, we estimate the error in the mean-field calculation a8f M=2.9 MeV and(mp)=137.2 MeV. Note that the con-
Ael™=+5x10"% Ge\R. The induced error in the pseudo- dition ms=0 implies the same sign farg" andeg" because

scalar meson masses comes out as large 587 MeV, in  Of the same sign for g?te constants and 8. Hence, the

the current light quark mass it is 1.4 MeV. “critical” condensateso; g come out with equal sign in con-
The general case afy#0, £g#0. For nonvanishing;,  trast with the realistic mass case. _
andeg U ussis given by Eq.(19). Again, we have to deter- In the following we will compare the mean-field values

mine the critical parametex? to simulate a finite tempera- for egg with the largeN; results.

ture, the critical minima values:™, o§™ of Usss and the

critical field strengths:S™, 5™, We use the conditions B. Critical meson masses in the largeN expansion
_ The SU(3) symmetric casé/heneg=0 andeg is slowly
IU clasd 00, 08)/ 00| cri=0, (39 increased from 0 te-2.5x 10~* GeV?, we observe a weak-
ening of the first-order transition as is seen in Fig. 2. For the
I clasd 00, 08)/ ITg| it =0, (36)  critical field strength we find
m2 |ei=0, (37 ed"<(3+0.5 10 * Ge\”. (46)
n
Sgritlegrit+o 77 =0 (39) The value forsgrit induces an upper bound on the pseudos-
" crn 1

calar meson mass of 51 MeV or on the quark masses of
crit __ crit
5PU gacd 70,06 I3 =0 . 39  Mud=ms =<0.9+0.14 MeV, such that

crit
The five conditions are postulated at criticaligbbreviated M g,/ My 0.5=0.08=0.01. @0
afrilcrif)ériti'e"ztﬂtr the set of critical pqrametersg”t, _Ugm' Within the errors the result fasS™ is of the same order of
€9 , £g + Mo - The first three equations are obvious gen-magnitude as the mean-field value. The uncertainty in our
eralizations of the S(8) symmetric case. Equatiof88) is  (egylt is Asgritgo_5>< 1074 GeV®. For g,=2.5x10%
just one possible choice saying that we keep the mass splige\s3 the transition could be clearly identified as first order
ting of realistic (pseudgscalar meson masses fixed in the g, the(qa)r/{(aq)o(T) curves. For,=3x 104 GeV3 it
ftunlnggto the crmcaé transition line. Equatio39) general- s 5 crossover. We could have further improved the accuracy
izes 3°U gasd 00)/ o) =0 of the one-dimensional case. of & by measuring data fofqq)+(T) in the intermediate
More precisely, it postulates that the directional derivative in80 range. On the other hand, such an improvement is limited
the r?dial directiorr in (oo, o) space(i.e., in the direction ;e \vell-known fact that it is, in general, hard to disen-
of m; ,=0) should vanish to exclude the occurrence of aiangle a very weak first-order transition from a rapid cross-
first-order transition. Equation(85)—(39) are solved numeri- over phenomenon.

cally. We find The weakening of the first-order transition is also revealed
" " in the barrier height of the effective potential between the
od"'=3.7X10"2 GeV, o§"=-5.0x103GeV, coexisting minima atT.. The barrier decreases from

(40 1.4x10 * GeV/fm® in the chiral limit to 2.2x 10 ° GeV/
fm? for e0=2.0x 10" Ge\?, £5=0 Ge\?, the largest value

udM=—6.4x10"2 Ge\?, (41)  for which a first-order transition could be identified from the
_ _ shape of the effective potential, cf. Fig. 3. A comparison
eg"'=7.0<10"* Ge\®, &f"=-9.1x10*Ge\, between Figs. 2 and 3 shows the ambiguity in identifying a

(42)  very weak first-order transition. Figure 2 suggests a weak
first-order transition for £,=2.5x10*% GeV® with

or mg=5.4 MeV, m=0.3 MeV, while the average pseudos- T.~181 MeV, but no barrier is visible between the two co-
calar meson magsnp) = 120 MeV. The values foegfg are  existing condensate values at the same temperature and the
compatible with the results ¢fL5], who find for the critical samee value in Fig. 3. Accordingly, a precise determina-
field strengthy"'= (62 MeV)3,hJ"=(60.4 MeVYy, ifone tion of T is hard in case of a weak first-order transition such
keeps in mind the different tree-level parametrization. Forthat we estimate the error if, asAT.==*=2 MeV. Figure 3
example,mg/m, 4= 32 in [15], while mg/m, 4=18.2 in our  also admits an estimate of the error in findifg, g in the
case. transition or crossover region if the effective potential is very
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FIG. 2. The light quark con-
densate normalized to its value at

zero temperaturéqq)/{qq), as
0.4 a function ofT in the SU3) sym-
metric case. The weakening of the
0.3 b first-order transition is obvious,
whene, GeVe is varied between
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X 10 4(+), and 6.6< 10" 4(0J).
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flat, which we have mentioned in Sec. Ill. In the chiral limit ~187=0.5 MeV to this crossover phenomenon for compari-
we haveA({og)~1.3x10 2 GeV, forg,=2%10* and for

£0=2.5X10"% GeV® the error is estimated as 430 3
GeV. Later, we assumé&{og)~A(ag).

T.(m) dependence in th8U(3) symmetric case-or sim-
plicity, we restrict the study of the mass dependencé.adh

the first-order transition region to the 8) symmetric case.
Table | shows an increase ®f with the current quark mass
realistic mass values ofm,.=129.3 MeV,

m.

For

mx =490.7 MeV,m, =544.7 MeV(not listed in Table), the

rapid crossover sets in at~181.5 MeV and becomes slow

at ~192.6 MeV. We associate a critical temperaturg.™

Ues #10* [GeV¥]

son with extrapolated values daf; in chiral perturbation
theory(in our case€T is localized as the point of inflection in
the crossover curyeThus, T, has increased by 5.3% com-
pared to the chiral limit. This result is in agreement with the
estimate of Leutwyle{27], who predictsAT./T.~5% if
realistic pion masses are substituted for the chiral limit with
m_=0. When the critical temperature is extrapolated in the
framework of chiral perturbation theory, the inclusion of fi-
nite quark masses delays the melting(qf) by AT~20
MeV [4], while the inclusion of heavier mesons in a dilute
gas approximation has the opposite effect. At finite quark

0.02 T ™
0.015 | .
001 | .
% FIG. 3. Decrease of the barrier
i height of the effective potential
Uey for e,=0 at T~176
0.005 - % 1 MeV (solid curve, eo=2x10"*
i GeV?® at T~180 MeV?® (dashed
\ curve, £,=2.5x10"* GeV® for
] ' T~181 [MeV] (determined from
the corresponding condensate
curve of Fig. 2 (dotted curve in
0.005 | i 4 the SU3) symmetric case.
001 | .
, . . ‘--.,...,.;-" l l I
©0.02  -0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

(4] [GeV]
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TABLE I. The critical temperaturd as a function of the av-  masses, which should vanish for the critical field strengths at

erage light quark mass in the SU3) symmetric case. a second-order transition. In the mean-field calculation

2 vanishes by construction for the set of critical param-

m(T

7
eters, and it is easily checked tha],”, is the only mass that
vanishes at criticality. Our value fam%, =749.5 MeV is the

tree-level input mass at zero temperature, which needs not
masses it accelerates the melting frdp~240 MeV-190 vanish. The effective mass&g, are temperature dependent.
MeV. The delay in the melting because of finite quarkltis not obvious to us that one of these masses should induce
masses is intimately related to the size of the latent heat. Than infinite correlation length &k approached .. A careful
relation is revealed in the derivation of a Clausius-Clapeyrorrenormalization prescription should be imposed to identify
equation for QCD, cf[27]. Thus, theT.(m) dependence is the renormalized maéss that goeéyo) to zero for critical
conclusive for the strength of a first-order chiral transition. external fields. It would further allow an identification of the
The case of realistic mass splittingy'/e5"'=0.77. For  universality class of the S8)x SU(3) linear ¢ model for
the realistic mass splitting induced bys/m, 4=18.2 we critical parametersp%,fl,fz,g,so,sg. We will investigate

m [MeV] 0 0.29 0.57 0.71
T. [MeV] 177 178.5 179.4 180.4

find, for the critical field strengths in large;, these questions in a forthcoming work.
it . Critical meson masses for yu 0. Here, the larg®; re-
eg'<(7+2)x10 3Ge\?, sults are even somewhat smaller than the mean-field results

_ [cf. Egs.(45)]. We find
eg'=(—9.09£2.6)x 10 % Ge\?, (48) _
ed"'<(4+1)x10°* Ge\?,
corresponding to an average pseudoscalar octet mass of
(mp)=<203 Me\(t. The critical values for th(caritcurrent quark sgritg(&o& 0.76X10°* Ge\s, (49)
masses arem;  <2.96+0.85 MeV and m{"<54+15.4

MeV. The reason why we give an upper/lower bound onthe associated average pseudoscalar octet mass is
sgfg rather than precise values for the first-order transitior(mp><57_24_r 28.8 MeV, andm, 4<1.7+0.4 MeV, while
boundary is the same as in the @JJsymmetric case. The ms=0 by construction. ’
bound one§’ could still be improved by measuring data The Columbia plot has suggested a concave shape of the
between £,=4x10"% GeV?, eg=-5.2x10"% GeV® first order transition boundary. The three critical masses in
where the transition is still of first order, as§™, g™ from  mean field are compatible with such a shape in an
Eq. (48). It should be remarked that, because of the smal{m,,my) or an (m,m,) diagram, although one should keep
gap in the condensate, only a rather fine resolution of thén mind the large error bars because of the ambiguity in the
(qa)/{aq)o(T) curve in steps oAT=<0.1 MeV has revealed tree-level parametrization of the model, and the sensitive
the true first-order nature of the transition fe§=5x10"%  dependence of the boundary on thg)-mass input. The
andeg=—6.5x10 2 GeV?, three critical masses in largé; do not confirm the conjec-
Thus we see that also in a larfg-expansion tiny values tural concave shape. Only for a realistic ratioegf/eg, the
for the quark masses are sufficient to weaken the chiral trartargeN; result lies clearly above the mean-field value for the
sition and turn it finally into a crossover phenomenon. Simi-critical masses. The errors here are at least as large as in the
larly, tiny current quark masses are sufficient to eliminate thenean-field case, although they could have been further re-
chiral transition in an S(B) Nambu—Jona-Lasinio model as duced.
a function of temperature and nuclear den$g]. In the next section we will see the change in the crossover
The largeN; results fore§s are clearly above the mean- behavior, aseq,e5 are further increased to induce realistic
field values of Eq(42). The result is plausible, as our saddle- mass values.
point approximation goes beyond the mean-field calculation.
The leading term in a N expansion corresponds to the VI. THE REALISTIC MASS POINT
summation of a class of diagrams, called “super-daisies”
[29]. Super daisies have been summed up by Dolan and If we use for,ué,fl,fz,gthe values of the chiral limit and
Jackiw[21] to circumvent the IR-divergence problem in an chooses,=0.0265 Ge\?, gg=—0.0345 Ge\?, we find
N-component* theory. Our application of the B method  (pseudgscalar meson masses which are listed in Table II. A
to the linearos model has been similar in spirit. Certainly we comparison to the experimental values shows reasonable
cannot claim that the fluctuations we have included so far aragreement for the pseudoscalar mesons. Therefore, we call
representative for all fluctuations. In fact, the classical cubighis point the “realistic” mass point. The experimental val-
term of our potential may still dominate the driving mecha-ues which are associated to the scalar meson masses depend
nism for the first-order transition below the critical field on the identification, which is indicated in a separate row of
strengths. Only the lattice calculation includes all fluctua-Table Il. The mass splitting betweef;, anda, comes out
tions by simulating the full partition function at on¢at least  too small in our case. We could have further optimized our
in principle). This may explain the remaining discrepancy choice ofes, andeg to improve the agreement with the ex-
between the largdk ratio and the lattice result for perimental mass values, but such an optimization should be
m&§/My.q .- inconsequential for our results.
The next question which arises in a comparison with the Crossover in the condensat&he crossover behavior for
mean-field calculation concerns the critical renormalizedhe normalized light and strange quark condensates is dis-
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TABLE Il. Tree-level parametrization of the $8) X SU(3) linear ¢ model for the realistic mass point.

Input
wd GeVv? f, f, g MeV f_ MeV g GeV® eg GeV®
5.96x 102 4.17 4.48 -1812.0 94 0.0265 -0.0345

Output(all masses are understood in units of MeV

m, My m, m,, m,_ My, m, m, ,
Real.
Mass 129.3 490.7 544.7 1045.5 1011.6 1031.2 1198.0 749.5
Point
Expt.
Mass 138.0 495.7 547.5 957.8 980 if 1322.0 if 1476.0 if 975 if
Values 0= o= 0,= Oy =

ag K3 fo(1476) fo(975)

played in Fig. 4. The rapid crossover leads to a decrease ofuark masses are added, which enter 8&), we obtain
~50% of the condensate at zero temperat(og), in  A(qq)~3.1x10 % GeV®, A(ss)~6.7x10 % GeV® at
(qg)t over a temperature intervaAT~10 MeV, while  T=180 MeV in the transition region. In Fig. 4 we have
(ss)t stays remarkably constant upTe- 197 MeV, where it indicated only the numerical errors, the contribution from the
starts to decrease rather slowly. The physical reason is obveurrent quark masses has been left out. Compared to critical
ous. It is harder to excite mesons with strange quarks thameson massessf"=7x10"% GeV?, &i"'=-9.1x10°
th_Ose with ||ght quarks. The same qualitative behavior OfGeV3), the crossover happens over a |arger temperature in-
(ss)t has been noticed by Hatsuda and KuniHi8®] in a  terval. We find AL{qQ)+/{aq)e] ™ A[{qq)+/{aq)e] ™~
UNf(S) version of the NambU—Jona'LaSin‘iNJL) model. 52% if A[<®>T/<®>O] denotes the normalized condensate
Also, the location of the crossover region in the NJL modelchange per 1 MeV temperature interval in the rapid part of
is aroundT~200 MeV. the crossover region. Nevertheless, the crossover in the quark
We have indicated the error bars only in the crossovecondensatéqq) seems to be sharp even for realistic masses.
region where they are largest. When the errors in the currerBuch a rapid change may lead to visible changes in hadron

1.1

0.9
0.8
07 ) _
FIG. 4. Light ((qg)) and
06 strange (ss)) quark condensates
normalized to their corresponding
values at zero temperature as a
0.5 .
function of temperature. The
04 crossover behavior is most rapid
' between 181.5T<192.6 MeV.
0.3
0.2
0.1
0 . 1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3

Tempera‘lure [GeV]
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45 T T T T
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oe FIG. 5. Entropy densitg over
T T3, energy density overT#, and
pressurep over T* in the large-
ar N; expansion for the realistic
mass point. Errors are only indi-
15 cated fors/T2.
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masses, depending on temperature and condensates. It could A
be manifest in hadronic or dilepton spectra in heavy-ion ex- 28q
periments. ¢
Thermodynamicsrurther characteristics of the crossover
phenomenon are the variations in the energy and entropwhere N, refers to the lattice extension in time direction.
densities over the temperature interval in the crossover refhese values are by an order of magnitude larger than our
gion. At this place one should recall the very definition of avalue for the mesonic contributiohe/T¢~0.29, defined as
first-order phase transition. At the transition poattleast jngdicated above. The decrease/nf,/T¢ under an increase
oneof the first derivatives of a suitable thermodynamic po-f the time extensiomN, indicates strong finite-size effects.
tential should behave discontinuously in the infinite volumegging to larger lattices this tendency may continue and fur-
limit. Thus, a crossover in the condensates, in general, dogfer reduce the latent heat, but it also gives us a warning. The
not exclude a finite gap in tr31e energy or entrgpy densities. IR ontripution ofA e to the total energy gap may be superim-
Fig. 5 we have plotteds/T*, &/T", and p/T". The data 4sed on the slow change efthat we have found in the
points are strongly fluctuating within a range, which is indi- crossover region and make the crossover in the total energy
cated by the error bars for the entropy curve. The errors fOHensity more rapid. If the size of the errorssad, (o),
the energy density are of similar size. Errors enter via th6{08> is assumed as above, could vary in the crossover
effective masseX3, which depend on(ay), (og) and region betweer; andT, such as
sad". We have used foA (o)~ (1.0- —3.0)x 10 3 GeV
=A(og) and Asad*~0.11 Ge\? in the crossover region S(T,)T,—s(T;)T;<0.18+0.02 GeV/fn?, (53
betweenT =182-193 MeV. The pressure behaves continu-
ously as a function ofl if it is calculated asp=(—Ug). where the resulting erroA(s/T®) has been estimated as
There is only a change of slope in the critical crossover re<=0.46, cf. Fig. 5. In an infinitesimally small temperature
gion. A direct calculation ofp with an integral expression interval such a gap irs would lead to a finite latent heat
pretends a discontinuity. TH#' T curve in Fig. 5 is obtained AL of <0.2 GeV/fn?. Thus, Eq.(53) gives a loose upper
from (p=— Oeﬁ)_ As change in the entropy density we find bound on the latent heat which could be compatible with our

2.44+0.24 for N,=4,
=11.80+0.18 for N,=86, (52)

from the actually measured data data because of the large errors in the crossover region. Note
that AL=0.2 GeV/fnT is only 10% of the value, which is
TAs<0.16+0.02 GeV/fn? (500  predicted from the bag model equation of state. The bound
comes out even smaller if the error of 0.46 is interpreted as
in a temperature interval 18k5I<192.6 MeV, where As/T> with “T,” = 187 MeV. It leads to
TAs is calculated a3 ,s(T,) — T;S(T;). As rapid change in  AL=T,As<0.074 GeV/fnt. Both bounds are even smaller
the energy density we find than Leutwyler’s value of 0.4 GeV/fifor TAs, [27] which
has been obtained from a Clausius-Clapeyron equation in the
Ae<0.13+0.02 GeV/fn? (51  framework of chiral perturbation theory. The small size of

the latent heat is finally a consequence of the sensitivity of
or Ae/Té=¢g(T,=192.6 MeW/T3—¢(T,;=181.5 MeW}/T; T, to the inclusion of finite quark masses.
=0.29 over the same temperature range. For comparison we Clausius-Clapeyron equations relate the discontinuities in
mention that the gap in the gluonic energy dengdigy, in a  the condensate and the entropy or energy densities. Although
pure SU3) gauge theory leads 31,32 they strictly apply to first-order transitions in the form of
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Egs. (54) and (55) below[27], we have tested the relations reproduces the numerical results in a quantitative way. While
for the above crossover phenomenon in two forms. The firsthe meson condensatery) in the realistic mass case has

one is

discs|rc,
RC

(54)

gy AT,
disqqq)t|rc=—%
Am

where disc. . |gc refers to the rapid chang¢discontinu-

ity” ) in the crossover region andT. is the change in
“T.” under a variation Am of the current light quark
masses. The second version is

AT,

ocm disq(qq)|
Tc RC™

<q_q>0 ‘ RC

fom?]
Ae ’

(55)
RC

In Eq. (54) we useAT./Am=(0.187-0.178)/0.011As =
0.0061 GeV?, disqqq)r = 0.5x(0.22)* GeV3, and obtain
0.005 for both sides of Eq54). In Eq. (55) we haveAT, as
above,  T,=178  MeV, dis€qq)+/{qq)o
=(qad)r,/{ad)o—(ad)r,/(da)o=0.5, =94  MeV,
m_=129 MeV (the value of our realistic mass poinend
Ae=0.001 Ge\*. This way, we obtain for the right-hand
side(RHS) 7% and for the LHS 5 % in Eq55). The agree-

dropped to values<2 MeV aroundT~400 MeV in the
high-T expansion, it is still larger than 30 MeV at this tem-
perature in the numerical calculation. The temperature lies
already far outside the applicability range of the model.

The crossover in the light quark condensate looks still
rapid for realistic meson massesA({qq)r)~50% of
(qq) in a temperature interval of 10 MeV in the crossover
region. For the variations in the energy and entropy densi-
ties between 181.5 Me¥T<192.6 MeV, we findAse
~0.13+0.02 GeV/fn? and TA,~0.16+0.02 GeV/int. As
a loose bound on the latent heat we obtain 0.2 GeV/fas
a more stringent one 0.1 GeV/finif the change ine and
s would occur over an arbitrarily small temperature interval.
The main contributions to the numerical errors, which pre-
vent us from a unique interpretation of the transition or
crossover region, come from the uncertainties in the saddle-
point value and the miniméo),{og) Of Ugg.

For temperatures above 116 MeV the saddle-point vari-
able gives a positive contribution to the effective masses en-
tering the argument of the logarithm id. It increases
with temperature. This was one of the reasons why we have
chosen the largék expansion. The original hope to com-
pletely avoid imaginary parts & o in this scheme could not

ment of the order of magnitude on both sides indicates thape confirmed by the results. The effective potential is still

the crossover phenomenon is still rapid enough to satis

?Iagued with imaginary parts for certain regions, where

analogous relations to a first-order transition in the strici@o.d=<I{(cog| and over the entire temperature range we

sense.

have studiedup to 250 MeV and aboye

We have further analyzed the contribution of the strange TNe large error bars om ands in the transition region
(pseudgscalar meson& and o to the total energy density May leave some doubts on the smooth nature of the conver-
e. Their contribution can be completely neglected below 40Sion between the chiral symmetric and the chirally broken

MeV. It increases with temperature t631% in the cross-
over region aroundl =187 MeV. After the crossover the

phase, in particular, because a smooth crossover in the con-
densates does not automatically imply a smooth change in

tendency continues, but is no longer conclusive for us be€ ands. Even if the transition would be of first order, and

cause of the lack of quark degrees of freedom in the chir

symmetric phase.

Sgven if we use a loose bound on the latent heat, it is not

larger than 0.2 GeV/friy i.e., 10% of the bag model predic-

The strangeness content of the plasma has been estimaté@i- To_our knowledge it is yet unclear, whethgt =0.2
in a lattice simulation[33] with light quark masses of Ge€V/fm® latent heat are sufficiently large to induce measur-

m,/T=my/T=0.05 and one heavier quark mass of able signatures in heavy-ion experiments, neither is it clear,
m¢/T=1.0. In the transition region one finds for the ratio of Whether the temperature interval of rapid change is narrow

the fermionic energy densities(Mmg/T=1)/ec(Mm,/T

enough. In van Hove's formulatiofl3] the physical condi-

=0.05)=0.5. The good agreement with our ratio of mesonictions for the occurrence of such signatures are identical for

contributions from strange and nonstran@eseudgscalar
mesons [ e(strange meson& (nonstrange mesofs-0.45

may be accidental, because the lattice estimate is based on s
perturbative relations for the energy density. A fully nonper-nas been estimated

turbative lattice calculation along the lines of Engetsal.

an ideal first-order transition and a rapid crossover phenom-
enon.

The ratio of critical to realistic current light quark masses

. "/m, ¢~0.027+0.02 in mean field
and asmy/m, 4~0.26x0.08 in largeN;, but a ratio of

[31] in a pure SW3) gauge theory is still outstanding when ~30% is probably not large enough to benefit from the vi-

fermions are included.

VIl. SUMMARY OF RESULTS AND CONCLUSIONS

cinity of a second-order phase transition. Because of the fluc-
tuations, which are effectively included in the lanye-ap-
proximation, the ratio in largdl is at least about half of the
lattice result. Theaveragepseudoscalar octet masses are 120

In agreement with the general expectation, results of théleV and 203 MeV for the realistic ratio afS"/eS™ in mean
high-T expansion are qualitatively correct, but fail quantita-field and largeN;, respectively.
tively. The critical temperature in the chiral limit deviates by  The fluctuations we include in our approximation are not

~85 MeV from T, in the numerical evaluation, which is

likely the only important ones. In particular, it is not clear

applicable also in the transition or crossover region. Thehat they account for fluctuations which induce a renormal-
crossover region for realistic meson masses is shifted bization of the quartic and cubic couplings in the Lagrangian.

roughly 80 MeV between the high-and the numerical re-
sults. In our model the higfi- expansion practically never

Recently, it has been raised by Gavin, Gocksch, and
Pisarski[15] that the first order of the chiral transition may
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be mainlyfluctuation inducedA fluctuation-induced transi- from larger volume calculations, the disparity with our result
tion was first discovered by Coleman and Weinbf84]. It  indicates the importance of gluonic degrees of freedom. If
refers to the situation that a system with more than one relthe discrepancy remains even for frozen gluon dynamics in
evant coupling can have a first-order transition induced byQCD, it is a manifestation of nonuniversal features in the
quantum fluctuations. chiral transition region.

In our present approach it is difficult to disentangle the Note also that we have chosen the couplings in d¢he
driving mechanism for the first-order transition below the y,odel as temperature and energy scale independent over all
critical mass value_s. A f.urther improvement by !”d“qi”gtemperatures up td.. In principle, the temperature and
subleading corrections in Mf or an & expansion in  gcale dependence of the couplings should be derived from
dz;‘—s dimensions should clarify, whether the ratio Qcp rather than being assumed. A less ambitious derivation
my.¢/My,¢ does change to values closer to 1. would start from an effective model underlying temodel

A further warning should be mentioned to not take theand containing quark and gluonic degrees of freedom. For

smooth crossover for granted by the present approach. Sfie critical mass ratio this offers at least a chance for being
far, we have completely neglected the quark and gluonig|gser to 1.

substructure. In particular, the rearrangement of gluonic de-

grees of freedom has not been taken into account. The glu-

onic contribution to the change in entropy and energy densi- ACKNOWLEDGMENT

ties may well accelerate the crossover process, as we have

mentioned in Sec. VI. If the large gap in the entropy density, We would like to thank H.-J. Pirner for useful discus-
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