PHYSICAL REVIEW D VOLUME 53, NUMBER 11 1 JUNE 1996

Interacting instanton liquid in QCD at zero and finite temperatures
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In this paper we study the statistical mechanics of the instanton liquid in QCD. After introducing the
partition function as well as the gauge-field- and quark-induced interactions between instantons, we describe a
method to calculate the free energy of the instanton system. We use this method to determine the equilibrium
density and the equation of state from numerical simulations of the instanton ensemble in QCD for various
numbers of flavors. We find that there is a critical number of flavors above which chiral symmetry is restored
in the ground state. In the physical case of two light and one intermediate mass flavors, the system undergoes
a chiral phase transition @t=125 MeV. We show that the mechanism for this transition is a rearrangement of
the instanton liquid, going from a disordered, random phase at low temperatures to a strongly correlated,
molecular phase at high temperature. We also study the behavior of mesonic susceptibilities near the phase
transition.

PACS numbgs): 12.38.Lg, 05.70-a, 11.30.Rd

I. INTRODUCTION method called “cooling,” one can relax any given gauge-
field configuration to the closest classical component of the
Understanding the vacuum structure of gauge theorieQCD vacuum. The resulting configurations were known to
such as QCD is one of the main problems in quantum fieldbe of multi-instanton typg16], but the more recent work by
theory today. It also provides the theoretical foundation forChu et al. [17] has provided quantitative measurements of
hadronic models and hadronic phenomenology from the unthe parameters of the instanton liquid, as well as detailed
derlying field theory of the strong interaction, quantum chro-studies of the dynamical effects of instantons. These authors
modynamics. There are a number of indications that instaneonclude that the instanton density in the quenched theory
tons, classical tunneling trajectories in imagindeyclidean  (without dynamical fermions at zero temperature is
time, are an important ingredient of the QCD vacuum. n=(1.3-1.6 fm ~* while the average size is abopit=0.35
Soon after the discovery of instantons 20 years [dgoit fm. These numbers confirm the key parametersl fm*
became clear that instantons may provide at least a qualitand p=1/3 fm of the instanton liquid model mentioned
tive understanding of many features of the QCD vacuumabove. In addition to that, Chet al. studied correlation func-
Instantons solve the @) , problem[2], they give a mecha- tions in the cooled configurations, finding that they hardly
nism for chiral symmetry breakin§3], contribute to the change from the original, fully quantum configurations. This
gluon condensates, and lead to a nonperturbative vacuumould imply that instanton effects dominate over perturba-
energy[4,5]. tive and confinement forces in determining the structure of
The development of a quantitative theory based on theskw-lying hadronic states. A lattice measurement of the in-
ideas took much longer. The instanton liquid model wasstanton size distribution for pure $2) gauge theory was
originally suggested by Shuryak in 198&], guided mainly  performed in[18], where also an attempt was made to study
by phenomenological considerations. Later, Diakonov andorrelations between instantons. The size distribution was
Petrov developed an analytical approach based on the varigempared to the predictions of the interacting instanton lig-
tional method 7] (see alsd8]). The first numerical simula- uid model in[19].
tions of the “instanton liquid” were reported if9,10]. Dur- In this paper we want to report a detailed study of the
ing the past two years, we have shoWhl-13 that the statistical mechanics of the interacting instanton liquid model
“random instanton liquid model”’(RILM) provides a suc- (IILM), both at zero and finite temperatures. The purpose of
cessful description of a large number of hadronic correlatiorthis study is twofold. First, we want to give a fully consistent
functions, including mesons and baryon made of lighttreatment of the model at zero temperature. Our goal is to
quarks, heavy-light systems, and glueballs. These correlatot®nstruct an interacting instanton ensemble that is consistent
not only give reasonable values for the corresponding resawith the low energy theorems that follow from the renormal-
nance masses and coupling constants, but they also comparation and symmetry properties of QCD, such as the trace
well with point-to-point correlation functions extracted from anomaly, chiral Ward identities, or Ward identities for fluc-
phenomenology14] or measured on the latti¢d5]. tuations of the topological charge. Second, we explore the
Following these developments, several recent latticanodel at nonzero temperature. In this paper, we will limit
simulations have focused on the role of instantons in theyurselves to the analysis of bulk properties, such as the en-
QCD vacuum, both at zero and finite temperatures. Using &rgy density, the chiral condensate, and mesonic susceptibili-
ties. A detailed study of hadronic correlation functions will
be presented in a forthcoming publicati0].
*Present address: Institute for Nuclear Theory, University of At zero temperature, we want to study the importance of
Washington, Seattle, WA 98195. instanton interactions and determine those features of the in-
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teracting ensemble that differ from the simplest, random enfound in the appendices. In Sec. Il we describe the method
semble(RILM). We also want to determine the relation be- which is used to calculate the partition function. In Sec. IV
tween the instanton interaction and global paramefgush  we use this method to study the instanton ensemble at zero
as the density and average $ipé the instanton liquid. Fur- temperature. In Secs. V and VI, we generalize the method to
thermore, we want to quantify the role of instanton interac-finite temperature and study the nature of the chiral phase
tions in producing correlations among the instantons. This igransition in the instanton liquid. In Sec. VIl we study some
of interest, since despite the success of the random model PPenomena associated with the transition, in particular, the
the description of most hadronic correlation functiphg], it ~ Dirac spectrum and the mesonic susceptibilities.
fails in channels where the single instanton interaction is
strongly repulsivésuch as the;’ andé meson channelsAs Il. THE PARTITION FUNCTION
shown in [21,13,23, the correlations among instantons OF THE INSTANTON LIQUID
caused by their cIassi_ca] and fermion_—induced interactiqns The Euclidean partition function of QCD is given by
lead to a correct description of topological charge screening
and then’ channel. Ny R

The role of correlations among the instantons is particu- sz DAMexp(—S[AM])H det(iD +im;y), (1)
larly important with regard to the nature of the chiral phase f
transition. Originally, it was believe@6,23,24 that chiral
symmetry is restored because of the rapid disappearance ‘ﬁ 1
instantons at high temperatuf25]. ligenfritz and Shuryak - * ’
realized[26] that instantons can be present even above th@¥= yﬂ(a/{-_lAM) . ) ) i i
chiral phase transition, as strongly correlated instanton—antj- | "€ Main assumption underlying the instanton model is
instanton moleculessee alsd27]). In this case, the transi- that the full partition function can be approximated by a
tion is determined by the phase equilibrium between the lowPartition sum in which the relevant gauge configurations are
temperature “liquid” and high temperature “molecular” SUPerpositions of instantons and anti-instantons. In this par-
phase. Shuryak and Velkovsky later argued that instantoHtion function, the relevant degrees of freedom are the col-
suppression is essentially a plasma effect and should not Bgctive coordinates associated with, instantons andN -
present below the phase transiti®8]. This means that the ant-instantons:
transition is driven by the formation of molecul€31,32,

ere the gauge-field action is given bFHA,]
fd“xTr(FWFW) and the Dirac operator is defined by

N, +N
. A . 1 +7T -
rather than by the suppression of individual instantons. There 7= J' dQ.d(o)lexa —
is some support for this scenario from lattice simulations N IN_! H [d€idCpi) Jexp =S
performed by Chu and Schram29]. Extending the cooling Ny
method to finite temperature, they find that the instanton den- % 1—[ de(i[5 +imy). @
I

sity is essentially independent of temperature below the

phase transition, while it is exponentially suppressed above

the transition temperature. First evidence for the presence ¢dere,dQ;=dU;d*zdp; is the measure in the space of col-

molecules neall ; was reported if30]. lective coordinates, color orientation, position, and size,
So far, the transition has only been studied using the scheassociated with single instantons. For the gauge group

matic “cocktail” model introduced by llgenfritz and SU(N.), there are Ml collective coordinates per instanton.

Shuryak[31]. In this model, the instanton liquid consists of Fluctuations around individual instantons are included in

two components, a random and a molecular one. The freGaussian approximation. This gives the semiclassical instan-

energy is determined separately for the two components andn amplitude, originally calculated by 't Hooff2]. To two-

their concentrations are then determined by minimizing thdoop accuracy, it reads

total free energy. The chiral phase transition occurs when the

concentration of random instantons is zero. This approach _

predicts the presence of a substantial number of instantons d(p)=Cnp Sﬂl(p)ZNcex%_BZ(p)

even if T>T,, causing new nonperturbative effects in the

plasma phase. One such effect, studied[32], is the PN _b_’ b_’ 1 I B1(p)] 3
“molecule-induced” effective interaction between quarks, ¢ 2b) 2b Bi(p) sk
leading to a spectrum of spacelike screening masses consis-

tent with lattice data. Another possible consequence, the sur- 4.6 exg—1.86\.)

vival of certain hadronic modes above the phase transition Cn,= m2(Ne— 1)1 (N,—2)!’ 4

was studied irf33].

In the present work, we significantly improve on the sche-whereg;(p) andgB,(p) are the one- and two-loop beta func-
matic model used before and do a complete calculation in thgons,
interacting ensemble. In this way, many approximations are
relaxed and all possible correlations among instantons Bi(p)=—b In(pA),
just polarized instanton—anti-instanton paiese included.
The paper is organized as follows. In Sec. Il we introduce the
partition function of the instanton liquid and specify the Ba(p)=Balp) + Eln(Bﬂl(p)) ' ®)
gauge field and fermion-induced interactions between instan-
tons. Detailed parametrizations of these interactions can baith the one- and two-loop coefficients

!
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The coefﬂmentCNc was calculated in a Pauli-Villars renor- 3

malization scheme and is the corresponding scale param- t
eter. The classical actio®,=87?/g? is included in the
semiclassical amplitud€3). The classical interaction be-
tween instantons is denoted I8;,;. We approximate this 0
interaction by a pure two-body interactionS,,= '
33 43Sn(Q,5) which only depends on the relative coordi-
nates of the two instantons. The importance of genuine three- v | | |
body effects in the classical interaction between instantons S A
was studied i 9], with the conclusion that this contribution (@) R/p
is negligible as long as the density is not extremely large.
The two-body interactio®;,(£2,;) = S A, (;) ] -2, is
calculated classically, by inserting the two-instanton gauge
potential A,(,;) into the action. There are no exact
instanton—anti-instanton solutions to the classical Yang- 8
Mills equations, so in practice one has to use an ansatz for
the gauge potential. The resulting interaction will then de-
pend on the details of the trial function. Various trial func- &
tions have been used in the literatufig:the sumAnsatZ 7], 4
(i) the ratioAnsatz9], (iii) the conformally invariant Yung
AnsatZ34], and(iv) the exact streamlin@r valley) solution 2
[35]. The latter is characterized by the fact that the action is ol by LT
minimized in all directions except along the collective coor- 1 o 3 4 5
dinate describing the separation between the two instantons. (b) R/p

In this sense, the streamline solution is the optimal classical o N _ o
instanton—anti-instanton configuration. FIG. 1. (a) Classical instanton—anti-instanton interaction in the

In order to discuss the properties of the classical interacgtreamIine(dash-dotted lineand ratioAnsatz(short dashed line

tion between instantons, let us introduce the four-vectoﬂ1 he intetra(iiionti_s givea;;riunitzof thf sing:e_instagtog ac@grﬁc:r
u,=1/2 tr(U]U,7}), whereU, , are the orientation matri- ' Moo @ TaCIVE (c@s-1) and most repulsive (cés-0) orienta-

f the | d L His the 2x 2 tions. The dash-dotted curves show the original streamline interac-
ces of the instanton and anti-instanton a;r)p Is the tion, while the solid curves show the interaction including the core

matrix (7,—i). For the gauge-group SB), u,, is a real unit  introduced in Sec. lll(b) shows the fermonic overlap matrix ele-

vector whereas for S@3) it is a complex vector with ments in the streamlinésolid curvé and ratio Ansatz (dashed

[u|?<1. In any case, we can define an anglby curve. The matrix elements are given in units of geometric mean of
the instanton radii.
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|ul weaker using the more refined trial functions. We will dis-
) ) cuss this question in more detail in the next section. A pa-
whereR=2,—2, is the vector connecting the centers of the rametrization of the interaction in the ratio and streamline
two instantons. For all the trial functions mentioned above ansaz is given in Appendix A. In Fig. (8) we show the

the large distance part of the instanton—anti-instanton intefratio and streamline interaction for the most attractive and

action is given by repulsive orientations. One clearly observes that the interac-
422 tions are similar at large distance, but differ significantly at
—7P1P2 1o short distance. In particular, the streamline interaction has no
= ul?(1—4 cog9), 8 ; ’ . ; . .
Sini=F1(p) R* Jul ) ® repulsion at all for the most attractive orientation. The inter-

action smoothly approacheS,;=—2S, at short distance,
which is the dipole-dipole interaction originally discussed bycorresponding to the annihilation of the instanton—anti-
Callan, Dashen, and Gro$8]. The interaction is given in instanton pair. Figure (&) also shows the effect of a phe-
units of the single instanton actigsy(p). The argument of nomenological core in the streamline interaction. The rea-
the beta function is not exactly determined without a calcusoning behind this modification will be discussed in more
lation of the fluctuations around the two-instanton configu-detail in the next section.
ration. In practice, we take the argument to be the geometric For all the trial functions except for the simple sun-
meanp = /p,pa Of the two instanton radii. The interaction is satz the instanton-instanton interaction is much weaker than
attractive for the relative orientation afsl, but vanishes the instanton—anti-instanton one. In fact, in the streamline
after averaging over all anglés The short distance behavior Ansatz the instanton-instanton interaction vanishes. This is a
depends on the ansatz chosen. In the gursatz there is a  reflection of the fact that there is an exact two-instanton so-
substantial repulsive core at distand®s \/6p [7], but the lution (with S=2S;) for arbitrary values of the relative co-
amount of repulsion at short distances becomes significantlgrdinates.
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The fermionic determinant induces a very nonlocal inter- lll. THE FREE ENERGY
action among the instantons. Evaluating this determinant ex- OF THE INSTANTON ENSEMBLE
actly in the instanton ensemble still constitutes a formidable

problem. In practice, we factorize the determinant into a Iowt
and a high momentum palr86],

In this section, we describe a method to evaluate the par-
ition function of the instanton liquid. Using this method, we
can calculate the free energy numerically as a function of the

N, +N_ density of instantons, and determine the equilibrium density
a _ ; from the condition that the free energy is minimal.
de(D+ mf)_( H 1.34p,)de'(T+|mf), © The problem in determining the frg}é energy is connected
with the fact that the complicated statistical mechanics asso-
where the first factor, the high momentum part, is the prod<ciated with the partition functio) can, in general, only be
uct of contributions from individual instantons calculated in dealt with by performing Monte Carlo simulatiof$,10,39.
Gaussian approximation, whereas the low momentum parthese simulations are ideally suited for the calculation of
associated with the fermionic zero modes of individual in-various expectation values, but do not give a direct determi-
stantons is calculated exactly. nation of the partition function, which provides the overall

This means that the instanton-induced 't Hooft interactionnormalization. Previous Monte Carlo calculations have
between quarkg2,37] is included in all orders. The low mo- therefore been restricted to simulations of the ensemble at a
mentum part of the spectrum of the Dirac operator is also ofixed density of instantons, which was determined from phe-
special significance in connection with the structure of chiranomenological consideratiorigypically 1 fm~*). Here, we
symmetry breakingT,, is the N, XN_ matrix of overlap Want to go beyond this approximation and minimize the free
matrix elements: energy. A method to calculate the partition sum, which is

well known in statistical mechanics, quantum mechanics

o . (see, e.9.[40]), and lattice gauge theofyl], is “adiabatic
Tquf d*Xao(X—2a)iD e o(X= 7)), (100 switching.” For this purpose, one writes the effective action
as
where ¢, 5o are the fermionic zero mode wave functions of Sei=Sp+ aS; (12

the instanton and anti-instanton. Because of the chirality of
the zero modes, the fermionic overlap matrix elements bewhich interpolates between a solvable actnand the full
tween instantons with the same topological charge vanishegction S,+S; . If the partition function for the system gov-
In the following, we will only consider quadratic matrices erned by the actior, is known, the full partition function
with N, =N_. This means that we study the system at fixedcan be determined from
topological charg&® =N, —N=0, rather than at fixed theta
angle. In the thermodynamic limit, the distribution of wind-
ing numbers is sharply peaked around zg88|, and fixing
the total topological charge is not expected to affect our re-
sults. Fluctuations of the topological charge are important invhere the expectation valu@|-|0), depends on the cou-
connection with the () , problem. They can be studied by pling constantx. In our case, the effective action is given by
considering appropriately chosen subsyst¢gld. We find
that local fluctuations obey the expected Ward identities and .
that the mass of the’ has the correct value. Sef= — 21 In[d(pi) ]+ Siye+tr IN(iD +imy).  (14)
The general structure of the overlap matrix elements is '

given by T ,=(u-R)f(R). This means that, like the gauge- The obvious choice for decomposing the effective action of
field-induced interaction, the fermionic overlap is maximal the instanton liquid would be to identify the logarithm of the
when the relative instanton—anti-instanton orientation issingle instanton distribution with the free action,

given by CO§:.1. Similar to the gauge-fi6|d-indUC9d int.eraC' SO: E||n[d(pl)] This procedure, however' does not work
tion between instantons, the fermionic overlap matrix ele<ince the instanton distribution behaves ligp) ~p®~5
ments depend on thensatzfor the two-instanton gauge po- sq that thep integration in the free partition function would
tential. In this case, however, the dependence on the trig|ot pe convergent. This is the famous infrared problem
function is not as important. For the suknsatz one can use \yhich plagues the dilute instanton gas approximaf&InAs
the equations of motion and replace the covariant derivativgyplained in more detail in the next section, the instanton
in (10) by an ordinary one. The result can be parametrized byquid is stabilized by the repulsive core in the gauge field
interaction once the full interaction is taken into account. We
1 4.0 therefore consider the decomposition

INZ(a=1)=InZ(a=0)— flda’(0|81|0>ar, (13)
0

N, +N_

T,a=i(u-R) , (11)
A=l pipa (2.0+R%pipp)? NL AN 5
< pi
which is exact at large distances. The streamliesatz Seff= 21 _I”[d(pi)]ﬂl_“)”p__z
gives the same large distance behavior, but differs at small .
separations. As long as the instanton ensemble is sufficiently + a(Spy+tr In(iD +imy)), (15

dilute, this difference does not strongly affect physical ob-
servables. We give a parametrization of the streamline mawherev=(b—4)/2 andp? is the average size squared of the
trix elements in Appendix B. instantons with the full interaction included. The term pro-
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portional to (1- «) serves to regularize theintegration for
a=0. It disappears for=1, where the original action is

recovered. The specific form of this term is irrelevant; our

choice here is motivated by the fact tHat least for the
one-loop measurd(p)] Se(a=0) yields a single instanton
distribution with the correct average sigé. This means that
the single instanton distribution generated®y(«=0) is a
variational Ansatzfor the full one-instanton distribution.

The partition function corresponding to the variational
single instanton distribution is given by

Zo (Vo)™ M-,

TNLIN T

Mo= f;dpd(p)eXl{

where ug is the normalization of the one-body distribution.
The p integration inug is regularized by the second term in
(15). The full partition function obtained from integrating
over the couplingx is

2

p
— Vp%) , (16)

1 p?
|nZ=|n(ZO)+NfO daf’<0|v;—Z

“${3m+t””06+4m0ﬂ0>w, )

whereN=N_+N_ . The free energy density is finally given
by F=—1/N InZ whereV is the four-volume of the system.
The pressure and the energy density are relatdd by

dp

p=—F, EZTﬁ—p. (18

At zero temperature, we hawe= — p=F and the free energy
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variational one. One findéS;,;) =(Si)«=0=N»/2 and the
resulting estimate for the partition function is

B 1 N Nv
Z—W(VMO) ex —7 )

which agrees with the result derived if7]. Varying
F=—1/V InZ with respect to the density, one finds the ex-
pected resulN/V=2u,.

Numerical results for different interactions were com-
pared in[42,35. For the sumAnsatz the variational method
givesN/V=0.18\* with p=0.48\"1, whereas the stream-
line Ansatzgives N/V=0.54A* and p=0.69\ 1. The di-
mensionless dilutenest=0.572p*(N/V) (the fraction of
space-time occupied by instantonsf these ensembles is
f=0.05 and 0.60, respectively, to be compared with
f=0.06 in the original instanton liquid model. The varia-
tional method was extended to light quarkq 43,36,26,24
We will study this problem in detail in the next section.

If correlations among instantons are important, the varia-
tional method is not expected to provide an accurate estimate
for the partition function and other observables. Since the
main source of correlations in the instanton liquid are dy-
namical quarks, this issue is particularly important for real
QCD with two light and one intermediate mass flavors. Also,
as argued in the Introduction, we expect chiral symmetry to
be restored because of the formation of instanton—anti-
instanton molecules. This feature is certainly not captured by
the variational mode{at least not in its simplest formand
we will therefore study the full partition function numeri-
cally using the method introduced in this section.

(20

IV. THE INSTANTON ENSEMBLE
AT ZERO TEMPERATURE

In this section we want to present numerical results ob-
tained from simulations of the instanton liquid at zero tem-
perature. While the streamlinensatz in principle, provides
the “best” classical interaction, its derivation relies heavily

determines the shift of the QCD ground state relative to th@" conformal symmetry and we do not know how to extend

perturbative vacuum. Such a shift is certainly present in ou

case, since tunneling lowers the ground state energy.

The full partition function can be compared to the varia-

tional Ansatzintroduced in7] and employed in many works
on the subjecf42,23,26,24,35,31For simplicity, we restrict
the discussion at this point to pure gauge theory, i.e., negle
the fermionic determinant. Since the variatiodaisatzig-

nores any correlation between instantons, only the color an

spatial average of the interaction enters

N
| #*RAU S(RU.prpo = s ook, (19
C

where S;«(R,U,p1,p,) is the interaction of two instantons
with radii p,; ,, separatiorR, and relative orientatiotJ. In
the sumAnsatz both thell andlA interactions give the same

average repulsiom?= %72 [7]. In the ratio and streamline

to finite temperature. In Sec. VI, we will therefore give a
rief discussion of the ratid\nsatzensemble at zero tem-
perature.
A general problem with calculations in the interacting in-
stanton model is the treatment of very close instanton—anti-
instanton pairs. On the one hand, these configurations do not

ontribute significantly to physical observables, such as the

uark condensate, hadronic masses, or the topological sus-

eptibility. Very close instanton—anti-instanton pairs with an
attractive relative orientation correspond to perturbative fluc-
tuations and should not be taken into account as a nonper-
turbative effect. On the other hand, the partition function of
the instanton liquid introduced in the last section treats even
very close pairs as two independent pseudoparticles. Espe-
cially in the streamlineAnsatz which provides very little
short range repulsion, this means that close pairs can contrib-
ute significantly to the free energy of the system. Ideally, one
would need a consistent determination of the space of col-

Ansatz this repulsion is considerably weaker. In the streamiective variables for very close pairs and a subtraction pro-

line Ansatz only the IA interaction is repulsive with
k?>=4.772[35].

If the variational single instanton distribution
d(p)exp(vp?p? is close to the true distribution far=1,
we can calculate the expectation value (V) using the

cedure for purely perturbative fluctuations. Unfortunately,
such a method is not available at present. There is an inter-
esting suggestion to define the instanton interactioa the
optical theoremby the cross section for isotropic multigluon
production[44]. In this case, the existence of a short range
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TABLE |. Parameters of the pure gauge instanton ensemble in the streagknisa¢zfor various values of
the core parameteA. The density and average instanton size are given in unitd f, and fm. The
dimensionless scale paramefeis introduced in the text.

A N/V[Aeo] pLAgco] f Aqgep [MeV] N/V [fm 4] p [fm]

24 0.97 0.60 0.62 202 1.00 0.59
64 0..41 0.58 0.16 250 1.00 0.45
128 0.30 0.58 0.12 270 1.00 0.43
256 0.18 0.55 0.08 307 1.00 0.36

core in the instanton interaction is related to the questioMable I. The minimal value of needed in order to stabilize
whether the multigluon production cross section at high enthe ensemble i\=16. Increasing the core, one obviously
ergy can reach the unitarity bound. If, as it has been sugmakes the ensemble more dilute. However, as the interaction
gested in45] and other works on the subject, the cross secbecomes more repulsive, the density in units of the scale
tion only grows until it reaches a square root suppression angarameter drops and one has to increase the valtegh in
then turns, the instanton—anti-instanton interaction would deerder to keep the physical density fixed. In practice, we have
crease until it reaches a minimum at whigf,=—S,, and  chosenA=128, so thatAqcp remains below 300 MeV,
then show a short distance repulsive core. which is roughly the upper limit of the experimental uncer-
In practice, we have decided to deal with the problem oftainty. As a consequence, the ensemble is not as dilute as
very close pairs in the streamlin@nsatzby introducing a  suggested by phenomenology=1 fm~* andp=0.33 fm),
purely phenomenological short range repulsive core but the diluteness is comparable to the lattice result
n=(1.4-1.6 fm ~* andp=0.35 fm[17]. Two more impor-
tant parameters of the ensemble are the average instanton
) action S=(87?)/g? and the average interactic®, /N per
|ul%, instanton. ForA=128, we find S=6.4 and S;;;/N=1.0,
showing that the system is still semiclassical and that inter-
actions among instantons are important, but not dominant.

__A
Score= B1(p) F

R2+p|2+pf\ (R2+pf+p,§)2 112 _ D_etalled results of our S|mulgt|ons fér= 1_28 are shown _
= — -1 (22) in Figs. 2-5. The partition function at each instanton density
2p1pa 4pipa was determined by generating 5000 configurations with 32

_ ) ) ) ) instantons at 10 different coupling constanats The varia-
in both thell andlA interactions. The orientational factor tignal Ansatz(16) for the partition function was determined
«|u|? ensures that the repulsion is reduced for instantons ifrom 600 initial sweeps with the full interactiorr=1). The
different SU2) embeddings. The interaction is repulsive, in- integral (17) was determined by gradually lowering the cou-
dependent of the relative orientation éos is the conformal pling to =0 and then raising it back ta=1 (hysteresis
parameter that determines the functional form of the streaMmethod. The difference in the results between the up and
line interaction[35] and A controls the strength of the core. gown sweeps provides an estimate of the error in the integral
This pgr?meter governs the dimensionless dilutenesgye to incomplete equilibration. The average between the up
f=0.57"p"(N/V) of the instanton ensemble. and down sweeps usually provides a good estimate for the
The second parameter of the instanton liquid is the scalggrrect result, even if equilibration is slogas will be the
Aqcpin the partition function, which fixes the physical units. case close to the phase transition
Although Aqcp is known, in principle, from perturbative  Figure Za) shows the free energy vs the instanton density
QCD, the accuracy of these determinations is not very highin ynits of A% for the pure gauge theorgwithout fermi-
and quantities such as the instanton densMyM)~Agep  ong. At low density the free energy is roughly proportional
are very sensitive to the precise numerical value of the scalg the density, but at larger densities repulsive interactions
parameter. As in lattice calculations, one may therefore fiXpecome important, leading to a well-defined minimum. We
the scale using the value of some observable, for example &iso show the average action per instanton as a function of
hadronic mass, as the basic unit. Which quantity to holdhe density. The average action controls the probability
fixed while comparing different theories, e.g., quenched anéxp(—S) to find an instanton, but has no minimum in the
unquenched calculations, is pure convention. We have deange of densities studied. This shows that the minimum in

cided to proceed in a very simple way and fix our units suchhe free energy is a compromise between maximum entropy
thatN/V=1 fm % in all cases. This means that in this work and minimum action.

1 fm is, by definition, the average distance between instan- Fixing the units such thaiN/V=1 fm~* we have

tons (at T=0). The corresponding instanton density agrees\ =270 MeV and the vacuum energy density generated by
well with the lattice measurements mentioned above and coiinstantons iss= — 526 MeV/fm®. This important quantity is

responds to the canonical value of the gluon condensatgglated to the gluon condensate by the trace anomaly
(ag/ 7G%) = (350 MeV)*.

We have studied the instanton ensemble for various val- __ ( 2G2) 22)
ues of the core parameté. The results are summarized in € 12872 9 '
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FIG. 2. Free energy, average instanton action, and quark con- FIG. 3. Free energy, average instanton action, and quark con-
densate as a function of the instanton density in the pure gaugdgensate as a function of the instanton density in the theory with two
theory. All quantities are given in units of the scale parametedight and one intermediate mass flavors. All quantities are given in

Aqcp- units of the scale parametaryep.

where b=34N, in the pure gauge case. For a sufficiently S2F b/N| -1

dilute system of instantoristhe gluon condensate is simply 5= _(_) (24)
proportional to the instanton densitye=—b/4(N/V) INIV)S 4V

=—565 MeV/fm°. The good agreement of this number with

the energy density determined above shows that our calcula-

tion is consistent with the trace anomaly. This is also true foVe have determined the compressibility from our data and
the variational metho@7], as indeed one would expect for find it to be 3.2N/V) ~*, compared with 2.78¢/V) ~* from

any calculation that does not introduce any dimensionfuEd. (24). We have also studied density fluctuations in the
scale except for. Also note that not only the depth of the interacting instanton liquid21,13 and have found good
free energy, but also its curvatutthe instanton compress- agreement with the low energy theorésee alsd7,47)).
ibility ), is fixed from a general theorem. From standard ther- Next, we study the effects of light quarks on the instanton
modynamical relations, the compressibility is related to theensemble. A problem that is well known in lattice simula-
mean square fluctuation of the particle number. This quantitfions is the fact that finite volume effects are more severe in

is determined by a low energy theorem derived by Novikovthe presence of light fermions. These “mesoscopic” effects
et al. [46]: become important if the mass of the Goldstone bosons

m,~mA is comparable to the inverse box size 1/n
order to avoid these problems, one is often forced to work
f d*x(g*G*(x)g°G*(0)) = b (0°G%). (23 \itn light quark masses that are larger than their physical
values. The calculations reported below were performed with
Similar to the trace anomal§22), this relation follows from light quark massem,=my=0.1A, while the strange quark
the renormalization properties of QCD. Saturati@d) with mass ism¢=0.7A. If one makes the quark mass smaller
a dilute system of instantons, one h&&AN)2)=4/bN, while keeping the volume fixed, then chiral symmetry break-
whereAN is the mean fluctuation of the number of instan-ing will eventually disappear.
tons in a volumeV. For the compressibility of the instanton ~ The free energy as a function of the instanton density in
liquid, this implies full QCD is shown in Fig. 8a). We find that the free energy
looks very similar to the pure gauge case, but the minimum
is shifted to a smaller density/V=0.174A4. With our con-
As mentioned above, the average interaction is only a 15% corvention N/V=1 fm~* as above, the scale is given by
rection to the single instanton action. A =310 MeV. This gives the instanton-induced vacuum en-

2
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FIG. 4. Distribution of instanton sizes, eigenvalue spectrum of FIG. 5. Distribution of instanton sizes, eigenvalue spectrum of
the Dirac operator, and distribution of fermionic overlap matrix the Dirac operator, and distribution of fermionic overlap matrix
elements in pure gauge theopy\ andT,, are given in units of the  elements in full QCD.
scale parameter. The distribution functions have arbitrary units.

3 o deed find that the scale anomaly can be saturated with the
ergy e=—280 MeV/fm®, which is smaller as compared t0 jnstanton density for larger quark masses.

that in the pure gauge case. In the presence of quarks, the ot the minimum of the free energy, we can also determine

trace anomaly givés the quark condensafsee Fig. &)]. In full QCD, we find
(qq)=—(216 MeV)3, which is in good agreement with the
b 1 phenomenological value. This value can also be compared to
€=~ 128”2(92G2>+2f 2 M(0sd)- (25 the quark condensate in quenched Q@Rlculated in the
pure gauge configurations, see Fig(c)2 (qq)=—(251
MeV)3, showing that light quarks suppress the quark con-
The main difference as compared to the pure gauge case @nsate.
that the Gell-Mann—Low coefficient is changed frdms 11 Additional information about the ensemble is provided by
to b=9 (for N;=3). Estimating the gluon condensate from the distribution of the instanton sizes, Dirac eigenvalues, and
the instanton density as above, we get—488 MeV/fm?®. fermionic overlap matrix elements. In Figs. 4 and 5, we
This number does not agree very well with the value exsresent these distributions for the two cases discussed above.
tracted from the free energy. One possible reason is thakhe instanton size distribution shows the perturbafile®
interactions are more important in the full ensemble so thabehavior at small sizes, has a maximgat p=0.50A " in
the gluon condensate is not proportional to the instanton derffuenched angp=0.65A"" in full QCD) and falls off for
sity. Another problem might be connected with the value oflarger sizes. The average sizes are0.43 fm in quenched
the quark mass. As mentioned above, if one enters the ré&ndp=0.42 fm in full QCD. The diluteness parameter in the
gime of mesoscopic QCD, one may encounter additionafull ensemble isf=0.14, compared withf=0.17 in the
scale breaking not described by the trace anomaly. We inquenched calculation.
_The distribution of eigenvalues of the Dirac operator,
iD=\, , contains a lot of useful information about the
“Despite the factor 1/4 in front of the quark condensate contribuspectrum of the theory. We will discuss some of these ques-
tion, this relation is consistent with the general resulttions in more detail below. Here, we only mention that the
(qq¢) =/ am¢InZ. The remaining mass dependence of the vacuunBanks-Casher relation,qq)=—p(\=0)/a, connects the
energy density comes from the gluon condensatedensity of eigenvalues of the Dirac operator near zero with
alam(g?G?) = — 967%/b{(q;q;), which is valid for light quarks. the chiral condensate. From Figgb¥®and 5b), one clearly
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observes that the instanton liquid leads to a nonvanishinthe spatial direction is roughly proportional to
density of eigenvalues near=0. The results also show that

the presence of light quarks suppresses the number of small _
eigenvalues. While the spectrum is peaked towards small detiD)~
eigenvalues in the purge gauge case, it is essentially flat in

full QCD. This is consistent with the prediction from chiral The form of this interaction is a simple consequence of the

sin(wTr) | 2Nt

coshi#Tr)

(27)

perturbation theory48]: periodicity in the time direction and the fact that fermion
@@ N propagators are screened in the spatial direction by the low-
_ qq - est Matsubara frequencyT. The interaction clearly favors
pON)= w(qq)+32 2f4 N |}‘|+ (26 instanton—anti-instanton pairsnolecule$ that are aligned

along the time direction with a separatien 1/(2T). ligen-

which is valid forN¢=2 (no definite results are known for fritz and ShuryaK31] proposed that this feature of the inter-
N;=0,1, see, for exampld49]). The second term is zeto action leads to a phase transition in the instanton liquid. In
for Ny=2 and leads to a singular behavior fNg>2. No  this phase transition, the system goes from a random liquid
such dip is seen in our spectrum, showing that the result i& an ordered phase of instanton—anti-instanton molecules.
closer to theN;=2 case. More detailed studies of the spec-The transition was studied in a schematic model3h,32.
trum of the Dirac operator in the instanton liquid for various In the present work we want to test whether a consistent
number of colors and flavors were reported 50)]. treatment of the full partition function of the instanton liquid

In Figs. 3c) and 4c), we also show the distribution of the does indeed lead to the expected phase transition and per-
largest fermionic overlap matrix elemerits, for each in- forms a quantitative study of bulk properties of the system
stanton. For each instanton, we select the anti-instanton it hagar the transition.
the largest overlap with and plot the resulting distribution of ~Before we consider the QCD cageith two light and one
matrix elements. This distribution is a measure of theintermediate mass flavors detall, it is instructive to study
strength of correlations among the instantons. For a comthe phase diagram of the instanton liquid for a wider range of
pletely random system at the same density as the simulatdfieories. In order to cover many different parameters, we
quenched and fully interacting ensembles, the average ovehave restricted ourselves to an exploratory study, in which
lap would beT;,=0.22A andT,,=0.21A, respectively. In- Wwe do not minimize the free energy of the system, but con-
stead, the measured distributions have an average\ (a8 sider the instanton ensemble at fixed density. Using the same
0.33A, showing that correlations are not very important in convention employed in the last section, this density was
the quenched ensemble, but play only some role in the fulthosen to be 1 fm*. In our experience, if the system un-
ensemble. A more physical measure of the importance oflergoes a phase transition, it will do so even if the density is
correlations among instantons is given by the dependence &Pt determined self-consistently, although at a somewhat dif-
hadronic correlation functions on different ensembles. Wéderent temperature. Nevertheless, before this point is checked

will study this question in some detail in a forthcoming pub- in detail, the results presented in this section should be con-
lication. sidered qualitative.

We first consider the situation for only one quark flavor.
In this case, the only chiral symmetry is the anomalous axial
Ua(1), sothere are no Goldstone pions, but only a flavor

After fixing the overall scale at zero temperature, it is nowsinglet (the analogue of the;"). Therefore, one would not
straightforward to extend our calculation to finite tempera-expect a chiral restoration phase transition. On the other
ture. In an Euclidean field theory, finite temperature onlyhand, afirst-orde) transition may exist even without a sym-
enters through the boundary conditions obeyed by the fieldsnetry, and in principle, the general argument concerning the
The gauge fields have to be periodic in the Euclidean timdormation of IA molecules also applies to the caNe=1.
direction with the period given by the inverse temperatureClearly, fermion-induced correlations become stronger as the
while fermions are subject to antiperiodic boundary condi-number of flavors increases. Whether they are strong enough
tions. The corresponding periodic instanton and fermiorfor N;=1 to induce a phase transition has to be determined
zero-mode profiles can be constructed using 't Hooft's multi-from the partition function.
instanton solutiorf51]. These profiles may then be used to  We have studied thi;=1 system at an instanton density
study the instanton interaction and fermionic overlap matrixN/V=1 fm~* for temperatures ufg=300 MeV. We have
elements. For the ratidnsatz such a study was performed observed no phase transition in this range, the condensate
in [52]. A parametrization of this interaction is given in Ap- (qq) decreases smoothly, and is nonzero even at the highest
pendices C and D. temperature studied. Of course, even in purg3Yang-

The most important qualitative feature of the instantonMills theory (without fermions, lattice simulations find a
interaction at finite temperature is the form of the fermionicstrong first-order deconfinement phase transition at a
overlap matrix elements. The determinant for one instantontemperaturT=250 MeV. The interacting instanton model,
anti-instanton pair separated byin Euclidean time and in

V. THE PHASE DIAGRAM OF THE INSTANTON LIQUID

4Again, we note that specifying the temperature in physical units
3This result is connected with the fact that fd§>2, there is a  in a quenched calculation requires a procedure to set the scale. In
Goldstone boson cut appearing in the scalar isovectoméson practice this is done, for example, by keeping tlq@enched p
correlator, while there is né— 7 decay allowed for two flavors. meson mass fixed.
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show the Dirac spectrum for=150 MeV andm=5 MeV.

The eigenvalue density extrapolates to zera &t0, but the
slope is very steep and there are no signs of a gap in the
| N=2, T=150 MeV spectrum.

We will treat the three-flavor case in detail in the next
section, and now proceed to the case of several flavors of
light quarks. Let us first mention several theoretical argu-
ments suggesting qualitative changes in the vacuum structure
asN; increases beyond some critical valNg".

A simple phenomenological observation is the fact that
for Ny>12, the number of “pions'N .= N?—l exceeds the
number of quarks and antiquarkiy =4N:N; . This prevents
the usual matching of the pion gas at low temperature to the
high-T quark-gluon plasma phase with a positive bag con-
stant. It seems plausible that something should happen before
this point is reached, sh™"<12.

As noticed by a number of authotsee, e.g.[58]), the
second coefficienb’ of the beta function changes sign for
smallerN; than the first ond does. In this window, one has
the possibility of asymptotic freedom coexisting with an in-
frared fixed point.

It was recognized if59,9] that for largeN;, the instanton
liquid is dominated by instanton molecules, and that their
density is UV divergentat small radi if 2b—5<0, corre-
sponding toN;>12 (this estimate is slightly modified if in-

0 ! | L | L teractions are taken into accouf@®9]). This divergence,
0 S N ! 15 however, is a short distance effect and should not affect
physical observables.

FIG. 6. Trajectory of the quark condensate units of fm™?) Lattice simulations of QCD for largdl; were performed
for Ny=2 in the critical region,T=150 MeV. We also show the by lwasakiet al.[60]. They found that foN.= 2, the critical
corresponding spectrum of Dirac eigenvalue$fm ~1]. The nor-  number of flavors for which chiral symmetry is restored is
malization of the eigenvalue distribution is arbitrary. NSt=3, while for N.=3, it is N?’”z?. A strange “bulk

transition” was also observed by the Columbia group for
however, does not give confinement, so, naturally, there is NRY, =8 [61].
deconfinement transition. Finally, significant progress has been made in understand-

The case of two light flavors\l; =2, is quite special. Ac- ing N=1 supersymmetric generalizations of QQ&?]. One
cording to standard universality argumefi8,54, the chiral  yesylt that is of particular interest in the present context is the
phase transition is expected to be of second order, with thgxact determination of the critical number of flavors
same critical behavior as the(4) Heisenberg magnet in NS™=N.+1, where chiral symmetry is broken for
d=3 dimensions.We have simulatedi;=2 ensembles for N $N?rit, but not foer>N?”t.

varipgs temperatures and values of the quark masses. FOr \va should stress that in QCD, anomaly matching implies
sufficiently small quark masses<0.13A, we find large (o, \ > 2) that if chiral symmetry is restored in the ground
fluctuations in the condensate Bt=150 MeV. To illustrate  ga10 “the ‘theory is also not confining. This connection, of
this fact, we show a typical time history of the quark con-c,rse cannot be studied in the instanton model. Having said
densate in Fig. @). Every conﬁgurauon corresponds to one this, let us now report our results concerning the vacuum
complete sweep through the instanton ensemble, with ON&ructure of the instanton liquid for many flavors. A useful

Metropolis hit perfo'r'med' on every collective variaple. LIS 4501 to analyze the structure of chiral symmetry breaking that
clear that the transition is either second order or first ordey, o suggested by the Columbia grdigs] is the “valence

with a very small barrier between the two phases. In order tQy a1 mass” dependence of the quark condensate, defined
distinguish these two possibilities, one would have to perby

form a finite-size scaling analysis, which goes beyond the
scope of this paper. We will see later that for more flavors,
there is a barrier between the two phases. In Fig) @ve <®(mv)>=_J d\p(\,m)

2000

n(A)

1000

2m,
AN2+m?

v

(28)

SRecently, Kocic and KogU5] have challenged these arguments Here,p(\,m) is the eigenvalue density of the Dirac operator
and suggested that the transition is indeed second order, but wittalculated from configurations generated with dynamical
mean field exponents. Lattice resulsee[56] and the review57)) massm. The quark condensate in the chiral limit is defined
seem to verify that the transition is second order, but are not yeby going to the thermodynamic limit and then taking
sufficiently accurate to resolve the issue about the critical expom=m,—0. In a finite system, however, chiral symmetry is
nents. never broken at nonzero quark mass and one has to perform
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planes(a) For Ny=2, open squares indicate points where we found
large fluctuations of the chiral condensate, the cross indicates the
approximate location of the singularity. In the two other figuit®s
and (c) the open squares correspond to points where we find a
plateau in the valence mass dependence of the chiral condensate,
while solid squares correspond to points where such a plateau is
absent. The crosses and the dashed lines connecting them show the
a detailed scaling analysis. This analysis amounts to pe@pproximate location of the discontinuity line.
forming many simulations at various values of the dynamical
mass, which is a very time consuming procedure. Insteadnetry breaking in the chiral limit. This is demonstrated in
one might get a good indication of the full behavior by Fig. 7(b), where we show a series of calculations for
studying the valence mass dependence of the condensate. Wi=5, with the dynamical quark mass ranging from 20 to
very smallm,, the condensate is proportionalng,, which 100 MeV. In this case a plateau in the valence mass depen-
means that one is sensitive to induced rather than spontandence of the condensate reappears at rather small critical
ous chiral symmetry breaking. At very large mansg, the  quark mass of about 35 MeV.
condensate is proportional m;l. Both of these limits are Repeating these studies for different numbers of flavors
of course unphysical, and spontaneous symmetry breaking @and varying the mass and temperature, one can map the
the continuum limit is indicated by the appearance of a plaphase diagram of the instanton liquid in thé—m
teau at intermediate values of the valence mass wiggge  (temperature-magplane. In Fig. 8 we have summarized our
depends only weakly om, . results forNy=2, 3, and 5. Those cases in which we found a
In Fig. 7 we show a number of calculations of the valencesignal for chiral symmetry breakdown are marked by the
mass dependence of the condensate. The results in @g. 7 open squares, and those corresponding to the restored phase
were obtained for 64 instantons in a cubic bdx (2.828 by solid squares. Th@pproximatg location of the disconti-
fm)* (corresponding to a density/V=1 fm~% and a fairly ~ nuity line between the two phases is marked by the stars
low temperature T=71 MeV), with the dynamical quark connected by dashed lines. For two flavors we do not find
mass m=20 MeV and different number of flavors such a line of discontinuities. We have performed a number
N;=1, ...,8. Regions where the condensate depends on§f runs in the vicinity of the phase transition, all showing
weakly onm, are clearly seen fal;=1,2,3. These plateaus large fluctuations of the condensate. For lafgerve clearly
are clearly absent fdd;=5 or larger: we therefore conclude S€e a transition line with a discontinuity of the condensate.
that the instanton liquid model has a chirally symmetricWhen the number of flavors increases, one end of this line
ground state in these cases. A more detailed study of theoves to the lefthe critical temperatur@. decreases with
configurations shows that all instantons are bound into molN;), crossing zero somewhere arouhj=4, but before
ecules. The borderline case appears td\pe4: if a con- N;=5. In these cases, the ground state exhibits spontaneous
densate is present, it is significantly smaller than in QCD angymmetry breaking only if the quark mass exceeds some
due to a relatively small random component of the vacuumcritical value. For technical reasons, we have not tried to
We have also performed simulations for two colors, andfollow the discontinuity lines much beyorid>200 MeV. In
obtained a similar picture, but with the critical number of this regime, the condensate becomes more and more domi-
flavors smaller by 1. FoN.=2 no clear signal of chiral nated by few extremely small eigenvalues, so that numerical
symmetry breaking was observed fdk=3. This suggests accuracy starts to become a concern. In addition to that, one
the empirical relatioN$™=N+ C with 1<C<2, an amus- does not expect to be ak_)le to d'escribe possible transitions at
ing coincidence with Seiberg'’s results for=1 supersym- Very large temperature in the instanton model, since these
metric QCD[62]. will presumably be dominated by the pure gauge deconfine-
The next question we would like to address is the depenMent transition.
dence of these results on the dynamical quark nmas#n-
creasing the dynamical mass, one decreases the influence of
qguark determinant. A large quark mass works against the
correlations induced by a large number of flavors. This
means that for a sufficiently large quark mass, one can find In this section we want to discuss in detail the physically
“spontaneous” symmetry breaking even if there is no sym-relevant case of two light and one intermediate mass flavors.

FIG. 7. (a) Double logarithmic plot of the quark condenséite
units of fm~3) vs the valence quark mass, for different number
of light flavors (with dynamical massn=20 MeV). (b) shows the
same plot foN;=5 and different quark masses The logarithm is
to base 10.

VI. THE INSTANTON ENSEMBLE IN QCD
AT FINITE TEMPERATURE
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In particular, we will perform self-consistent simulations
where the correct instanton density is determined from mini-
mizing the free energy. The instanton interaction and fermi-
onic matrix elements that enter these calculations have al- 1
ready been discussed in the last section. The semiclassical
calculation that leads to the instanton distributi@hhas also
been generalized to finite temperat{i@®], giving
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with z=7pT. This correction factor leads to an exponential
suppression of large instantons at high temperature. Its origin
is mainly the scattering of thermal gluons on the instanton.
This phenomenon is related to the Debye mass, which, in -1 100
fact, has the same dependenceNynand N;. The applica- , T (MeV)
bility of (29) is controlled by two separate conditions, L L LA L S L B R B LI
p<A ! to ensure the semiclassical treatment, @zeA to
justify a perturbative treatment of the heat bath. It was there-
fore argued i 28] that one should not use the perturbative
suppression factq29) at temperatures below the phase tran-
sition. This suggestion was indeed verified by lattice simula-
tions for pure gauge theofy29], which found a very weak
temperature dependence of the instanton density b&low o 20 100
and an exponential suppression of instantons consistent with T (MeV)
(29 aboveT.. In practice, we have determined the phase
trans!tlon tempe'rature without the Suppresglon fatﬁﬂﬂ').' FIG. 9. Instanton density, free energy, and quark condensate as
The final simulations were then performed with an ado.lltlonala function of the temperature in full QCD with two light and one
temperature-dependent factdrl —tanh(T—T./AT)J/2 in-  jhiermediate mass flavors.
serted in the exponential appearing in E89). From our
simulations, we have determindd=0.75\. We have taken phase transition is either smooth or a first-order transition
AT=0.2A. This number characterizes the temperature rangaith a small jump in the instanton density, which we cannot
over which the Debye mass reaches its perturbative valugesolve because of finite-size effects.
and is roughly consistent with the result of lattice simulations The resulting instanton density, free energy, and quark
[64]. In our simulations, the value &T determines how fast condensate are shown in Fig. 9. In the ratiosatz the in-
the instanton density drops aboVg. On the other hand, we stanton density at zero temperature is given by
have checked that the temperature dependence of the quadtV=0.69A*. Taking the density to be 1 faf at T=0,
condensate is almost independent of this parameter. fixes the scale parametdr=222 MeV and determines the
With all the ingredients of the partition function fixed, we absolute units. The temperature dependence of the instanton
can proceed to our simulations. The free energy is deterdensity is shown in Fig. @). It shows a slight increase at
mined as described in Secs. Ill and IV. There is no difficultysmall temperature$ starts to drop around 115 MeV, and
in principle associated with applying the adiabatic switchingbecomes very small foT>175 MeV. The free energy
method at finite temperature. In practice, however, some carelosely follows the behavior of the instanton density. This
is required since, in case the system undergoes a phase traneans that the instanton-induced pressure first increases
sition, the ensemble at the full couplimg=1 is in a different  slightly, but then drops and eventually vanishes at high tem-
phase as compared to the random distributionat0. This  perature. This behavior is expected for a system of instan-
implies that the transition will occur at some value @f tons, but in a complete theory with perturbative effects in-
during the adiabatic switching. The hysteresis method deeluded, the pressure should always increase as a function of
scribed in Sec. IV is particularly well suited to handle athe temperature. In QCD, the pressure at high temperature is
situation such as this. Physically, this simply means that thef course provided by the black body contributions from
variational Ansatz(16), while it is still used as a reference quarks and gluons. We will come back to this issue at the
distribution, ceases to be a good approximation to the fullyend of the section.
interacting instanton distribution. In the whole range of tem- The temperature dependence of the quark condensate is
peratures studied, we find that the behavior of the free energy
as a function of the instanton density looks qualitatively
similar to the zero temperature result shown in Figs. 2 and 3. ®The zero temperature point corresponds to a simulation with zero
In particular, the free energy is negative at small density an@emperature matrix elements in a periodic hox (2.828\ ~1)4, so
has one fairly well-defined minimum. This means that theit is not a true zero temperature calculation.
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FIG. 11. Trajectories of the quark condensate at three different
temperatured =75, 130, and 158 meV. The quark condensate is
given in units of the scale parameter.
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(b) turesT=74, 123, 158 MeV below, near, and above the chiral
L ll.j. B IJr' phase transition. The figures are projections of a four-

dimensional cube/=(3.00A "1)3.1/T into the 3-4 plane.
The positions of instantons and anti-instantons are denoted
by + and — symbols, respectively. The lines connecting
them indicate the strength of the fermionic overlap matrix
elements. Below the phase transition, there is no clear pat-
tern. Instantons are unpaired, part of molecules, or larger
i T clusters. As the phase transition progresses, one clearly ob-
) N A T RN S serves the formation of polarized instanton—anti-instanton
© molecules.
More details of the phase transition can be inferred from
FIG. 10. Typical instanton ensembles fbr 75, 123, and 158 the graphs in Figs. 11-13. Figure 11 shows trajectories of
MeV. The plots show projections of a four-dimensional the quark cpnder}sate for the temperatures mentioned above.
(3A~193xT1 box into the 3-4 ¢ axis-imaginary temperature Every configuration corresponds to one complete sweep

plane. Instantons and anti-instanton positions are indicatee- by through the instanton liquid, with one Metropolis hit on the
and — symbols, respectively. Dashed, solid, and thick solid linescollective variables of all instantons. As discussed in more

correspond to fermionic overlap matrix elements detail in the next section, the fluctuations in the quark con-
T,»>0.40,0.56,0.64A, respectively. densate determine the scalar susceptibility. Below the phase
transition, these fluctuations are controlled by the effective
shown in Fig. 9c). At temperatures beloW=100 MeV, itis ¢ meson mass. Near the phase transition, we find evidence
practically temperature independent. It then starts to drofor a weak first-order transition with the system frequently
fast and becomes very small around the critical temperatureinneling between the two phases. In order to clearly distin-
T=140 MeV. Note that at this point the instanton density isguish this scenario from a smooth crossover, we would have
N/V=0.6 fm~4, slightly more than half the zero tempera- to run the experiment with significantly larger volumes. Fig-
ture value. This means that the phase transition is indeedre 12 shows the spectrum of the Dirac operator. Below the
caused by a transition within the instanton liquid, not by thephase transition, it has the familiar flat shape near the origin
disappearance of instantons. This is illustrated by Fig. 10and extrapolates to a nonzero density of eigenvalues at
which shows snapshots of the instanton liquid at temperax =0. Near the phase transition, the eigenvalue density ap-
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FIG. 12. Spectrum of the Dirac operator for different tempera- FIG. 13. Distribution of the color orientation angle
turesT=75, 130, and 158 MeV. The normalization of the spectra iscoga=|u,%|u? for different temperature§ =75, 130, and 158
arbitrary (but identica). MeV. The distributions are normalized to the corresponding33U

measure. The overall scale is arbitrary.
pears to extrapolate to 0 at-0, but there is a spike in the

eigenvalue density at=0. This spike contains the contribu- (49)<0.4dd)r=o. These numbers give dies60 MeV/

tion from unpaired instantons. Near the phase transitiorfm®, which is quite small as compared to the energy density
some of these instantons come from the breakup of molat zero temperature. Saturating the trace anomaly,
ecules as the system tunnels from the high to the low temte—3p)/4=—Db/4(N/V), with instantons, one can also
perature phase. In addition to that, even at very high temtranslate this estimate into a bound on the jump in the instan-
perature, one expects a finite concentratiofm'f) of  ton density, disd{/V)<0.03 fm~*, compared with the zero
random instantons. We will further comment on this issue intemperature valueN/V)=1 fm~%. This bound shows that
the next section. we do not expect to see an appreciable jump in the instanton

If there is evidence that the transition is weakly first order,density, even if there is a first-order transition.

it is of interest to at least have an upper bound on the latent In  Fig. 13 we show the distribution of
heat associated with the transition. We have already mergos®(a)=[u4|?/|u|?, the relative color orientation angle be-
tioned that we do not directly observe a latent heat from dween instantons and anti-instantons. For this purpose, we
discontinuity in the instanton density. Another way to calcu-have selected for every instanton the anti -instanton it has the
late the latent heat is using the Clausius-Clapeyron relatiofargest overlap with and calculated the corresponding orien-

generalized to QCID65] tation angle cd§a). The resulting distribution was normal-
ized to the SW@3)-invariant measure. Below the phase transi-
. aTe\ ™t tion, there is no preferred direction and the distribution is flat

disce=T, m, discqa). (30 [the spike near c8kx)=1 comes from the fact that the mea-

sure goes to zero in this regiprNear the phase transition,
As Leutwyler already realized in his original paper, this re-the distribution is strongly peaked towards %a3=1, show-
lation is useful in analyzing numerical simulations even ifing that instanton—anti-instanton pairs are indeed strongly
one does not directly observe a jumpédnWe have deter- polarized.
mined the derivative of the critical temperature with respect Completing this section, let us add a few general remarks
to the quark mass from simulations at several different quarkoncerning the thermodynamics of the instanton liquid. In
masses (see Sec. VI We find JdT./dm;=0.9 at this paper, we have only determined the free energy associ-
mg=0.1A, close to Leutwyler’'s estimai&l ./dmy=1. From  ated with instantons. Our calculation includes the contribu-
the trajectories of the quark condensétgg. 11, one con- tions from the zero-mode determinant, which describes the
cludes that the discontinuity is at most disc excitation of low energy collective modéthe piong. How-
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ever, it does not include nonzero-mode contributions fronshown the distribution of eigenvalues B} for the case of
quarks or gluons. In particular, it does not include the Stefantwo flavors. The spectrum behaves roughly like
Boltzmann contribution at large temperature, or perturbatives(A)~\%3. In Fig. 12 we have displayed the analogous re-
O(as) corrections to it. In a more realistic description of the sult for QCD. Here, the spectrum consists of two parts, a
thermodynamics of the chiral phase transition, these contrismooth part behaving like(A)~\? and a spike near zero.
butions should certainly be include@®n attempt to do so There are two effects that contribute to the spike near zero.
was made in the schematic cocktail model by llgenfritz andOne is the fact that near a first-order phase transition, both
Shuryak{31].) In this paper, however, it was our intention to the broken and the restored phases contribute to the spec-
study the physics contained in the partition function of thetrum. The other is that at finite mass, there will always be a
instanton liquid, without making further assumptions or in-finite O(m\f) number of unpaired instantons, giving a con-
puts. Remarkably, the instanton liquid undergoes a phasgibution of the formp(\)~mNt8(\) to the Dirac spectrum.

transition in the expected temperature regime. Additional information about the phase transition is pro-
vided by mesonic susceptibilities. We define these suscepti-
VII. DIRAC EIGENVALUES bilities as the integral of the corresponding mesonic correla-
AND MESONIC SUSCEPTIBILITIES tion function

Beginning with the classical paper by Banks and Casher
[66], many useful relations have been pointed out between Xr:j d*x(q(x)T'q(x)q(0)I'q(0)), (34)
various observables and the spectrum of the Dirac operator

iD ¢y =Ny . In quantum field theories, the region of small \ynereT s a spin-isospin matrix with the appropriate quan-
A—0 is the analogue of the Fermi surface in solid stat&,m nymbers. They characterize the response of the system
physics, and understanding the density of states near thig gjowly varying external perturbations. For example, the
point is crucial for many properties of the system, both algca|ar-isoscalar susceptibility can also be defined as the sec-
zero and nonzero temperatures. , _ond derivative of IZ with respect to the quark mass. Near a
Before we discuss our data in more detail, we would likegecong-order phase transition, the susceptibilities associated
to briefly review some of the results found in the literature.yith order parameter fluctuations are expected to diverge in

As T—T., the quark condensate vanishes. If there is &ne chiral limit in a universal manner. In particular, we have
second-order phase transition fbif=2, the mass depen- ihe predictiong54]

dence of the condensate is governed by the critical index

0. N
o XolT=1 .~ mY-1, X—U =1/5. (39
(q@)lr=t,,,~m", (31 =T,

where T, denotes the pseudocritical temperature, correAbove the phase transition, chiral symmetry is restored and

sponding to the position of the peak in the scalar susceptibil®N€ Nasx,= x- as the quark mass is taken to zero. Below
ity (see below. As mentioned above, there is still some con-the phase transitiony,/x,—0 asm—0, sincex, has a
troversy concerning the values of the critical indices.l/M singularity in the chiral limit, whiley,, only has a loga-
According to standard universality arguments, QCD with!ithmic singularity. As noted by Karsch and Laermdi],
N;=2 case is analogous to the(4) Heisenberg magnet, the second relation iB5) is very useful in determining the

which has 16=0.21. On the other hand, mean field scaling®XPOnents, since measurements &{m,T)=x,/x at dif-
would give 15=1/3. ferent masses are expected to cross at a unique temperature

T=T,, where the value of B can be extracted from
A(m,T.) (up to corrections from the nonsingular part of the
om free energy.
— _ The susceptibilities associated with flavored mesons like
{qa(T)= f dp(r,m,T) A+m? (32 the 7~ and 8 meson are directly related to the spectrum of the
Dirac operator. Inserting the general decomposition of the
one can try to convert this relation into a prediction for thequark propagator in terms of eigenfunctions into the defini-
spectral density of the Dirac operator. The problem is thation (34), one finds
there are two sources for the mass dependence of the con-
densate, the explicit mass term in the intedthe “valence 1
mass”) and the implicit mass dependence of the spectral Xw=2J dAp(A,mT) ——, (36)
density(the “sea mass). Combining these two effects, one AT+m
can only conclude that

Using the Banks-Casher relation,

2m2

PN, T=T, )~ N Y ke, 33) X5=2f th(K,m.T)()\er—mz)z- 37

where k characterizes the explicit mass dependence of th€omparing(36) with the Banks-Casher relatio82), one
spectral density. Still, one may hope that the influence of theotes thaty,=—(qq)/m, a relation that can also be ob-
sea mass is small and study the behavior of the spectral detgined by saturating the pion correlator with one-pion inter-
sity near zero at the phase transition. In Fig. 6 we havenediate states and using PCAgartial conservation of axial
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vector current The susceptibility in the scalar-isoscalar (
meson channel receives an additional contribution from dis-
connected diagrams, which cannot be expressed in terms of
the spectral density

x (A%

Xo= X5+ 2V[{(aa)?) —(qa)?]. (39

The second term measures the fluctuations of the quark con-
densate in a finite volum¥ (as the volume is taken to in-
finity). Note that all the susceptibilitig€86)—(38) suffer from
ultraviolet divergencies related to the behavior gff\) at
large N. The critical behavior, on the other hand, is deter-
mined by the spectrum at small virtuality. In the following,
we will evaluate the susceptibilities in the zero mode basis.

One important aspect of the QCD phase transition is the
question whether the @) , symmetry is restored during the
transition[67]. If this is the case, one expedtor N;=2)
two additional degrees of freedom to become light during the “:
transition, then’ and 8. The »’ susceptibility is connected x
with fluctuations of the number of zero modes of the Dirac
operator and cannot be measured directly in a system with
total topological charge zeroThe & susceptibility, however,
can easily be studied in our simulations. If1), symmetry
is restored, we expegts to peak at the transition and diverge 0 ' ' ' ' ' |
as the quark mass is taken to zero. Furthermore, above the T (Me\l,())o 150
transition, one would hafey, = ys asm—0. This also re-
quires that the disconnected part gf has to vanish for
T>T; asm—0. FIG. 14. Mesonic susceptibilities as a function of temperature

We show our results for the mesonic susceptibilities infor quark massesn,=my=0.10A andms=0.70\. The scalaro,

Figs. 14 and 15. The results in Fig. 14 were obtained fokcalars, and pseudoscalar susceptibilities are denoted by solid
three flavors with masses,=my=0.10A =22 MeV and circles, solid squares, and open squares, respectively. The lower
ms=0.70\ =155 MeV, corresponding to the instanton den- panel shows the disconnected part of the scalar susceptibility and
sity and free energy discussed in the last section. The su#ie differencey,— x,. The solid lines show a smooth fit to the
ceptibilities were obtained from 1000 configurations sepadata.

rated by five sweeps through an ensemble of 64 instantons.

In our simulations, the physical volume depends on the tem-

perature, since the number of instantons is held fixed whilgnnancement visible s and y..— x appears to vanish
their density drops with temperature. Near the phase transiygye the phase transition. On the other hand, if one com-
}lon, we hﬁvﬁ‘/l3:(3'5 fITn) ' :n E'g' 15 Wke show ouriesults pares the peak heights of, for the two different quark
f{) O%\—Sllg I\}IyV smaller light quark  massm,=mq masses, one findg, max™ m~1° significantly stronger than
B ev. : : ... the (Ny=2) universality prediction. In addition to that, if one
Figure 14 clearly shows a peak in the sigma susceptlbllltytalculates the chiral cumulants(m. T)= y. /x... for the two

indicating the chiral phase transition. The position of thed.ﬁ A thev fail t i th . f1
peak is atT=125 MeV, somewhat too low as compared to tdr:sresr'lugqigjses, ey fail to cross in the regime of tempera-

the estimateT.=140 MeV from lattice simulations. The , o
delta susceptibility does not show any pronounced enhance- 'HiS_may be an indication that the quark mass
ment. This is also seen from the lower part of the figureM=0-07A is already too small and one is entering the re-
where we show the disconnected part of the scalar suscep§iMme Of “mesoscopic” QCD, where the mass is smaller or
bility and the differencey,— xs. Clearly, the peak iny,  comparable to the smallest eigenvalg,=O(1/V) of the
comes completely from the disconnected part. Furthermordlirac operator. There is now a well-developed theory of this
X»— X5 becomes very small above the phase transition, butegime[38,68, which we do not want to enter here. Instead,
shows no tendency to go to zero in the range of temperaturee have extended our calculations to larger masses
studied. At the smaller magsee Fig. 15 there is a broad m;=my=(0.10,0.13,0.15,0.17). In Fig. 16 we show the
maximum in the disconnected part of the scalar susceptibility
as a function of the quark mass. Foe=0.10A, the behavior
It was demonstrated if21] that one can study the topological is well described by a single exponent. Fitting the depen-
susceptibility by studying fluctuations of the topological charge indence of the peak height on the light quark mass, we find
subvolumes of a large system with total charge zero. Xdisymapmfo‘s“, quite consistent with theN;=2) univer-
8We are grateful to N. Christ for pointing this out. sality predictiony , max~m~%"°
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FIG. 16. Maximum of the disconnected part of the scalar sus-
ceptibility as a function of the quark mass. Also shown is the pa-
rametrizationy~m~ %84

100 N/V=1 fm~* and p=0.33 fm), which so successfully re-

produces many hadronic correlation functions. The situation
FIG. 15. Mesonic susceptibilities for a smaller light quark massis quite analogous to the nuclear matter problem, where re-

100
T (MeV)

m,=my=0.07A. Curves labeled as in Fig. 14. producing the saturation density and the binding energy re-
quires a delicate balance between the short range repulsive
VIIl. CONCLUSIONS core and the intermediate range attraction. In the instanton

liquid, the strength of the coré&he short range repulsipn

We have studied the structure of the instanton liquid atcontrols the diluteness of the ensemble. Too much repulsion,
zero and finite temperatures. For this purpose, we have irhowever, leads to a very small total density of instantons,
troduced a method that allows us to extract the free energy afhich can only be balanced by some intermediate range at-
the instanton liquid from numerical simulations. Using thistraction. In the raticAnsatz the short range core is weak and
method, we can determine the instanton density selfthe intermediate range attraction fairly shallow, leading to a
consistently, by minimizing the free energy. The resultingrather dense ensemble.
ensemble satisfies a number of important nonperturbative We note that at this point, the instanton—anti-instanton
properties of QCD, such as the trace anomaly, low energinteraction at short distances is not a very well-defined con-
theorems for fluctuations of the topological charge and glucept, and the core that is required to stabilize the ensemble
onic field strength and chiral perturbation theory predictions(for the streamlinéAnsatz is a purely phenomenological pa-
for the spectrum of the Dirac operator. These features do naameter. In practice, we have fixed this parameter in order to
depend on details of the instanton interaction, as long as it ieeproduce the instanton density and size distribution inferred
sufficiently repulsive at short distances to stabilize the sysfrom phenomenologial considerations and observed in lattice
tem. simulationg[17,18. Providing a more solid theoretical foun-

If we supplement the classical streamline interaction by alation for the instanton interaction will be an important di-
short range repulsive cor@oughly determined to give the rection for future study. One possibility, to derive the short
correct average instanton sjzehe instanton liquid in full  range part of the instanton interaction from the cross section
QCD (with two light and one intermediate mass flayost-  for isotropic multigluon productiof44], was already men-
bilizes at a densityN/V=0.174A*. Fixing the scale param- tioned in Sec. IV. Another idea, the inclusion of nonpertur-
eter in order to reproduce the “canonical” vali¢/V=1 bative corrections to the beta function, was discuss¢i9h
fm* [corresponding tq(as/7)G?)= (360 MeV)*], we find We have extended our simulations of the instanton liquid
a vacuum energy density=—280 MeV/fm® and a quark to finite temperature. For this purpose, we have to replace the
condensate(qq)=— (216 MeV)3. The average instanton instanton interaction and fermionic overlap matrix elements
size is p=0.43 fm, leading to a packing fraction with their finite temperature counterparts, satisfying the ap-
f=0.57%p* (N/V)=0.14. propriate boundary conditions in an Euclidean box with tem-

This means that the interacting instanton ensemble, espgoral extent IF. In this context, we have used the ratio
cially using the raticAnsatzrequired at finite temperature, is Ansatz which gives an ensemble that is too dense. This
not as dilute as the random ensemiglehere we fixed brings some additional uncertainty into our numerical re-
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sults, e.g., of the transition temperature. We find that in fulltions with A. Smilga and |. Zahed. Part of this work was
QCD, there is a phase transitionTat 125 MeV in which the  done while T.S. was a visitor at the Institute for Nuclear
chiral symmetry is restored. The mechanism that drives th&heory in Seattle. The reported work was partially supported
transition is the formation of polarized instanton—anti- by the U.S. DOE Grant No. DE-FG-88ER40388. Most of the
instanton molecules. As a result, tfguasijzero-modes be- numerical calculations were performed at the NERSC at
come localized, and chiral symmetry is restored. Lawrence Livermore.

Furthermore, for two light flavors the transition appears to
be second order, while foN;=3, there is evidence for a
weak first-order transition. We have also investigated the APPENDIX A: INSTANTON INTERACTION
phase diagram of QCD with many fermion flavors. Qualita- AT ZERO TEMPERATURE

tively, it is clear that many fermion flavors help the forma- In this appendix we specify the classical instanton inter-
tion of molecules. As a result, the transition temperature PP P

drops as the number of light flavors is increased. Rer ?Ct'?hn ut?:d.'n :)urtsrlqunulailons. From the.rorn’rll of t?he f‘%t_:on
larger than some critical valud$™, chiral symmetry is re- or the two-instantormnsalz one can easily show that the

stored even at zero temperature. Kgr=2,3, our results are general form of the instanton—a}nti-?nstanton interaction in
consistent wittN¢'=N,+ C, where 1< C<2. We have also the case of the gauge-group @is given by
studied the location of the discontinuity of the quark conden- o . -
sate in theT-m plane. Sint=B1(p)(So(R) +51(R)(u-R)*+5,(R)(u-R)%), (A1)

We have determined the free energy associated with in-
stantons, ignoring the perturbativeonzero-modecontribu-  \hereu , is the orientation vector introduced in Sec. Il and
tions from quarks and gluons. At smdll it rises slightly, R, is the unit vector connecting the centers of the instanton
but then starts to drop and b_ecomes very smallTior180 and anti-instanton. The interaction is given in units of the
MeV. While the energy density and pressure abdyeare

dominated by the perturbative Stefan-Boltzmann contribu-Slngle instanton actioBy=4(p). The argument of the beta

tions, instantons can provide a significant contribution to thefunctlon is not uniquely determined without a higher order

so called “interaction measureB=—(e—3p)/4 even at calculation. In practice, we have taken the geometric average

T>T.. Apart from the location of the phase transition, the p = Vpipa Of the instanton radii. For large separati@nthe
most important result of our work is thBtretains about half interaction(Al) can be embedded into $8) by making the
of its T=0 value atT=T,. Using the trace anomaly, the replacementy-R)?— |u-R|? and multiplying the first term
interaction measure is related to the gluon and quark condety |u|?.

sates. Indeed, by analyzing lattice simulations of full QCD, For the ratioAnsatz the instanton—anti-instanton interac-
one can show that about half of the glue remains condensetbn can be parametrized §%2]

at T=T, [69-71. More specifically, lattice simulations

show that the pressure remains small uitit2T., while

the energy density reaches the Stefan-Boltzmann value very JA_
quickly [41,72,57. It was emphasized if69] that this be- B1
havior requires that only part of the bag pressle the

gluon condensajeis removed across the phase transition. +
This is precisely the behavior observed in the instanton lig-

uid model.

Finally, we have studied the behavior of the Dirac specwherer =R/\/p,p, is the instanton—anti-instanton separation
trum and the mesonic susceptibilities near the phase transid units of the geometric mean of their radii. In the ratio
tion. This is related to the question whether the behavior ofAnsatz the instanton-instanton interaction is nonzero if the
these quantities is governed by critical scaling because of &vo instantons have different color orientations. The interac-
nearby second-order phase transition, and, more generallfipn can be parametrized by
what symmetries are restored in the transition. We find a
peak in the scalar-isoscalas) susceptibility, indicating the S 1 - .
chiral phase transition. The dependence of the peak height on B, m[%aul +0.071u[*]
the light quark mass is consistent with the expected scaling ! '
behavior at fairly large quark masses=0.1A, but is more In(r?) - -4
singular at smaller masses, probably due to the onset of —m[o-oalﬂ +0.47ul*].  (A3)
finite-size effects. Fom=0.1A, there is no hint of 1) 5
restoration: there is no peak in the isovector scafgrqus-
ceptibility and the Dirac spectrum contaitepproximately
zero modes abovel.. At smaller masses, the scalar-
isovector ) susceptibility shows an enhancement aroun
the critical point, but with the available data it is difficult to

4.0 1.66 0.72 Inr?) )
71207 (1+16a2°  (1r04z22? U

16.0 2.73
T %202 (1103323

)Iu~?<|2, (A2)

In the streamlineAnsatz conformal symmetry dictates that
the interaction depends on the relative separation and the
Jnstanton radii only through the conformal parameter

. . . . 2 2 2 2 2 242 1/2
tell whether this behavior will persist for larger volumes. - R*+pitpa  ((R°+pi+pp) 1 (Ad)
2pipa 4pipi '
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Sia
B

= ﬁ{—4[1—>\4+4>\2|n(>\)][|u|2—4|u. R|?]

+2[1- A2+ (1+A2)In(\)[(|u]2—4]u-R[?)?

+ul*+2(u)?(u*)?]}. (A5)

As discussed in Sec. Il, the instanton-instanton interaction

vanishes in the streamlin®nsatz
APPENDIX B: FERMIONIC OVERLAP MATRIX
ELEMENTS AT ZERO TEMPERATURE

A parametrization of the fermionic overlap matrix ele-
ment between instantons and anti-instantons in the Aom
satzwas already given in Sec. Il

1 4.0
pipa (2.0+R%/pipp)?

The matrix element in the ratiénsatzs very similar and we
employ the same parametrization. In the streamimsatz

Tia=i(u-R)

(B1)

T. SCHAFER AND E. V. SHURYAK

with ¢;=3/8 andc,= (37/32)*?.

APPENDIX C: INSTANTON INTERACTION
AT FINITE TEMPERATURE

In this appendix we give a parametrization of the classical
instanton interaction at finite temperature. For reasons ex-
plained in Sec. IV, there is no analogue of the streamline
interaction at finite temperature and we only specify the in-
teraction in the raticAnsatz Up to small changes that have
been introduced in order to improve the parametrization at
small temperatures, the interaction is identical to the one
given in[52]. Here, we also specify how to embed the(3U
parametrization into S(3).

At finite temperature, the interaction is still at most quar-
tic in the relative orientation vectou,. However, since
four-dimensional rotational invariance is broken, 'Ehe interac-
tion depends ofu,|? in addition to the invariantgi- R|? and
|u|? appearing in the zero temperature interaction. For the

the matrix element depends on the separation and the radiame reason, the interaction can now depend separately on

again only through the conformal parameker The matrix
element can be parametrized %3]

the spatial and temporal components of the vector
R.= (ﬁ,R4). At temperatures of interest here, the anisotropy

c A2 in the dependence &}, turns out to be small. The param-
Tia=i(u-R) pipn (1T L2EN2— 1)+ (N2 — 1) 2 etrization
(B2
J
Sa_ 40 B? - 1.66 0.72 In(r?) B? -
3.~ (7202 Z+520Y | i 16877 T (1704297 B2+ 078!
16.0 2.73 B? .
- + lu-RJ?
(r’+2.0%2 " (1+0.33%)%) B2+0.24+11.50%/(1+1.14?)

1

1

+0.36 Ir( 1+$

(1+0.013%)* g?+1.73

(lul2=[u-RI2=|ug)?) (C1)

therefore depends only an=R/\/p;ps With R=(R?+ R2)2. The inverse temperatugg=1/(T\p,p,) is also given in units
of the mean of the instanton radii. One can easily check that fe, the interactior(C1) reduces to the zero temperature
ratio Ansatz(A2). The interaction between two instantons can be parametrized by

In(r?) B
(1+1.17%%% p2+1.17

ST 1 B
B1 (1+0.432)3 g2+5.33

[0.63u|?+0.071u|*]— [0.090|2+0.470[%]

+1In (C2

B 1 12 14

APPENDIX D: FERMIONIC OVERLAP MATRIX ELEMENTS AT FINITE TEMPERATURE

At finite temperature, the fermionic overlap matrix element is still linear in the relative orientation wectdecause of
the loss of Lorentz invariance at finite temperature, the matrix element depends separatglgnohu - R:

(u-R)

= (DY

T|A:iU4fl+i f2.

A parametrization of the functionfs , was given in[52]. We have changed this parametrization slightly in order to improve
the behavior at small temperatures. The resultffois
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et
c_ \B7\E B 1
- r {777') NE ,82) 7Tr) r 2 1.75
cos B —co B + k7 2| & ~ 25 +ﬁ+ p 1-0.69 ex N
0.7632 ) (71'7'2 0.18
|1t 0827 r 1217019872 B/ Tvoix?) (b2)
wherer =|R|/\pipa, 7=R4/\Jpipa, andB=1/(Tp,pa) are given in units of the mean instanton radius. The resulf fas
[5leod oo 5
—|cog —-|sinf —-
1
f, B B B ’ (D3)
r(rrr) S(M) ,]? (/32) p( 2.067-rr) ar (2 14042 ’é 0.34)
Ccos F —CO F + K5 ? exp — B +ﬁ+ ; +0. ex —T
with «, , given by
1 1
Ki=— e (D4)

2y Ko 2
0.53+(§2) 0.6%(%)

One can easily verify that the parametrizati@i)—(D4) reduces tdB1) in the zero temperature limit.
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