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Corrections to Dashen’s theorem
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The electromagnetic corrections to the masses of the pseudoscalar mesmK are considered. We
calculate in chiral perturbation theory the contributions which arise from resonances within a photon loop at
order O(ezmq). Within this approach we find rather moderate deviations to Dashen’s the{88856-
2821(96)05709-9

PACS numbds): 12.39.Fe, 13.40.Dk, 14.40.Aq

I. INTRODUCTION been given in5,6,10. We find again that the contribution
from the loops reproduces the measured mass difference
Dashen’s theoreml] states that the squared mass differ-AMf, very well, and therefore we consider the finite parts of
ences between the charged pseudoscalar mesonk ™, the K; to be small. Using this assumption also for the calcu-
and their corresponding neutral partner$K® are equal in  lation of AM2, we may finally read off the corrections to
the chiral limit: ie., AM32—AM2=0, where AM23  Dashen’s theorem from one-loop resonance exchange. The
:Mit_Méo- In recent years several groups have calcu{scale-dependentesult shows that the resonances lead to

lated the electromagnetic corrections to this relation fronfathér moderate deviations.

nonvanishing quark masses. The different conclusions ar% T.he ar(;i_cle isforgagilged gshfollows. In Sec. I v(\j/edp][eser?t
either that the violation is large2,3] or that itmay belarge the ingredients fromyPT and the resonances needed for the
[4—6] calculation. In Sec. lll we give the contributions to the

masses and to Dashen’s theorem and renormalize the coun-
terterm Lagrangian. The numerical results and a short con-
Rusion are given in Sec. IV.

The electromagnetic mass difference of the pirAer,
has been determined in the chiral limit using current algebr
by Daset al.[7]. Eckeret al.[8]. have repeated the calcula-
tion in the framework of chiral perturbation theoryRT) [9]
by resonance exchange within a photon loop. The occurring
divergences from these loops are absorbed by introducing an
electromagnetic counterter(with a coupling constar€) in The chiral Lagrangian can be expanded in derivatives of
the chiral Lagrangian. They find that the contribution fromthe Goldstone fields and in the masses of the three light
the loops is numerically very close to the experimental masguarks. The power counting is established in the following
difference, and thus conclude that the finite parCofs al-  way: The Goldstone fields are of ord&(p°), a derivative
most zero. d,., the vector and axial vector currents,,a, count as

In [2] the authors have calculated the Compton scatteringuantities ofO(p), and the scalafincorporating the masses
of the pseudoscalar mesons including the resonances and dgrd pseudoscalar currergsp are of orderO(p?). The ef-
termined from this amplitude the mass differences at ordefective Lagrangian, which starts &(p?), denoted by%,,
O(ezmq). First, they concluded, by using three low-energyis the nonlinearo-model Lagrangian coupled to external
relations, that the one-loop result is finite, i.e., there is ndields, respects chiral symmetry 8Jzx SU(3),, and is in-
need of a counterterm Lagrangian at ord)e(ezmq) inorder  variant unde® andC transformationg9]:
to renormalize the contributions from the resonances. Sec-

Il. THE LAGRANGIANS AT LOWEST
AND NEXT-TO-LEADING ORDER

2

ond, they found a strong violation of Dashen’s theorem. We .. _Fo + Fy

are in disagreement with both of these results. ‘AZ:Z@WU dU+xUT+x'U), @
In this article we proceed in a manner analogous to that of

[8] for the casem,#0. We calculate inyPT the contribu- d,Uu=9,U-i(v,+a,)U+iU(v,—a,),

tions of orderO(equ) to the masses of the Goldstone

bosons due to resonance exchange. The divergences are ab- v,=QA, -,

sorbed in the corresponding electromagnetic counterterm La-

. . . . ’\. e
grangian, associated with the couplingk;, where Q=§diag2,—1,—1),

i=1,...,14. The most general form of this Lagrangian has
x=2Bo(s+ip),
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F.=Fo[1+0(my)], Note that the photon field, is incorporated in the vector
currentv , . The corresponding kinetic term has to be added

i to %5,
Bo=— F—S<O|uu|0)[1+0(mq)].

The angular brackets denote the trace in flavor space and
U is a unitary 3<3 matrix that incorporates the fields of the oy 1 w1 w2
eight pseudoscalar mesons: Lin= " g FuwF* = 5 (9,A%)7, ()

4 ®v
L
=exX F_o s

t K*

with F,,=d,A,—d,A, and the gauge-fixing parameter cho-

sen to be\ =1. In order to maintain the usual chiral counting

in £}, it is convenient to count the photon field as a quan-

tity of order O(p®), and the electromagnetic couplirgof

L. K O(p) [5].

J6 8 ' The lowest order couplings of the pseudoscalar mesons to

the resonances are linear in the resonance fields and start at

K-~ KO . orderO(p?) [8,11]. For the description of the fields we use

J6 the antisymmetric tensor notation for the vector and axial
(2)  vector mesons; e.g., the vector octet has the form

— 0
Vp,v_ p,uv - Epﬂy—}_ %wS;w K,lLV . (4)

This method is discussed in detail [8], and we restrict In the kinetic Lagrangian, a covariant derivative acts on the
ourselves on the formulas needed for the calculations in theector and axial vector mesons:
following section. The relevant interaction Lagrangian con-

tains the octet fields only: YR =—1(V*R, V,R7”"—1M2R R, R=V,A
=Zkin mv o 1224 ! T
P L, 0+ Ly, fus ), VER,, =Ry, +[T# Ry,
2\2 2\2
. r“=3{u'lo*—i(v*+a*)Ju+u[d*—i(v*—a*)]u'},
%A:_A A Vf,ziv , (6)
2 2\/§< m >

whereMpg, is the corresponding mass in the chiral limit. Fi-
nally, we collect all the different terms together into one
Lagrangian:
FRL=d"(v"*a")—d"(v**a*)—i[v*+a*v"+a"],
= St IR o+ IR 7
ut=iuTd*Uut=u'#
The one-loop electromagnetic mass shifts of the pseudosca-
U=u2 (5) lar mesons calculated with this Lagrangiaee Sec. I)l con-
tain divergences that can be absorbed in a counterterm La-
The coupling constants are real and are not restricted bgrangian. In its general form, this Lagrangian has one term
chiral symmetry{11], numerical estimates are given[i8].  of orderO(e?) and 14 terms oD(e?p?) [5,6,10:
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7§=C(QUQUY),
7§=KF§(d“UTd, U)Q?) +K,F§(d“UTd,,UNQUQU") +K4FF((d“UTQU)(d,UTQU) +(d“UQUTKd,UQUT)
+K4F3(d“UTQU)(d,UQU™) + KsF3((d*Utd U +d*Ud,U")Q?)
+KeF2(d*UTd,,UQUTQU+d*Ud,UTQUQU + K, F3(xUT+ xTUNQ?) +KgF3(xU T+ xTU)(QUQU
+KoF5((xUT+xTU+UTx+UxN Q2+ Ky i (x'U+UTYQUIQU+ (xUT+UxHQUQUT)
+KuF§((x'U=UTQUIQU+(xUT-UxHQUQU") + K F§(d“UT[chQ,QIU +d U[c;Q,Q]UT)
+K1gF3(cQUCL QUM + K1 F3(cR#QclQ+ct#ch Q) + O(p* e*) (8)

with ¢i'*Q=—i[v,*a,,Q]. The last three terms contrib- whereCR(x) andC(x) are finite and the scale dependence
ute only to matrix elements with external fields, we are therecancels in the sum. Relatiq2) says that the coupling con-
fore left with 12 relevant counterterms. Note that we havestantC is split into one part from resqnance@Ft) and an-
omitted terms which come either from the purely strong orother part from nonresonant physic€)( This ansatz of
the purely electromagnetic sector i . separating resonant and nonresonant contributions to the

At this point it is worthwhile to discuss the connection of low-energy parameters has been originally made for the
the present formalism to the usugPT without resonances strong interaction sector at next-to-leading orf& In this
where the Goldstone bosons and hietual) photons are the case resonance exchange gives tree-level contributions and
only interacting particles. For this purpose we consider theno renormalization is needed. In the electromagnetic case,
electromagnetic mass of the charged pionyPT the La- however, contributions arise from resonances with photons
grangian has the form, up to and includi@ge’p?), in loops and we renormalize the nonresonant part of the cou-

pling constant, i.e.C at orderO(e?).
(/:5/(2%L 73, In an analogous fashion the above procedure can be car-

14 ried out up to the orde®(e?p?). The coupling; of #¥
99— 7, +C(QUQOUN,  ¥9— KO 9 are, in general, divergent, since they apsorb the divergences
2= 72+ C(QURUY 4 21 H © of the one-loop functional generated b¥3 [5,6,10. At a

) specific scale point the renormalized coupling constants
whereC andK; are low-energy constants. They are mdepen-Kir(M) can be split into two parts:

dent of the Goldstone boson masses and parametrize all the
underlying physics(including resonancgsof yPT. %, is
given in(1) and the operator®; are identical to those ifB). KI (o) =KR(uo) + Ki( o), (13
Neglecting the contributions of the ord@t(ezmq) for a mo-
ment, the pion mass i8]
’ where the terms on the right-hand side are taken after renor-
Miz= 2izC+O(e2mq), (10) malization ofK; (see Sec. I)l and are thus finite.
0

entirely determined by the coupling const&ht In the reso-

¥
nance approachl,\/lit gets contributions from resonance- gﬂ"‘“’\qz .
photon loops already at ord€(e?) [see graphsgc) and (d) g 4 where e,
(a)

in Fig. 1]:
2 2 2¢? 2
M,n.i:Mﬂ.thoops_'— ?C"’O(e mq) (11)
° L o,
The loop term contains a divergent and a finite part and is P
completely determined by the resonance parameters. The di- (b) (c)

vergences are absorbed by renormalizing the coupling con-
stantsC [8] (see Sec. I). The connection to¢PT without

resonance is then given by the relati@j %
4

_CR ~
C=C"(un)+C(u), @

FS . . )
2 FIG. 1. One-loop contributions to the electromagnetic mass shift
CR(M) = 22 M 7Ti|loops(finite) ) (12 P 9

of ==
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The choice of the scale poipt, is nota priori fixed. As .

in the strong sectai8], we considernu in the range of the Aall\/l

lowest-lying resonances, i.e., in the range from 0.5 to

MZ

1.0 GeV. 22 4 2 2 . _ 2
In the strong sector it was found that the resonances satu- _i° FZA d q4 q [M”+(32 vt (2-ev

rate the low-energy parameters almost compldiglyin ad- Fo J (2m) 9’ [Ma—(g+p)?]

diton the authors have found that the same conclusion holds (18

for the electromagnetic coupling constaGt leading to
C(u)~0. Consequently, wassumehat theK{(u) are also
saturated by resonance contributions, i.e., we put

We now add the contributions frorty and £ to the mass
shift [5,6] and evaluate the integrals:

2
Ki()=~0. (14  AM2=—

MZ
F\Z,M\Z,( Inﬂ—;/ +

F316m° 3

As we will szee in Sec. IV, this assumption works well in the - i
case ofAM?,. FAMA(|an+3

lll. CORRECTIONS TO DASHEN'S THEOREM e’F i 3 M3 M2

_ o . " Frie,2MA 2t Iz | g2

Using the Lagrangian given i¥), it is a straightforward A
process to calculate the mass shift between the charged pseu- 2e2 7 3 M2 M2
doscalar mesonsr®,K=, and their corresponding neutral + 152 MZ[Z > lnM I2< Mﬂ)
partnersm®,K° at the one-loop level. The relevant diagrams v v
for the mass of the charged pion are shown in Fig. 1. Graph 262C  6e?
1(a) contains the off-shell pion form factor(ld) vanishes in +—5 — =5 (FIMZ—FaAMA)A
dimensional regularization, andc} is called “modified sea FO Fo
gull graph.” Graph 1d) contains ara; pole. The mass of the 2F2
neutral pion does not get any contribution from the loops. +8e2M§R8+ ZGZMEJ?%— > A M2\ (19
If we take the resonances to be in the(S)Jimit accord- Fo
ing to (6), i.e., all vector resonances have the same mass,.
My, and all axial vector resonances the miks, we get the with
contributions listed below. For the graphs with the pion form 1
factor, l,(2)= fo xIn[x—x(1—x)z]dx,
d*q g?+4v+4Mm2
Apraz-r:_iGZJ(z (:;4q 2(g%+2 )W [ —fl 1+x)1 In[x+(1—x)? - d
™" 9%(a +2v 22)= | (X)) InDxH(1=x)72) = g =5z 1 dx,
2pn 2 2 -~ ~ ~ ~ ~ ~
_ 8°RVGy [ dg qMz—v R, =—2K4+Ky+ 2K g+ 4K 1o+ 4K . (20)

Fs ] @m* d(@®+2n)(M{—d?)
The divergences of the resonance-photon loops show up as
4e2F\2,G\2, d%q qz[szi_ 2] poles ind=4 dimensions. They are collected in the terms

tional to\:
Fo (2m)* q%(q2+2»)(M2— )% proportional to

(15) ud=4
=162l d=a 2[In4w+l" (1)+1];. (21
wherev=pq andp is the momentum of the pion. Using the
relation F\Gy=F§, [11], we obtain The occurring divergences are now canceled by renormaliz-
ing the contributions from nonresonant physics, i.e., the cou-
A M2= —ie2M? d*q 2v+4M?2 pling constantsC and K;. The divergence of the order
pM7z=—1e"My, (2m)* G2+ 20)(M2— )% O(e?) [fifth line of Eq. (19)] is absorbed by putting
(16) ~ ~ 2np2 2np2
C=C(u)+3(FgMy—FaM2)A (22
The modified seagull graph gives 9 . .
and that of the orde®(e“m,) [sixth line of Eq.(19)] by the
2p2 relation
AM2oi Y Y(3—- )f ! (17)
sgVinr— F2 € (271_)4 M2 q ’ . . 3F2

A
Rr=R(m)+ 52\ (23
0

with e=4—d, and finally, for thea,-pole graph, where un-
like [2], we get an additional second term: Using the second Weinberg sum rji],
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where we used24) to simplify the first term. In the chiral
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|:\2/|\/|\2/_|:i|\/|i:0, (24) g4 [T
the divergence inf22) cancels, but the divergence {@3) . 5 2:_ (a)_:
does not. Even if we used an extension of this sum rule to < °F .
orderO(mg) [13], = 4 /
/\': = 4
2022 M2 _E2p2 C ]
F2M2—F2 M2 =F2MZ, (25) § a8l ]
. ~ r ]
and assume#f ,=F [11], the divergence would not cancel, Yy | S 4
on the contrary, it would become larger. <E] C ]
We finally get the result 4.4 ]
_I | - | L1l | 1111 | 1111 | 111 l-
AMZ= — ? | My 05 06 07 08 09 1
T F(2)16 2 VnMA yoa [GeV]
2 TTIrTT TTrT1T LU TTTT TTTT
—Q—eFAM 2+ =1 ] | M- o l(b)_
+ = + - .
F21677 ”? 1 mz [ )
% L A
L2 [7 3 MI(ME o ' ]
> M - —Inj— |2 i L |
T 16:2 M7 2 Mg Mg e [ ]
2e2C ,\ . ar 0 /
+ +8e?M2K g+ 262M2R (), (26) E 1
cle T
E m
3 |
1

limit, AM2 reduces to the expression given[Bi.

The mass difference for the kaons is determined in an

'U|_|||||

analogous way, in the contribution from the loops we merely

have to replaceM? by M2 .

Finally, the formula for the
corrections to Dashen’s theorem may be read off:

i 3, M3 (M
AMZ—AMZ2=— ——2 I M2Z| 24 ZIn— +1,| —»
K - Fgl&'rz[ K 2 n,uz 1 M,ZA
M2 2+ =1 M | Mi) ]
- + =In—+
" u? MR
2 mz L3 i+| M
1672 K2 2"m2 " 2\ m2
M2 3| Mi+| Mi
w2 2"z 2wz
2812 24 Y
—2e°My §SK(M)+4K8
202 2A -
+2e°M7 3 S~ Ra(u) |, (27)

FIG. 2. The solid lines show our results, the dashed and dotted
curves represent ifa) the experimental valugl4], in (b) the result
of [2], respectively.

IV. NUMERICAL RESULTS AND CONCLUSION

We put F, equal to the physical pion decay constant,
F,.=92.4 MeV, and the masses of the mesons to
M,=135 MeV, M =495 MeV. We takeF, =154 MeV
[8] and My=M,=770 MeV. To eliminate the parameters
of the axial vector resonances, we use Weinberg'’s sum rules
[12]:

FZ—Fa=F3, FIM3—FiMi=0. (29)
The contributions from the counterterm Lagrangian are not
known so far. I 8] it was found that the experimental mass
differenceAMf, at orderO(e?) is well reproduced by the
resonance-photon loops and therefore the authors conclude
that the contributions from nonresonant physics are small,
i.e.,C~0. In analogy, weassumefor the numerical evalu-
ation the dominance of the resonant contributions at order

whereS, K represent the contributions from the countertermge2m o), ie., we putk; () ~0.

Lagranglan toAM2 K>

ASW:3RB+RQ+RJ_O
S=Ks+Kg—6Kg— 6K 10— 6K1y,

FZ

. 3F2
SKZSK(M)JFZ—FS?\-

(28)

Puttmg the numbers if26) we get, for the contribution
from the loops tcAM? at the scale pointg.=(0.5, 0.77, 1
GeV [see Fig. pa)],

AMZ100ps=2M ;X (5.0, 5.1, 5.3MeV, (30
which is in nice agreement with the experimental value
AMfr|expt=2Mﬁ>< 4.6MeV [14]. Using resonance saturation
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in the kaon system as well, we obtain, for the corrections tosalue forAMﬁ—AMfT. The difference to our result may be
Dashen's theorem [again at the scale points identified in(18), where we have found an additior(aingu-

u=(0.5,0.77,1)GeV] lar) term that gives a large negative and scale-dependent con-
) ) . ) tribution. The two results are compared in Figh2 Note
AMg—AMZ=(-0.13, 0.17, 0.3px10 *(GeV), that in[2], the physical masses for the resonances are used in
@31 the calculation oﬂMﬁ , Whereas we work in the 3B) limit
which are smaller than the values found in the literature: throughout. _
The other calculations are not strongly connected to our
1.23x 10 3(GeV)? [2], approach, for a discussion of the value giveri4hwe refer
2 Am2_ L -3 2 to [5].
AMi—AMZ=) (1.350.4X107(GeV) (31, We therefore conclude that taking into account the reso-
(0.55+0.25 X 10 3(GeV)* [4]. nances, at the one-loop level and working strictly in the

(32 SU(3) limit for the resonances, leads to moderate rather than
large corrections to Dashen’s theorem. Possible strong vio-
fations must come from higher loop corrections or from non-
eresonant physics.

Of course, in order to get a scale-independent result, th
counterterms are not allowed to vanish completely.

In [2] the authors calculated the Compton scattering of th
Goldstone boson.s within the same model that we have used ACKNOWLEDGMENTS
in the present article and determined the corrections to Dash-
en’s theorem by closing the photon line. Their calculation is We thank G. Ecker, J. Gasser, J. Kambor, H. Leutwyler,
finite (without countertermsand gives a considerably large and D. Wyler for helpful discussions.
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