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How sharp is the chiral crossover phenomenon for realistic meson masses?

Hildegard Meyer-Ortmanns* and Bernd-Jochen Schaefer†

Institut für Theoretische Physik der Universita¨t Heidelberg, Philosophenweg 19, D-69120 Heidelberg, Federal Republic of Germa
~Received 31 August 1995!

The mass dependence of the chiral phase transition is studied in the linear SU~3!3SU~3! s model to leading
order in a 1/Nf-expansion,Nf denoting the number of flavors. For realistic meson masses we find a smooth
crossover betweenT;181.5 and 192.6 MeV. The crossover looks more rapid in the light quark condensate
than in thermodynamic quantities such as the energy and entropy densities. The change in the light quark
condensate in this temperature interval is; 50% of the zero-temperature condensate value, while the entropy
density increases by (5.560.8)31023 GeV3. Since the numerical error is particularly large in this region, we
cannot rule out a finite latent heat smaller than 0.2 GeV/fm3. The chiral transition is washed out for an average
pseudoscalar meson octet mass> 203 MeV. This gives an upper bound on the first-order transition region in
the meson mass parameter space. The corresponding ratio of critical to realistic light current quark masses
mu,d
crit /mu,d is estimated as 0.2660.08. This result is by an order of magnitude larger than the corresponding

mean-field value. Therefore, the realistic quark or meson masses seem to lie less deeply in the crossover region
than it is suggested by a mean-field calculation.@S0556-2821~96!05311-8#

PACS number~s!: 13.75.Lb, 05.70.Ce, 11.30.Rd, 64.60.Fr
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I. INTRODUCTION

Spontaneous symmetry breaking is frequently used as
ansatz to explain the driving force of finite temperature pha
transitions in QCD. The symmetries refer to certain limitin
cases of the QCD Lagrangian. In the limit of infinite quar
masses and in the case of three colors finite tempera
QCD is invariant underZ(3) transformations@Z(3) is the
center of SU~3!#. The spontaneous breaking ofZ(3) is made
responsible for the phase transition from the confineme
phase at low temperatures to the deconfinement phase at
temperatures. In the other extreme case ofNf vanishing cur-
rent quark masses QCD is invariant under SU(Nf)3
SU(Nf) chiral transformations. The restoration of the spo
taneously broken chiral symmetry at high temperatures
said to drive the chiral phase transition of QCD. For th
chiral limit the renormalization group analysis of Pisars
and Wilczek@1# serves as a guide for conjectures about t
order of the chiral phase transition. Similar studies have be
performed by Svetitsky and Yaffe@2# in the other extreme
case of pure gauge theory or infinite quark masses.

From numerous numerical simulations in lattice QCD it
known that the order of the QCD transitions is rather sen
tive to the approximation scheme. It depends on the num
of colors (Nc), the number of flavors (Nf), the bare coupling
g ~in the staggered fermion formulation of lattice QCD!, the
size of the volume, and, last but not the least, on the curr
quark masses in the Lagrangian. Ultimately, one is interes
in the physical case of three colors, two light and one heav
flavor (mu,d'10 MeV, ms'1502200 MeV! in the space-
time continuum for large or infinite volumes. Conjecture
about the order of the QCD transitions, in these limitin
cases, are no longer conclusive, if the deviations from t
symmetric limits of zero or infinite quark masses are larg
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In reality, the current quark masses are neither infinite n
zero. The masses of the charm, bottom, and top quarks
large compared to the scale of the critical temperatureTc of
QCD, which lies between 150 and 250 MeV. Thus, it seem
to be justified to treat them as infinite in thermodynami
investigations. The~renormalization group-invariant current!
masses of the up and down quarks are small compared
Tc , mu57.662.2 MeV, md513.363.9 MeV for L5100
MeV, whereL refers to the modified minimal subtraction
(MS) scheme with three flavors@3#. At a first glance it seems
to be well justified to set them simply to zero, although mor
careful investigations in the framework of chiral perturbatio
theory give us a warning not to neglect their influence on th
chiral transition@4#. A particular role is played by the strange
quark. Its mass (ms;205650 MeV! is neither small nor
large, but just of the order of the scale which is set byTc .

To get an idea about the influence of finite quark mass
on the phase structure of QCD it is instructive to consu
statistical physics. The phase transition from a liquid to a ga
is of first order below some critical value of the pressure. Fo
a critical value of the pressure it becomes of second orde
Above the critical strength it turns into a smooth crossove
between the liquid and the gas phase. A crossover pheno
enon means a conversion from one phase to the other wi
out any singularity in thermodynamic quantities. Similar ef
fects are known from ferromagnets under the influence of a
external magnetic field. In an O(N) ferromagnet an arbi-
trarily small magnetic field is sufficient to turn the second
order transition with an infinite correlation length into a
crossover without a diverging correlation length. In clos
analogy to our subsequent considerations, we should a
mention the three-dimensionalZ(3)-Potts model. The spin
variables of this model can take three values at each latti
site. For a vanishing external magnetic field, the Potts mod
is known to have a first-order phase transition at finite tem
perature. For a critical field strength it becomes of secon
order and disappears for even stronger external fields.

The conjugate variables are the pressure and the spec
6586 © 1996 The American Physical Society
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53 6587HOW SHARP IS THE CHIRAL CROSSOVER PHENOMENON FOR . . .
volume in the liquid or gas system, the external magne
field, and the magnetization for the ferromagnet. The ana
gous pair in QCD is the current quark masses and the qu
condensates as the associated order parameters for the c
transition on the quark level. On the mesonic level we ha
external fields rather than quark masses and mesonic con
sates rather than quark condensates. The comparison
tween the statistical systems and QCD goes beyond a for
analogy. In an SU~3! lattice gauge theory it has been show
by DeGrand and DeTar@5# and Banks and Ukawa@6# that
dynamical fermions on the QCD level induce an extern
field coupled linearly to a spin field in an effective
Z(3)-spin model. The spin model has beenderived from
QCD in a strong coupling expansion at high temperatur
The external field strength was expressed in terms of
hopping parameter of the original lattice-QCD Lagrangian

Results and conjectures on the mass dependence of
finite temperature transitions have been summarized in
famous Columbia plot@7#. The results refer to Monte Carlo
simulations. The plot shows the order of the QCD transitio
as a function of the strange and light quark masses in lat
units,msa,mu,da, respectively. In particular, the mass poin
with two light (mu,da50.025) and one heavier flavo
(msa50.1) is indicated in the crossover region. It refers to
result of @7# which has been obtained within the staggere
fermion formulation. This mass point comes closest to t
realistic quark masses with a ratio ofms /mu,d'20. The lat-
tice result suggests that the mass point with realistic qu
masses is not too far from the second-order transition li
although the precise values of the critical strange qua
masses, where the first-order transitions turn into seco
order transitions, are still an open question.

Thus, the conclusion from the lattice is that there is n
true chiral phase transition for physical quark masses. D
pending on the reliability of this result it may have far
reaching consequences in view of measurable effects
heavy-ion collisions. Before jumping to conclusions in th
direction one should keep in mind the limitations of lattic
calculations.

Lattice results are in general affected by artefacts beca
of the finite IR cutoff in numerical simulations, the UV cut
off ~i.e., the finite lattice constant! and finite bare quark
masses. Since the mass point with two light and one hea
flavor has been obtained for a lattice extension of only fo
slices in the imaginary time direction, the result may not y
reflect continuum physics. A further obstacle in the stagge
fermion formulation applies, in particular, to the case
three flavors. The effective fermionic action, which projec
on three flavors, must be regarded as a prescription; it can
be derived from the staggered fermion action. The error b
cause of this prescription seems to be difficult to contr
These warnings should suffice as arguments in favor of
ternative approaches, which include different approxim
tions, to study the phase structure of QCD. Such alternat
approaches areeffective models.

In this paper, we consider the SU~3!3SU~3! linear s
model as an effective model for QCD in the low temperatu
phase for temperaturesT up to the scale ofTc. The linear
s model has been extensively discussed in the renormal
tion group analysis of Pisarski and Wilczek@1# as the most
general renormalizable effective model sharing the chi
tic
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symmetry properties with QCD. We assume that the restor
tion of the spontaneously broken SU~3!3SU~3! symmetry is
the driving mechanism for the chiral phase transition. Th
deviations in the spectrum from the idealized octet of pse
doscalar Goldstone bosons are parametrized by terms wh
break the SU~3!3SU~3! symmetry explicitly. We include
two external fields to account for the finite quark masses o
the mesonic level. The assumption in our decimation of d
grees of freedom is that only mesons associated with t
SU~3!3SU~3! multiplets are important for the phase transi
tion. The criterion is chiral symmetry rather than the size o
the meson masses.

The action is constructed in terms of QCD’s chiral orde
parameter fieldM , whereM is a complex 333 matrix. It
may be regarded in analogy to Landau’s free energy fun
tionalF. Landau’s free energy functional is also constructe
in terms of an order parameter field to describe the pha
structure of a system in statistical physics. In the special ca
of one external field and one mesonic condensate, the act
of thes model takes the form of Landau’s free energy func
tional for a liquid-gas system~cf. Sec. V!. Thus, we expect
the same qualitative features as we know from the liquid-g
system. Beyond certain critical values of the meson mass
the chiral transition should be washed out and turned into
crossover phenomenon with smooth changes in the cond
sates, energy density, and entropy density. Therefore, t
main question is, as to whether the realistic quark masses
too large for the chiral transition to persist.

In @8# a systematic study of the mass dependence of t
chiral transition has been proposed in the framework of th
SU~3!3SU~3! linear s model. In a first paper@8#, a loose
bound on the first-order transition region was given in term
of the~average! pseudoscalar octet mass. It was 100 MeV fo
a s meson mass between 600 and 950 MeV. The qualitati
conclusion was that realistic meson masses lie deeply in t
crossover region. The results were obtained in a largeNf
expansion under the omission ofnÞ0 Matsubara frequen-
cies. Here, we still use the largeNf expansion, but include all
Matsubara frequencies, as the omission of thenÞ0 modes
seems to be justified only for high temperatures and in th
case of a second-order phase transition.

Our main topic is to find a quantitative answer to the
following two questions. The first one refers to the particula
tri- or multicritical mass values for which the chiral transi-
tion is of second order even in the case of three flavors@with
SU~3!3SU~3! symmetry in the chiral limit#. Once these val-
ues are known, it is of interest how far the physical quark o
meson masses are from critical masses. This distance~in
mass parameter space! is more than a quantity of academic
interest. Its physical relevance can be seen as follows. A
sume that the physical masses are not identical but very clo
to the critical mass values where the chiral transition is o
second order. The ratio of critical to physical light curren
quark massesmu,d

crit /mu,d would be close to 1.
There are several reasons why a ratiomu,d

crit /mu,d'1 is
quite attractive. First of all, the chances are then good to s
some remnant in heavy-ion collisions of a diverging correla
tion length for critical mass values, i.e., a rather large corr
lation length for realistic masses. One manifestation of
large correlation length has been supposed to be large cl
ters of charged or neutral pions which are aligned in isosp
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6588 53HILDEGARD MEYER-ORTMANNS AND BERND-JOCHEN SCHAEFER
space@9#. The correlation volume of a cluster should be larg
enough so that the number of emitted pions is sufficient
the detector to resolve the cluster structure.

Also from a theoretical point of view an almost second
order chiral transition in the presence of finite quark mass
is very appealing, because it justifies the decimation of QC
to as model, when both theories share the same universa
class. Finally, a finite mass scaling analysis for a secon
order transition could be performed with physical masses
‘‘perturbations’’ of ~tri-!critical masses. A finite mass scalin
analysis has been used by Boydet al. @10# for the case of
two masslessflavors in the chiral limit, see also@11#. As long
as the strange quark mass is implicitly set to infinity for tw
massless flavors, we do not expect a final answer from s
type of investigation. This is the reason why we have favor
SU~3!3SU~3!.

The second question has been raised in the title: H
sharp is the chiral crossover phenomenon for realistic me
masses? Also, the vicinity of the first-order transition regio
could leave observable effects if the crossover for realis
masses is still sharp enough. A sharp crossover is associ
with a rapid change in the condensates and their induc
masses, and/or a rapid change in the entropy and ene
densities in a small temperature interval. In our case t
interval turns out to be'1822192 MeV, ~cf. Sec. VI!. It
makes then still some sense to call the ‘‘midpoint’’ of thi
interval of rapid change ‘‘Tc . ’’ Average transverse momen-
tum distributions of charged particles could be flattened a
function of the multiplicitydN/dy of final state particles in a
given rapidity interval@12#. Pronounced fluctuations in the
particle multiplicities would show up, if the crossover i
strong enough to induce deflagration processes during
phase conversion@13#. True singularities of a first- or
second-order transition will be anyway rounded in real e
periments because of the finite volume.

On the other hand, a ratiomu,d
crit /mu,d of 3% ~cf. our mean-

field result in Sec. V! would mean that there should not b
any remnant of the singularity structure of the transition
the chiral limit. Experimentalists should not be surprised n
to see any ‘‘effect’’ of a hypothetical phase transition.

If the physical masses turn out to lie far outside the firs
order transition region, nonuniversal features of thes model
may influence the results, and predictions from this mod
are of little impact on real experiments.

It may be academic to ask as to whether chiral symme
restoration in the infinite volume limit proceeds via a weak
first-order transition or a smooth crossover phenomenon.
view of physical applications, it is certainly more sensible
pose the question in the following way: Is the gap in entro
densities in the transition or crossover region sufficient
induce multiplicity fluctuations in the observed pion yield
lying clearly above the statistical noise? A reliable answer
this question can be expected only from full QCD. In th
paper, we try to give a partial answer: Which part of the to
~yet unknown! gap in the entropy and energy densities com
from chiral symmetry? We find a quantitative measure f
how sharp the chiral crossover phenomenon is for realis
meson masses if gluonic degrees of freedom are comple
neglected.

The paper is organized as follows. In Sec. II we introdu
the tree-level parametrization of the SU~3!3SU~3! linear s
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model at zero temperature. We give a prescription to tran
late the meson condensates and meson masses to quark
densates and quark masses. In Sec. III we summarize
essence of our approach. The mesonic self-interaction
treated to leading order in an expansion in the number
quark flavorsNf . On the mesonic level we have nine scala
plus nine pseudoscalar mesons. The SU~3!3SU~3! s model
reduces to an O~18! model in the limit of two vanishing
couplings. Thus, the leading order of a 1/N expansion should
be a good starting point. The thermodynamic effective po
tential is evaluated in a high-temperature expansion and in
fully numerical approach. The numerical approach is ce
tainly more appropriate to the phase transition region. T
discuss the mass dependence of the order of the chiral tr
sition we distinguish three regions in mass parameter spa
the chiral limit ~Sec. IV!, several mass points on the first-
order transition boundary, so-called critical mass points~Sec.
V!, and realistic meson masses~Sec. VI!, which come close
to the experimental masses. We describe the crossover p
nomenon in the meson and quark condensates as a func
of temperature. The crossover is also manifest in thermod
namic quantities such as the energy density«, the entropy
densitys, and the pressurep. We derive«,s andp from the
partition function of thes model in a saddle-point approxi-
mation. Upper bounds on a finite latent heat during the chir
transition are predicted. In Sec. VII we summarize our re
sults and draw some conclusions in view of physical appl
cations.

II. TREE-LEVEL PARAMETRIZATION
OF THE SU„3…3SU„3… LINEAR s MODEL

The Euclidean Lagrangian density of the SU~3!3SU~3!
linears model is given as

L5
1

2
Tr~]mM]mM

1!2
1

2
m0
2TrMM11g~detM1detM1!

1 f 1~TrMM1!21 f 2 Tr~MM1!22«0s02«8s8 , ~1!

where the (333)-matrix fieldM (x) is written as

M5
1

A2(
l 50

8

~s l 1 ip l !l l . ~2!

Here,s l andp l denote the nonets of scalar and pseudosc
lar mesons, respectively,l l (l 51, . . . ,8) are the Gell-
Mann matrices, l05A2/3@diag(1,1,1)#. The chiral
SU~3!3SU~3! symmetry is explicitly broken by the term
(2«0s02«8s8), which is linear in the external fields
«0 ,«8 . A nonvanishing value of«0 gives a common mass
value to the octet of pseudoscalar Goldstone boso
mp ,mk ,mh . When also«8Þ0, it can be adjusted such that it
leads to a realistic mass splitting inside the~pseudo!scalar
meson octets.

The Lagrangian~1! appears as a natural candidate for a
effective model, which is designed to describe the phenom
enon of chiral symmetry restoration. If the mass paramete
are chosen to induce a second-order phase transition,
actionS5*d3xdtL(x) with L of Eq. ~1! may be regarded as
a candidate for an effective action for QCD. It is constructe
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in terms of a chiral order parameter fieldM for the chiral
transition and is supposed to share its universality class w
QCD. As order parameters for the chiral transition, w
choose the meson condensates^s0& and^s8&. The expecta-
tion value ofM is then parametrized in terms of^s0&,^s8&
according to

^M &5 diag
1

A3 F ^s0&1
1

A2
^s8&,^s0&1

1

A2
^s8&,^s0&

2A2^s8&G . ~3!

The construction of an actionS in terms of an order param-
eter field is a concept in close analogy to Landau’s free e
ergy functionalF in terms of an order parameter field,F
coincides withS in the mean-field approximation. Quartic
terms inM have to be introduced in Eq.~1! to allow for the
possibility of spontaneous symmetry breaking. F
g505«05«8 the Lagrangian is still invariant under U~3!
3U~3! transformations. ForNf>3 there are two indepen-
dent quartic terms, parametrized with coefficientsf 1 and
f 2 . To account for a realistic (h,h8)-mass splitting, a
det-term with an ‘‘instanton’’-couplingg has to be included
as well. It reduces the symmetry ofL to SU(3)3SU~3! if
«0505«8 . Finally, the external field terms which are linea
in M are the most simple choice for an explicit symmet
breaking accounting for the small, but finite masses of t
Goldstone octet (mp ,mK ,mh). Thus, one arrives at the
SU~3!3SU~3! linear s model in a natural way if one is
interested in the limited aspect of chiral symmetry restor
tion approaching the transition region from below.

It remains to fix the Lagrangian parameter
m0
2 , f 1 , f 2 ,g,«0 ,«8 from an experimental input. The choice

of the input and the way of parametrization are in no w
unique, cf.@14,15,8#. Since the pseudoscalar meson mass
are experimentally well known,mp ,mk ,mh ,mh8, and fp

have been used in@8# to fix m0
2 , f 1 , f 2 ,g,«0 , and «8 . In

addition, the mass of thes8 meson has been treated as inp
parameter and varied between 600 and 950 MeV to solve
m0
2 and f 1 , which occur in the~pseudo!scalar meson masse

in the combination@2m0
214 f 1(s0

21s8
2)#. It is worth noting

that the order parameters^s0&,^s8& can be determined with-
out knowing m0

2 and f 1 separately. The equations fo
m0
2 , f 1 , f 2 ,g,«0 ,«8 do not admit solutions for an arbitrary

choice ofmp ,mk ,mh ,mh8, f p , andmsh8
. This was the rea-

son why the input masses which have been actually used
input in @8# were slightly deviating from the experimenta
values ifmsh8

was chosen as 600 or 950 MeV. In@16# the

experimental values could be used formp ,mk ,mh ,mh8, f p

on the price thatmsh8
was used as input with 1400 MeV.

In this paper, our interest goes beyond the point with~al-
most! experimental pseudoscalar meson masses. As we fo
on the aspect of the mass sensitivity, we have to find a p
scription how to tune the masses in the high-dimension
meson mass parameter space. On the quark level the m
parameter space is only two dimensional, the two parame
beingmu,d andms . Not only the parametrization, but also
the tuning in the space of meson masses is by far not uniq
ith
e

n-

or

r
ry
he

a-

s

ay
es

ut
for
s

r

as
l

cus
re-
al
ass
ters

ue.

The idea now is to parametrize the~pseudo!scalar meson
masses by two parameters such as the quark masses, he
the external fields«0 and«8 .

A relation betweenmu,d ,ms and «0 ,«8 is obtained by
identifying terms of the Lagrangian on the mesonic and o
the quark level which transform identically under SU~3!
3SU~3!. We have

~2«0s02«8s8! on the mesonic level, ~4!

~muūu1mdd̄d1mss̄s! on the quark level. ~5!

Thus, we find

2«05a~2m̂1ms!,

2«85b~m̂2ms!. ~6!

Here, a and b are constants. They can be fixed from the
known values of«0 ,«8 ,mu,d , andms under realistic condi-
tions. Realistic meson masses are obtained f
«050.0265 GeV3,«8520.0345 GeV3, see below. The val-
ues for ‘‘realistic’’ current quark masses are taken from@17#,
m̂[(mu1md)/2511.2561.45 MeV, ms5205650 MeV.
For a andb we then obtain

a520.1164 GeV2, b520.1780 GeV2. ~7!

Thus, a variation in («0 ,«8) can be mapped onto a variation
of (m̂,ms).

Next, we have to find a mapping between («0 ,«8) and the
~pseudo!scalar meson masses. As it is possible to explain th
variety of ~pseudo!scalar meson masses on the basis of tw
quark massesmu,d andms , it should be similarly possible to
reach any point in an (mp ,mK, . . . ) diagram by a variation of
«0 and «8 . Thus, we start with the parametrization of the
chiral limit m0

2 , f 1 , f 2 ,g,«050, «850, keep the couplings
m0
2 , f 1 , f 2 ,g fixed and switch on«0Þ0, «8Þ0. The SU~3!

symmetric case with finite, but degenerate pseudoscalar m
son masses is obtained for«0Þ0, «850. The mass point
with realistic meson masses which come close to their e
perimental values, is obtained fore050.0265 GeV3,
«8520.0345 GeV3 as mentioned above.~In principle, there
is no obstacle to further optimize the values of«0 ,«8 such
that they do reproduce the experimental mass values.! For
the chiral valuesm0

2 , f 1 , f 2 ,g and a certain choice for«0 and
«8 , we first determinê s0& and ^s8&, the condensates at
zero temperature, as zeros of~8! and ~9! in s0 ands8:

«01m0
2s02

g

A3
~2s0

22s8
2!1

2A2
3

f 2s8
324S f 11 f 2

3 Ds0
3

24~ f 11 f 2!s0s8
250,

~8!

«81m0
2s81A2

3
g~s8

21A2s0s8!12A2 f 2s0s8
2

24S f 11 f 2
2 Ds8

324~ f 11 f 2!s0
2s850.

~9!
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Equations~8! and ~9! are the equations of motion for con
stant background fieldss0 ,s8 . The pseudoscalar meso
masses are then given in terms ofm0

2 , f 1 , f 2 ,g and as func-
tions of the condensateŝs0&,^s0&. The resulting masses
together with the input parameters are listed in Table II
Sec. VI.

To facilitate a comparison with other work on the chir
phase transition, it remains to translate the results for
meson condensates to the quark level. If we identify terms
the Lagrangians on the quark level and on the mesonic le
@cf. Eqs.~4! and ~5!#, we find

1

3
~2m̂1ms!~2q̄q1 s̄s!52«0s0 , ~10!

2

3
~m̂2ms!~ q̄q2 s̄s!52«8s8 , ~11!

with q̄q5 1
2(ūu1d̄d), leading to

^q̄q&5
2«0

2m̂1ms
^s0&1

2«8

2~m̂2ms!
^s8&,

^s̄s&5
2«0

2m̂1ms
^s0&1

1«8

m̂2ms

^s8&. ~12!

The coefficients are just proportional toa and 6b, as a
comparison with Eq.~6! shows;a andb have been deter-
mined in Eq.~7!. Later, we take the relations~12! as tem-
perature independent and substitute^s0&(T),^s8&(T) for the
corresponding condensates at zero temperature. This
sumption is consistent with our approach. We also treat
couplingsm0

2 , f 1 , f 2 ,g of the Lagrangian as temperature in
dependent. Therefore, the symmetry ofL remains unchanged
under an increase ofT. The symmetry was on the basis o
the identification which has led to Eqs.~12!. ~The assump-
tion of temperature-independent couplings may not be ju
fied in the vicinity of the transition region.! In the next sec-
tion we will outline how to calculatês0&(T),^s8&(T).

III. LARGE- Nf EXPANSION

In an earlier calculation the linear SU~3!3SU~3! s model
has been considered in a mean-field approximation@18#. Re-
cently, Gavin, Gocksch, and Pisarski@15# have tried to lo-
calize the first-order transition boundary in a
(mu,d ,ms)-mass diagram in amean-fieldcalculation. The fa-
mous renormalization group analysis of Pisarski and Wilcz
@1# applied to the linears model in thechiral limit. Frei and
Patkós @19# were the first to apply a saddle-point approxim
tion to the partition function of thes model. Their investi-
gations were also restricted to the chiral limit. Meye
Ortmanns, Pirner, and Patko´s @8# have extended the approac
of Frei and Patko´s to finite meson masses. In@8# only the
zero-Matsubara frequencies were kept. When the imagin
time dependence of the fields or, equivalently, t
nÞ0-Matsubara frequencies are dropped, it results in a
mensional reduction of the four-dimensional theory to
effective three-dimensional theory. In general, such a red
tion can be justified in the high-T limit or for an anticipated
-
n
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second-order phase transition. In both cases the ratio
b/j is negligible (b is the inverse temperature andj denotes
the largest correlation length of the system!. The
nÞ0-Matsubara modes were included in@16#. In this paper,
we follow the same approach as in@16#, but extend the work
to study the aspect of the mass sensitivity of the chiral tra
sition. Further differences in details of@16# and the present
paper will be mentioned below. In the following, we sum
marize the main steps of our approach.

The temperature-dependent order parameters are the
son condensateŝs0&(T) and ^s8&(T). They are related to
the light and strange quark condensates according to E
~12!. The values of̂ s0&(T),^s8&(T) are determined as the
minima of an effective potentialÛeff(s0 ,s8). The effective
potential is calculated as a constrained free energy dens
i.e., the free energy density under the constraint that the a
erage fields 1/bV *0

bdt*d3xs0,8(xW ,t) take prescribed values
s̄0 and s̄8 , respectively, while the same averages ove
s l ,l 51, . . . ,7 andp l ,l 50, . . . ,8 should vanish. The
physical meaning is obvious. If one choosess̄0 ,s̄8Þ0 in the
high-temperature chiral symmetric phase, the correspond
free energy is certainly not minimal for such a choice. W
consider spontaneous symmetry breaking in two direction
Accordingly, we introduce two background fieldss̄0 ,s̄8:

s05s̄01s08 ,

s85s̄81s88 , ~13!

wheres08 ,s88 denote the fluctuations around the backgroun
Otherwise, s l 5s l8 for l 51, . . . ,7 and p l 5p l8 for
l 50, . . . ,8. As a common notation fors l8 ,p l8 we use
M l8 5s l8 1 ip l8 . The actual minima ofÛeff(s0 ,s8) ~with
s05s̄0 ,s85s̄8) are denoted aŝs0& and ^s8&.

The Lagrangian is expanded in powers ofM l8 . The linear
term in M l8 vanishes because of thed constraint in the
constrained-free energy density. The quadratic term defin
the masses mQ

2 of the meson multiplets
p,K,h,h8,sp ,sK ,sh ,sh8, andQ51, . . . ,8labels the mul-
tiplets. The two quartic terms are quadratized by introducin
an auxiliary matrix field((x) according to@19#

exp$2b@ f 1~TrM 8M 81!21 f 2Tr~M 8M 81!2#%

5const3E
c2 i`

c1 i`

DS~x!exp$ TrS212«Tr~SM 8M 81!

12aTr~M 8M 8!TrS%, ~14!

whereM 8(x) is anN3N-matrix field and

«25b f 2 ,

2«a13a25b f 1 .

Note that Eq.~14! is a sophisticated version of the simple
case, wheref is a scalar field
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const3exp$2a@f2~x!#2%

5E
c2 i`

c1 i`

DS~x!eS2~x!2S~x!f2~x!2Aa. ~15!

Formula~15! can be easily generalized to the case, where
left-hand side~LHS! includes also a cubic termf3(x), but
we are not aware of an analogous transformation that lead
a tractable expression if the cubic term occurs in the form
a determinant. This is the reason why we drop the cubic te
in M l8 in the following procedure. The (333)-matrix field
S(x) is replaced by an SU~3! symmetric diagonal matrix
S5diag(sad,sad,sad). Thus the matrix of auxiliary fields
is reduced to a single field variablesad(x).

In the saddle-point approximation the path integr
*DS(x) is dropped and the auxiliary fieldsad(x) is re-
placed bysad* , which maximizes the integrand. For a
O(N) model it is well known that this approximation corre
sponds to the leading order in a 1/N expansion@20#. In the
special case off 2505g, the SU~3!3SU~3! s model be-
comes an O(16) model, which is invariant under O~18! ro-
tations. We haveN51852Nf

2 , whereNf denotes the num-
ber of quark flavors, whileN labels the number of mesonic
modes. Terms of O(1/N) are dropped, as long as fluctuation
in the auxiliary field are neglected. Thus we call our sche
a large-Nf approximation.

The resulting one-loop contribution to the free ener
density is given as

2
1

bV
lnZ5

1

2b (
Q51

8

g~Q! (
nPZ

E d3K

~2p!3
ln@b2~vn

21vQ
2 !#,

~16!

where g(p)53,g(K)54,g(h)51,g(h8)51,g(sp)53,
g(sK)54,g(sh)51,g(sh8)51 are the multiplicity factors
of the multiplets,vn

2[(2pn/T)2 and

vQ
2[K21XQ

2

XQ
2[sad1m0

21mQ
2 . ~17!

Thus the one-loop contribution to the free energy takes
form, which is familiar from a free field theory. The only
remnant of the interaction is hidden in the effective ma
squareXQ

2 via the auxiliary field variablesad. After the sum
over the Matsubara frequencies is performed, the full expr
sion for the effective potential is given as

Ueff~s0 ,s8 ,sad!5Uclass~s0 ,s8!1Usaddle~sad!

1U0~s0 ,s8 ,sad!1U th~s0 ,s8 ,sad!,

~18!

wheres05s̄0 ,s85s̄8 and
the
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rm
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n
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s
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a

ss

es-

Uclass~s0 ,s8!52
1

2
m0
2~s0

21s8
2!1

g

3A3
~2s0

32A2s8
3

23s0s8
2!2

2A2
3

f 2s0s8
31S f 11 f 2

3 Ds0
4

1S f 11 f 2
2 Ds8

412~ f 11 f 2!s0
2s8

22«0s0

2«8s8 ~19!

is the classical part of the potential, which is independent
sad;

Usaddle~sad!52
3

8~3 f 11 f 2!
S sad22

1m0
2sadD ~20!

results from the transformation~14!. The one-loop part con-
sists of the zero-point energyU0 and the thermal partU th ,
given by

U0~s0 ,s8 ,sad!5
1

2(
Q51

8

g~Q!EL d3K

~2p!3
vQ , ~21!

U0 is divergent if the three-momentum cutoffL is sent to
infinity, while U th is convergent forL→` and vanishes for
T50:

U th5
1

b (
Q51

8

g~Q!E d3K

~2p!3
ln~12e2bvQ!. ~22!

Our results have been obtained for the potenti
Ûeff[Ueff2U0 , where the divergent zero-point energy ha
been dropped. It is often argued that the omission of th
zero-point energy is justified if one is finally interested in
thermodynamic quantities, which are derived as derivativ
of lnZ with respect tob. Usually,U0 does not depend on
T, and the splitting of the one-loop part ofUeff according to
U0 and U th is a splitting in a T-independent and a
T-dependent part. Thus, the contribution ofU0 should have
no effect on the thermodynamics. We cannot use this arg
ment becauseU0 of Eq. ~21! has an implicit temperature
dependence hidden inXQ

2 via sad(T), the temperature-
dependent saddle-point variable, which is finally chosen su
that it maximizesÛeff for sad5sad* . This was one of the
reasons why theU0 term was kept in@16#. A renormalization
prescription was imposed such that the strong~quartic! cut-
off dependence ofU0 was weakened to a 1/L2 dependence.
Further differences to@16# are because of corrections of two
errors in@16#. After we had removed the programming erro
in Uclass of @16#, we found two branches in the free energ
density f ~or the pressure!. The branches inf of the high-
and low-temperature phases did not cross at some tempe
ture T5Tc , although the free energy should behave as
smooth function inT by general thermodynamic arguments
The reason was that the two minima of the potential whic
exist belowT5200 MeV were erroneously associated with
the true minima in the high- and low-temperature phases.
was not realized that for all temperatures up toT<200 MeV
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one minimum is only a local one, while the other one sta
the absolute minimum for all temperatures up toT>200
MeV.

Thermodynamic quantities. Thermodynamic observables
are derived from the free energy densityf
5 limV→`(2(1/bV) lnZ) in the standard way. The partition
functionZ is approximated as

Ẑ~^s0&,^s8&!5e2bVÛeff„^s0&~T!,^s8&~T!;sad* ~T!…. ~23!

Evaluation of Ûeff. Next, let us discuss the evaluation o
Ûeff in a little more detail. The expression forÛ eff is familiar
from the expression for a free field theory. In a high
temperature expansion it reads

Ûeff5Uclass1Usaddle2
T4

2p2 (
Q51

8

g~Q!H p4

45
2

p2

12
yQ
2

1O~yQ
3 !J ~24!

with yQ5XQ/T.
At high temperature the SU~3!3SU~3! linear s model

certainly fails to describe the quark-gluon plasma phase. T
critical temperature falls neither in a high- nor in a low
temperature region, the expansion parameter is of order 1
larger. Nevertheless, we have used the high-temperature
pansion, which has been frequently applied in calculations
a thermodynamic potential. It has the advantage that ima
nary parts ofÛeff are absent to leading order inXQ /T, cf.,
e.g.,@21#. We have performed a high-temperature expansi
for two sets of mass parameters, the chiral limit and t
realistic mass point, see Secs. IV and VII. This way we g
some qualitative insight in the phase structure before
could handle the problems in a fully numerical evaluation
Ûeff . Analytic expressions for a low-temperature expansio
of Ûeff are known as well@22#. We have used them only in
intermediate steps to check the numerics.

At a first glance the numerical evaluation ofÛeff looks
rather straightforward. For each pair of (s0 ,s8) we have to
find sad* that maximizes Ûeff . The condensates
^s0&,^s8& are then determined as minima o
Ûeff„s0 ,s8 ;sad* (s0 ,s8)…. It is well known @21# that the
arguments (K21XQ

2 ) of the logarithm inÛeff can become
negative and lead to imaginary parts inÛeff , which we have
mentioned above. The original hope was that the positi
contribution of the auxiliary fieldsad to the massesmQ

helps in avoiding imaginary parts ofÛeff .
Actually, no imaginary parts have been found in@19#. The

contribution ofsad* to XQ
2 increases withT, it is positive

for T>116 MeV, but in our case the positive contribution i
not sufficient to avoid negativeXQ

2 completely, i.e., for all
s0 ,s8 , and T. It has turned out that the actual minima
^s0&, ^s8& lie always in the ‘‘allowed’’ region of real valued
Ûeff , or at least at the boundary of this region, but on th
way of searching the maximum insad* and the minima in
^s0&,^s8& the routines encounter negative mass squares
dispensably. Therefore,Ûeff is analytically continued. The
integral inU th of Ûeff is of the type
ys
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I ~z!5E
0

`

dx$x2ln@12exp~2~x21z2!1/2!#%

52z2(
n51

`
1

n2
K2~nz!, ~25!

whereK2 is a modified Bessel function. The analytic con-
tinuation ofKm(nz) to complex values ofnz is given as

Km~nz!5 i m11S p

2 D @Jm~ inz!1 iYm~ inz!#, ~26!

whereJm are Bessel functions of the first kind andYm are
Weber functions@23#. This leads to the following form of
Ûeff :

Ûeff5Uclass1Usaddle1
T4

2p2 (
Q51

8

g~Q!

3H 2XQ
2

T2 (
n51

`
1

n2
K2S nTXQD J ~27!

for XQ
2>0. ForXQ

2 ,0 andXQ56 iAuXQ
2 u

Ûeff5Uclass1Usaddle1ReU th1 i ImU th

with

ReU th5
T4

2p2 (
Q51

8

g~Q!H p

2

uXQ
2 u

T2 (
n51

`
1

n2
Y2S nTuXQ

2 u1/2D J ,
ImU th5

T4

2p2 (
Q51

`

g~Q!H 6
p

2

uXQ
2 u

T2 (
n51

`
1

n2
J2S nTuXQ

2 u1/2D J .
~28!

The condensate values^s0&(T),^s8&(T) are determined as
minima of Ûeff for XQ

2>0 and of ReÛeff for XQ
2 ,0.

Errors arise from two sources. The first one are the imag
nary parts inÛeff , when the saddle point is determined from
the condition]Ûeff /]sad50. For small temperatures, large
effective masses and/or large values ofn in Eq. ~28!, the
contributions to the sum overn are so small that they reach
the order of the numerical accuracy. The location of th
saddle point becomes inaccurate under these conditio
Similarly, for small arguments~i.e., high temperatures, small
values ofXQ) the approximations of the Weber functions
Y2 in the vicinity of their singularity at vanishing arguments
become less reliable@24#. This explains why the error in
sad* increases with temperature, if simultaneouslyuXQ

2 u1/2

becomes smaller.
The errorDsad* is estimated from the ambiguity in find-

ing the maximum ofÛeff . It turns out that for low tempera-
tures Dsad*;0, while it increases with temperature to
Dsad*;60.006 GeV2 in the transition region in case of the
chiral limit.

The uncertainty in the determination insad* leads to
errors in the meson condensates, the effective massesXQ ,
and the thermodynamic quantities«, p, and s. In case of
realistic masses, the errorsD^s0,8&, which are induced in
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FIG. 1. Normalized light quark condensate^q̄q&T /^q̄q&0 as a function of temperatureT in the high-temperature expansion~solid curve!
and the numerical evaluation~dashed curve! of the large-Nf expansion. The condensate drops to zero atTc;92 MeV and 177 MeV,
respectively.
ty in
n

on

d
.
i-

en
^s0&,^s8&, are estimated asD^s0,8&<1027 below T;50
MeV, <1024 belowT;125 MeV,<1023 for T<165 MeV,
and of the order of 1023 MeV in the transition region. After
the crossover (T>197 MeV! it stays;1024.

A second source for errors in the condensates^s0&,^s8&
is the flat shape of the effective potential in the transiti
region; in particular, for external field strengths which on
admit a rather weak first-order phase transition. We estim
D^s0&(.D^s8&) from plots of Ûeff(s0) in the SU~3! sym-
metric case. We findD^s0&.61.3 MeV in the chiral limit
and.64.3 MeV for e05231024 or 2.531024 GeV3, cf.
Fig. 3 of Sec. V.

When the meson condensates are converted to the q
condensates, additional errors enter because of the cu
quark masses. We useDmu,d561.45 MeV @17#.

Of particular interest are the errors in the entropy a
energy densitiess and« in the crossover region, as they lea
to an upper bound on a finite latent heat which cannot
excluded from our results. Their sizes can be traced bac
errors in the effective massesXQ . It is indicated in Fig. 5 of
Sec. VI, where the curves refer to realistic meson masse

From very different approximation schemes it is know
that the region of a phase transition is particularly difficult
handle. Our difficulties in localizing the saddle point an
calculating the condensates in the transition or crossover
gion are just a manifestation of that.

IV. THE CHIRAL LIMIT

From the renormalization group analysis of Pisarski a
Wilczek @1# we expect a first-order chiral transition in th
chiral limit. As mass input we choosemp

25mK
25mh

250 for
on
ly
ate

uark
rrent

nd
d
be
k to

s.
n
to
d
re-

nd
e

the pseudoscalar Goldstone bosons,mh85850 MeV,
msh8

5800 MeV, f p594 MeV. The mass of thes meson
should be treated as a parameter because of the uncertain
the experimental identification. For the final parametrizatio
we choosemsh

5600 MeV.
The tree-level parametrization of the Lagrangian~1! in the

limit of vanishing«0 and«8 is then given by

m0
255.9631022 GeV2,

f 154.17,

f 254.48,

g521.81 GeV. ~29!

The high-temperature expansion gives a first-order transiti
at Tc59261 MeV, while the fully numerical evaluation
leads toTc517761 MeV, cf. Fig. 1. This is in agreement
with the general observation that the high-T expansion gives
qualitatively correct results when it is extrapolated beyon
its validity range, quantitatively it fails in precise predictions
TheTc value of the numerical calculation supports the est
mate for theNf dependence ofTc , which has been derived
by Cleymans, Kocic´, and Scadron@25# from a pion gas
model without interactions as

Tc;2 f pA3Nf /~Nf
221!;200 MeV. ~30!

The effective potentialÛeff is plagued with imaginary
parts for all temperatures we have investigated, i.e., betwe
0 and 250 MeV. When we evaluate ReÛeff according to Eq.
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~28!, we observe the same effect for higher values of thes
mass as it has been noticed by Goldberg@18#. Goldberg has
calculated the effective potential of the SU~3!3SU~3! s
model in a mean-field approximation in the chiral limit. Th
oscillations in the potential became stronger for larger valu
of thes-meson mass, which was used as input. In our ca
ReÛeff(s0) strongly fluctuates around the expected parabo
if ms>1 GeV. This explains our final parameter choice o
msh

5600 MeV. The approximation of ReÛeff according to

Eq. ~28! by a finite series of Weber functions (n<25) loses
its validity if the argument ofY2 becomes too large becaus
of ms

2 .
For the barrier height between the coexisting minima

the potential we find 0.1431023 GeV/fm3. The barrier
height may be regarded as a measure for the strength of
transition. It determines the tunneling rate between coexi
ing phases in the transition region. The barrier height
clearly smaller than the value of Frei and Patko´s @19#, who
found 0.36 GeV/fm3 in the same model, but without inclu-
sion of thenÞ0-Matsubara frequencies. The higher barrie
goes along with a large value for the interface tensiona
between the coexisting chirally broken and symmetric phas
at Tc , a has been estimated as@~40–50! MeV# 3 @19#. More
recent lattice results indicate that such a large value is
likely for QCD @26#.

V. THE CRITICAL TRANSITION LINE

The critical transition line in an (mp ,mK , . . . ) diagram
consists of pseudoscalar meson masses for which the fi
order chiral transition becomes of second-order and tu
into a crossover phenomenon for meson masses excee
the so-called critical values. We will determine three suc
critical points. The critical points are characterized by the
external field strengths«0 ,«8 . The first point corresponds to
an SU~3! symmetric case, where«850, mu5md5msÞ0,
andmp5mK5mhÞ0. Since^s8&50 for all temperatures,
the numerics considerably simplify compared to the gene
case with «0Þ0Þ«8 . For the second critical point we
choose«0520.77«8 . This ratio is identical to«0 /«8 for the
mass point with realistic meson masses, whe
ms /m̂518.2, cf. Sec. II. The third point is characterized b
«05(2a/b)«8 . It is chosen such thatms50, mu,dÞ0. Be-
fore we present our results for the critical field strengths
the large-Nf expansion, we calculate«0

crit , «8
crit in a mean-

field approximation.

A. Critical meson masses in a mean-field approximation

Recently, Gavin, Gocksch and Pisarski@15# have calcu-
lated a set of critical quark masses in the linear SU~3!
3SU~3! s model. The calculation has been performed in
mean-field approximation. Since we use a different tree-lev
parametrization of thes model, we have performed the
mean-field calculation for our parameter choice. Here, w
summarize the main steps for the simpler SU~3! symmetric
case.

The SU(3) symmetric case.In mean field we have to deal
with the classical part of the potentialUclass, which follows
from the Lagrangian~1! for a constant background field
s05s̄0(s̄850), ande850. We have
e
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Uclass~s0!52
1

2
m0
2s0

21
2

3A3
gs0

31S f 11 f 2
3 Ds0

42«0s0 .

~31!

This form is familiar from Landau’s free energy functional in
terms of an order parameter field. One of its applications is
description of the phase structure for a liquid-gas transitio
For «050 the system has a first-order transition from th
liquid to the gas phase. The transition stays first order, un
the external field~the pressure in case of a liquid-gas system!
is increased to a critical value«0

crit , where it becomes of
second order. For values of«0.«0

crit , the transition is
washed out and turns into a crossover phenomenon.

In mean field the effect of a finite~and strictly speaking
high! temperature is reduced to a renormalization of the ma
parameter term, i.e., the coefficient of the quadratic term
the Lagrangian. Thus, the finite temperature effects can
mimicked by tuningm0

2 while keeping the other couplings in
the Lagrangian (f 1 , f 2 ,g) fixed. The potential can be Taylor
expanded around its true minimums0

min ~which is different
from zero in the symmetry broken phase!; in particular, it
can be expanded around the ‘‘critical’’s0

min[s0
crit for the

critical field strength«0
crit . In the ‘‘critical’’ caseUclassstarts

with a term quartic in (s02s0
crit). From the vanishing of the

first three coefficients we obtain the critical parameters
follows. The vanishing of the third derivative ofUclasswith
respect tos0 at s05s0

crit leads to

s0
crit5

2g

A336~ f 11 f 2/3!
53.131022 GeV. ~32!

The second derivative]2Uclass/]s0
2 at s0

crit is the coefficient
of the quadratic fluctuations (s02s0

crit)2 arounds0
crit with

the meaning ofmsh8

2 . This is the critical mass, which goes to

zero when the second-order transition is approached. It
easily checked that the other meson masses remain finite
the same set of critical parameters. The vanishing ofmsh8

2 at

criticality implies for the critical value ofm0
2

m0
2 crit5

2g2

9~ f 11 f 2/3!
526.4431022 GeV2. ~33!

Finally, the extremum condition fors0
crit determines«0

crit as

«0
crit52

1

27363A3
g3

~ f 11 f 2/3!2
56.631024 GeV3.

~34!

The value for«0
crit56.631024 GeV3(«8

crit50) leads to a
pseudoscalar octet mass ofmp5mK5mh5146 MeV and a
current quark mass ofmu5md5ms51.9 MeV.

One should keep in mind that the tree-level parametriz
tion of the SU~3!3SU~3! s model is arbitrary to some ex-
tent. If we would chooseg521.39 GeV, f 155.3,
f 250.93 withmsh

5600 MeV ~the values which have been

used in@8# for the tree-level parametrization!, «0
crit turns out

as 331024 GeV3 or mu,d,s.0.9 MeV leading to
^mP&5115 MeV. For the same parameter choice, bu
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f 152.35 and msh
5950 MeV, «0

crit comes out as

1.331023 GeV3. The same tendency has been observed
@15#. An increase of the input massmsh

shifts the critical
field strength to larger values~reducing the discrepancy to
the lattice result!. The parameter choice which has been us
in @16# leads to«0

crit5431024 GeV3. Gavin, Gocksch, and
Pisarski @15# obtain for the corresponding critical field
strength in the SU~3! symmetric case
h0
crit51.631024 GeV3. Because of their different param
etrization it is only of the same order of magnitude as ou
Thus, we estimate the error in the mean-field calculation
De0

crit56531024 GeV3. The induced error in the pseudo
scalar meson masses comes out as large as'127 MeV, in
the current light quark mass it is<1.4 MeV.

The general case of«0Þ0, «8Þ0. For nonvanishing«0
and«8 Uclass is given by Eq.~19!. Again, we have to deter-
mine the critical parameterm0

2 to simulate a finite tempera-
ture, the critical minima valuess0

crit ,s8
crit of Uclass, and the

critical field strengths«0
crit ,«8

crit . We use the conditions

]Uclass~s0 ,s8!/]s0ucrit50, ~35!

]Uclass~s0 ,s8!/]s8ucrit50, ~36!

msh8

2 ucrit50, ~37!

«0
crit/«8

crit10.77ucrit50, ~38!

]3Uclass~s0 ,s8!/]r
3ucrit50 . ~39!

The five conditions are postulated at criticality~abbreviated
as ucrit), i.e., for the set of critical parameterss0

crit , s8
crit ,

«0
crit , «8

crit , m0
2 crit. The first three equations are obvious ge

eralizations of the SU~3! symmetric case. Equation~38! is
just one possible choice saying that we keep the mass s
ting of realistic ~pseudo!scalar meson masses fixed in th
tuning to the critical transition line. Equation~39! general-
izes ]3Uclass(s0)/]s0

3ucrit50 of the one-dimensional case
More precisely, it postulates that the directional derivative
the radial directionr in (s0 ,s8) space~i.e., in the direction
of msh8

2 50) should vanish to exclude the occurrence of

first-order transition. Equations~35!–~39! are solved numeri-
cally. We find

s0
crit53.731022 GeV, s8

crit525.031023 GeV,
~40!

m0
2 crit526.431022 GeV2, ~41!

«0
crit57.031024 GeV3, «8

crit529.131024 GeV3,
~42!

or ms55.4 MeV, m̂50.3 MeV, while the average pseudos
calar meson masŝmP& 5 120 MeV. The values for«0,8

crit are
compatible with the results of@15#, who find for the critical
field strengthsh0

crit5(62 MeV)3,h8
crit5(60.4 MeV)3, if one

keeps in mind the different tree-level parametrization. F
example,ms /mu,d532 in @15#, while ms /mu,d518.2 in our
case.
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The case of ms50 or «0 /«852a/b. If we replace 0.77 in
Eq. ~38! by 22a/b521.31 corresponding toms50, mu,d
Þ0, we obtain, from Eqs.~35!–~39!,

s0
crit53.431022 GeV, s8

crit52.931023 GeV ~43!

m0
2 crit526.431022 GeV2 ~44!

«0
crit56.731024 GeV3, «8

crit55.1431024 GeV3,
~45!

or m̂52.9 MeV and^mP&5137.2 MeV. Note that the con-
ditionms50 implies the same sign for«0

crit and«8
crit because

of the same sign for the constantsa and b. Hence, the
‘‘critical’’ condensatess0,8

crit come out with equal sign in con-
trast with the realistic mass case.

In the following we will compare the mean-field values
for «0,8

crit with the large-Nf results.

B. Critical meson masses in the large-Nf expansion

The SU(3) symmetric case.When«850 and«0 is slowly
increased from 0 to;2.531024 GeV3, we observe a weak-
ening of the first-order transition as is seen in Fig. 2. For th
critical field strength we find

«0
crit<~360.5!31024 GeV3. ~46!

The value for«0
crit induces an upper bound on the pseudo

calar meson mass of 51 MeV or on the quark masses
mu,d
crit5ms

crit<0.960.14 MeV, such that

mu,d,s
crit /mu,d,s<0.0860.01. ~47!

Within the errors the result for«0
crit is of the same order of

magnitude as the mean-field value. The uncertainty in o
result is D«0

crit<0.531024 GeV3. For «052.531024

GeV3 the transition could be clearly identified as first orde
from the^q̄q&T /^q̄q&0(T) curves. For«05331024 GeV3 it
is a crossover. We could have further improved the accura
of «0

crit by measuring data for̂q̄q&T(T) in the intermediate
«0 range. On the other hand, such an improvement is limit
by the well-known fact that it is, in general, hard to disen
tangle a very weak first-order transition from a rapid cros
over phenomenon.

The weakening of the first-order transition is also reveale
in the barrier height of the effective potential between th
coexisting minima atTc . The barrier decreases from
1.431024 GeV/fm3 in the chiral limit to 2.131026 GeV/
fm3 for «052.031024 GeV3, «850 GeV3, the largest value
for which a first-order transition could be identified from the
shape of the effective potential, cf. Fig. 3. A compariso
between Figs. 2 and 3 shows the ambiguity in identifying
very weak first-order transition. Figure 2 suggests a we
first-order transition for «052.531024 GeV3 with
Tc;181 MeV, but no barrier is visible between the two co
existing condensate values at the same temperature and
same«0 value in Fig. 3. Accordingly, a precise determina
tion of Tc is hard in case of a weak first-order transition suc
that we estimate the error inTc asDTc562 MeV. Figure 3
also admits an estimate of the error in finding^s0,8& in the
transition or crossover region if the effective potential is ver
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FIG. 2. The light quark con-
densate normalized to its value at
zero temperaturêq̄q&T /^q̄q&0 as
a function ofT in the SU~3! sym-
metric case. The weakening of the
first-order transition is obvious,
when«0 GeV

3 is varied between
«050(3), 231024(L), 2.5
31024(1), and 6.631024(h).
i-

e

h
e
-

rk
flat, which we have mentioned in Sec. III. In the chiral lim
we haveD^s0&;1.331023 GeV, for «05231024 and for
«052.531024 GeV3 the error is estimated as 4.331023

GeV. Later, we assumeD^s0&;D^s8&.
Tc(m) dependence in theSU~3! symmetric case.For sim-

plicity, we restrict the study of the mass dependence ofTc in
the first-order transition region to the SU~3! symmetric case.
Table I shows an increase ofTc with the current quark mass
m̂. For realistic mass values ofmp5129.3 MeV,
mK5490.7 MeV,mh5544.7 MeV~not listed in Table I!, the
rapid crossover sets in atT;181.5 MeV and becomes slow
at ;192.6 MeV. We associate a critical temperature ‘‘Tc’’
it ;18760.5 MeV to this crossover phenomenon for compar
son with extrapolated values ofTc in chiral perturbation
theory~in our caseTc is localized as the point of inflection in
the crossover curve!. Thus,Tc has increased by 5.3% com-
pared to the chiral limit. This result is in agreement with th
estimate of Leutwyler@27#, who predictsDTc /Tc;5% if
realistic pion masses are substituted for the chiral limit wit
mp50. When the critical temperature is extrapolated in th
framework of chiral perturbation theory, the inclusion of fi
nite quark masses delays the melting of^q̄q& by DT;20
MeV @4#, while the inclusion of heavier mesons in a dilute
gas approximation has the opposite effect. At finite qua
FIG. 3. Decrease of the barrier
height of the effective potential
Ûeff for «050 at T;176
MeV ~solid curve!, «05231024

GeV3 at T;180 MeV3 ~dashed
curve!, «052.531024 GeV3 for
T;181 @MeV# ~determined from
the corresponding condensate
curve of Fig. 2! ~dotted curve! in
the SU~3! symmetric case.
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masses it accelerates the melting fromTc;240 MeV–190
MeV. The delay in the melting because of finite qua
masses is intimately related to the size of the latent heat.
relation is revealed in the derivation of a Clausius-Clapeyr
equation for QCD, cf.@27#. Thus, theTc(m) dependence is
conclusive for the strength of a first-order chiral transition

The case of realistic mass splitting,«0
crit/«8

crit50.77. For
the realistic mass splitting induced byms /mu,d518.2 we
find, for the critical field strengths in largeNf ,

«0
crit<~762!31023GeV3,

«8
crit>~29.0962.6!31023 GeV3, ~48!

corresponding to an average pseudoscalar octet mas
^mP&<203 MeV. The critical values for the current quar
masses aremu,d

crit<2.9660.85 MeV and ms
crit<54615.4

MeV. The reason why we give an upper/lower bound
«0,8
crit rather than precise values for the first-order transiti
boundary is the same as in the SU~3!-symmetric case. The
bound on«0,8

crit could still be improved by measuring dat
between «05431023 GeV3, «8525.231023 GeV3,
where the transition is still of first order, and«0

crit , «8
crit from

Eq. ~48!. It should be remarked that, because of the sm
gap in the condensate, only a rather fine resolution of
^q̄q&/^q̄q&0(T) curve in steps ofDT<0.1 MeV has revealed
the true first-order nature of the transition for«05531023

and«8526.531023 GeV3.
Thus we see that also in a large-Nf expansion tiny values

for the quark masses are sufficient to weaken the chiral tr
sition and turn it finally into a crossover phenomenon. Sim
larly, tiny current quark masses are sufficient to eliminate
chiral transition in an SU~3! Nambu–Jona-Lasinio model a
a function of temperature and nuclear density@28#.

The large-Nf results for«0,8
crit are clearly above the mean

field values of Eq.~42!. The result is plausible, as our saddle
point approximation goes beyond the mean-field calculati
The leading term in a 1/Nf expansion corresponds to th
summation of a class of diagrams, called ‘‘super-daisie
@29#. Super daisies have been summed up by Dolan
Jackiw @21# to circumvent the IR-divergence problem in a
N-componentf4 theory. Our application of the 1/NF method
to the linears model has been similar in spirit. Certainly w
cannot claim that the fluctuations we have included so far
representative for all fluctuations. In fact, the classical cu
term of our potential may still dominate the driving mech
nism for the first-order transition below the critical fiel
strengths. Only the lattice calculation includes all fluctu
tions by simulating the full partition function at once~at least
in principle!. This may explain the remaining discrepanc
between the large-Nf ratio and the lattice result for
mu,d
crit /mu,d .
The next question which arises in a comparison with t

mean-field calculation concerns the critical renormaliz

TABLE I. The critical temperatureTc as a function of the av-
erage light quark massm̂ in the SU~3! symmetric case.

m̂ @MeV# 0 0.29 0.57 0.71
Tc @MeV# 177 178.5 179.4 180.4
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masses, which should vanish for the critical field strengths
a second-order transition. In the mean-field calculatio
msh8

2 vanishes by construction for the set of critical param

eters, and it is easily checked thatmsh8
is the only mass that

vanishes at criticality. Our value formsh8
5749.5 MeV is the

tree-level input mass at zero temperature, which needs
vanish. The effective massesXQ are temperature dependent
It is not obvious to us that one of these masses should indu
an infinite correlation length asT approachesTc . A careful
renormalization prescription should be imposed to identi
the renormalized mass~es! that goes~go! to zero for critical
external fields. It would further allow an identification of the
universality class of the SU~3!3SU~3! linear s model for
critical parametersm0

2 , f 1 , f 2 ,g,«0 ,«8 . We will investigate
these questions in a forthcoming work.

Critical meson masses for ms50. Here, the large-Nf re-
sults are even somewhat smaller than the mean-field res
@cf. Eqs.~45!#. We find

«0
crit<~461!31024 GeV3,

«8
crit<~3.0660.76!31024 GeV3. ~49!

The associated average pseudoscalar octet mass
^mP&<57.2628.8 MeV, andmu,d<1.760.4 MeV, while
ms50 by construction.

The Columbia plot has suggested a concave shape of
first order transition boundary. The three critical masses
mean field are compatible with such a shape in a
(mp ,mK) or an (m̂,ms) diagram, although one should keep
in mind the large error bars because of the ambiguity in th
tree-level parametrization of thes model, and the sensitive
dependence of the boundary on thesh(8)-mass input. The
three critical masses in largeNf do not confirm the conjec-
tural concave shape. Only for a realistic ratio of«0 /«8 , the
large-Nf result lies clearly above the mean-field value for th
critical masses. The errors here are at least as large as in
mean-field case, although they could have been further
duced.

In the next section we will see the change in the crossov
behavior, as«0 ,«8 are further increased to induce realistic
mass values.

VI. THE REALISTIC MASS POINT

If we use form0
2 , f 1 , f 2 ,g the values of the chiral limit and

choose«050.0265 GeV3, «8520.0345 GeV3, we find
~pseudo!scalar meson masses which are listed in Table II.
comparison to the experimental values shows reasona
agreement for the pseudoscalar mesons. Therefore, we
this point the ‘‘realistic’’ mass point. The experimental val
ues which are associated to the scalar meson masses de
on the identification, which is indicated in a separate row o
Table II. The mass splitting betweenK0* anda0 comes out
too small in our case. We could have further optimized ou
choice of«0 and«8 to improve the agreement with the ex-
perimental mass values, but such an optimization should
inconsequential for our results.

Crossover in the condensates.The crossover behavior for
the normalized light and strange quark condensates is d
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TABLE II. Tree-level parametrization of the SU~3!3SU~3! linears model for the realistic mass point.

Input

m0
2 GeV2 f 1 f 2 g MeV f p MeV «0 GeV

3 «8 GeV
3

5.9631022 4.17 4.48 -1812.0 94 0.0265 -0.0345

Output ~all masses are understood in units of MeV!

mp mK mh mh8 msp
msK

msh
msh8

Real.
Mass 129.3 490.7 544.7 1045.5 1011.6 1031.2 1198.0 749.5
Point
Expt.
Mass 138.0 495.7 547.5 957.8 980 if 1322.0 if 1476.0 if 975 if
Values sp[ sK[ sh[ sh8[

a0 K0* f 0(1476) f 0(975)
e
he
tical

in-

te
of
uark
es.
ron
played in Fig. 4. The rapid crossover leads to a decrease
;50% of the condensate at zero temperature^q̄q&0 in
^q̄q&T over a temperature intervalDT;10 MeV, while
^s̄s&T stays remarkably constant up toT;197 MeV, where it
starts to decrease rather slowly. The physical reason is ob
ous. It is harder to excite mesons with strange quarks th
those with light quarks. The same qualitative behavior
^s̄s&T has been noticed by Hatsuda and Kunihiro@30# in a
UNf

(3) version of the Nambu–Jona-Lasinio~NJL! model.
Also, the location of the crossover region in the NJL mod
is aroundT;200 MeV.

We have indicated the error bars only in the crossov
region where they are largest. When the errors in the curr
of

vi-
an
of

el

er
ent

quark masses are added, which enter Eq.~12!, we obtain
D^q̄q&;3.131023 GeV3, D^s̄s&;6.731023 GeV3 at
T5180 MeV in the transition region. In Fig. 4 we hav
indicated only the numerical errors, the contribution from t
current quark masses has been left out. Compared to cri
meson masses («0

crit5731023 GeV3, «8
crit529.131023

GeV3), the crossover happens over a larger temperature
terval. We find D@^q̄q&T /^q̄q&0#

real/D@^q̄q&T /^q̄q&0#
crit;

52% if D@^q̄q&T /^q̄q&0# denotes the normalized condensa
change per 1 MeV temperature interval in the rapid part
the crossover region. Nevertheless, the crossover in the q
condensatêq̄q& seems to be sharp even for realistic mass
Such a rapid change may lead to visible changes in had
a

FIG. 4. Light (̂ q̄q&) and
strange (̂s̄s&) quark condensates
normalized to their corresponding
values at zero temperature as
function of temperature. The
crossover behavior is most rapid
between 181.5<T<192.6 MeV.
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FIG. 5. Entropy densitys over
T3, energy density« overT4, and
pressurep over T4 in the large-
Nf expansion for the realistic
mass point. Errors are only indi-
cated fors/T3.
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masses, depending on temperature and condensates. It c
be manifest in hadronic or dilepton spectra in heavy-ion e
periments.

Thermodynamics.Further characteristics of the crossove
phenomenon are the variations in the energy and entro
densities over the temperature interval in the crossover
gion. At this place one should recall the very definition of
first-order phase transition. At the transition pointat least
oneof the first derivatives of a suitable thermodynamic po
tential should behave discontinuously in the infinite volum
limit. Thus, a crossover in the condensates, in general, d
not exclude a finite gap in the energy or entropy densities.
Fig. 5 we have plotteds/T3, «/T4, and p/T4. The data
points are strongly fluctuating within a range, which is ind
cated by the error bars for the entropy curve. The errors
the energy density are of similar size. Errors enter via t
effective massesXQ

2 , which depend on̂ s0&, ^s8& and
sad* . We have used forD^s0&;(1.0223.0)31023 GeV
5D^s8& and Dsad*;0.11 GeV2 in the crossover region
betweenT51822193 MeV. The pressure behaves continu
ously as a function ofT if it is calculated asp5(2Ûeff).
There is only a change of slope in the critical crossover r
gion. A direct calculation ofp with an integral expression
pretends a discontinuity. Thep/T4 curve in Fig. 5 is obtained
from (p52Ûeff). As change in the entropy density we find
from the actually measured data

TDs<0.1660.02 GeV/fm3 ~50!

in a temperature interval 181.5<T<192.6 MeV, where
TDs is calculated asT2s(T2)2T1s(T1). As rapid change in
the energy density we find

D«<0.1360.02 GeV/fm3 ~51!

or D«/Tc
4[«(T25192.6 MeV!/T2

42«(T15181.5 MeV!/T1
4

50.29 over the same temperature range. For comparison
mention that the gap in the gluonic energy densityD«g in a
pure SU~3! gauge theory leads to@31,32#
ould
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we

D«g
Tc
4 5H 2.4460.24 for Nt54,

1.8060.18 for Nt56, ~52!

whereNt refers to the lattice extension in time direction
These values are by an order of magnitude larger than o
value for the mesonic contributionD«/Tc

4;0.29, defined as
indicated above. The decrease ofD«g /Tc

4 under an increase
of the time extensionNt indicates strong finite-size effects.
Going to larger lattices this tendency may continue and fu
ther reduce the latent heat, but it also gives us a warning. T
contribution ofD«g to the total energy gap may be superim
posed on the slow change of« that we have found in the
crossover region and make the crossover in the total ene
density more rapid. If the size of the errors insad* , ^s0&,
^s8& is assumed as above,s could vary in the crossover
region betweenT1 andT2 such as

s~T2!T22s~T1!T1<0.1860.02 GeV/fm3, ~53!

where the resulting errorD(s/T3) has been estimated as
60.46, cf. Fig. 5. In an infinitesimally small temperature
interval such a gap ins would lead to a finite latent heat
DL of <0.2 GeV/fm3. Thus, Eq.~53! gives a loose upper
bound on the latent heat which could be compatible with o
data because of the large errors in the crossover region. N
that DL50.2 GeV/fm3 is only 10% of the value, which is
predicted from the bag model equation of state. The bou
comes out even smaller if the error of 0.46 is interpreted
Ds/Tc

3 with ‘‘ Tc’’ 5 187 MeV. It leads to
DL5TcDs<0.074 GeV/fm3. Both bounds are even smaller
than Leutwyler’s value of 0.4 GeV/fm3 for TDs, @27# which
has been obtained from a Clausius-Clapeyron equation in
framework of chiral perturbation theory. The small size o
the latent heat is finally a consequence of the sensitivity
Tc to the inclusion of finite quark masses.

Clausius-Clapeyron equations relate the discontinuities
the condensate and the entropy or energy densities. Althou
they strictly apply to first-order transitions in the form o
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Eqs. ~54! and ~55! below @27#, we have tested the relation
for the above crossover phenomenon in two forms. The fi
one is

disĉ q̄q&TuRC5
DTc

Dm̂
U
RC

discsuRC, ~54!

where disc . . .uRC refers to the rapid change~‘‘discontinu-

ity’’ ! in the crossover region andDTc is the change in
‘‘ Tc’’ under a variation Dm̂ of the current light quark
masses. The second version is

DTc
Tc

uRC5Udisĉ q̄q&T

^q̄q&0
U
RC

U f p
2mp

2

D«
U
RC

. ~55!

In Eq. ~54! we useDTc /Dm̂5(0.18720.178)/0.011,Ds 5
0.0061 GeV3, disĉ q̄q&T 5 0.53(0.22)3 GeV3, and obtain
0.005 for both sides of Eq.~54!. In Eq. ~55! we haveDTc as
above, Tc5178 MeV, disĉq̄q&T /^q̄q&0
5^q̄q&T1 /^q̄q&02^q̄q&T2 /^q̄q&050.5, f p594 MeV,

mp5129 MeV ~the value of our realistic mass point!, and
D«50.001 GeV4. This way, we obtain for the right-hand
side~RHS! 7% and for the LHS 5 % in Eq.~55!. The agree-
ment of the order of magnitude on both sides indicates t
the crossover phenomenon is still rapid enough to sati
analogous relations to a first-order transition in the str
sense.

We have further analyzed the contribution of the stran
~pseudo!scalar mesonsK andsK to the total energy density
«. Their contribution can be completely neglected below
MeV. It increases with temperature to;31% in the cross-
over region aroundT5187 MeV. After the crossover the
tendency continues, but is no longer conclusive for us
cause of the lack of quark degrees of freedom in the ch
symmetric phase.

The strangeness content of the plasma has been estim
in a lattice simulation@33# with light quark masses of
mu /T5md /T50.05 and one heavier quark mass
ms /T51.0. In the transition region one finds for the ratio o
the fermionic energy densities«F(ms /T51)/«F(mu /T
50.05).0.5. The good agreement with our ratio of meson
contributions from strange and nonstrange~pseudo!scalar
mesons @«~strange mesons!/«~nonstrange mesons!#;0.45
may be accidental, because the lattice estimate is base
perturbative relations for the energy density. A fully nonpe
turbative lattice calculation along the lines of Engelset al.
@31# in a pure SU~3! gauge theory is still outstanding whe
fermions are included.

VII. SUMMARY OF RESULTS AND CONCLUSIONS

In agreement with the general expectation, results of
high-T expansion are qualitatively correct, but fail quantit
tively. The critical temperature in the chiral limit deviates b
;85 MeV from Tc in the numerical evaluation, which is
applicable also in the transition or crossover region. T
crossover region for realistic meson masses is shifted
roughly 80 MeV between the high-T and the numerical re-
sults. In our model the high-T expansion practically never
s
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reproduces the numerical results in a quantitative way. Whi
the meson condensate^s0& in the realistic mass case has
dropped to values<2 MeV aroundT;400 MeV in the
high-T expansion, it is still larger than 30 MeV at this tem-
perature in the numerical calculation. The temperature lie
already far outside the applicability range of the model.

The crossover in the light quark condensate looks sti
rapid for realistic meson masses@D(^q̄q&T);50% of
^q̄q&0 in a temperature interval of 10 MeV in the crossove
region#. For the variations in the energy and entropy dens
ties between 181.5 MeV<T<192.6 MeV, we findD«
;0.1360.02 GeV/fm3 andTDs;0.1660.02 GeV/fm3. As
a loose bound on the latent heat we obtain 0.2 GeV/fm3, as
a more stringent one 0.1 GeV/fm3, if the change in« and
s would occur over an arbitrarily small temperature interva
The main contributions to the numerical errors, which pre
vent us from a unique interpretation of the transition o
crossover region, come from the uncertainties in the sadd
point value and the minimâs0&,^s8& of Ûeff .

For temperatures above 116 MeV the saddle-point var
able gives a positive contribution to the effective masses e
tering the argument of the logarithm inÛeff . It increases
with temperature. This was one of the reasons why we ha
chosen the large-Nf expansion. The original hope to com-
pletely avoid imaginary parts ofÛeff in this scheme could not
be confirmed by the results. The effective potential is sti
plagued with imaginary parts for certain regions, wher
us0,8u<u^s0,8&u and over the entire temperature range w
have studied~up to 250 MeV and above!.

The large error bars on« and s in the transition region
may leave some doubts on the smooth nature of the conv
sion between the chiral symmetric and the chirally broke
phase, in particular, because a smooth crossover in the co
densates does not automatically imply a smooth change
« ands. Even if the transition would be of first order, and
even if we use a loose bound on the latent heat, it is n
larger than 0.2 GeV/fm3, i.e., 10% of the bag model predic-
tion. To our knowledge it is yet unclear, whetherDL50.2
GeV/fm3 latent heat are sufficiently large to induce measur
able signatures in heavy-ion experiments, neither is it clea
whether the temperature interval of rapid change is narro
enough. In van Hove’s formulation@13# the physical condi-
tions for the occurrence of such signatures are identical f
an ideal first-order transition and a rapid crossover phenom
enon.

The ratio of critical to realistic current light quark masses
has been estimated asmu,d

crit /mu,d;0.02760.02 in mean field
and asmu,d

crit /mu,d;0.2660.08 in largeNf , but a ratio of
'30% is probably not large enough to benefit from the vi
cinity of a second-order phase transition. Because of the flu
tuations, which are effectively included in the large-Nf ap-
proximation, the ratio in largeNf is at least about half of the
lattice result. Theaveragepseudoscalar octet masses are 12
MeV and 203 MeV for the realistic ratio of«0

crit/«8
crit in mean

field and largeNf , respectively.
The fluctuations we include in our approximation are no

likely the only important ones. In particular, it is not clear
that they account for fluctuations which induce a renorma
ization of the quartic and cubic couplings in the Lagrangian

Recently, it has been raised by Gavin, Gocksch, an
Pisarski@15# that the first order of the chiral transition may
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be mainlyfluctuation induced.A fluctuation-induced transi-
tion was first discovered by Coleman and Weinberg@34#. It
refers to the situation that a system with more than one
evant coupling can have a first-order transition induced
quantum fluctuations.

In our present approach it is difficult to disentangle th
driving mechanism for the first-order transition below th
critical mass values. A further improvement by includin
subleading corrections in 1/Nf or an « expansion in
d542« dimensions should clarify, whether the rati
mu,d
crit /mu,d does change to values closer to 1.
A further warning should be mentioned to not take th

smooth crossover for granted by the present approach.
far, we have completely neglected the quark and gluo
substructure. In particular, the rearrangement of gluonic
grees of freedom has not been taken into account. The
onic contribution to the change in entropy and energy den
ties may well accelerate the crossover process, as we h
mentioned in Sec. VI. If the large gap in the entropy densi
which has been observed on the lattice, gets further sup
rel-
by
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from larger volume calculations, the disparity with our resul
indicates the importance of gluonic degrees of freedom.
the discrepancy remains even for frozen gluon dynamics
QCD, it is a manifestation of nonuniversal features in th
chiral transition region.

Note also that we have chosen the couplings in thes
model as temperature and energy scale independent over
temperatures up toTc . In principle, the temperature and
scale dependence of the couplings should be derived fro
QCD rather than being assumed. A less ambitious derivatio
would start from an effective model underlying thes model
and containing quark and gluonic degrees of freedom. F
the critical mass ratio this offers at least a chance for bein
closer to 1.
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Yoshié, T. Hoshino, T. Shirakawa, Y. Oyanagi, S. Ichii, and T.
Kawai, ibid. 67, 3343~1991!.

@33# J. Kogut and D.K. Sinclair, Phys. Rev. Lett.60, 1250~1988!.
@34# S. Coleman and E. Weinberg, Phys. Rev. D7, 1888~1973!.


