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Corrections to Dashen’s theorem
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The electromagnetic corrections to the masses of the pseudoscalar mesonsp andK are considered. We
calculate in chiral perturbation theory the contributions which arise from resonances within a photon loop
order O(e2mq). Within this approach we find rather moderate deviations to Dashen’s theorem.@S0556-
2821~96!05709-8#
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I. INTRODUCTION

Dashen’s theorem@1# states that the squared mass diffe
ences between the charged pseudoscalar mesonsp6,K6,
and their corresponding neutral partnersp0,K0 are equal in
the chiral limit: i.e., DMK

22DMp
250, where DMP

2

5MP6
2

2MP0
2 . In recent years several groups have calc

lated the electromagnetic corrections to this relation fro
nonvanishing quark masses. The different conclusions
either that the violation is large@2,3# or that itmay belarge
@4–6#.

The electromagnetic mass difference of the pionsDMp
2

has been determined in the chiral limit using current algeb
by Daset al. @7#. Eckeret al. @8#. have repeated the calcula
tion in the framework of chiral perturbation theory (xPT! @9#
by resonance exchange within a photon loop. The occurr
divergences from these loops are absorbed by introducing
electromagnetic counterterm~with a coupling constantĈ) in
the chiral Lagrangian. They find that the contribution fro
the loops is numerically very close to the experimental ma
difference, and thus conclude that the finite part ofĈ is al-
most zero.

In @2# the authors have calculated the Compton scatter
of the pseudoscalar mesons including the resonances and
termined from this amplitude the mass differences at ord
O(e2mq). First, they concluded, by using three low-energ
relations, that the one-loop result is finite, i.e., there is
need of a counterterm Lagrangian at orderO(e2mq) in order
to renormalize the contributions from the resonances. S
ond, they found a strong violation of Dashen’s theorem. W
are in disagreement with both of these results.

In this article we proceed in a manner analogous to that
@8# for the casemqÞ0. We calculate inxPT the contribu-
tions of orderO(e2mq) to the masses of the Goldston
bosons due to resonance exchange. The divergences ar
sorbed in the corresponding electromagnetic counterterm
grangian, associated with the couplingsK̂ i , where
i51, . . .,14. The most general form of this Lagrangian ha
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been given in@5,6,10#. We find again that the contribution
from the loops reproduces the measured mass differe
DMp

2 very well, and therefore we consider the finite parts o
the K̂ i to be small. Using this assumption also for the calc
lation of DMK

2 , we may finally read off the corrections to
Dashen’s theorem from one-loop resonance exchange. T
~scale-dependent! result shows that the resonances lead
rather moderate deviations.

The article is organized as follows. In Sec. II we prese
the ingredients fromxPT and the resonances needed for th
calculation. In Sec. III we give the contributions to th
masses and to Dashen’s theorem and renormalize the co
terterm Lagrangian. The numerical results and a short co
clusion are given in Sec. IV.

II. THE LAGRANGIANS AT LOWEST
AND NEXT-TO-LEADING ORDER

The chiral Lagrangian can be expanded in derivatives
the Goldstone fields and in the masses of the three lig
quarks. The power counting is established in the followin
way: The Goldstone fields are of orderO(p0), a derivative
]m , the vector and axial vector currentsvm ,am count as
quantities ofO(p), and the scalar~incorporating the masses!
and pseudoscalar currentss,p are of orderO(p2). The ef-
fective Lagrangian, which starts atO(p2), denoted byL2 ,
is the nonlinears-model Lagrangian coupled to externa
fields, respects chiral symmetry SU~3!R3SU(3)L , and is in-
variant underP andC transformations@9#:

L25
F0
2

4
^dmU†dmU1xU†1x†U&, ~1!

dmU5]mU2 i ~vm1am!U1 iU ~vm2am!,

vm5QAm1•••,

Q5
e

3
diag~2,21,21!,

x52B0~s1 ip !,

s5diag~mu ,md ,ms!,
6552 © 1996 The American Physical Society
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Fp5F0@11O~mq!#,

B052
1

F0
2 ^0uūuu0&@11O~mq!#.

The angular brackets denote the trace in flavor space
U is a unitary 333 matrix that incorporates the fields of th
eight pseudoscalar mesons:

U5expS iFF0
D ,

F5A2S 1

A2
p01

1

A6
h8 p1 K1

p2
2

1

A2
p01

1

A6
h8 K0

K2 K0 2
2

A6
h8

D .

~2!
and
e

Note that the photon fieldAm is incorporated in the vector
currentvm . The corresponding kinetic term has to be adde
to L2 ,

Lkin
g 52

1

4
FmnF

mn2
1

2
~]mA

m!2, ~3!

with Fmn5]mAn2]nAm and the gauge-fixing parameter cho
sen to bel51. In order to maintain the usual chiral counting
in Lkin

g , it is convenient to count the photon field as a quan
tity of orderO(p0), and the electromagnetic couplinge of
O(p) @5#.

The lowest order couplings of the pseudoscalar mesons
the resonances are linear in the resonance fields and star
orderO(p2) @8,11#. For the description of the fields we use
the antisymmetric tensor notation for the vector and axi
vector mesons; e.g., the vector octet has the form
Vmn5S 1

A2
rmn
0 1

1

A6
v8mn rmn

1 Kmn*
1

rmn
2

2
1

A2
rmn
0 1

1

A6
v8mn Kmn*

0

Kmn*
2 K* 0

mn 2
2

A6
v8mn

D . ~4!
e

ca-

a-
m

This method is discussed in detail in@8#, and we restrict
ourselves on the formulas needed for the calculations in
following section. The relevant interaction Lagrangian co
tains the octet fields only:

L2
V5

FV

2A2
^Vmn f1

mn&1
iGV

2A2
^Vmn@um,un#&,

L2
A5

FA

2A2
^Amn f2

mn&,

f6
mn5uFL

mnu†6u†FR
mnu,

FR,L
mn 5]m~vn6an!2]n~vm6am!2 i @vm6am,vn6an#,

um5 iu†dmUu†5u†m,

U5u2. ~5!

The coupling constants are real and are not restricted
chiral symmetry@11#, numerical estimates are given in@8#.
the
n-

by

In the kinetic Lagrangian, a covariant derivative acts on th
vector and axial vector mesons:

Lkin
R 52 1

2 ^¹mRmn¹sR
sn2 1

2 MR
2RmnR

mn&, R5V,A,

¹mRmn5]mRmn1@Gm,Rmn#,

Gm5 1
2 $u†@]m2 i ~vm1am!#u1u@]m2 i ~vm2am!#u†%,

~6!

whereMR is the corresponding mass in the chiral limit. Fi-
nally, we collect all the different terms together into one
Lagrangian:

L2
eff5L21L2

R1L kin
g 1Lkin

R . ~7!

The one-loop electromagnetic mass shifts of the pseudos
lar mesons calculated with this Lagrangian~see Sec. III! con-
tain divergences that can be absorbed in a counterterm L
grangian. In its general form, this Lagrangian has one ter
of orderO(e2) and 14 terms ofO(e2p2) @5,6,10#:
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L2
C5Ĉ^QUQU†&,

L4
C5K̂1F0

2^dmU†dmU&^Q2&1K̂2F0
2^dmU†dmU&^QUQU†&1K̂3F0

2~^dmU†QU&^dmU
†QU&1^dmUQU†&^dmUQU

†&!

1K̂4F0
2^dmU†QU&^dmUQU

†&1K̂5F0
2^~dmU†dmU1dmUdmU

†!Q2&

1K̂6F0
2^dmU†dmUQU

†QU1dmUdmU
†QUQU†&1K̂7F0

2^xU†1x†U&^Q2&1K̂8F0
2^xU†1x†U&^QUQU†&

1K̂9F0
2^~xU†1x†U1U†x1Ux†!Q2&1K̂10F0

2^~x†U1U†x!QU†QU1~xU†1Ux†!QUQU†&

1K̂11F0
2^~x†U2U†x!QU†QU1~xU†2Ux†!QUQU†&1K̂12F0

2^dmU†@cm
RQ,Q#U1dmU@cm

LQ,Q#U†&

1K̂13F0
2^cRmQUcm

LQU†&1K̂14F0
2^cRmQcm

RQ1cLmcm
LQ&1O~p4,e4! ~8!
e

the
e

nd
e,
ns
u-

ar-

es

ts

or-

ift
with cm
R,LQ52 i @vm6am ,Q#. The last three terms contrib-

ute only to matrix elements with external fields, we are the
fore left with 12 relevant counterterms. Note that we ha
omitted terms which come either from the purely strong
the purely electromagnetic sector inL4

C .
At this point it is worthwhile to discuss the connection o

the present formalism to the usualxPT without resonances
where the Goldstone bosons and the~virtual! photons are the
only interacting particles. For this purpose we consider t
electromagnetic mass of the charged pion. InxPT the La-
grangian has the form, up to and includingO(e2p2),

L5L2
Q1L4

Q,

L2
Q5L21C^QUQU†&, L4

Q5(
i51

14

KiOi , ~9!

whereC andKi are low-energy constants. They are indepe
dent of the Goldstone boson masses and parametrize all
underlying physics~including resonances! of xPT. L2 is
given in ~1! and the operatorsOi are identical to those in~8!.
Neglecting the contributions of the orderO(e2mq) for a mo-
ment, the pion mass is@8#

Mp6
2

5
2e2

F0
2 C1O~e2mq!, ~10!

entirely determined by the coupling constantC. In the reso-
nance approach,Mp6

2 gets contributions from resonance
photon loops already at orderO(e2) @see graphs~c! and ~d!
in Fig. 1#:

Mp6
2

5Mp6
2 u loops1

2e2

F0
2 Ĉ1O~e2mq!. ~11!

The loop term contains a divergent and a finite part and
completely determined by the resonance parameters. The
vergences are absorbed by renormalizing the coupling c
stantsĈ @8# ~see Sec. III!. The connection toxPT without
resonance is then given by the relation@8#

C5CR~m!1Ĉ~m!,

CR~m!5
F0
2

2e2
Mp6

2 u loops~finite! , ~12!
re-
ve
or

f

he

n-
the

-

is
di-
on-

whereCR(m) andĈ(m) are finite and the scale dependenc
cancels in the sum. Relation~12! says that the coupling con-
stantC is split into one part from resonances (CR) and an-
other part from nonresonant physics (Ĉ). This ansatz of
separating resonant and nonresonant contributions to
low-energy parameters has been originally made for th
strong interaction sector at next-to-leading order@8#. In this
case resonance exchange gives tree-level contributions a
no renormalization is needed. In the electromagnetic cas
however, contributions arise from resonances with photo
in loops and we renormalize the nonresonant part of the co
pling constant, i.e.,Ĉ at orderO(e2).

In an analogous fashion the above procedure can be c
ried out up to the orderO(e2p2). The couplingsKi of L4

Q

are, in general, divergent, since they absorb the divergenc
of the one-loop functional generated byL2

Q @5,6,10#. At a
specific scale point the renormalized coupling constan
Ki
r(m) can be split into two parts:

Ki
r~m0!5Ki

R~m0!1K̂ i~m0!, ~13!

where the terms on the right-hand side are taken after ren
malization ofK̂ i ~see Sec. III! and are thus finite.

FIG. 1. One-loop contributions to the electromagnetic mass sh
of p6.
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The choice of the scale pointm0 is nota priori fixed. As
in the strong sector@8#, we considerm0 in the range of the
lowest-lying resonances, i.e., in the range from 0.5
1.0 GeV.

In the strong sector it was found that the resonances sa
rate the low-energy parameters almost completely@8#. In ad-
diton the authors have found that the same conclusion ho
for the electromagnetic coupling constantC leading to
Ĉ(m)'0. Consequently, weassumethat theKi

r(m) are also
saturated by resonance contributions, i.e., we put

K̂ i~m!'0. ~14!

As we will see in Sec. IV, this assumption works well in th
case ofDMp

2 .

III. CORRECTIONS TO DASHEN’S THEOREM

Using the Lagrangian given in~7!, it is a straightforward
process to calculate the mass shift between the charged p
doscalar mesonsp6,K6, and their corresponding neutra
partnersp0,K0 at the one-loop level. The relevant diagram
for the mass of the charged pion are shown in Fig. 1. Gra
1~a! contains the off-shell pion form factor, 1~b! vanishes in
dimensional regularization, and 1~c! is called ‘‘modified sea
gull graph.’’ Graph 1~d! contains ana1 pole. The mass of the
neutral pion does not get any contribution from the loops.

If we take the resonances to be in the SU~3! limit accord-
ing to ~6!, i.e., all vector resonances have the same ma
MV and all axial vector resonances the massMA , we get the
contributions listed below. For the graphs with the pion for
factor,

DpfMp
252 ie2E d4q

~2p!4
q214n14Mp

2

q2~q212n!

2 i
8e2FVGV

F0
2 E d4q

~2p!4
q2Mp

22n2

q2~q212n!~MV
22q2!

2 i
4e2FV

2GV
2

F0
4 E d4q

~2p!4
q2@q2Mp

22n2#

q2~q212n!~MV
22q2!2

,

~15!

wheren5pq andp is the momentum of the pion. Using the
relationFVGV5F0

2 , @11#, we obtain

DpfMp
252 ie2MV

4E d4q

~2p!4
2n14Mp

2

q2~q212n!~MV
22q2!2

.

~16!

The modified seagull graph gives

DsgMp
25 i

e2FV
2

F0
2 ~32e!E d4q

~2p!4
1

MV
22q2

, ~17!

with e542d, and finally, for thea1-pole graph, where un-
like @2#, we get an additional second term:
to

tu-

lds

e

seu-
l
s
ph

ss

m

Da1
Mp

252 i
e2FA

2

F0
2 ~32e!E d4q

~2p!4
1

MA
22q2

2 i
e2FA

2

F0
2 E d4q

~2p!4
q2@Mp

21~32e!n#1~22e!n2

q2@MA
22~q1p!2#

.

~18!

We now add the contributions fromL2
C andL4

C to the mass
shift @5,6# and evaluate the integrals:

DMp
252

3e2

F0
216p2 FFV

2MV
2 S lnMV

2

m2 1
2

3D
2FA

2MA
2 S lnMA

2

m21
2

3D G
2

e2FA
2

F0
216p2Mp

2 F21
3

2
ln
MA

2

m2 1I 1SMp
2

MA
2 D G

1
2e2

16p2Mp
2 F722

3

2
ln
Mp

2

MV
2 1I 2SMp

2

MV
2 D G

1
2e2Ĉ

F0
2 2

6e2

F0
2 ~FV

2MV
22FA

2MA
2 !l

18e2MK
2 K̂812e2Mp

2 R̂p2
3e2FA

2

F0
2 Mp

2l ~19!

with

I 1~z!5E
0

1

xln@x2x~12x!z#dx,

I 2~z!5E
0

1

~11x!H ln@x1~12x!2z#2
x

x1~12x!2z J dx,
R̂p522K̂31K̂412K̂814K̂1014K̂11. ~20!

The divergences of the resonance-photon loops show up
poles ind54 dimensions. They are collected in the term
proportional tol:

l5
md24

16p2 H 1

d24
2
1

2
@ ln4p1G8~1!11#J . ~21!

The occurring divergences are now canceled by renormali
ing the contributions from nonresonant physics, i.e., the co
pling constantsĈ and K̂ i . The divergence of the order
O(e2) @fifth line of Eq. ~19!# is absorbed by putting

Ĉ5Ĉ~m!13~FV
2MV

22FA
2MA

2 !l ~22!

and that of the orderO(e2mq) @sixth line of Eq.~19!# by the
relation

R̂p5R̂p~m!1
3FA

2

2F0
2 l. ~23!

Using the second Weinberg sum rule@12#,
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FV
2MV

22FA
2MA

250, ~24!

the divergence in~22! cancels, but the divergence in~23!
does not. Even if we used an extension of this sum rule
orderO(mq) @13#,

Fr
2M r

22Fa1
2 Ma1

2 .Fp
2Mp

2 , ~25!

and assumedFA5F0 @11#, the divergence would not cancel
on the contrary, it would become larger.

We finally get the result

DMp
252

3e2

F0
216p2FV

2MV
2 ln

MV
2

MA
2

2
e2FA

2

F0
216p2Mp

2 F21
3

2
ln
MA

2

m2 1I 1SMp
2

MA
2 D G

1
2e2

16p2Mp
2 F722

3

2
ln
Mp

2

MV
2 1I 2SMp

2

MV
2 D G

1
2e2Ĉ

F0
2 18e2MK

2 K̂812e2Mp
2 R̂p~m!, ~26!

where we used~24! to simplify the first term. In the chiral
limit, DMp

2 reduces to the expression given in@8#.
The mass difference for the kaons is determined in

analogous way, in the contribution from the loops we mere
have to replaceMp

2 by MK
2 . Finally, the formula for the

corrections to Dashen’s theorem may be read off:

DMK
22DMp

252
e2FA

2

F0
216p2 HMK

2 F21
3

2
ln
MA

2

m2 1I 1SMK
2

MA
2 D G

2Mp
2 F21

3

2
ln
MA

2

m2 1I 1SMp
2

MA
2 D G J

1
2e2

16p2 HMK
2 F722

3

2
ln
MK

2

MV
2 1I 2SMK

2

MV
2 D G

2Mp
2 F722

3

2
ln
Mp

2

MV
2 1I 2SMp

2

MV
2 D G J

22e2MK
2 F23 ŜK~m!14K̂8G

12e2Mp
2 F23 Ŝp2R̂p~m!G , ~27!

whereŜp,K represent the contributions from the counterter
Lagrangian toDMK

2 ,

Ŝp53K̂81K̂91K̂10,

ŜK5K̂51K̂626K̂826K̂1026K̂11,

ŜK5ŜK~m!1
3FA

2

2F0
2 l. ~28!
to

,

an
ly

m

IV. NUMERICAL RESULTS AND CONCLUSION

We put F0 equal to the physical pion decay constant,
Fp592.4 MeV, and the masses of the mesons to
Mp5135 MeV, MK5495 MeV. We takeFV5154 MeV
@8# andMV5M r5770 MeV. To eliminate the parameters
of the axial vector resonances, we use Weinberg’s sum rule
@12#:

FV
22FA

25F0
2 , FV

2MV
22FA

2MA
250. ~29!

The contributions from the counterterm Lagrangian are no
known so far. In@8# it was found that the experimental mass
differenceDMp

2 at orderO(e2) is well reproduced by the
resonance-photon loops and therefore the authors conclu
that the contributions from nonresonant physics are smal
i.e., Ĉ'0. In analogy, weassumefor the numerical evalu-
ation the dominance of the resonant contributions at orde
O(e2mq), i.e., we putK̂ i(m)'0.

Putting the numbers in~26! we get, for the contribution
from the loops toDMp

2 at the scale pointsm5~0.5, 0.77, 1!
GeV @see Fig. 2~a!#,

DMp
2 u loops52Mp3~5.0, 5.1, 5.1!MeV, ~30!

which is in nice agreement with the experimental value
DMp

2 uexpt52Mp34.6MeV @14#. Using resonance saturation

FIG. 2. The solid lines show our results, the dashed and dotte
curves represent in~a! the experimental value@14#, in ~b! the result
of @2#, respectively.
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in the kaon system as well, we obtain, for the corrections
Dashen’s theorem @again at the scale points
m5(0.5,0.77,1)GeV]

DMK
22DMp

25~20.13, 0.17, 0.36!31023~GeV!2,
~31!

which are smaller than the values found in the literature:

DMK
22DMp

25H 1.2331023~GeV!2 @2#,

~1.360.4!31023~GeV!2 @3#,

~0.5560.25!31023~GeV!2 @4#.
~32!

Of course, in order to get a scale-independent result,
counterterms are not allowed to vanish completely.

In @2# the authors calculated the Compton scattering of
Goldstone bosons within the same model that we have u
in the present article and determined the corrections to Da
en’s theorem by closing the photon line. Their calculation
finite ~without counterterms! and gives a considerably larg
to

the

the
sed
sh-
is
e

value forDMK
22DMp

2 . The difference to our result may be
identified in~18!, where we have found an additional~singu-
lar! term that gives a large negative and scale-dependent c
tribution. The two results are compared in Fig. 2~b!. Note
that in@2#, the physical masses for the resonances are used
the calculation ofDMK

2 , whereas we work in the SU~3! limit
throughout.

The other calculations are not strongly connected to o
approach, for a discussion of the value given in@4# we refer
to @5#.

We therefore conclude that taking into account the res
nances, at the one-loop level and working strictly in th
SU~3! limit for the resonances, leads to moderate rather th
large corrections to Dashen’s theorem. Possible strong v
lations must come from higher loop corrections or from non
resonant physics.
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