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Interacting instanton liquid in QCD at zero and finite temperatures

T. Schäfer* and E. V. Shuryak
Department of Physics, State University of New York at Stony Brook, Stony Brook, New York 11794

~Received 25 September 1995!

In this paper we study the statistical mechanics of the instanton liquid in QCD. After introducing
partition function as well as the gauge-field- and quark-induced interactions between instantons, we desc
method to calculate the free energy of the instanton system. We use this method to determine the equili
density and the equation of state from numerical simulations of the instanton ensemble in QCD for var
numbers of flavors. We find that there is a critical number of flavors above which chiral symmetry is resto
in the ground state. In the physical case of two light and one intermediate mass flavors, the system unde
a chiral phase transition atT.125 MeV. We show that the mechanism for this transition is a rearrangement
the instanton liquid, going from a disordered, random phase at low temperatures to a strongly correl
molecular phase at high temperature. We also study the behavior of mesonic susceptibilities near the
transition.

PACS number~s!: 12.38.Lg, 05.70.2a, 11.30.Rd
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I. INTRODUCTION

Understanding the vacuum structure of gauge theor
such as QCD is one of the main problems in quantum fie
theory today. It also provides the theoretical foundation f
hadronic models and hadronic phenomenology from the u
derlying field theory of the strong interaction, quantum chr
modynamics. There are a number of indications that inst
tons, classical tunneling trajectories in imaginary~Euclidean!
time, are an important ingredient of the QCD vacuum.

Soon after the discovery of instantons 20 years ago@1#, it
became clear that instantons may provide at least a qua
tive understanding of many features of the QCD vacuu
Instantons solve the U~1!A problem@2#, they give a mecha-
nism for chiral symmetry breaking@3#, contribute to the
gluon condensates, and lead to a nonperturbative vacu
energy@4,5#.

The development of a quantitative theory based on the
ideas took much longer. The instanton liquid model w
originally suggested by Shuryak in 1982@6#, guided mainly
by phenomenological considerations. Later, Diakonov a
Petrov developed an analytical approach based on the va
tional method@7# ~see also@8#!. The first numerical simula-
tions of the ‘‘instanton liquid’’ were reported in@9,10#. Dur-
ing the past two years, we have shown@11–13# that the
‘‘random instanton liquid model’’~RILM ! provides a suc-
cessful description of a large number of hadronic correlati
functions, including mesons and baryon made of lig
quarks, heavy-light systems, and glueballs. These correla
not only give reasonable values for the corresponding re
nance masses and coupling constants, but they also com
well with point-to-point correlation functions extracted from
phenomenology@14# or measured on the lattice@15#.

Following these developments, several recent latt
simulations have focused on the role of instantons in t
QCD vacuum, both at zero and finite temperatures. Usin

*Present address: Institute for Nuclear Theory, University
Washington, Seattle, WA 98195.
5321/96/53~11!/6522~21!/$10.00
ies
ld
or
n-
o-
an-

lita-
m.

um

se
as

nd
ria-

on
ht
tors
so-
pare

ice
he
g a

method called ‘‘cooling,’’ one can relax any given gauge
field configuration to the closest classical component of th
QCD vacuum. The resulting configurations were known t
be of multi-instanton type@16#, but the more recent work by
Chu et al. @17# has provided quantitative measurements o
the parameters of the instanton liquid, as well as detaile
studies of the dynamical effects of instantons. These autho
conclude that the instanton density in the quenched theo
~without dynamical fermions! at zero temperature is
n.(1.3–1.6! fm24 while the average size is aboutr.0.35
fm. These numbers confirm the key parametersn51 fm24

and r51/3 fm of the instanton liquid model mentioned
above. In addition to that, Chuet al.studied correlation func-
tions in the cooled configurations, finding that they hardl
change from the original, fully quantum configurations. Thi
would imply that instanton effects dominate over perturba
tive and confinement forces in determining the structure
low-lying hadronic states. A lattice measurement of the in
stanton size distribution for pure SU~2! gauge theory was
performed in@18#, where also an attempt was made to stud
correlations between instantons. The size distribution w
compared to the predictions of the interacting instanton liq
uid model in@19#.

In this paper we want to report a detailed study of th
statistical mechanics of the interacting instanton liquid mod
~IILM !, both at zero and finite temperatures. The purpose
this study is twofold. First, we want to give a fully consisten
treatment of the model at zero temperature. Our goal is
construct an interacting instanton ensemble that is consist
with the low energy theorems that follow from the renormal
ization and symmetry properties of QCD, such as the tra
anomaly, chiral Ward identities, or Ward identities for fluc
tuations of the topological charge. Second, we explore th
model at nonzero temperature. In this paper, we will lim
ourselves to the analysis of bulk properties, such as the e
ergy density, the chiral condensate, and mesonic susceptib
ties. A detailed study of hadronic correlation functions wil
be presented in a forthcoming publication@20#.

At zero temperature, we want to study the importance o
instanton interactions and determine those features of the

of
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53 6523INTERACTING INSTANTON LIQUID IN QCD AT ZERO AND . . .
teracting ensemble that differ from the simplest, random e
semble~RILM !. We also want to determine the relation be
tween the instanton interaction and global parameters~such
as the density and average size! of the instanton liquid. Fur-
thermore, we want to quantify the role of instanton intera
tions in producing correlations among the instantons. This
of interest, since despite the success of the random mode
the description of most hadronic correlation functions@11#, it
fails in channels where the single instanton interaction
strongly repulsive~such as theh8 andd meson channels!. As
shown in @21,13,22#, the correlations among instanton
caused by their classical and fermion-induced interactio
lead to a correct description of topological charge screen
and theh8 channel.

The role of correlations among the instantons is partic
larly important with regard to the nature of the chiral pha
transition. Originally, it was believed@6,23,24# that chiral
symmetry is restored because of the rapid disappearanc
instantons at high temperature@25#. Ilgenfritz and Shuryak
realized@26# that instantons can be present even above
chiral phase transition, as strongly correlated instanton–a
instanton molecules~see also@27#!. In this case, the transi-
tion is determined by the phase equilibrium between the lo
temperature ‘‘liquid’’ and high temperature ‘‘molecular’’
phase. Shuryak and Velkovsky later argued that instan
suppression is essentially a plasma effect and should no
present below the phase transition@28#. This means that the
transition is driven by the formation of molecules@31,32#,
rather than by the suppression of individual instantons. Th
is some support for this scenario from lattice simulatio
performed by Chu and Schramm@29#. Extending the cooling
method to finite temperature, they find that the instanton d
sity is essentially independent of temperature below t
phase transition, while it is exponentially suppressed abo
the transition temperature. First evidence for the presence
molecules nearTc was reported in@30#.

So far, the transition has only been studied using the sc
matic ‘‘cocktail’’ model introduced by Ilgenfritz and
Shuryak@31#. In this model, the instanton liquid consists o
two components, a random and a molecular one. The f
energy is determined separately for the two components
their concentrations are then determined by minimizing t
total free energy. The chiral phase transition occurs when
concentration of random instantons is zero. This approa
predicts the presence of a substantial number of instant
even if T.Tc , causing new nonperturbative effects in th
plasma phase. One such effect, studied in@32#, is the
‘‘molecule-induced’’ effective interaction between quark
leading to a spectrum of spacelike screening masses con
tent with lattice data. Another possible consequence, the s
vival of certain hadronic modes above the phase transit
was studied in@33#.

In the present work, we significantly improve on the sch
matic model used before and do a complete calculation in
interacting ensemble. In this way, many approximations a
relaxed and all possible correlations among instantons~not
just polarized instanton–anti-instanton pairs! are included.
The paper is organized as follows. In Sec. II we introduce t
partition function of the instanton liquid and specify th
gauge field and fermion-induced interactions between inst
tons. Detailed parametrizations of these interactions can
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found in the appendices. In Sec. III we describe the metho
which is used to calculate the partition function. In Sec. IV
we use this method to study the instanton ensemble at ze
temperature. In Secs. V and VI, we generalize the method
finite temperature and study the nature of the chiral pha
transition in the instanton liquid. In Sec. VII we study some
phenomena associated with the transition, in particular, t
Dirac spectrum and the mesonic susceptibilities.

II. THE PARTITION FUNCTION
OF THE INSTANTON LIQUID

The Euclidean partition function of QCD is given by

Z5E DAmexp~2S@Am#!)
f

Nf

det~ iD̂1 imf !, ~1!

where the gauge-field action is given byS@Am#
51

4*d
4xTr(FmnFmn) and the Dirac operator is defined by

D̂c5gm(]m2 iAm)c.
The main assumption underlying the instanton model

that the full partition function can be approximated by a
partition sum in which the relevant gauge configurations a
superpositions of instantons and anti-instantons. In this pa
tition function, the relevant degrees of freedom are the co
lective coordinates associated withN1 instantons andN2

anti-instantons:

Z5
1

N1!N2!
E )

i

N11N2

@dV id~r i !#exp~2Sint!

3)
i

Nf

det~ iD̂1 imf !. ~2!

Here,dV i5dUid
4zidr i is the measure in the space of col-

lective coordinates, color orientation, position, and size
associated with single instantons. For the gauge gro
SU(Nc), there are 4Nc collective coordinates per instanton.
Fluctuations around individual instantons are included i
Gaussian approximation. This gives the semiclassical insta
ton amplitude, originally calculated by ’t Hooft@2#. To two-
loop accuracy, it reads

d~r!5CNc
r25b1~r!2NcexpF2b2~r!

1S 2Nc2
b8

2bD b8

2b

1

b1~r!
ln@b1~r!#G , ~3!

CNc
5

4.6 exp~21.86Nc!

p2~Nc21!! ~Nc22!!
, ~4!

whereb1(r) andb2(r) are the one- and two-loop beta func-
tions,

b1~r!52b ln~rL!,

b2~r!5b1~r!1
b8

2b
lnS 2bb1~r! D , ~5!

with the one- and two-loop coefficients
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6524 53T. SCHÄFER AND E. V. SHURYAK
b5
11

3
Nc2

2

3
Nf , b85

34

3
Nc
22

13

3
NcNf1

Nf

Nc
. ~6!

The coefficientCNc
was calculated in a Pauli-Villars renor

malization scheme andL is the corresponding scale param
eter. The classical actionS058p2/g2 is included in the
semiclassical amplitude~3!. The classical interaction be-
tween instantons is denoted bySint . We approximate this
interaction by a pure two-body interactionSint5
1
2( IÞJSint(V IJ) which only depends on the relative coord
nates of the two instantons. The importance of genuine thr
body effects in the classical interaction between instanto
was studied in@9#, with the conclusion that this contribution
is negligible as long as the density is not extremely large

The two-body interactionSint(V IJ)5S@Am(V IJ)#22S0 is
calculated classically, by inserting the two-instanton gau
potential Am(V IJ) into the action. There are no exac
instanton–anti-instanton solutions to the classical Yan
Mills equations, so in practice one has to use an ansatz
the gauge potential. The resulting interaction will then d
pend on the details of the trial function. Various trial func
tions have been used in the literature:~i! the sumAnsatz@7#,
~ii ! the ratioAnsatz@9#, ~iii ! the conformally invariant Yung
Ansatz@34#, and~iv! the exact streamline~or valley! solution
@35#. The latter is characterized by the fact that the action
minimized in all directions except along the collective coo
dinate describing the separation between the two instanto
In this sense, the streamline solution is the optimal classi
instanton–anti-instanton configuration.

In order to discuss the properties of the classical intera
tion between instantons, let us introduce the four-vec
um51/2i tr(UI

†UAtm
1), whereUI ,A are the orientation matri-

ces of the instanton and anti-instanton andtm
1 is the 232

matrix (tW ,2 i ). For the gauge-group SU~2!, um is a real unit
vector whereas for SU~3! it is a complex vector with
uuu2<1. In any case, we can define an angleu by

cosu5
uu•R̂u

uuu
, ~7!

whereR5zI2zA is the vector connecting the centers of th
two instantons. For all the trial functions mentioned abov
the large distance part of the instanton–anti-instanton int
action is given by

Sint5b1~ r̄ !
4r1

2r2
2

R4 uuu2~124 cos2u!, ~8!

which is the dipole-dipole interaction originally discussed b
Callan, Dashen, and Gross@3#. The interaction is given in
units of the single instanton actionb1(r). The argument of
the beta function is not exactly determined without a calc
lation of the fluctuations around the two-instanton config
ration. In practice, we take the argument to be the geome
meanr̄5Ar IrA of the two instanton radii. The interaction is
attractive for the relative orientation cosu51, but vanishes
after averaging over all anglesu. The short distance behavio
depends on the ansatz chosen. In the sumAnsatz, there is a
substantial repulsive core at distancesR,A6r @7#, but the
amount of repulsion at short distances becomes significan
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weaker using the more refined trial functions. We will dis
cuss this question in more detail in the next section. A p
rametrization of the interaction in the ratio and streamlin
Ansätz is given in Appendix A. In Fig. 1~a! we show the
ratio and streamline interaction for the most attractive a
repulsive orientations. One clearly observes that the inter
tions are similar at large distance, but differ significantly a
short distance. In particular, the streamline interaction has
repulsion at all for the most attractive orientation. The inte
action smoothly approachesSint522S0 at short distance,
corresponding to the annihilation of the instanton–an
instanton pair. Figure 1~a! also shows the effect of a phe-
nomenological core in the streamline interaction. The re
soning behind this modification will be discussed in mor
detail in the next section.

For all the trial functions except for the simple sumAn-
satz, the instanton-instanton interaction is much weaker th
the instanton–anti-instanton one. In fact, in the streamli
Ansatz, the instanton-instanton interaction vanishes. This is
reflection of the fact that there is an exact two-instanton s
lution ~with S52S0) for arbitrary values of the relative co-
ordinates.

FIG. 1. ~a! Classical instanton–anti-instanton interaction in th
streamline~dash-dotted line! and ratioAnsatz~short dashed line!.
The interaction is given in units of the single instanton actionS0 for
the most attractive (cosu51) and most repulsive (cosu50) orienta-
tions. The dash-dotted curves show the original streamline inter
tion, while the solid curves show the interaction including the co
introduced in Sec. III.~b! shows the fermonic overlap matrix ele-
ments in the streamline~solid curve! and ratio Ansatz ~dashed
curve!. The matrix elements are given in units of geometric mean
the instanton radii.
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The fermionic determinant induces a very nonlocal inte
action among the instantons. Evaluating this determinant
actly in the instanton ensemble still constitutes a formidab
problem. In practice, we factorize the determinant into a lo
and a high momentum part@36#,

det~D̂1mf !5S )
i

N11N2

1.34r i D det~T1 imf !, ~9!

where the first factor, the high momentum part, is the pro
uct of contributions from individual instantons calculated
Gaussian approximation, whereas the low momentum p
associated with the fermionic zero modes of individual i
stantons is calculated exactly.

This means that the instanton-induced ’t Hooft interactio
between quarks@2,37# is included in all orders. The low mo-
mentum part of the spectrum of the Dirac operator is also
special significance in connection with the structure of chir
symmetry breaking.TIA is theN13N2 matrix of overlap
matrix elements:

TIA5E d4xfA0
† ~x2zA!iD̂ xf I0~x2zI !, ~10!

wheref I ,A0 are the fermionic zero mode wave functions o
the instanton and anti-instanton. Because of the chirality
the zero modes, the fermionic overlap matrix elements b
tween instantons with the same topological charge vanish
In the following, we will only consider quadratic matrice
with N15N2 . This means that we study the system at fixe
topological chargeQ5N12N50, rather than at fixed theta
angle. In the thermodynamic limit, the distribution of wind
ing numbers is sharply peaked around zero@38#, and fixing
the total topological charge is not expected to affect our
sults. Fluctuations of the topological charge are important
connection with the U~1!A problem. They can be studied by
considering appropriately chosen subsystems@21#. We find
that local fluctuations obey the expected Ward identities a
that the mass of theh8 has the correct value.

The general structure of the overlap matrix elements
given byTIA5(u•R) f (R). This means that, like the gauge
field-induced interaction, the fermionic overlap is maxim
when the relative instanton–anti-instanton orientation
given by cosu51. Similar to the gauge-field-induced interac
tion between instantons, the fermionic overlap matrix e
ments depend on theAnsatzfor the two-instanton gauge po-
tential. In this case, however, the dependence on the t
function is not as important. For the sumAnsatz, one can use
the equations of motion and replace the covariant derivat
in ~10! by an ordinary one. The result can be parametrized

TIA5 i ~u•R!
1

r IrA

4.0

~2.01R2/r IrA!2
, ~11!

which is exact at large distances. The streamlineAnsatz
gives the same large distance behavior, but differs at sm
separations. As long as the instanton ensemble is sufficie
dilute, this difference does not strongly affect physical o
servables. We give a parametrization of the streamline m
trix elements in Appendix B.
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III. THE FREE ENERGY
OF THE INSTANTON ENSEMBLE

In this section, we describe a method to evaluate the pa
tition function of the instanton liquid. Using this method, we
can calculate the free energy numerically as a function of th
density of instantons, and determine the equilibrium densit
from the condition that the free energy is minimal.

The problem in determining the free energy is connecte
with the fact that the complicated statistical mechanics ass
ciated with the partition function~2! can, in general, only be
dealt with by performing Monte Carlo simulations@9,10,39#.
These simulations are ideally suited for the calculation o
various expectation values, but do not give a direct determ
nation of the partition function, which provides the overall
normalization. Previous Monte Carlo calculations have
therefore been restricted to simulations of the ensemble at
fixed density of instantons, which was determined from phe
nomenological considerations~typically 1 fm24). Here, we
want to go beyond this approximation and minimize the free
energy. A method to calculate the partition sum, which is
well known in statistical mechanics, quantum mechanic
~see, e.g.,@40#!, and lattice gauge theory@41#, is ‘‘adiabatic
switching.’’ For this purpose, one writes the effective action
as

Seff5S01aS1 , ~12!

which interpolates between a solvable actionS0 and the full
actionS01S1 . If the partition function for the system gov-
erned by the actionS0 is known, the full partition function
can be determined from

lnZ~a51!5 lnZ~a50!2E
0

1

da8^0uS1u0&a8, ~13!

where the expectation valuê0u•u0&a depends on the cou-
pling constanta. In our case, the effective action is given by

Seff52 (
i51

N11N2

ln@d~r i !#1Sint1tr ln~ iD̂1 imf !. ~14!

The obvious choice for decomposing the effective action o
the instanton liquid would be to identify the logarithm of the
single instanton distribution with the free action,
S05( i ln@d(ri)#. This procedure, however, does not work
since the instanton distribution behaves liked(r);r (b25),
so that ther integration in the free partition function would
not be convergent. This is the famous infrared problem
which plagues the dilute instanton gas approximation@3#. As
explained in more detail in the next section, the instanto
liquid is stabilized by the repulsive core in the gauge field
interaction once the full interaction is taken into account. We
therefore consider the decomposition

Seff5 (
i51

N11N2 S 2 ln@d~r i !#1~12a!n
r i
2

r2
D

1a„Sint1tr ln~ iD̂1 imf !…, ~15!

wheren5(b24)/2 andr̄2 is the average size squared of the
instantons with the full interaction included. The term pro-
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portional to (12a) serves to regularize ther integration for
a50. It disappears fora51, where the original action is
recovered. The specific form of this term is irrelevant; o
choice here is motivated by the fact that@at least for the
one-loop measured(r)] Seff(a50) yields a single instanton
distribution with the correct average sizer̄2. This means that
the single instanton distribution generated bySeff(a50) is a
variationalAnsatzfor the full one-instanton distribution.

The partition function corresponding to the variation
single instanton distribution is given by

Z05
1

N1!N2!
~Vm0!

N11N2,

m05E
0

`

drd~r!expS 2n
r2

r2
D , ~16!

wherem0 is the normalization of the one-body distribution
Ther integration inm0 is regularized by the second term in
~15!. The full partition function obtained from integrating
over the couplinga is

lnZ5 ln~Z0!1NE
0

1

da8^0un
r2

r̄2

2
1

N
@Sint1tr ln~ iD̂1 imf !#u0&a8, ~17!

whereN5N11N2 . The free energy density is finally given
by F521/V lnZ whereV is the four-volume of the system
The pressure and the energy density are related toF by

p52F, e5T
dp

dT
2p. ~18!

At zero temperature, we havee52p5F and the free energy
determines the shift of the QCD ground state relative to t
perturbative vacuum. Such a shift is certainly present in o
case, since tunneling lowers the ground state energy.

The full partition function can be compared to the varia
tionalAnsatzintroduced in@7# and employed in many works
on the subject@42,23,26,24,35,31#. For simplicity, we restrict
the discussion at this point to pure gauge theory, i.e., neg
the fermionic determinant. Since the variationalAnsatzig-
nores any correlation between instantons, only the color a
spatial average of the interaction enters

E d4RdU Sint~R,U,r1 ,r2!5k2
Nc

Nc
221

r1
2r2

2 , ~19!

whereSint(R,U,r1 ,r2) is the interaction of two instantons
with radii r1,2, separationR, and relative orientationU. In
the sumAnsatz, both theII andIA interactions give the same
average repulsionk25 27

4 p2 @7#. In the ratio and streamline
Ansatz, this repulsion is considerably weaker. In the stream
line Ansatz, only the IA interaction is repulsive with
k254.772@35#.

If the variational single instanton distribution
d(r)exp(2nr2/r2) is close to the true distribution fora51,
we can calculate the expectation value in~17! using the
ur
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variational one. One findŝSint&.^S int&a505Nn/2 and the
resulting estimate for the partition function is

Z5
1

@~N/2!! #2
~Vm0!

NexpS 2
Nn

2 D , ~20!

which agrees with the result derived in@7#. Varying
F521/V lnZ with respect to the density, one finds the ex
pected resultN/V52m0 .

Numerical results for different interactions were com
pared in@42,35#. For the sumAnsatz, the variational method
givesN/V50.18L4 with r̄50.48L21, whereas the stream-
line Ansatzgives N/V50.54L4 and r̄50.69L21. The di-
mensionless dilutenessf50.5p2r4(N/V) ~the fraction of
space-time occupied by instantons! of these ensembles is
f50.05 and 0.60, respectively, to be compared wit
f50.06 in the original instanton liquid model. The varia-
tional method was extended to light quarks in@43,36,26,24#.
We will study this problem in detail in the next section.

If correlations among instantons are important, the varia
tional method is not expected to provide an accurate estima
for the partition function and other observables. Since th
main source of correlations in the instanton liquid are dy
namical quarks, this issue is particularly important for rea
QCD with two light and one intermediate mass flavors. Also
as argued in the Introduction, we expect chiral symmetry
be restored because of the formation of instanton–an
instanton molecules. This feature is certainly not captured
the variational model~at least not in its simplest form!, and
we will therefore study the full partition function numeri-
cally using the method introduced in this section.

IV. THE INSTANTON ENSEMBLE
AT ZERO TEMPERATURE

In this section we want to present numerical results ob
tained from simulations of the instanton liquid at zero tem
perature. While the streamlineAnsatz, in principle, provides
the ‘‘best’’ classical interaction, its derivation relies heavily
on conformal symmetry and we do not know how to exten
it to finite temperature. In Sec. VI, we will therefore give a
brief discussion of the ratioAnsatzensemble at zero tem-
perature.

A general problem with calculations in the interacting in
stanton model is the treatment of very close instanton–an
instanton pairs. On the one hand, these configurations do
contribute significantly to physical observables, such as th
quark condensate, hadronic masses, or the topological s
ceptibility. Very close instanton–anti-instanton pairs with a
attractive relative orientation correspond to perturbative flu
tuations and should not be taken into account as a nonp
turbative effect. On the other hand, the partition function o
the instanton liquid introduced in the last section treats eve
very close pairs as two independent pseudoparticles. Es
cially in the streamlineAnsatz, which provides very little
short range repulsion, this means that close pairs can contr
ute significantly to the free energy of the system. Ideally, on
would need a consistent determination of the space of co
lective variables for very close pairs and a subtraction pr
cedure for purely perturbative fluctuations. Unfortunately
such a method is not available at present. There is an int
esting suggestion to define the instanton interaction~via the
optical theorem! by the cross section for isotropic multigluon
production@44#. In this case, the existence of a short rang
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TABLE I. Parameters of the pure gauge instanton ensemble in the streamlineAnsatzfor various values of
the core parameterA. The density and average instanton size are given in units ofLQCD and fm. The
dimensionless scale parameterf is introduced in the text.

A N/V@LQCD
4 # r@LQCD

21 # f LQCD @MeV# N/V @fm24# r @fm#

24 0.97 0.60 0.62 202 1.00 0.59
64 0..41 0.58 0.16 250 1.00 0.45
128 0.30 0.58 0.12 270 1.00 0.43
256 0.18 0.55 0.08 307 1.00 0.36
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core in the instanton interaction is related to the questi
whether the multigluon production cross section at high e
ergy can reach the unitarity bound. If, as it has been s
gested in@45# and other works on the subject, the cross se
tion only grows until it reaches a square root suppression a
then turns, the instanton–anti-instanton interaction would d
crease until it reaches a minimum at whichSint52S0 , and
then show a short distance repulsive core.

In practice, we have decided to deal with the problem
very close pairs in the streamlineAnsatzby introducing a
purely phenomenological short range repulsive core

Score5b1~ r̄ !
A

l4uuu2,

l5
R21r I

21rA
2

2r IrA
1S ~R21r I

21rA
2 !2

4r I
2rA

2 21D 1/2 ~21!

in both theII and IA interactions. The orientational facto
}uuu2 ensures that the repulsion is reduced for instantons
different SU~2! embeddings. The interaction is repulsive, in
dependent of the relative orientation cosu. l is the conformal
parameter that determines the functional form of the strea
line interaction@35# andA controls the strength of the core
This parameter governs the dimensionless diluten
f50.5p2r4(N/V) of the instanton ensemble.
The second parameter of the instanton liquid is the sc

LQCD in the partition function, which fixes the physical units
Although LQCD is known, in principle, from perturbative
QCD, the accuracy of these determinations is not very h
and quantities such as the instanton density (N/V);LQCD

4

are very sensitive to the precise numerical value of the sc
parameter. As in lattice calculations, one may therefore
the scale using the value of some observable, for examp
hadronic mass, as the basic unit. Which quantity to ho
fixed while comparing different theories, e.g., quenched a
unquenched calculations, is pure convention. We have
cided to proceed in a very simple way and fix our units su
thatN/V51 fm24 in all cases. This means that in this wor
1 fm is, by definition, the average distance between insta
tons ~at T50). The corresponding instanton density agre
well with the lattice measurements mentioned above and c
responds to the canonical value of the gluon condens
(as /pG

2)5(350 MeV! 4.
We have studied the instanton ensemble for various v

ues of the core parameterA. The results are summarized in
on
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Table I. The minimal value ofA needed in order to stabilize
the ensemble isA.16. Increasing the core, one obviousl
makes the ensemble more dilute. However, as the interact
becomes more repulsive, the density in units of the sca
parameter drops and one has to increase the value ofLQCD in
order to keep the physical density fixed. In practice, we ha
chosenA5128, so thatLQCD remains below 300 MeV,
which is roughly the upper limit of the experimental unce
tainty. As a consequence, the ensemble is not as dilute
suggested by phenomenology (n51 fm24 andr50.33 fm!,
but the diluteness is comparable to the lattice res
n5(1.4–1.6! fm24 andr50.35 fm @17#. Two more impor-
tant parameters of the ensemble are the average instan
actionS5(8p2)/g2 and the average interactionSint /N per
instanton. ForA5128, we find S.6.4 and Sint /N.1.0,
showing that the system is still semiclassical and that inte
actions among instantons are important, but not dominan

Detailed results of our simulations forA5128 are shown
in Figs. 2–5. The partition function at each instanton dens
was determined by generating 5000 configurations with
instantons at 10 different coupling constantsa. The varia-
tional Ansatz~16! for the partition function was determined
from 600 initial sweeps with the full interaction (a51). The
integral~17! was determined by gradually lowering the cou
pling to a50 and then raising it back toa51 ~hysteresis
method!. The difference in the results between the up an
down sweeps provides an estimate of the error in the integ
due to incomplete equilibration. The average between the
and down sweeps usually provides a good estimate for
correct result, even if equilibration is slow~as will be the
case close to the phase transition!.

Figure 2~a! shows the free energy vs the instanton dens
~in units of L4) for the pure gauge theory~without fermi-
ons!. At low density the free energy is roughly proportiona
to the density, but at larger densities repulsive interactio
become important, leading to a well-defined minimum. W
also show the average action per instanton as a function
the density. The average action controls the probabil
exp(2S) to find an instanton, but has no minimum in th
range of densities studied. This shows that the minimum
the free energy is a compromise between maximum entro
and minimum action.

Fixing the units such thatN/V51 fm24, we have
L5270 MeV and the vacuum energy density generated
instantons ise52526 MeV/fm3. This important quantity is
related to the gluon condensate by the trace anomaly

e52
b

128p2 ^g2G2&, ~22!
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where b5 11
3Nc in the pure gauge case. For a sufficient

dilute system of instantons,1 the gluon condensate is simply
proportional to the instanton density,e52b/4(N/V)
52565 MeV/fm3. The good agreement of this number wit
the energy density determined above shows that our calc
tion is consistent with the trace anomaly. This is also true
the variational method@7#, as indeed one would expect fo
any calculation that does not introduce any dimension
scale except forL. Also note that not only the depth of the
free energy, but also its curvature~the instanton compress-
ibility !, is fixed from a general theorem. From standard the
modynamical relations, the compressibility is related to t
mean square fluctuation of the particle number. This quan
is determined by a low energy theorem derived by Noviko
et al. @46#:

E d4x^g2G2~x!g2G2~0!&5
128p2

b
^g2G2&. ~23!

Similar to the trace anomaly~22!, this relation follows from
the renormalization properties of QCD. Saturating~23! with
a dilute system of instantons, one has^(DN)2&54/bN,
whereDN is the mean fluctuation of the number of instan
tons in a volumeV. For the compressibility of the instanton
liquid, this implies

1As mentioned above, the average interaction is only a 15% c
rection to the single instanton action.

FIG. 2. Free energy, average instanton action, and quark c
densate as a function of the instanton density in the pure ga
theory. All quantities are given in units of the scale parame
LQCD.
ly
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]2F

]~N/V!2
5
b

4 SNVD 21

. ~24!

We have determined the compressibility from our data an
find it to be 3.2(N/V)21, compared with 2.75(N/V)21 from
Eq. ~24!. We have also studied density fluctuations in th
interacting instanton liquid@21,13# and have found good
agreement with the low energy theorem~see also@7,47#!.

Next, we study the effects of light quarks on the instanto
ensemble. A problem that is well known in lattice simula
tions is the fact that finite volume effects are more severe
the presence of light fermions. These ‘‘mesoscopic’’ effec
become important if the mass of the Goldstone boso
mp;AmL is comparable to the inverse box size 1/L. In
order to avoid these problems, one is often forced to wo
with light quark masses that are larger than their physic
values. The calculations reported below were performed wi
light quark massesmu5md50.1L, while the strange quark
mass isms50.7L. If one makes the quark mass smalle
while keeping the volume fixed, then chiral symmetry break
ing will eventually disappear.

The free energy as a function of the instanton density
full QCD is shown in Fig. 3~a!. We find that the free energy
looks very similar to the pure gauge case, but the minimu
is shifted to a smaller densityN/V50.174L4. With our con-
vention N/V51 fm24 as above, the scale is given by
L5310 MeV. This gives the instanton-induced vacuum en

or-

on-
uge
ter

FIG. 3. Free energy, average instanton action, and quark co
densate as a function of the instanton density in the theory with tw
light and one intermediate mass flavors. All quantities are given
units of the scale parameterLQCD.
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ergy e52280 MeV/fm3, which is smaller as compared to
that in the pure gauge case. In the presence of quarks,
trace anomaly gives2

e52
b

128p2 ^g2G2&1(
f

1

4
mf^q̄fqf&. ~25!

The main difference as compared to the pure gauge cas
that the Gell-Mann–Low coefficient is changed fromb511
to b59 ~for Nf53). Estimating the gluon condensate from
the instanton density as above, we gete52488 MeV/fm3.
This number does not agree very well with the value e
tracted from the free energy. One possible reason is t
interactions are more important in the full ensemble so th
the gluon condensate is not proportional to the instanton d
sity. Another problem might be connected with the value
the quark mass. As mentioned above, if one enters the
gime of mesoscopic QCD, one may encounter addition
scale breaking not described by the trace anomaly. We

2Despite the factor 1/4 in front of the quark condensate contrib
tion, this relation is consistent with the general resu
^q̄fqf&5]/]mf lnZ. The remaining mass dependence of the vacuu
energy density comes from the gluon condensa
]/]mf^g

2G2&5296p2/b^q̄fqf&, which is valid for light quarks.

FIG. 4. Distribution of instanton sizes, eigenvalue spectrum
the Dirac operator, and distribution of fermionic overlap matr
elements in pure gauge theory.r,l andTIA are given in units of the
scale parameter. The distribution functions have arbitrary units.
the
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deed find that the scale anomaly can be saturated with th
instanton density for larger quark masses.

At the minimum of the free energy, we can also determine
the quark condensate@see Fig. 3~c!#. In full QCD, we find
^q̄q&52(216 MeV! 3, which is in good agreement with the
phenomenological value. This value can also be compared
the quark condensate in quenched QCD@calculated in the
pure gauge configurations, see Fig. 2~c!# ^q̄q&52(251
MeV! 3, showing that light quarks suppress the quark con
densate.

Additional information about the ensemble is provided by
the distribution of the instanton sizes, Dirac eigenvalues, an
fermionic overlap matrix elements. In Figs. 4 and 5, we
present these distributions for the two cases discussed abo
The instanton size distribution shows the perturbativerb25

behavior at small sizes, has a maximum~at r50.50L21 in
quenched andr50.65L21 in full QCD! and falls off for
larger sizes. The average sizes arer50.43 fm in quenched
andr50.42 fm in full QCD. The diluteness parameter in the
full ensemble is f50.14, compared withf50.17 in the
quenched calculation.

The distribution of eigenvalues of the Dirac operator,
iD̂cl5lcl , contains a lot of useful information about the
spectrum of the theory. We will discuss some of these que
tions in more detail below. Here, we only mention that the
Banks-Casher relation,̂q̄q&52r(l50)/p, connects the
density of eigenvalues of the Dirac operator near zero wit
the chiral condensate. From Figs. 4~b! and 5~b!, one clearly

u-
lt
m
te,
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ix

FIG. 5. Distribution of instanton sizes, eigenvalue spectrum o
the Dirac operator, and distribution of fermionic overlap matrix
elements in full QCD.
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6530 53T. SCHÄFER AND E. V. SHURYAK
observes that the instanton liquid leads to a nonvanish
density of eigenvalues nearl50. The results also show tha
the presence of light quarks suppresses the number of sm
eigenvalues. While the spectrum is peaked towards sm
eigenvalues in the purge gauge case, it is essentially fla
full QCD. This is consistent with the prediction from chira
perturbation theory@48#:

r~l!52 p^q̄q&1
^q̄q&2

32p2f p
4

Nf
224

Nf
ulu1•••, ~26!

which is valid forNf>2 ~no definite results are known for
Nf50,1, see, for example,@49#!. The second term is zero3

for Nf52 and leads to a singular behavior forNf.2. No
such dip is seen in our spectrum, showing that the resul
closer to theNf52 case. More detailed studies of the spe
trum of the Dirac operator in the instanton liquid for variou
number of colors and flavors were reported in@50#.

In Figs. 3~c! and 4~c!, we also show the distribution of the
largest fermionic overlap matrix elementsTIA for each in-
stanton. For each instanton, we select the anti-instanton it
the largest overlap with and plot the resulting distribution
matrix elements. This distribution is a measure of th
strength of correlations among the instantons. For a co
pletely random system at the same density as the simula
quenched and fully interacting ensembles, the average o
lap would beTIA50.22L andTIA50.21L, respectively. In-
stead, the measured distributions have an average 0.23L and
0.33L, showing that correlations are not very important
the quenched ensemble, but play only some role in the
ensemble. A more physical measure of the importance
correlations among instantons is given by the dependenc
hadronic correlation functions on different ensembles. W
will study this question in some detail in a forthcoming pub
lication.

V. THE PHASE DIAGRAM OF THE INSTANTON LIQUID

After fixing the overall scale at zero temperature, it is no
straightforward to extend our calculation to finite temper
ture. In an Euclidean field theory, finite temperature on
enters through the boundary conditions obeyed by the fie
The gauge fields have to be periodic in the Euclidean tim
direction with the period given by the inverse temperatu
while fermions are subject to antiperiodic boundary cond
tions. The corresponding periodic instanton and fermi
zero-mode profiles can be constructed using ’t Hooft’s mul
instanton solution@51#. These profiles may then be used t
study the instanton interaction and fermionic overlap mat
elements. For the ratioAnsatz, such a study was performed
in @52#. A parametrization of this interaction is given in Ap
pendices C and D.

The most important qualitative feature of the instanto
interaction at finite temperature is the form of the fermion
overlap matrix elements. The determinant for one instanto
anti-instanton pair separated byt in Euclidean time andr in

3This result is connected with the fact that forNf.2, there is a
Goldstone boson cut appearing in the scalar isovector (d meson!
correlator, while there is nod→pp decay allowed for two flavors.
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the spatial direction is roughly proportional to

det~ iD̂ !;U sin~pTt!

cosh~pTr !U
2Nf

. ~27!

The form of this interaction is a simple consequence of th
periodicity in the time direction and the fact that fermion
propagators are screened in the spatial direction by the lo
est Matsubara frequencypT. The interaction clearly favors
instanton–anti-instanton pairs~molecules! that are aligned
along the time direction with a separationt51/(2T). Ilgen-
fritz and Shuryak@31# proposed that this feature of the inter-
action leads to a phase transition in the instanton liquid.
this phase transition, the system goes from a random liqu
to an ordered phase of instanton–anti-instanton molecul
The transition was studied in a schematic model in@31,32#.
In the present work we want to test whether a consiste
treatment of the full partition function of the instanton liquid
does indeed lead to the expected phase transition and p
forms a quantitative study of bulk properties of the system
near the transition.

Before we consider the QCD case~with two light and one
intermediate mass flavors! in detail, it is instructive to study
the phase diagram of the instanton liquid for a wider range
theories. In order to cover many different parameters, w
have restricted ourselves to an exploratory study, in whic
we do not minimize the free energy of the system, but con
sider the instanton ensemble at fixed density. Using the sa
convention employed in the last section, this density wa
chosen to be 1 fm24. In our experience, if the system un-
dergoes a phase transition, it will do so even if the density
not determined self-consistently, although at a somewhat d
ferent temperature. Nevertheless, before this point is check
in detail, the results presented in this section should be co
sidered qualitative.

We first consider the situation for only one quark flavor
In this case, the only chiral symmetry is the anomalous axi
UA(1), so there are no Goldstone pions, but only a flavo
singlet ~the analogue of theh8). Therefore, one would not
expect a chiral restoration phase transition. On the oth
hand, a~first-order! transition may exist even without a sym-
metry, and in principle, the general argument concerning th
formation of IA molecules also applies to the caseNf51.
Clearly, fermion-induced correlations become stronger as t
number of flavors increases. Whether they are strong enou
for Nf51 to induce a phase transition has to be determine
from the partition function.

We have studied theNf51 system at an instanton density
N/V51 fm24 for temperatures upT.300 MeV. We have
observed no phase transition in this range, the condens
^q̄q& decreases smoothly, and is nonzero even at the high
temperature studied. Of course, even in pure SU~3! Yang-
Mills theory ~without fermions!, lattice simulations find a
strong first-order deconfinement phase transition at
temperature4 T.250 MeV. The interacting instanton model,

4Again, we note that specifying the temperature in physical uni
in a quenched calculation requires a procedure to set the scale
practice this is done, for example, by keeping the~quenched! r
meson mass fixed.
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however, does not give confinement, so, naturally, there is
deconfinement transition.

The case of two light flavors,Nf52, is quite special. Ac-
cording to standard universality arguments@53,54#, the chiral
phase transition is expected to be of second order, with
same critical behavior as the O~4! Heisenberg magnet in
d53 dimensions.5 We have simulatedNf52 ensembles for
various temperatures and values of the quark masses.
sufficiently small quark massesm,0.15L, we find large
fluctuations in the condensate atT.150 MeV. To illustrate
this fact, we show a typical time history of the quark con
densate in Fig. 6~a!. Every configuration corresponds to on
complete sweep through the instanton ensemble, with o
Metropolis hit performed on every collective variable. It i
clear that the transition is either second order or first ord
with a very small barrier between the two phases. In order
distinguish these two possibilities, one would have to pe
form a finite-size scaling analysis, which goes beyond t
scope of this paper. We will see later that for more flavo
there is a barrier between the two phases. In Fig. 6~b! we

5Recently, Kocic and Kogut@55# have challenged these argumen
and suggested that the transition is indeed second order, but
mean field exponents. Lattice results~see@56# and the review@57#!
seem to verify that the transition is second order, but are not
sufficiently accurate to resolve the issue about the critical exp
nents.

FIG. 6. Trajectory of the quark condensate~in units of fm23)
for Nf52 in the critical region,T5150 MeV. We also show the
corresponding spectrum of Dirac eigenvaluesl @fm21#. The nor-
malization of the eigenvalue distribution is arbitrary.
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show the Dirac spectrum forT5150 MeV andm55 MeV.
The eigenvalue density extrapolates to zero atl50, but the
slope is very steep and there are no signs of a gap in t
spectrum.

We will treat the three-flavor case in detail in the nex
section, and now proceed to the case of several flavors
light quarks. Let us first mention several theoretical argu
ments suggesting qualitative changes in the vacuum struct
asNf increases beyond some critical valueNf

crit .
A simple phenomenological observation is the fact tha

for Nf.12, the number of ‘‘pions’’Np5Nf
221 exceeds the

number of quarks and antiquarksNq54NcNf . This prevents
the usual matching of the pion gas at low temperature to t
high-T quark-gluon plasma phase with a positive bag con
stant. It seems plausible that something should happen bef
this point is reached, soNf

crit,12.
As noticed by a number of authors~see, e.g.,@58#!, the

second coefficientb8 of the beta function changes sign for
smallerNf than the first oneb does. In this window, one has
the possibility of asymptotic freedom coexisting with an in
frared fixed point.

It was recognized in@59,9# that for largeNf , the instanton
liquid is dominated by instanton molecules, and that the
density is UV divergent~at small radii! if 2b25,0, corre-
sponding toNf.12 ~this estimate is slightly modified if in-
teractions are taken into account@39#!. This divergence,
however, is a short distance effect and should not affe
physical observables.

Lattice simulations of QCD for largeNf were performed
by Iwasakiet al. @60#. They found that forNc52, the critical
number of flavors for which chiral symmetry is restored i
Nf
crit53, while for Nc53, it is Nf

crit57. A strange ‘‘bulk
transition’’ was also observed by the Columbia group fo
Nf58 @61#.

Finally, significant progress has been made in understan
ing N51 supersymmetric generalizations of QCD@62#. One
result that is of particular interest in the present context is th
exact determination of the critical number of flavors
Nf
crit5Nc11, where chiral symmetry is broken for

Nf<Nf
crit , but not forNf.Nf

crit .
We should stress that in QCD, anomaly matching implie

~for Nf.2) that if chiral symmetry is restored in the ground
state, the theory is also not confining. This connection, o
course, cannot be studied in the instanton model. Having sa
this, let us now report our results concerning the vacuu
structure of the instanton liquid for many flavors. A usefu
tool to analyze the structure of chiral symmetry breaking th
was suggested by the Columbia group@63# is the ‘‘valence
quark mass’’ dependence of the quark condensate, defin
by

^q̄q~mv!&52E dlr~l,m!
2mv

l21mv
2 . ~28!

Here,r(l,m) is the eigenvalue density of the Dirac operato
calculated from configurations generated with dynamic
massm. The quark condensate in the chiral limit is defined
by going to the thermodynamic limit and then taking
m5mv→0. In a finite system, however, chiral symmetry is
never broken at nonzero quark mass and one has to perfo

ts
with

yet
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6532 53T. SCHÄFER AND E. V. SHURYAK
a detailed scaling analysis. This analysis amounts to p
forming many simulations at various values of the dynamic
mass, which is a very time consuming procedure. Inste
one might get a good indication of the full behavior b
studying the valence mass dependence of the condensat
very smallmv , the condensate is proportional tomv , which
means that one is sensitive to induced rather than sponta
ous chiral symmetry breaking. At very large massmv , the
condensate is proportional tomv

21 . Both of these limits are
of course unphysical, and spontaneous symmetry breakin
the continuum limit is indicated by the appearance of a p
teau at intermediate values of the valence mass where^q̄q&
depends only weakly onmv .

In Fig. 7 we show a number of calculations of the valen
mass dependence of the condensate. The results in Fig.~a!
were obtained for 64 instantons in a cubic boxV5(2.828
fm! 4 ~corresponding to a densityN/V51 fm24 and a fairly
low temperature,T571 MeV!, with the dynamical quark
mass m520 MeV and different number of flavors
Nf51, . . . ,8. Regions where the condensate depends o
weakly onmv are clearly seen forNf51,2,3. These plateaus
are clearly absent forNf55 or larger: we therefore conclude
that the instanton liquid model has a chirally symmetr
ground state in these cases. A more detailed study of
configurations shows that all instantons are bound into m
ecules. The borderline case appears to beNf54: if a con-
densate is present, it is significantly smaller than in QCD a
due to a relatively small random component of the vacuu

We have also performed simulations for two colors, a
obtained a similar picture, but with the critical number o
flavors smaller by 1. ForNc52 no clear signal of chiral
symmetry breaking was observed forNf>3. This suggests
the empirical relationNf

crit5Nc1C with 1,C,2, an amus-
ing coincidence with Seiberg’s results forN51 supersym-
metric QCD@62#.

The next question we would like to address is the depe
dence of these results on the dynamical quark massm. In-
creasing the dynamical mass, one decreases the influenc
quark determinant. A large quark mass works against
correlations induced by a large number of flavors. Th
means that for a sufficiently large quark mass, one can fi
‘‘spontaneous’’ symmetry breaking even if there is no sym

FIG. 7. ~a! Double logarithmic plot of the quark condensate~in
units of fm23) vs the valence quark massmv for different number
of light flavors ~with dynamical massm520 MeV!. ~b! shows the
same plot forNf55 and different quark massesm. The logarithm is
to base 10.
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metry breaking in the chiral limit. This is demonstrated i
Fig. 7~b!, where we show a series of calculations fo
Nf55, with the dynamical quark massm ranging from 20 to
100 MeV. In this case a plateau in the valence mass dep
dence of the condensate reappears at rather small crit
quark mass of about 35 MeV.

Repeating these studies for different numbers of flavo
and varying the mass and temperature, one can map
phase diagram of the instanton liquid in theT2m
~temperature-mass! plane. In Fig. 8 we have summarized ou
results forNf52, 3, and 5. Those cases in which we found
signal for chiral symmetry breakdown are marked by th
open squares, and those corresponding to the restored p
by solid squares. The~approximate! location of the disconti-
nuity line between the two phases is marked by the sta
connected by dashed lines. For two flavors we do not fi
such a line of discontinuities. We have performed a numb
of runs in the vicinity of the phase transition, all showin
large fluctuations of the condensate. For largerNf we clearly
see a transition line with a discontinuity of the condensa
When the number of flavors increases, one end of this li
moves to the left~the critical temperatureTc decreases with
Nf), crossing zero somewhere aroundNf54, but before
Nf55. In these cases, the ground state exhibits spontane
symmetry breaking only if the quark mass exceeds som
critical value. For technical reasons, we have not tried
follow the discontinuity lines much beyondT.200 MeV. In
this regime, the condensate becomes more and more do
nated by few extremely small eigenvalues, so that numeri
accuracy starts to become a concern. In addition to that, o
does not expect to be able to describe possible transition
very large temperature in the instanton model, since the
will presumably be dominated by the pure gauge deconfin
ment transition.

VI. THE INSTANTON ENSEMBLE IN QCD
AT FINITE TEMPERATURE

In this section we want to discuss in detail the physical
relevant case of two light and one intermediate mass flavo

FIG. 8. Schematic phase diagram of the instanton liquid f
different numbers of quark flavors,Nf52, 3, and 5. We show the
phase of chiral symmetry breaking in the temperature-quark m
planes.~a! ForNf52, open squares indicate points where we foun
large fluctuations of the chiral condensate, the cross indicates
approximate location of the singularity. In the two other figures~b!
and ~c! the open squares correspond to points where we find
plateau in the valence mass dependence of the chiral condens
while solid squares correspond to points where such a plateau
absent. The crosses and the dashed lines connecting them show
approximate location of the discontinuity line.
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53 6533INTERACTING INSTANTON LIQUID IN QCD AT ZERO AND . . .
In particular, we will perform self-consistent simulation
where the correct instanton density is determined from mi
mizing the free energy. The instanton interaction and ferm
onic matrix elements that enter these calculations have
ready been discussed in the last section. The semiclass
calculation that leads to the instanton distribution~3! has also
been generalized to finite temperature@25#, giving

d~r,T!5d~r,T50!exp@2 1
3 ~2Nc1Nf !~prT!22B~z!#,

B~z!5S 11
Nc

6
2
Nf

6 D F2 lnS 11
z2

3 D1
0.15

~110.15z23/2!8G ,
~29!

with z5prT. This correction factor leads to an exponenti
suppression of large instantons at high temperature. Its or
is mainly the scattering of thermal gluons on the instanto
This phenomenon is related to the Debye mass, which,
fact, has the same dependence onNc andNf . The applica-
bility of ~29! is controlled by two separate conditions
r!L21 to ensure the semiclassical treatment, andT@L to
justify a perturbative treatment of the heat bath. It was the
fore argued in@28# that one should not use the perturbativ
suppression factor~29! at temperatures below the phase tra
sition. This suggestion was indeed verified by lattice simu
tions for pure gauge theory@29#, which found a very weak
temperature dependence of the instanton density belowTc ,
and an exponential suppression of instantons consistent w
~29! aboveTc . In practice, we have determined the pha
transition temperature without the suppression factor~29!.
The final simulations were then performed with an addition
temperature-dependent factor@12tanh(T2Tc /DT)#/2 in-
serted in the exponential appearing in Eq.~29!. From our
simulations, we have determinedTc.0.75L. We have taken
DT.0.2L. This number characterizes the temperature ran
over which the Debye mass reaches its perturbative va
and is roughly consistent with the result of lattice simulatio
@64#. In our simulations, the value ofDT determines how fast
the instanton density drops aboveTc . On the other hand, we
have checked that the temperature dependence of the q
condensate is almost independent of this parameter.

With all the ingredients of the partition function fixed, w
can proceed to our simulations. The free energy is det
mined as described in Secs. III and IV. There is no difficul
in principle associated with applying the adiabatic switchin
method at finite temperature. In practice, however, some c
is required since, in case the system undergoes a phase
sition, the ensemble at the full couplinga51 is in a different
phase as compared to the random distribution ata50. This
implies that the transition will occur at some value ofa
during the adiabatic switching. The hysteresis method d
scribed in Sec. IV is particularly well suited to handle
situation such as this. Physically, this simply means that
variationalAnsatz~16!, while it is still used as a reference
distribution, ceases to be a good approximation to the fu
interacting instanton distribution. In the whole range of tem
peratures studied, we find that the behavior of the free ene
as a function of the instanton density looks qualitative
similar to the zero temperature result shown in Figs. 2 and
In particular, the free energy is negative at small density a
has one fairly well-defined minimum. This means that th
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phase transition is either smooth or a first-order transiti
with a small jump in the instanton density, which we cann
resolve because of finite-size effects.

The resulting instanton density, free energy, and qua
condensate are shown in Fig. 9. In the ratioAnsatz, the in-
stanton density at zero temperature is given b
N/V50.69L4. Taking the density to be 1 fm24 at T50,
fixes the scale parameterL5222 MeV and determines the
absolute units. The temperature dependence of the instan
density is shown in Fig. 9~a!. It shows a slight increase at
small temperatures,6 starts to drop around 115 MeV, and
becomes very small forT.175 MeV. The free energy
closely follows the behavior of the instanton density. Th
means that the instanton-induced pressure first increa
slightly, but then drops and eventually vanishes at high te
perature. This behavior is expected for a system of insta
tons, but in a complete theory with perturbative effects in
cluded, the pressure should always increase as a function
the temperature. In QCD, the pressure at high temperatur
of course provided by the black body contributions from
quarks and gluons. We will come back to this issue at t
end of the section.

The temperature dependence of the quark condensat

6The zero temperature point corresponds to a simulation with ze
temperature matrix elements in a periodic boxV5(2.828L21)4, so
it is not a true zero temperature calculation.

FIG. 9. Instanton density, free energy, and quark condensate
a function of the temperature in full QCD with two light and one
intermediate mass flavors.
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6534 53T. SCHÄFER AND E. V. SHURYAK
shown in Fig. 9~c!. At temperatures belowT5100 MeV, it is
practically temperature independent. It then starts to dr
fast and becomes very small around the critical temperat
T.140 MeV. Note that at this point the instanton density
N/V50.6 fm24, slightly more than half the zero tempera
ture value. This means that the phase transition is inde
caused by a transition within the instanton liquid, not by th
disappearance of instantons. This is illustrated by Fig. 1
which shows snapshots of the instanton liquid at tempe

FIG. 10. Typical instanton ensembles forT575, 123, and 158
MeV. The plots show projections of a four-dimensiona
(3L21)33T21 box into the 3-4 (z axis-imaginary temperature!
plane. Instantons and anti-instanton positions are indicated by1
and2 symbols, respectively. Dashed, solid, and thick solid lin
correspond to fermionic overlap matrix elemen
TIA.0.40,0.56,0.64L, respectively.
op
ure
is
-
ed
e
0,
ra-

turesT574, 123, 158 MeV below, near, and above the chir
phase transition. The figures are projections of a fou
dimensional cubeV5(3.00L21)3•1/T into the 3-4 plane.
The positions of instantons and anti-instantons are deno
by 1 and 2 symbols, respectively. The lines connectin
them indicate the strength of the fermionic overlap matr
elements. Below the phase transition, there is no clear p
tern. Instantons are unpaired, part of molecules, or larg
clusters. As the phase transition progresses, one clearly
serves the formation of polarized instanton–anti-instant
molecules.

More details of the phase transition can be inferred fro
the graphs in Figs. 11–13. Figure 11 shows trajectories
the quark condensate for the temperatures mentioned abo
Every configuration corresponds to one complete swe
through the instanton liquid, with one Metropolis hit on th
collective variables of all instantons. As discussed in mo
detail in the next section, the fluctuations in the quark co
densate determine the scalar susceptibility. Below the ph
transition, these fluctuations are controlled by the effecti
s meson mass. Near the phase transition, we find evide
for a weak first-order transition with the system frequent
tunneling between the two phases. In order to clearly dist
guish this scenario from a smooth crossover, we would ha
to run the experiment with significantly larger volumes. Fig
ure 12 shows the spectrum of the Dirac operator. Below t
phase transition, it has the familiar flat shape near the orig
and extrapolates to a nonzero density of eigenvalues
l50. Near the phase transition, the eigenvalue density a

l

es
ts

FIG. 11. Trajectories of the quark condensate at three differe
temperaturesT575, 130, and 158 meV. The quark condensate
given in units of the scale parameter.
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53 6535INTERACTING INSTANTON LIQUID IN QCD AT ZERO AND . . .
pears to extrapolate to 0 atl→0, but there is a spike in the
eigenvalue density atl50. This spike contains the contribu
tion from unpaired instantons. Near the phase transitio
some of these instantons come from the breakup of m
ecules as the system tunnels from the high to the low te
perature phase. In addition to that, even at very high te
perature, one expects a finite concentrationO(mNf) of
random instantons. We will further comment on this issue
the next section.

If there is evidence that the transition is weakly first orde
it is of interest to at least have an upper bound on the lat
heat associated with the transition. We have already m
tioned that we do not directly observe a latent heat from
discontinuity in the instanton density. Another way to calc
late the latent heat is using the Clausius-Clapeyron relat
generalized to QCD@65#

disce5TcS ]Tc
mq

D 21

disĉ q̄q&. ~30!

As Leutwyler already realized in his original paper, this r
lation is useful in analyzing numerical simulations even
one does not directly observe a jump ine. We have deter-
mined the derivative of the critical temperature with respe
to the quark mass from simulations at several different qua
masses ~see Sec. VII!. We find ]Tc /]mq.0.9 at
mq50.1L, close to Leutwyler’s estimate]Tc /]mq.1. From
the trajectories of the quark condensate~Fig. 11!, one con-
cludes that the discontinuity is at most dis

FIG. 12. Spectrum of the Dirac operator for different temper
turesT575, 130, and 158 MeV. The normalization of the spectra
arbitrary ~but identical!.
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^q̄q&<0.4̂ q̄q&T50 . These numbers give disce<60 MeV/
fm3, which is quite small as compared to the energy densi
at zero temperature. Saturating the trace anoma
(e23p)/452b/4(N/V), with instantons, one can also
translate this estimate into a bound on the jump in the insta
ton density, disc(N/V)<0.03 fm24, compared with the zero
temperature value (N/V)51 fm24. This bound shows that
we do not expect to see an appreciable jump in the instant
density, even if there is a first-order transition.

In Fig. 13 we show the distribution of
cos2(a)5uu4u2/uuu2, the relative color orientation angle be-
tween instantons and anti-instantons. For this purpose,
have selected for every instanton the anti -instanton it has t
largest overlap with and calculated the corresponding orie
tation angle cos2(a). The resulting distribution was normal-
ized to the SU~3!-invariant measure. Below the phase trans
tion, there is no preferred direction and the distribution is fla
@the spike near cos2(a)51 comes from the fact that the mea-
sure goes to zero in this region#. Near the phase transition,
the distribution is strongly peaked towards cos2(a)51, show-
ing that instanton–anti-instanton pairs are indeed strong
polarized.

Completing this section, let us add a few general remar
concerning the thermodynamics of the instanton liquid. I
this paper, we have only determined the free energy asso
ated with instantons. Our calculation includes the contribu
tions from the zero-mode determinant, which describes th
excitation of low energy collective modes~the pions!. How-

a-
is

FIG. 13. Distribution of the color orientation angle
cos2a5uu4u2/uuu2 for different temperaturesT575, 130, and 158
MeV. The distributions are normalized to the corresponding SU~3!
measure. The overall scale is arbitrary.



e
e-
a

ro.
th
ec-
a
-

-
pti-
la-

-
tem
e
ec-
a
ted
in
e

nd
w

ture

e

ke
e
he
i-

r-

6536 53T. SCHÄFER AND E. V. SHURYAK
ever, it does not include nonzero-mode contributions fro
quarks or gluons. In particular, it does not include the Stefa
Boltzmann contribution at large temperature, or perturbat
O(as) corrections to it. In a more realistic description of th
thermodynamics of the chiral phase transition, these con
butions should certainly be included.~An attempt to do so
was made in the schematic cocktail model by Ilgenfritz a
Shuryak@31#.! In this paper, however, it was our intention t
study the physics contained in the partition function of th
instanton liquid, without making further assumptions or in
puts. Remarkably, the instanton liquid undergoes a ph
transition in the expected temperature regime.

VII. DIRAC EIGENVALUES
AND MESONIC SUSCEPTIBILITIES

Beginning with the classical paper by Banks and Cash
@66#, many useful relations have been pointed out betwe
various observables and the spectrum of the Dirac opera
iD̂cl5lcl . In quantum field theories, the region of sma
l→0 is the analogue of the Fermi surface in solid sta
physics, and understanding the density of states near
point is crucial for many properties of the system, both
zero and nonzero temperatures.

Before we discuss our data in more detail, we would lik
to briefly review some of the results found in the literatur
As T→Tc , the quark condensate vanishes. If there is
second-order phase transition forNf52, the mass depen-
dence of the condensate is governed by the critical ind
d:

^q̄q&uT5Tmax
;m1/d, ~31!

where Tmax denotes the pseudocritical temperature, cor
sponding to the position of the peak in the scalar suscepti
ity ~see below!. As mentioned above, there is still some con
troversy concerning the values of the critical indice
According to standard universality arguments, QCD wi
Nf52 case is analogous to the O~4! Heisenberg magnet,
which has 1/d50.21. On the other hand, mean field scalin
would give 1/d51/3.

Using the Banks-Casher relation,

^q̄q~T!&52E dlr~l,m,T!
2m

l21m2 , ~32!

one can try to convert this relation into a prediction for th
spectral density of the Dirac operator. The problem is th
there are two sources for the mass dependence of the c
densate, the explicit mass term in the integral~the ‘‘valence
mass’’! and the implicit mass dependence of the spect
density~the ‘‘sea mass’’!. Combining these two effects, one
can only conclude that

r~l,T5Tmax!;l1/d2kmk, ~33!

wherek characterizes the explicit mass dependence of
spectral density. Still, one may hope that the influence of t
sea mass is small and study the behavior of the spectral d
sity near zero at the phase transition. In Fig. 6 we ha
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shown the distribution of eigenvalues atTc for the case of
two flavors. The spectrum behaves roughly lik
r(l);l0.3. In Fig. 12 we have displayed the analogous r
sult for QCD. Here, the spectrum consists of two parts,
smooth part behaving liker(l);l2 and a spike near zero.
There are two effects that contribute to the spike near ze
One is the fact that near a first-order phase transition, bo
the broken and the restored phases contribute to the sp
trum. The other is that at finite mass, there will always be
finite O(mNf) number of unpaired instantons, giving a con
tribution of the formr(l);mNfd(l) to the Dirac spectrum.

Additional information about the phase transition is pro
vided by mesonic susceptibilities. We define these susce
bilities as the integral of the corresponding mesonic corre
tion function

xG5E d4x^q̄~x!Gq~x!q̄~0!Gq~0!&, ~34!

whereG is a spin-isospin matrix with the appropriate quan
tum numbers. They characterize the response of the sys
to slowly varying external perturbations. For example, th
scalar-isoscalar susceptibility can also be defined as the s
ond derivative of lnZ with respect to the quark mass. Near
second-order phase transition, the susceptibilities associa
with order parameter fluctuations are expected to diverge
the chiral limit in a universal manner. In particular, we hav
the predictions@54#

xsuT5Tmax
;m1/d21,

xs

xp
U
T5Tc

51/d. ~35!

Above the phase transition, chiral symmetry is restored a
one hasxs5xp as the quark mass is taken to zero. Belo
the phase transition,xs /xp→0 asm→0, sincexp has a
1/m singularity in the chiral limit, whilexs only has a loga-
rithmic singularity. As noted by Karsch and Laermann@56#,
the second relation in~35! is very useful in determining the
exponentd, since measurements ofD(m,T)5xs /xp at dif-
ferent masses are expected to cross at a unique tempera
T5Tc , where the value of 1/d can be extracted from
D(m,Tc) ~up to corrections from the nonsingular part of th
free energy!.

The susceptibilities associated with flavored mesons li
thep andd meson are directly related to the spectrum of th
Dirac operator. Inserting the general decomposition of t
quark propagator in terms of eigenfunctions into the defin
tion ~34!, one finds

xp52E dlr~l,mT!
1

l21m2 , ~36!

xd52E dlr~l,m,T!
l22m2

~l21m2!2
. ~37!

Comparing~36! with the Banks-Casher relation~32!, one
notes thatxp52^q̄q&/m, a relation that can also be ob-
tained by saturating the pion correlator with one-pion inte
mediate states and using PCAC~partial conservation of axial
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vector current!. The susceptibility in the scalar-isoscalar (s
meson! channel receives an additional contribution from di
connected diagrams, which cannot be expressed in term
the spectral density

xs5xd12V@^~ q̄q!2&2^q̄q&2#. ~38!

The second term measures the fluctuations of the quark c
densate in a finite volumeV ~as the volume is taken to in-
finity!. Note that all the susceptibilities~36!–~38! suffer from
ultraviolet divergencies related to the behavior ofr(l) at
large l. The critical behavior, on the other hand, is dete
mined by the spectrum at small virtuality. In the following
we will evaluate the susceptibilities in the zero mode bas

One important aspect of the QCD phase transition is t
question whether the U~1!A symmetry is restored during the
transition @67#. If this is the case, one expects~for Nf52)
two additional degrees of freedom to become light during t
transition, theh8 andd. Theh8 susceptibility is connected
with fluctuations of the number of zero modes of the Dira
operator and cannot be measured directly in a system w
total topological charge zero.7 Thed susceptibility, however,
can easily be studied in our simulations. If U~1!A symmetry
is restored, we expectxd to peak at the transition and diverg
as the quark mass is taken to zero. Furthermore, above
transition, one would have8 xp5xd asm→0. This also re-
quires that the disconnected part ofxs has to vanish for
T.Tc asm→0.

We show our results for the mesonic susceptibilities
Figs. 14 and 15. The results in Fig. 14 were obtained
three flavors with massesmu5md50.10L522 MeV and
ms50.70L5155 MeV, corresponding to the instanton den
sity and free energy discussed in the last section. The s
ceptibilities were obtained from 1000 configurations sep
rated by five sweeps through an ensemble of 64 instanto
In our simulations, the physical volume depends on the te
perature, since the number of instantons is held fixed wh
their density drops with temperature. Near the phase tran
tion, we haveV35(3.5 fm! 3. In Fig. 15 we show our results
for a slightly smaller light quark massmu5md
50.07L515 MeV.

Figure 14 clearly shows a peak in the sigma susceptibili
indicating the chiral phase transition. The position of th
peak is atT.125 MeV, somewhat too low as compared t
the estimateTc5140 MeV from lattice simulations. The
delta susceptibility does not show any pronounced enhan
ment. This is also seen from the lower part of the figur
where we show the disconnected part of the scalar susce
bility and the differencexp2xd . Clearly, the peak inxs

comes completely from the disconnected part. Furthermo
xp2xd becomes very small above the phase transition,
shows no tendency to go to zero in the range of temperatu
studied. At the smaller mass~see Fig. 15!, there is a broad

7It was demonstrated in@21# that one can study the topologica
susceptibility by studying fluctuations of the topological charge
subvolumes of a large system with total charge zero.
8We are grateful to N. Christ for pointing this out.
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enhancement visible inxd and xp2xd appears to vanish
above the phase transition. On the other hand, if one co
pares the peak heights ofxs for the two different quark
masses, one findsxs,max;m21.9, significantly stronger than
the (Nf52) universality prediction. In addition to that, if one
calculates the chiral cumulantsD(m,T)5xs /xp for the two
different masses, they fail to cross in the regime of temper
tures studied.

This may be an indication that the quark mas
m50.07L is already too small and one is entering the re
gime of ‘‘mesoscopic’’ QCD, where the mass is smaller o
comparable to the smallest eigenvaluelmin5O(1/V) of the
Dirac operator. There is now a well-developed theory of th
regime@38,68#, which we do not want to enter here. Instead
we have extended our calculations to larger mass
mu5md5(0.10,0.13,0.15,0.17)L. In Fig. 16 we show the
maximum in the disconnected part of the scalar susceptibili
as a function of the quark mass. Form>0.10L, the behavior
is well described by a single exponent. Fitting the depen
dence of the peak height on the light quark mass, we fin
xdis,max;m20.84, quite consistent with the (Nf52) univer-
sality predictionxs,max;m20.79.

l
in

FIG. 14. Mesonic susceptibilities as a function of temperatur
for quark massesmu5md50.10L andms50.70L. The scalars,
scalard, and pseudoscalarp susceptibilities are denoted by solid
circles, solid squares, and open squares, respectively. The low
panel shows the disconnected part of the scalar susceptibility a
the differencexp2xd . The solid lines show a smooth fit to the
data.
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6538 53T. SCHÄFER AND E. V. SHURYAK
VIII. CONCLUSIONS

We have studied the structure of the instanton liquid
zero and finite temperatures. For this purpose, we have
troduced a method that allows us to extract the free energy
the instanton liquid from numerical simulations. Using th
method, we can determine the instanton density se
consistently, by minimizing the free energy. The resultin
ensemble satisfies a number of important nonperturbat
properties of QCD, such as the trace anomaly, low ene
theorems for fluctuations of the topological charge and g
onic field strength and chiral perturbation theory predictio
for the spectrum of the Dirac operator. These features do
depend on details of the instanton interaction, as long as
sufficiently repulsive at short distances to stabilize the sy
tem.

If we supplement the classical streamline interaction by
short range repulsive core~roughly determined to give the
correct average instanton size!, the instanton liquid in full
QCD ~with two light and one intermediate mass flavors! sta-
bilizes at a densityN/V50.174L4. Fixing the scale param-
eter in order to reproduce the ‘‘canonical’’ valueN/V51
fm4 @corresponding tô(as /p)G

2&5(360 MeV! 4#, we find
a vacuum energy densitye52280 MeV/fm3 and a quark
condensatê q̄q&52(216 MeV! 3. The average instanton
size is r50.43 fm, leading to a packing fraction
f50.5p2r4/ (N/V)50.14.
This means that the interacting instanton ensemble, es

cially using the ratioAnsatzrequired at finite temperature, is
not as dilute as the random ensemble~where we fixed

FIG. 15. Mesonic susceptibilities for a smaller light quark ma
mu5md50.07L. Curves labeled as in Fig. 14.
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N/V51 fm24 and r50.33 fm!, which so successfully re-
produces many hadronic correlation functions. The situati
is quite analogous to the nuclear matter problem, where
producing the saturation density and the binding energy
quires a delicate balance between the short range repuls
core and the intermediate range attraction. In the instan
liquid, the strength of the core~the short range repulsion!
controls the diluteness of the ensemble. Too much repulsi
however, leads to a very small total density of instanton
which can only be balanced by some intermediate range
traction. In the ratioAnsatz, the short range core is weak and
the intermediate range attraction fairly shallow, leading to
rather dense ensemble.

We note that at this point, the instanton–anti-instanto
interaction at short distances is not a very well-defined co
cept, and the core that is required to stabilize the ensem
~for the streamlineAnsatz! is a purely phenomenological pa-
rameter. In practice, we have fixed this parameter in order
reproduce the instanton density and size distribution inferr
from phenomenologial considerations and observed in latt
simulations@17,18#. Providing a more solid theoretical foun-
dation for the instanton interaction will be an important d
rection for future study. One possibility, to derive the sho
range part of the instanton interaction from the cross sect
for isotropic multigluon production@44#, was already men-
tioned in Sec. IV. Another idea, the inclusion of nonpertu
bative corrections to the beta function, was discussed in@19#.

We have extended our simulations of the instanton liqu
to finite temperature. For this purpose, we have to replace
instanton interaction and fermionic overlap matrix elemen
with their finite temperature counterparts, satisfying the a
propriate boundary conditions in an Euclidean box with tem
poral extent 1/T. In this context, we have used the ratio
Ansatz, which gives an ensemble that is too dense. Th
brings some additional uncertainty into our numerical r

ss

FIG. 16. Maximum of the disconnected part of the scalar su
ceptibility as a function of the quark mass. Also shown is the p
rametrizationx;m20.84.
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53 6539INTERACTING INSTANTON LIQUID IN QCD AT ZERO AND . . .
sults, e.g., of the transition temperature. We find that in f
QCD, there is a phase transition atT.125 MeV in which the
chiral symmetry is restored. The mechanism that drives
transition is the formation of polarized instanton–ant
instanton molecules. As a result, the~quasi-!zero-modes be-
come localized, and chiral symmetry is restored.

Furthermore, for two light flavors the transition appears
be second order, while forNf>3, there is evidence for a
weak first-order transition. We have also investigated t
phase diagram of QCD with many fermion flavors. Qualit
tively, it is clear that many fermion flavors help the forma
tion of molecules. As a result, the transition temperatu
drops as the number of light flavors is increased. ForNf
larger than some critical valueNf

crit , chiral symmetry is re-
stored even at zero temperature. ForNc52,3, our results are
consistent withNf

crit5Nc1C, where 1,C,2. We have also
studied the location of the discontinuity of the quark conde
sate in theT-m plane.

We have determined the free energy associated with
stantons, ignoring the perturbative~nonzero-mode! contribu-
tions from quarks and gluons. At smallT, it rises slightly,
but then starts to drop and becomes very small forT.180
MeV. While the energy density and pressure aboveTc are
dominated by the perturbative Stefan-Boltzmann contrib
tions, instantons can provide a significant contribution to t
so called ‘‘interaction measure’’B52(e23p)/4 even at
T.Tc . Apart from the location of the phase transition, th
most important result of our work is thatB retains about half
of its T50 value atT5Tc . Using the trace anomaly, the
interaction measure is related to the gluon and quark cond
sates. Indeed, by analyzing lattice simulations of full QC
one can show that about half of the glue remains conden
at T5Tc @69–71#. More specifically, lattice simulations
show that the pressure remains small untilT.2Tc , while
the energy density reaches the Stefan-Boltzmann value v
quickly @41,72,57#. It was emphasized in@69# that this be-
havior requires that only part of the bag pressure~or the
gluon condensate! is removed across the phase transitio
This is precisely the behavior observed in the instanton l
uid model.

Finally, we have studied the behavior of the Dirac spe
trum and the mesonic susceptibilities near the phase tra
tion. This is related to the question whether the behavior
these quantities is governed by critical scaling because o
nearby second-order phase transition, and, more gener
what symmetries are restored in the transition. We find
peak in the scalar-isoscalar (s) susceptibility, indicating the
chiral phase transition. The dependence of the peak heigh
the light quark mass is consistent with the expected scal
behavior at fairly large quark massesm>0.1L, but is more
singular at smaller masses, probably due to the onset
finite-size effects. Form>0.1L, there is no hint of U~1!A
restoration: there is no peak in the isovector scalar (d) sus-
ceptibility and the Dirac spectrum contains~approximately!
zero modes aboveTc . At smaller masses, the scalar
isovector (d) susceptibility shows an enhancement arou
the critical point, but with the available data it is difficult to
tell whether this behavior will persist for larger volumes.
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APPENDIX A: INSTANTON INTERACTION
AT ZERO TEMPERATURE

In this appendix we specify the classical instanton int
action used in our simulations. From the form of the acti
for the two-instantonAnsatz, one can easily show that th
general form of the instanton–anti-instanton interaction
the case of the gauge-group SU~2! is given by

Sint5b1~ r̄ !„s0~R!1s1~R!~u•R̂!21s2~R!~u•R̂!4…, ~A1!

whereum is the orientation vector introduced in Sec. II an
R̂m is the unit vector connecting the centers of the instan
and anti-instanton. The interaction is given in units of t
single instanton actionS05b1( r̄). The argument of the beta
function is not uniquely determined without a higher ord
calculation. In practice, we have taken the geometric aver
r̄ 5Ar IrA of the instanton radii. For large separationR, the
interaction~A1! can be embedded into SU~3! by making the
replacement (u•R̂)2→uu•R̂u2 and multiplying the first term
by uuu2.

For the ratioAnsatz, the instanton–anti-instanton interac
tion can be parametrized by@52#

SIA
b1

5S 4.0

~r 212.0!2
2

1.66

~111.68r 2!3
1

0.72 ln~r 2!

~110.42r 2!4D uuu2

1S 2
16.0

~r 212.0!2
1

2.73

~110.33r 2!3D uu•R̂u2, ~A2!

wherer5R/Ar IrA is the instanton–anti-instanton separatio
in units of the geometric mean of their radii. In the rat
Ansatz, the instanton-instanton interaction is nonzero if t
two instantons have different color orientations. The inter
tion can be parametrized by

SII
b1

5
1

~110.43r 2!3
@0.63uuW u210.071uuW u4#

2
ln~r 2!

~111.17r 2!4
@0.05uuW u210.47uuW u4#. ~A3!

In the streamlineAnsatz, conformal symmetry dictates tha
the interaction depends on the relative separation and
instanton radii only through the conformal parameter

l5
R21r I

21rA
2

2r IrA
1S ~R21r I

21rA
2 !2

4r I
2rA

2 21D 1/2. ~A4!

The instanton–anti-instanton interaction is then given
@35#
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SIA
b1

5
4

~l221!3
$24@12l414l2ln~l!#@ uuu224uu•R̂u2#

12@12l21~11l2!ln~l!#@~ uuu224uu•R̂u2!2

1uuu412~u!2~u* !2#%. ~A5!

As discussed in Sec. II, the instanton-instanton interact
vanishes in the streamlineAnsatz.

APPENDIX B: FERMIONIC OVERLAP MATRIX
ELEMENTS AT ZERO TEMPERATURE

A parametrization of the fermionic overlap matrix ele
ment between instantons and anti-instantons in the sumAn-
satzwas already given in Sec. II:

TIA5 i ~u•R!
1

r IrA

4.0

~2.01R2/r IrA!2
. ~B1!

The matrix element in the ratioAnsatzis very similar and we
employ the same parametrization. In the streamlineAnsatz,
the matrix element depends on the separation and the r
again only through the conformal parameterl. The matrix
element can be parametrized by@73#

TIA5 i ~u•R!
1

r IrA

c1l
3/2

@111.25~l221!1c2~l221!2#3/4
,

~B2!
ion

-

adii

with c153p/8 andc25(3p/32)4/3.

APPENDIX C: INSTANTON INTERACTION
AT FINITE TEMPERATURE

In this appendix we give a parametrization of the classic
instanton interaction at finite temperature. For reasons e
plained in Sec. IV, there is no analogue of the streamli
interaction at finite temperature and we only specify the i
teraction in the ratioAnsatz. Up to small changes that have
been introduced in order to improve the parametrization
small temperatures, the interaction is identical to the o
given in @52#. Here, we also specify how to embed the SU~2!
parametrization into SU~3!.

At finite temperature, the interaction is still at most qua
tic in the relative orientation vectorum . However, since
four-dimensional rotational invariance is broken, the intera
tion depends onuu4u2 in addition to the invariantsuu•R̂u2 and
uuu2 appearing in the zero temperature interaction. For t
same reason, the interaction can now depend separately
the spatial and temporal components of the vect

Rm5(RW ,R4). At temperatures of interest here, the anisotrop
in the dependence ofRm turns out to be small. The param-
etrization
e

ve
SIA
b1

5
4.0

~r 212.0!2
b2

b215.21
uuu22S 1.66

~111.68r 2!3
1

0.72 ln~r 2!

~110.42r 2!4D b2

b210.75
uuu2

1S 2
16.0

~r 212.0!2
1

2.73

~110.33r 2!3D b2

b210.24111.50r 2/~111.14r 2!
uu•R̂u2

10.36 lnS 11
b

r D 1

~110.013r 2!4
1

b211.73
~ uuu22uu•R̂u22uu4u2! ~C1!

therefore depends only onr5R/Ar IrA with R5(RW 21R4
2)1/2. The inverse temperatureb51/(TAr IrA) is also given in units

of the mean of the instanton radii. One can easily check that forT→0, the interaction~C1! reduces to the zero temperatur
ratio Ansatz~A2!. The interaction between two instantons can be parametrized by

SII
b1

5
1

~110.43r 2!3
b2

b215.33
@0.63uuW u210.071uuW u4#2

ln~r 2!

~111.17r 2!4
b2

b211.17
@0.05uuW u210.47uuW u4#

1 lnS 11
b

r D 1

b212.08
@0.07uuW u210.05uuW u4#. ~C2!

APPENDIX D: FERMIONIC OVERLAP MATRIX ELEMENTS AT FINITE TEMPERATURE

At finite temperature, the fermionic overlap matrix element is still linear in the relative orientation vectorum . Because of
the loss of Lorentz invariance at finite temperature, the matrix element depends separately onu4 anduW •RW :

TIA5 iu4f 11 i
~uW •RW !

R
f 2 . ~D1!

A parametrization of the functionsf 1,2 was given in@52#. We have changed this parametrization slightly in order to impro
the behavior at small temperatures. The result forf 1 is
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f 15
S p

b D sinS pt

b D coshS pr

b D
FcoshS pr

b D2cosS pt

b D1k1
2G2

1

S b2

p2D FexpS 2
pr

2b D1
pr

2bG1S 2p D F120.69 expS 2
1.75r

b D G
3S 11

0.76b2

~0.82r 211!2~110.19b2!2D F11S pt

b D 2 0.18

110.12r 2G , ~D2!

wherer5uRW u/Ar IrA, t5R4 /Ar IrA, andb51/(TAr IrA) are given in units of the mean instanton radius. The result forf 2 is

f 25
S p

b D cosS pt

b D sinhS pr

b D
FcoshS pr

b D2cosS pt

b D1k2
2G2

1

S b2

p2D FexpS 2
2.06pr

b D1
pr

2b G1S 2p D F110.42 expS 2
0.34r

b D G
, ~D3!

with k1,2 given by

k1
25

1

0.531S b2

p2D , k2
25

1

0.691S b2

p2D . ~D4!

One can easily verify that the parametrization~D1!–~D4! reduces to~B1! in the zero temperature limit.
.
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