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Dynamics of topological defects and inflation 

Nobuyuki Sakai,’ Hisa-aki Shinkai,t Takashi Tachizawa,* and Kei-ichi Maedas 

Department of Physics, Was& University, 3-4-l Okubo, Shinjuku-ku, Tokyo 169, Japan 
(Received 26 June 1995) 

We study the dynamics of topological defects in the context of “topological inflation” proposed 
by Vilenkin and Linde independently. Analyzing the time evolution of planar domain walls and of 

global monopoles, we find that the defects undergo inflationary expansion if 1) 2 0.33mp1, where rl is 
the vacuum expectation value of the Higgs field and IIZPI is the Planck mass. This result confirms the 
estimates by Vilenkin and Linde. The critical value of 7 is independent of the coupling constant X 
and the initial size of the defect. Even for defects with an initial size much greater than the horizon 
scale, inflation does not occur at all if q is smaller than the critical value. We also examine the effect 
of gauge fields for static monopole solutions and find that the spacetime with a gauge monopole has 
an attractive nature, contrary to the spacetime with a global monopole. It suggests that gauge fields 
affect the onset of inflation. 

PACS number(s): 98.8O.Cq, 11.27.+d 
I. INTRODUCTION 

Vilenkin [l] and Linde [2] independently pointed out 
that topological defects can be seeds for inflation. The 
basic idea of this “topological inflation” is as follows. 
Suppose that we have the Higgs field aa (a = 1,. , N), 
whose potential is 

v(a) = ;A(*~ - $)2, a = x6+, (1.1) 

where 11 is the vacumn expectation value and X is a cou- 
pling constant. This model gives rise to different types of 
topological defects, i.e., domain walls for N = 1, cosmic 
strings for N = 2, and monopoles for N = 3. Because the 
center of a defect is in the false vacuum state (a = 0), we 
can expect that inflation occurs near @ = 0 under some 
condition. Vilenkin and Linde claimed that topological 
defects expand exponentially if and only if 

? > O(m) 0.2) 

for the following reasons. 
(i) If the size of the false vxuurn region is greater than 

the horizon size, it is natural to assume that this region 
undergoes inflationary expansion. The thickness of a do- 
main wall in a flat spacetime is given by 

4 
So=Jr;ll, (1.3) 

and the horizon size corresponding to the vacuum energy 
V(0) is 

H,-1 = [p&o,]-” =&F. (1.4) 
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Then the condition 60 > H;’ implies 112 mp, [l]. 
(ii) New inflation or chaotic inflation occurs in 

Friedmann-Robertson-Walker spacetime if the slow- 
rolling condition [I+] < 3H]+1 and @/2 < V(m)] is 
satisfied. In model (1.1) this condition leads to re > 

m/e [1,2]. 
(iii) Gravitational effect becomes important if the 

Schwarzschild radius Rs = 2&‘/rn& is comparable to &, 
where A4 = (47r/3)6$(0). This condition is reduced to 

‘I 2, mw, [L 21. 
(iv) In the case of a global string or a global monopole 

there is a deficit angle or a solid deficit angle in the 
static solution. For each defect, this exceeds 2?r or 4n 
if 1) z mpl, which indicates no static solution with an 
asymptotically flat region [I]. 

(v) It was shown in [3-51 that nonsingular static gauge 

monopole solutions exist only if 1) ( mpl; otherwise, the 
monopole becomes dynamic and may become a Reissner- 
NordstrGm black hole. Linde speculated that in this case 
the central region of the monopole expands exponentially 

because the condition, 112 nap,, is simultaneously a con- 
dition of inflation [the slow-rolling condition in (ii)]. 

In this paper we study topological inflation in detail by 
numerical analysis. On this subject, we need to clarify 
the following points. 

(1) Although the condition for inflation to occur, (1.2), 
looks plausible, it is based on discussions which did not 
show how the defects really inflate. It is important to 

verify these arguments by numerical analysis which corn- 
prehensively includes the gravitational effect. 

(2) Vilenkin and Linde assumed the initial size of de- 
fects to be So, which stems from the static solution with- 
out gravitational effect. We agree that 60 implies the 
typical size of the defects even in curved spacetime. In 
the beginning of the phase transition, however, the scalar 
field takes its phase randomly and global distribution 
may be chaotic. Therefore, it is worth studying the dy- 
namics of the defects with various initial sizes. Partic- 
ularly, our interest is the fate of the topological defect 
when the initial size is greater than the horizon scale but 
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17 is not so large. One may conceive that such defects 
also inflate. 

(3) The effect of gauge fields is unclear. Linde claimed 
that gauge fields do not, affect inflation of strings or 
monopoles, because they exponentially decrease during 
inflation. We agree that, once inflation occurs, their ef- 
fect gets smaller and smaller. However, it remains an 
unsettled question whether or not gauge fields affect the 
onset of inflation. 

In order to answer the first and the second questions, 
we investigate the evolution of planar domain walls and 
global monopoles in Sec. II. As to the third question, we 
discuss static monopole solutions in Sec. III. Section IV 
is devoted to conclusions. In this paper we use the units 
c=tL=l. 

II. EVOLUTION OF PLANAR DOMAIN WALLS 
AND GLOBAL MONOPOLES 

In what follows we numerically analyze the time eve- 
lution of domain walls (N = 1) in a plane symmetric 
spacetime and of global monopoles (N =, 3) in a spher- 
ically symmetric spacetime. The Einstein-Higgs system 
is described by the action 

s=Sd41~[~R--(a~ma)2-V(Q)]. (2.1) 

The field equations derived from (2.1) are presented in 
the Appendix. 

For the case of domain walls, we assume that the metric 
has a form, 

ds2 = -dt2 + A’@, Izl)dz2 + B’(t, Izl)(dy’ + dz’). 

(2.2) 

As an initial configuration of the scalar field, it seems nat- 
ural to use the same functional form as the &tic solution 
in a Aat spacetime, *fiat(z) z 7 tanh(z/J), where 6 is a 
parameter of the initial width of the domain wall. In a 
curved spacetime, however, if we consider a single domain 
wall in a vacuum background spacetime, the spacetime 
becomes closed (61. There is no far region from the wall. 
For this reason we adopt the periodic boundary condi- 
tion and accordingly change the functional form for each 
section slightly into 
I 
The above polynomial has been determined from the 
following assumptions: (1) fifth-order odd polynomial 
function of I; (2) the first term agrees with that of 
TJ tanh(z/b); (3) it connects the constant function e(z) = 

‘17 at the point where a’ = a@/& = G” = 0. For later 
convenience, we define a parameter of the initial width 
of a wall as c E 6/&o. 

One may wonder if our results really show generic prop- 
erties of domain walls, because the global structure of a 
spacetime depends on how we choose boundary condi- 
tions. We will discuss this point in the final section. 

For the case of global monopoles, we assume a spheri- 
cally symmetric spacetime: 

ds2 = -dt*+A’(t, r)dr’+B’(t, r)r2(d02+sin2 Bd@.). 

(2.4) 

For the scalar field, we adopt the hedgehog ansatz: 

a” = *(t,r)P s ~(t,r)(sinBcos~,sinesin(o,cos8). 

(2.5) 

As an initial configuration of the scalar field, we suppose 

‘qt = CT) = slat(;)> (2.6) 

where @sat(r) is a static solution in a flat spacetime, 

which is obtained only numerically, and c is an initial 
size parameter of a monopole normalized by that of the 
static solution. 
As to the initial value of 6 z a@)%, we suppose & = 0 

in both the cases. Following the method shown in the 
Appendix, we solve the constraint equations for setting 
initial data and the dynamical equations for time evolu- 
tion. 

Our numerical results are summarized in Figs. 1-5. In 
Fig. 1 we show examples of the time evolution of the 
scalar field, which correspond to a stable domain wall 
[Fig. l(a) 1) = 0.2mpJ and an inflating wall [Fig. l(b) 
7 = 0.6mpl], respectively. The abscissa, X, is defined 
as a proper distance along the I axis from the origin. 
The corresponding results for monopoles are presented 
in Fig. 2. In the case of Fig. 2 (b) we see that the bottle- 

neck structure appears, but we do not find an apparent 
horizon of a black hole; this is not a wormhole. (As 
for the definition of an apparent horizon, see the last 
part of the Appendix.) In Fig. 3 we draw trajectories of 
the boundaries of a domain wall and a monopole. Here 
we define the boundary of the defect as X*(t) = X or 

Ra(t) = Br at the position of % = 17/2. Figure 3 indicates 
that a domain wall or a monopole expands if 7) 2 0.4mpl, 
while it remains stable if 1) 5 0.3mpl. We survey for 
0.3mpl 5 ‘I 5 0.4mpl and 1O-4 5 X 5 10 closely, and 
find the critical value of 7 is around 0.33mpl, regardless 
of X. This result supports the estimates of Vilenkin and 
Linde. 

By varying c, we also investigate how the initial size 
of a domain wall or a monopole influences its dynamics. 
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FIG. 1. Examples of the evolution of a domain wall. We 
set q = O.Zmp~ in (a), q = 0.6mp1 in (b), and c = 1 and 
X = 0.1 in both cases. (a) expresses a stable wall and (b) 
expresses an inflating wall. The abscissa is a proper distance 
along the z1 axis from the origin. 

Figure 4 indicates that the final behavior of a domain 
wall or a monopole is determined only by 7. In the case 
of Fig. 4(a) or 4(b) (q = 0.2mpl), even if the initial size is 
much larger than H;‘, the configuration eventually ap- 
proaches to -&t(X) or $,&?T). We analyze whether or 
not the cosmological horizon appears or not by searching 
for an apparent horizon, because H;’ is not exactly the 
cosmological horizon. Figure 5 shows that an apparent 
horizon really appears and the sm-face of the shrinking 
monopole (Q = 0.2mpl, c = 10) crosses it. Thus we see 
that, even for defects with an initial size much greater 

than the horizon scale, inflation does not occur if 17 is 
smaller than the critical value. 

III. EFFECT OF GAUGE FIELDS FOR STATIC 
MONOPOLE SOLUTIONS 

In this section we describe the effect of gauge fields 
for static monopole solutions. We consider the SU(2) 
Einstein-Yang-Mills-Higgs system, which is described by 

-;(D,aQ)2 -v(m)] ( (3.1) 
0 12 3 
Br/H;- ’ 

5 6 7 

-i 

0 5 10 15 20 
Br/H,’ 

FIG. 2. Examples of the evolution of a global monopole. 
The parameters we choose are the same as in Fig. 1. In (b) 
we find that the bottleneck structure appears. 

with 

F$z a,,A: - &A; + e@A;A:, 

D a” 5 8 W’ + e&“A* ac P P !J I (3.2) 

where A; and Fiz are the SU(2) Yang-Mills field po- 
tential and its field strength, respectively. D, is the co- 
variant derivative and e is a gauge coupling constant. A 
static and spherically symmetric spacetime is described 
as 

dsz = _ 
( 

1 _ ~%?J+-W 
R b 

-za(iqdTz 

+ 
( 

1- 2GffW) -I 
R ) 

dR2 + R2(d02 + sin’ Bdq?). 

(3.3) 

Under the ‘t Hooft-Polyakov ansatz, the Yang-Mills po- 
tential is written as 

A? = WC&+ 1 - w(R), 
I * EZR 

A; = o (3.4) 

where CJ’ is a triad. 
Breitenlohner et al. systematically surveyed regular 

monopole solutions in this system 131. According to Fig. 6 
in [3], static solutions cease to exist when q becomes 
larger than a critical value qCr, which has a little depen- 
dence on X/e% 0.20mpl < qCr(X/e2) < 0.39mpl for co 2 
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FIG. 3. Dependence of the evolution of a domain wall 
and a monopole on 7. We plot trajectories of the positions of 
+ = q/2. We set X = 0.1 and c = 1 in both cases. (a) and (b) 
express the dynamics of a domain wall and a global monopole, 

respectively. A domain wall or a monopole expands ‘if 1) ,?, 
0.33rnF.l. 

X/e? > 0. (The relations between the parameters in this 

paper and those in 131 are given by ~/mpl = a/& and 
X/e2 = ,B=/2.) The exact value of ?a for X/e2 + co was 

analytically obtained 151: ~~(x/e’ + co) = mpl/&. 
We also examine this monopole system and confirm their 

results. 
From the two facts of the disappearance of static solu- 

tions for large 1) and of the inflation of a global monopole 
for large II, we might expect that gauge monopoles also 
inflate for large 7. In order to see the effect of gauge fields, 
we calculate the acceleration of test particles, which is 
governed by the geodesic equation in the coordinate sys- 
tem (3.3): 

(3.5) 

where 7 is the proper time and we have assumed dR/dT = 
dB/d7 = dy/d7 = 0. Although we cannot discuss the 
dynamics of a static spacetime by its metric itself, the 
acceleration of test particles gives us some information 

about the spacetime structure. For example, in de Sitter 
spacetime [M(R) = m&lPR3/2, i? = const, a(R) = 0] 
!c$& 1 
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FIG. 4. Dependence of the evolution on the initial size. 
We set X = 0.1 in all cases. (a) domain wall, 7) = 0.2mpl. (b) 
global monopole, 1) = 0.2mpl. (c) domain wall, ‘) = 0.6mpl. 
(d) global monopole, 1) = 0.6mpl. Only 7) determines whether 
or not inflation occurs, regardless of the initial size. 
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FIG. 5. Trajectories of the apparent (cosmological) hori- 
zon and of the boundary of a shrinking monopole. We set 
c = 10, r, = 0.2mFl, and X = 0.1. The boundary of the 
shrinking monapole crosses the horizon. 

and iti Schwarzschild spacetime [M(R) = A? = const, 
a(R) = 0], (3.5) is reduced to d2R/dr2 = l?R > 0 and 
d’R/d? = -mp~A?/R2 < 0, respectively. The sign of 
acceleration indicates whether the spacetime is rep&i% 

(+) or attractive (-). In Fig. 6 we present examples of 
the acceleration in spacetimes with a global monopole 
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FIG. 6. Acceleration of test particles in spacetimes (a) 
with a global monopole and (b) with a gauge monopole. We 
set X = 0.1 in (a), X/e2 = 0.1 in (b), and 7 = 0.2mpl in both 
cases. We find that the spacetime with a global monopole has 
a repulsive nature, while the spacetime with a gauge monopole 
has an attractive nature. 
and with a gauge monopole. The figures show that the 
two spacetimes have different properties: the spacetime 
with a global monopole has a repulsive nature [7], while 
the spacetime with a gauge monopole has an attractive 
nature. Neither sign of acceleration changes even for 

large 7. Although we have analyzed only static space- 
times, our results indicate that there may be another 
possibility that the monopole collapses and becomes a 
black hole. 

IV. DISCUSSIONS 

We have studied the dynamics of topological defects 
numerically. We have examined three questions on 
“topological inflation” and found the following results. 

The iirst subject was simply verifying the arguments of 
Vilenkin and Linde. Our results support their discussions 
completely and we obtain more exactly the critical value 
of ?) which determines whether defects inflate or not. We 

found that, if 17 2 0.33mpl is satisfied, planar domain 
walls and global monopoles inflate. 

The second was to examine the dynamics of defects of 
various initial size. Our results show that in the case of 

planar domain walls and global monopoles, only 7 deter- 
mines whether or not they expand. Even if the initial size 
of the defect is much greater than the horizon scale, it 
shrinks and approaches a stable configuration if 7 is less 
than the critical value. Some readers may feel this result 
is surprising, but we can reasonably interpret it as fol- 
lows. First, we found in our analysis that the boundary of 
a defect [X6(t) or Rb(t)] can be a spacelike hypersuface, 
which was also pointed out by Vilenkin (11. Thus there is 

no reason that the “horizon scale” prevents a defect from 
shrinking. Second, if 7 < mp~, the slow-rolling condition 
is not satisfied. This condition is expressed only by 7, 
regardless of X and the horizon scale. We therefore con- 
clude that, although the statement ‘if the site of a deject 
is greater than the horizon scale, it Inflates” sounds true, 
in a strict sense it is not. 

Let us summarize the main points: first, the condition 
of inflation for domain walls and for global monopoles 
are the same; second, the condition does not depend on 
the initial size. From these two facts, we may understand 
that whether inflation occurs or not is determined not by 
the global structure of a spacetime but by the local “slow- 
rolling” condition; our results indicate that a slow-rolling 

condition is a necessary and sticient condition for topo- 
logical inflation. Therefore, although we have assumed 
a plane symmetric spacetime and the periodic boundary 
condition for a domain wall system, it seems reasonable 
to conclude that our results show generic properties of 
domain walls. Similarly, we may extend our results to 
the case of global strings. 

The final subject we have investigated is the effect of 
gauge fields. Comparing the gauge monopole static so- 
lution with the global monopole one, we find that these 
spacetimes have different characters: one is attractive 
and the other is repulsive. Therefore, gauge fields work 
to obstruct inflation and their effect cannot be ignored 
when we discuss the onset of inflation. It may be inter- 
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esting to study time-dependent gauge monopoles, which 
would give us a definite answer to this issue. 
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APPENDIX: FIELD EQUATIONS 
AND NUMERICAL METHOD 

In this appendix we explain how we solve the 
field equations for planar domain walls and for global 
monopoles. At the end we also summarize how we search 
for an apparent horizon in a global monopole system. 

The variation of (2.1) with respect to gILY and a” yield 
the Einstein equations 

a T,,y = d,WV,@ - grv +F’)z + V(a)] , 
[ 

(Al) 

and the scalar field equations, 

(1) Planar domain wall system. Using the metric (2.2), 
we write down the field equations (Al) and (A2) as 

;Gol E K;’ + g(3K; - K) = $“Z’, 

;(G+ + G; + G; - G;) se k - (K:)’ - 2(K;)’ 

= $9 -V), 

-R;-G;G~;+~&-~ 2 3K2 

2$+$-v), 

(A3) 

(~44) 

(A5) 

646) 
where we have introduced the extrinsic curvature tensor 
oft = constant hyperswface, KQ, whose components are 
given by 

(4 

and denoted its trace by K q K,i. 
In order to set up initial data, we have to solve the 

Hamiltonian constraint equation (A3) and the momen- 

tum constraint equation (A4). We assume the homoge- 
neous and isotropic curvature, 

K 
3 = K; = Kz” = const, (Ag) 

which makes (A4) trivial, and the conformally flat spa- 
tial gauge, A = B. Because we have adopted the periodic 
boundary condition such that the period is 46, and as- 

sumed reflection symmetry, we must keep the condition 
B’(t,z = 0) = B’(t,z = 26) = 0. By changing K as 
a shooting parameter, we iteratively integrate (A3) until 
the above condition is satisfied. 

Now we have five dynamical variables: A, B, K, Ki, 
and a. Equations (AS), (A5), and (A7) provide the next 
time step of A, B, K, and Q. For the time evolution 
of Ki, we use (A6) only at x = 0, and then integrate 
(A4) in the I direction to obtain other values of K:. In 
this way we have reduced spatial derivatives appearing 
in the equations, which may become seeds for numerical 

instability. 
(2) Global monopole system. In a method similar to 

that applied for the domain wall system, we solve the field 

equations for the monopole system. Here we present the 
equations and only give comments on some differences. 
Under the assumption of the metric (2.4) and the hedge- 
hog ansatz (2.5), we write down the field equations (Al) 
and (A2) as 

=$($+$+&+V), (AlO) 

;Gol t K,z’ + (; + 9 (3K; - K) = -‘+‘, 

(All) 

;(G: + G; + G; - G;) E ti - (K;)’ - 2(K;)’ 

= -$6’ -V), 6414 

2Q 

+ BV 
_ + g = 0. (A13) 
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In this system the homogeneous curvature initial con- 
dition (Ag) is not appropriate because the far region is 
asymptotically flat. We thereby suppose A(t = 0,~) = 
B(t = 0,~) = 1 and solve the constraint equations (AlO) 
and (All) to determine K(t = 0,~) and Ki(t = 0,~). 
This treatment is not usually adopted, but it is suitable 
for this system because we obtain 

which approaches zero as T increases. The numerical 
boundary is fixed at T = 106 (6 = ~60). 

In regard to the time evolution of K,Z, we do not have 
to solve the equation at the origin which corresponds to 

(A6), because in this case we have the relation K;(t,r = 
0) = K(t,r = 0)/3 from the regularity condition. 

In both cases (1) and (2), we use a finite difference 
method with 1000 or 2000 meshes. The Hamiltonian con- 
straint equation (A3) or (Al?) remains unsolved during 
the evolution and is used for checking the nutierical accu- 
racy. Through all the calculations the errors are always 
less than a few percent. 

(3) Apparent horizon. In our analysis for a global 
monopole system, we should investigate the global struc- 
ture of the spacetime, such as the existence of an event 
horizon of a black hole, or the existence of a cosmologi- 
cal horizon. In numerical relativity, one practical method 
to see the spacetime structure is to search an apparent 

horizon. The apparent horizon is defined as the outer- 
most/innermost closed two-surface where the expansion 
of a null geodesic congruence vanishes. For the metric 
(2.4), the expansion, O+., is written as 

O+ = k;;, + k& = 2 (A15) 

where kz = (-1, &A-‘, 0,O) is an outgoing (+) or ingo- 
ing (-) null vector. 

We observe the signs of 01 at all points in the numeri- 
cal spacetime, and see if there is a two-surface where O+ 
or O- vanishes. In a black hole system, it is proved that, 
if an apparent horizon exists, an event horizon also exists 
outside (or coincides with) it. Here, as well as we search 
for a black hole horizon, we use an apparent horizon as 
a tool for finding a cosmological horizon; a cosmologi- 
cal horizon exists inside (or coincides with) the apparent 

horizon. 
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