
degen-
l. We
the

e of
s is
m
ur

PHYSICAL REVIEW D 1 JUNE 1996VOLUME 53, NUMBER 11

0556-28
Hadron spectrum with Wilson fermions

Tanmoy Bhattacharya and Rajan Gupta
T-8, MS-B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Gregory Kilcup
Physics Department, The Ohio State University, Columbus, Ohio 43210

Stephen Sharpe
Physics Department, University of Washington, Seattle, Washington 98195

~Received 22 December 1995!

We present results of a high statistics study of the quenched spectrum using Wilson fermions atb56.0 on
323364 lattices. We calculate the masses of mesons and baryons composed of both degenerate and non
erate quarks. Using nondegenerate quark combinations allows us to study baryon mass splittings in detai
find significant deviations from the lowest order chiral expansion, deviations that are consistent with
expectations of quenched chiral perturbation theory. We find that there is a;20% systematic error in the
extracted value ofms , depending on the meson mass ratio used to set its value. Using the largest estimat
ms we find that the extrapolated octet mass splittings are in agreement with the experimental values, a
MD-MN , while the decuplet splittings are 30% smaller than experiment. Combining our results with data fro
the GF11 collaboration we find considerable ambiguity in the extrapolation to the continuum limit. O
preferred values areMN/M r51.38~7! andMD/M r51.73~10!, suggesting that the quenched approximation is
good to only;10–15 %. We also analyze theO(ma) discretization errors in heavy quark masses.@S0556-
2821~96!02311-9#

PACS number~s!: 12.38.Gc, 14.20.2c, 14.40.2n
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I. INTRODUCTION

Precise measurements of the hadron spectrum using
tice QCD are crucial both to validate QCD as the corre
theory of strong interactions and to establish the reliability
numerical simulations for extracting weak matrix elemen
Current lattice calculations suffer from a variety of system
atic errors, most notably those due to quenching, discreti
tion, and the need to extrapolate to light quark masses. In
work we present a detailed study of these systematics for
hadron spectrum.

Such a study requires small statistical errors. We ha
reduced these by using a moderately large ensemble,
lattices, and working on a large lattice, 323364 atb56.0, in
the quenched approximation. We use unimproved Wils
fermions. Preliminary results from a subset of 100 lattic
were presented at the Lattice ’94 meeting@1#. Our lattices are
large enough that we expect finite size effects to be sm
The major technical features of our work are~a! using two
kinds of sources that yield correlators that converge to th
asymptotic values from opposite directions, so as to impro
the reliability of the masses extracted;~b! calculating hadron
masses using nondegenerate light quarks, which allows u
study the quark-mass dependence in detail; and~c! using
ratios of correlators to obtain accurate estimates of mass
ferences. We find that terms of higher order than linear in t
quark mass are very significant and that their inclusion
essential for the extrapolation to the physical light qua
masses, particularly for mass splittings among spin-1/2 ba
ons. Higher order terms are also important for vector meso
and spin-3/2 baryons.

The outline of the paper is as follows. In the followin
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section we explain how we generate lattices and calculat
quark propagators. After a brief discussion of the fitting and
a summary of the expected chiral behavior of hadron masse
in the quenched approximation, we present our results fo
mesons and baryon masses. We then extrapolate mass rat
to the continuum limit by combining our results with those
of the GF11 collaboration@2#. There turns out to be consid-
erable ambiguity in this extrapolation. Our preferred values
for the extrapolated ratios areMN/M r51.38~7! and
MD/M r51.73~10!. This suggests that the quenched approxi-
mation is good to;10–15 %, less accurate than suggested in
Ref. @2#. We close with some conclusions and suggestions
for further work.

We use the following conventions throughout the paper
Hadron masses are denoted by an uppercaseM , while for
quark masses we use a lowercasem. All masses are in lattice
units unless explicitly expressed in MeV~or GeV!.

II. DETAILS OF SIMULATIONS

Gauge configurations are generated using a combinatio
of overrelaxed~OR!, pseudo-heat-bath~PHB!, and Metropo-
lis algorithms. Typically, five~OR! sweeps are followed by a
PHB update, with the latter consisting of three hits, one in
each of the SU~2! subgroups. In some cases the PHB update
is replaced by a 20-hit Metropolis sweep. Two independen
streams were generated, each starting from a lattice consis
ing of two independently thermalized 324 lattices joined to-
gether. A further 20003~5OR11PHB! thermalization
sweeps were then performed. Thereafter we analyze lattice
separated by 4003~5OR11PHB! sweeps.

We calculate quark propagators using the simple Wilson
6486 © 1996 The American Physical Society
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53 6487HADRON SPECTRUM WITH WILSON FERMIONS
action, with periodic boundary conditions in all four direc
tions. We use two kinds of extended sources, Wuppertal a
Wall, at each of the five values of quark mass given
k50.135 (C), 0.153 (S), 0.155 ~U1!, 0.1558 ~U2!, and
0.1563~U3!. These quarks correspond to pseudoscalar m
sons of mass 2835, 983, 690, 545, and 431 MeV, resp
tively, using 1/a52.33 GeV for the lattice scale. We use th
three light quarks to extrapolate the data to the physical is
pin symmetric light quark massm̄5(mu1md)/2, while the
C and S k values are selected to be close to the physic
charm and strange quark masses. The physical value of
strange quark, in fact, lies betweenS andU1, and we use
these two points to interpolate to it. In most cases we fi
that the extrapolation tom̄ can be done using the six combi
nations of light quarks,U1U1 , U1U2 , U1U3 , U2U2 , U2U3 ,
andU3U3 . For brevity we use$UiU j% to refer to this set of
masses.

We analyze three types of hadron correlators dist
guished by the sources and sinks used to generate qu
propagators. These are wall source and point sink~WL!,
Wuppertal source and point sink~SL!, and Wuppertal source
and sink~SS!. The notation and details of the implementa
tion of the Wuppertal source are as in our previous work@3#.
The smearing parameter is set tokKG50.181, corresponding
to a smearing size ofV2'3. ~In @3# this was mistakenly
written asV'3.! The generation of the Wuppertal source
is a negligible overhead on the inversion.

The Dirac equation is solved using the overrelaxed p
conditioned ~fourth order polynomial! minimal residue
~MR4! algorithm described in Ref.@4#. The convergence rate
is quite insensitive to the overrelaxation parameterv as long
as it is in the range 1.2–1.35; we usev51.3. We set the
convergence criteria~for all values ofk! to ur 2u/ux2u,10214,
wherer is the remainder andx is the solution. This tolerance
is as small as we can demand, as we use IEEE single pr
sion arithmetic. To ensure convergence we run the MR4
verter up to three times, refreshing the starting remaind
each time, and then switch to a conjugate gradient, and fo
it to run at least one cycle. To date, we have observed
failures of MR4. We note that the simple MR algorithms a
much less sensitive to our use of 32-bit arithmetic than t
CG-based algorithms, whose convergence rate depends
maintaining orthogonality of a sequence of vectors. Indee
we have found that MR4 is one of the most efficient an
stable of the algorithms~MR, MR2, MR4, CG, BiCG5@5#,
and BiCGStab@6#!, we have implemented on the CM5.

A technical detail of our MR4 algorithm that makes
suitable for 32-bit precision is as follows. Thenth iterate of
the solutionx ~and similarly the remainderr ! is given by
xW n5xW n211vanrWn21. The global sums needed in the calcu
lation ofan are done in double precision. Any residual erro
dan can be absorbed intov and do not adversely affect the
convergence rate as long asvn5v(11dan) stays within the
optimal range. Our tests also show that the calculation ofan
can be done in single precision and that the convergence
is not affected provided the remainder is refreshed somew
more often depending on the quark mass.

The only place that round-off errors due to use of 32-b
precision could affect the results is in the evaluation of t
final convergence. For this purpose we make two chec
First, we monitor the final value ofur 2u and ur 2u/ux2u on each
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time slice in addition to the global value which could b
biased by time slices closest to the source. We find that
values at the time slice farthest from the source a
ur 2u/ux2u'1026 for theC quark and<10213 for other quarks.
This means that, even for the heaviest quark, the effec
incomplete convergence is smaller than the statistical err
Second, we double the number of inversion sweeps on r
domly selected lattices. We find that the relative change
the value of hadronic two-point correlation functions
&1025, which is negligible.

III. FITTING

To illustrate some of the issues involved in fitting, w
show, in Figs. 1–3, representative results for the effect
mass. We define this asMeff(t)5ln[C(t21)/C(t)], plus
corrections due to periodicity in the time direction. Th
source lies att50 in all plots. It is a general feature that th
WL effective masses approach their asymptotic value fr

FIG. 1. Comparison ofMeff(t) for U1U1 pion correlators with
SL andWL sources.

FIG. 2. Comparison ofMeff(t) for U1U1 r correlators withSL
andWL sources.
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6488 53BHATTACHARYA, GUPTA, KILCUP, AND SHARPE
below, while those for SL and SS correlators approach fro
above. We consider in turn the problems we face and
solutions we have adopted.

~1! A major problem is that, at the 2s level, the conver-
gence to the asymptotic value ofMeff is extremely slow. The
SL and WL effective masses do come together eventually
pion andr correlators, but for the nucleon the signal disa
pears into noise before convergence has occurred. Ma
extracted from WL correlators are systematically lower th
those from SL or SS correlators. For the pion andr channels,
this difference is;1s, while for the nucleons it is;~2–3!s.

We think that this behavior is mainly due to limited
statistics—a recent study by the JLQCD Collaboration@7#
indicates that fluctuations at the 2s level are the rule rather
than the exception. What we have done in practice is
average the masses with weightings~2WL1SL1SS!/4. The
equal weighting of wall and Wuppertal sources ensures t
the resulting mass lies between the two sets of data on
effective mass plot. Errors are obtained using sing
elimination jackknife, performing a complete analysis~in-
cluding forming the average masses! on each jackknife
sample.

~2! The previous problem is exacerbated by the fact th
we have been unable to do stable fitting using the full cor
lation matrix. When we do so, some fits lead to clearly u
reasonable values for masses, presumably because sma
rors in the correlation matrix are magnified when this matr
is inverted to calculatex2. This problem is well known, and
various remedies have been proposed@8#. For example, one
can project against the eigenvectors of the correlation ma
having small eigenvalues and then invert. Alternatively, o
can reduce the range of times to which one fits. We ha
tried both schemes, but find that the resulting mass estima
are indistinguishable from those obtained fitting just with th
diagonal elements of the correlation matrix~‘‘uncorrelated
fits’’ !. Given that the schemes involve further subjective s
lections~e.g., how many eigenvectors to discard!, we choose
to use uncorrelated fits for our standard results. We do
the ‘‘correlated fits,’’ however, to check that our fits are re

FIG. 3. Comparison ofMeff(t) for U1U1U1 nucleon correlators
with SL andWL sources.
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sonable. Given that this is so, our jackknife errors should
reliable.

~3! In a similar spirit, we have chosen to use single ma
fits for our final answers. We have also made fits with tw
masses, but find that these fits require considerable tuning
hand, because our minimization routines tend to give t
same result for the two masses for a few of the jackkni
samples. When we remove this problem, the resulting es
mate for the lightest mass is consistent with that from th
single mass fit, while the errors are 50% larger. Given t
large number of correlators that we fit, it is impractical to d
the tuning for each channel.

~4! Finally, we must choose a fit range. We choose th
minimum time by inspecting the effective mass plots an
deciding where the ‘‘plateau’’ region begins. The maximum
time is then taken to be that at which the diagonal erro
have roughly doubled compared to the beginning of the p
teau or that at which the signal shows a clear break. For
pion correlator, where the errors do not grow with time, th
means that we use all points beyond the minimum time.

Our overriding criterion is to include as many time slice
as possible in the fits. We have not succeeded in develop
a robust automated procedure that meets this objective w
using two mass fits or incorporating the full covariance m
trix. Since we analyze;4000 channels, it is not practical to
tune the fitting of each by hand. Thus, for consistency, w
use, for all channels, single mass fits, keeping only the dia
onal elements of the correlation matrix. We feel confident
both our central values and our error estimates, howev
since in the many channels that we have fitted by hand,
results do not change significantly when we use the full co
relation matrix and two mass fits.

IV. QUENCHING ERRORS

In the last few years it has been argued that, in th
quenched approximation, theh8 is a pseudo Goldstone boson
and thath8 loops give rise to chiral logarithms which make
the quenched approximation singular in the chiral lim
@9,10#. The same methods~‘‘quenched chiral perturbation
theory’’! have been used to estimate the errors due
quenching. It is important to test the predictions of th
theory against numerical results. There is some support
evidence—see Refs.@11# and @12# for recent reviews—but
more work is needed.

We collect here the results of quenched chiral perturb
tion theory relevant for this work. The expansion for th
mass of a ‘‘pion’’ composed of quarks of massm1 andm2 is

Mp
25cp~m11m2!$12d ln@~m11m2!#%1epmq

21••• ,
~4.1!

with cp , ep , and d constants and the ellipsis representin
higher order terms in the chiral expansion. Themq

2 term is
shorthand both for analytic terms, i.e., those proportional
(m11m2)

2, m1
2, andm2

2, and for nonanalytic chiral loga-
rithms of general formmq

2 ln(mq). Such terms are presen
both in quenched and in full QCD, although the constan
multiplying them will be different in the two theories. In
contrast, thed term is an artifact of quenching—it arises
from h8 loops and is divergent in the chiral limit. Evidence
for this divergence has been found with staggered fermio
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TABLE I. Meson masses fromWL correlators atpW 50. Errors shown are in the last two decimal places.

p A4/A4 A4/p p/A4 r a0 a1

CC 1.217~01! 1.217~00! 1.217~01! 1.217~01! 1.229~01! 1.432~06! 1.439~05!
CS 0.853~01! 0.854~01! 0.853~01! 0.854~01! 0.878~01! 1.104~04!
CU1 0.813~01! 0.814~01! 0.813~01! 0.814~01! 0.841~01! 1.081~07!
CU2 0.797~01! 0.798~01! 0.798~01! 0.798~01! 0.826~01! 1.080~10!
CU3 0.787~01! 0.789~02! 0.789~02! 0.789~02! 0.816~02! 1.087~13!
SS 0.421~00! 0.421~01! 0.422~01! 0.421~01! 0.504~01! 0.743~15! 0.753~05!
SU1 0.362~00! 0.363~01! 0.363~01! 0.362~01! 0.463~01! 0.720~18! 0.721~07!
SU2 0.338~01! 0.338~01! 0.338~01! 0.337~01! 0.447~02! 0.743~31! 0.712~09!
SU3 0.322~01! 0.322~01! 0.323~01! 0.321~01! 0.438~02! 0.714~12!
U1U1 0.296~01! 0.296~01! 0.296~01! 0.295~01! 0.422~02! 0.724~53! 0.685~09!
U1U2 0.266~01! 0.266~01! 0.267~01! 0.265~01! 0.404~03! 0.674~12!
U1U3 0.246~01! 0.247~01! 0.247~01! 0.245~01! 0.393~03! 0.672~15!
U2U2 0.233~01! 0.233~01! 0.234~01! 0.232~01! 0.386~03! 0.660~14!
U2U3 0.210~01! 0.210~01! 0.211~01! 0.209~01! 0.371~03! 0.656~18!
U3U3 0.184~01! 0.184~01! 0.186~01! 0.183~01! 0.359~04! 0.646~22!
l-
hiral
d

an

e
bi-

ntz
@13#, but the effect is small and becomes noticeable only
quark masses smaller than those we use. Thus when fit
the pion masses we ignore thed term.

The predicted form for baryon masses is, schematica
@14#,

MN5aN1d@bNmq
1/21bN8mq ln~mq!#1cNmq1dNmq

3/2

1eNmq
21••• , ~4.2!

whered is the same constant as in Eq.~4.1!, while aN2eN
are additional constants. The expansion has the same form
full QCD, except that thed term, which again comes fromh8
loops, is absent. As for the pion, we ignore thed term in
almost all fits. It is small~becaused is small! and, further-
more, is numerically indistinguishable from the higher ord
terms within our range of light quark masses. What we c
test in some detail, however, is the expected form of themq ,
mq

3/2, andmq
2 terms. Here we benefit greatly from our use o

nondegenerate quarks.
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Similar comments apply to the vector meson masses. A
though these have not been discussed in the quenched c
perturbation theory literature, it is straightforward to exten
the work done in QCD@15# and arrive at the prediction

M r5ar1dbrmq
1/21cr~m11m2!1drmq

3/21ermq
21••• .

~4.3!

Unlike for baryons, the detailed expressions forbr , cr , and
dr in terms of constants in the quenched chiral Lagrangi
are not known. Nevertheless, we expect that thed term will
be small and again ignore it in our fitting.

V. MESON MASSES

We give our results for meson masses in Tables I–IV. W
quote separately the results for the three source-sink com
nations and the average~2WL1SL1SS!/4. There are four
columns for the pion in each table because we use Lore
structuresg55P and g4g55A4 for both source and sink.
TABLE II. Meson masses fromSL correlators atpW 50.

p A4/A4 A4/p p/A4 r a0 a1

CC 1.217~01! 1.217~01! 1.217~01! 1.217~01! 1.230~01! 1.421~11! 1.448~09!
CS 0.854~01! 0.854~01! 0.855~01! 0.854~01! 0.881~01! 1.079~17! 1.126~12!
CU1 0.815~01! 0.815~01! 0.815~01! 0.814~01! 0.844~02! 1.047~22! 1.097~15!
CU2 0.800~02! 0.800~02! 0.800~02! 0.800~02! 0.829~02! 1.040~28! 1.089~18!
CU3 0.791~02! 0.792~03! 0.791~02! 0.792~02! 0.821~03! 1.048~38! 1.090~23!
SS 0.423~01! 0.422~01! 0.423~01! 0.422~01! 0.506~02! 0.716~16! 0.777~13!
SU1 0.364~01! 0.363~01! 0.364~01! 0.364~01! 0.464~03! 0.684~24! 0.741~16!
SU2 0.340~01! 0.339~01! 0.340~01! 0.340~01! 0.450~03! 0.697~29! 0.731~19!
SU3 0.324~01! 0.323~02! 0.324~01! 0.324~01! 0.440~03! 0.733~48! 0.729~22!
U1U1 0.297~01! 0.296~01! 0.297~01! 0.297~01! 0.423~03! 0.677~37! 0.705~20!
U1U2 0.268~01! 0.267~02! 0.268~01! 0.268~01! 0.406~04! 0.704~42! 0.695~25!
U1U3 0.248~01! 0.247~02! 0.248~02! 0.248~01! 0.396~05! 0.736~39! 0.695~29!
U2U2 0.235~01! 0.233~02! 0.235~02! 0.235~01! 0.389~05! 0.687~30!
U2U3 0.212~01! 0.210~02! 0.212~02! 0.212~02! 0.377~06! 0.688~36!
U3U3 0.186~01! 0.184~02! 0.186~02! 0.185~02! 0.363~08! 0.691~45!
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TABLE III. Meson masses fromSScorrelators atpW 50.

p A4/A4 A4/p p/A4 r a0 a1

CC 1.218~01! 1.218~01! 1.218~01! 1.217~01! 1.230~01! 1.421~12! 1.438~11!
CS 0.854~01! 0.855~01! 0.855~01! 0.854~01! 0.880~01! 1.071~21! 1.118~15!
CU1 0.814~01! 0.815~02! 0.815~01! 0.815~02! 0.843~02! 1.043~29! 1.084~19!
CU2 0.799~02! 0.800~02! 0.800~02! 0.800~02! 0.829~02! 1.040~38! 1.074~23!
CU3 0.791~02! 0.792~03! 0.791~03! 0.792~03! 0.820~03! 1.045~42! 1.072~28!
SS 0.422~01! 0.422~01! 0.422~01! 0.422~01! 0.507~02! 0.707~18! 0.770~14!
SU1 0.364~01! 0.364~01! 0.364~01! 0.364~01! 0.465~02! 0.677~27! 0.738~13!
SU2 0.340~01! 0.339~01! 0.340~01! 0.339~01! 0.449~03! 0.691~31! 0.725~19!
SU3 0.324~01! 0.324~02! 0.324~01! 0.324~01! 0.440~03! 0.724~29! 0.726~16!
U1U1 0.297~01! 0.296~01! 0.297~01! 0.297~01! 0.422~03! 0.672~39! 0.702~15!
U1U2 0.268~01! 0.267~01! 0.268~01! 0.267~01! 0.405~04! 0.692~30! 0.691~17!
U1U3 0.248~01! 0.247~02! 0.248~01! 0.248~02! 0.395~05! 0.726~32! 0.687~20!
U2U2 0.235~01! 0.233~02! 0.235~01! 0.234~01! 0.387~05! 0.679~20!
U2U3 0.212~01! 0.210~02! 0.212~02! 0.211~02! 0.375~07! 0.675~24!
U3U3 0.186~01! 0.184~02! 0.186~02! 0.184~02! 0.361~08! 0.671~28!
a-
s.
r-

two
Thus PP has a pseudoscalar interpolating field at bo
source and sink, whilePA4 has an axial interpolating field at
the sink. The four possibilities yield consistent results f
masses, and we use the average of the four~inside our jack-
knife loop! to give our best estimate ofMp .

States atpW 50 created byc̄c are labeleda0 and those by
c̄g ig5c are calleda1. The signal in these channels is no
good. We only present data for those mass combinatio
where there is a ‘‘plateau’’ over at least three time slice
Even in the best case the signal dies out byt514, and so
contamination from higher states is likely. We do not co
sider the data good enough to warrant further analysis.

The tables show in detail how all the masses are syste
atically lower for the WL correlators than for the SL or S
correlators. The effect is, however, less than 1s for the pion
andr. As discussed above, we take the results of Table IV
our best estimates.

To extrapolate the hadron masses towards the chiral li
th
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and to test the forms predicted by quenched chiral perturb
tion theory, we need to choose a definition of quark mas
We consider two possibilities. The first is the standard pe
turbative definition,

mq
MS5Zm~1/2k21/2kc!, ~5.1!

while the second is nonperturbative@16#,

2Mp

^0uA4~ t !J~0!u0&

^0uP~ t !J~0!u0&
——→
t→`

ZP
ZA

~m1,np1m2,np!

2
.

~5.2!

HereP andA4 are local operators andJ ~which has the same
Lorentz structure as eitherP or A4! is constructed from the
smeared Wuppertal source propagators. The data for the
TABLE IV. Best estimates of meson masses@given by the average (2WL1SL1SS)/4 as explained in
the text# at pW 50.

p A4/A4 A4/p p/A4 r a0 a1

CC 1.217~00! 1.217~01! 1.217~01! 1.217~01! 1.229~01! 1.426~07! 1.441~06!
CS 0.854~01! 0.854~01! 0.854~01! 0.854~01! 0.879~01! 1.113~08!
CU1 0.814~01! 0.814~01! 0.814~01! 0.814~01! 0.842~01! 1.086~10!
CU2 0.798~01! 0.799~01! 0.799~01! 0.799~01! 0.828~01! 1.081~12!
CU3 0.789~01! 0.791~02! 0.790~01! 0.790~01! 0.819~02! 1.084~15!
SS 0.422~01! 0.422~01! 0.422~01! 0.422~01! 0.505~01! 0.727~12! 0.763~08!
SU1 0.363~01! 0.363~01! 0.364~01! 0.363~01! 0.464~01! 0.700~16! 0.730~08!
SU2 0.339~01! 0.339~01! 0.339~01! 0.338~01! 0.448~02! 0.718~21! 0.720~11!
SU3 0.323~01! 0.323~01! 0.323~01! 0.323~01! 0.439~02! 0.720~12!
U1U1 0.296~01! 0.296~01! 0.297~01! 0.296~01! 0.422~02! 0.699~31! 0.694~10!
U1U2 0.267~01! 0.266~01! 0.267~01! 0.266~01! 0.405~02! 0.683~12!
U1U3 0.247~01! 0.247~01! 0.248~01! 0.246~01! 0.394~03! 0.682~15!
U2U2 0.234~01! 0.233~01! 0.234~01! 0.233~01! 0.387~03! 0.672~14!
U2U3 0.211~01! 0.210~01! 0.211~01! 0.210~01! 0.373~03! 0.669~17!
U3U3 0.185~01! 0.184~01! 0.186~01! 0.184~01! 0.361~05! 0.664~20!
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choices ofJ are consistent, and so we use the average as
best estimate. We use tadpole-improved renormalizat
constants, defined by@17#

Zm
8kc

512aMS~q* !S 2p ln~ma!20.01D ,
AZc

1Zc
2ZA5A123k1/4kcA123k2/4kc

3@120.316aMS~q* !#,

AZc
1Zc

2ZP5A123k1/4kcA123k2/4kc

3S 11aMS~q* !S 2p ln~ma!21.0335D D .
~5.3!

Zc
1,2 are wave function renormalizations for the two quark

coupling to the bilinears, which have hopping paramete
k1,2, respectively. TheZc’s cancel in the ratioZP/ZA . m is
the scale at which we match to the continuum renormaliz
tion scheme~hereMS!, while q* is a typical momentum in
the one-loop integral. We choosem51/a and assume
q*51/a. The masses can be run to other scales using
two-loop anomalous dimension relation@18#

m~Q!

m~m!
5S g2~Q!

g2~m! D g0/2b0F11
g2~Q!2g2~m!

16p2

3S g1b02g0b1

2b0
2 D G . ~5.4!

We mostly quote results for the scale 1/a, but also give some
results at scale 2 GeV, to allow comparison with other wor

It is important to note that, although we do not labelmnp
MS explicitly, both definitions yield estimates for the con
tinuum mass in theMS scheme and should agree in the co
tinuum limit. We give our results for both definitions in
Table VII, below, and find a substantial difference betwe
them. Most likely this is due to the failure of the perturbativ
expression forZP @18,11#. Details of this analysis will be
presented elsewhere.

This difference is not, however, important for our stud
since the two definitions of mass turn out to be proportion
to very high accuracy for the six cases$UiU j%. This is shown
in Fig. 4, in which we plot the averagemnp of the quark and
antiquark against the average value of 1/2k. The fit is given
by mnp50.867~4!~1/2k!22.76~1!. Thus, when extrapolating,
it does not matter which definition of mass one uses. W
choose to usemnp for most purposes in this paper—and w
will drop the subscript henceforth. The perturbative mas
when it appears, will be distinguished by the superscr
MS.

We now consider extrapolations to the chiral limit. Fig
ures 5 and 6 show, respectively,M p

2 andM r as a function of
the averagemnp. Only data from the combinations$UiU j%
~the six points with the smallest masses! and $SS,SUj % ~the
rightmost four points! are included.

We first consider linear fits to the data. These work we
for the $UiU j% points and are the fits shown in the figure
The fits give
the
ion
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Mp
25ap1cp~m11m2!50.0013~5!

12.296~11!~m11m2!/2,
~5.5!

M r5ar1cr~m11m2!50.327~6!12.54~14!~m11m2!/2.

One interesting feature is that the pion intercept is slight
inconsistent with zero, whereas in the continuum limit of fu
QCD the intercept should vanish. This discrepancy could
due to discretization errors: ForM p

2 to be proportional to
mnp, it must be true that̂ 0uA4up&}Mp @see Eq.~5.2!#,
which is guaranteed only in the continuum limit. A violation
of this proportionality atO(a) would lead to an additional
term in Eq.~5.5! proportional toAamnp, wherea is the lat-
tice spacing. This could give rise to a nonzero intercep

FIG. 4. Plot of data formnp versus 1/2k. The linear fit is to the
six $UiU j% ~lightest! points. The vertical lines showm̄ and the
range of estimates ofms .

FIG. 5. Mp
2 versusmnp. The linear fit is to the six$UiU j%

points.



r,
ee
In
in

nt
m

-
per

la-

l

ve,
eV

r
nd

to

d

y
re

6492 53BHATTACHARYA, GUPTA, KILCUP, AND SHARPE
Other possible culprits are quenched chiral logarithms—t
terms proportional tod in Eq. ~4.1!—and finite size effects.
We expect the latter to be insignificant, however, sin
MpL>6. Our data are not good enough to investigate th
effect further. As a result of the nonzero intercept, the chi
limit ~defined byMp50! is atmnp

chiral520.000 58~21!. In the
following, when quoting quark masses in physical units w
usemnp2mnp

chiral, i.e., we offset the zero of the mass scal
This offset is only significant form̄. When we use masses in
lattice units, as we do in all our fits and extrapolations, we
not include this offset.

Using our linear fits we determinem̄np by extrapolating to
the point where M p

2 /M r
25~137/768!2, finding m̄np

50.000 93~21!. The resulting value ofM ra gives us an es-
timate of the scale

a21~M r!52.3301~41! GeV. ~5.6!

Using this value and including the offset in the mass sca
we find m̄(1/a)53.51~6! MeV @m̄~2 GeV!53.60~5! MeV#.
To facilitate comparison with earlier calculations, it is usef
to give results for the critical and light quark hopping param
eters. Using linear fits versus 1/k, we find

kc50.157 131~9!, k l50.157 046~9!. ~5.7!

We note that linear fits work well for the subsampl
$SS,SUj % ~and for$CUj%, not shown in the figures! as well,
and we use them below when calculating the masses
strange and charm mesons.

The figures show that linear fits are inadequate for t
combined $UiU j% and $SS,SUj % data. This is particularly
striking forM r , where there is a definite negative curvatur
which, if ignored, could lead to an overestimate ofar . Thus
we have tried fits to the combined data involving high
order terms in the chiral expansion. A quadratic fit toM p

2

works well, but has little impact on extrapolations, increa
ing ap by about 1s. For ther, motivated by chiral perturba-
tion theory, we have used two forms of higher order term

FIG. 6.M r versusmnp. The linear fit is to the six$UiU j% points.
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M r5ar1cr~m11m2!1dr~m11m2!
3/2,

~5.8!
M r5ar1cr~m11m2!1er~m11m2!

2.

These fits, when extrapolated tom̄ ~calculated self-
consistently!, yield smaller values ofM r(m̄) and thus larger
scales than the linear fit:

a21~M r!52.365~48! GeV ~m3/4 fit!,
~5.9!

a21~M r!52.344~42! GeV ~m2 fit!.

The difference from the result of the linear fit is, howeve
within the statistical errors. Our data are good enough to s
the curvature, but not precise enough to study it in detail.
particular, we cannot distinguish between the two forms
Eq. ~5.8!, both doing a good job of fitting the combined
$UiU j% and$SS,SUj % data sets. In view of this, we chose to
use the scale from the linear fit for most of our subseque
analysis. For comparison, we note that the scale we find fro
f p is 2265~57! MeV @19#, while the NRQCD Collaboration
reports a value 2.4~1! GeV from a mean of charmonium and
Y spectroscopy@20#. Thus different estimates based on me
son correlators are consistent. In the remainder of the pa
we shall take the scale fromM r and assign a 3% systematic
uncertainty to cover the spread ina21 obtained from differ-
ent mesonic observables and different types of extrapo
tions.

Using the linear fits defined in Eq.~5.5!, we determine the
lattice strange quark mass by first extrapolatingM K

2 /M p
2 ,

MK* /M r , or Mf/M r to m̄ and then linearly interpolating
betweenU1 andS until these quantities match their physica
values. ~We use MK5495 MeV, MK*5894 MeV, and
Mf51019 MeV!. The results are given in Table V in terms
of k and the two definitions of quark mass discussed abo
except that we have here run the masses to a scale of 2 G
to facilitate comparison with other work.

The three ratios lead to significantly different results fo
ms , presumably because of a combination of quenching a
discretization errors. UsingM K

2 /M p
2 to fix ms implies

ms[25m̄, since we use the lowest order chiral expansion
fit the data. On the other hand, the estimates usingMf/M r
andMK* /M r are not constrained by the chiral expansion an
give ms/m̄'30, in surprisingly good agreement with the
next-to-leading chiral result@21#. In this paper we quote all
results usingms(Mf).

Recently Lacock and Michael@22# suggested using the
dimensionless quantityJV5MV]MV/]M p

2 to test the
quenched approximation. Using a linear fit, we find

TABLE V. Estimates of the strange quark mass obtained b
matching different quantities with their physical values. Results a
given for ~1! ks , ~2! the lattice nonperturbative massmnp/a evalu-
ated at 1/a and 2 GeV, and~3! the lattice perturbative massms

MS

evaluated at 2 GeV. The latter three masses are in MeV.

Quantity ks ms,np(1/a) ms,np(2 GeV) ms
MS(2 GeV)

M K
2 /M p

2 0.155 03~7! 87~2! 89~2! 129~2!

MK* /M r 0.154 79~19! 98~7! 100~7! 145~9!

Mf/M r 0.154 64~17! 104~6! 106~6! 154~8!
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TABLE VI. Pseudoscalar~first set! and vector~second set! meson energies as a function of momentum. The data are the average oSL
andSSestimates.

p251 p252 p253 p254 p251 p252 p253 p254

CC 1.231~01! 1.244~01! 1.255~02! 1.268~01! 1.243~01! 1.255~01! 1.267~02! 1.278~02!
CS 0.874~01! 0.893~02! 0.913~03! 0.930~02! 0.899~01! 0.917~02! 0.937~03! 0.951~03!
CU1 0.836~02! 0.855~02! 0.876~03! 0.895~02! 0.863~02! 0.881~02! 0.901~03! 0.917~04!
CU2 0.821~02! 0.841~02! 0.861~04! 0.881~03! 0.849~02! 0.868~03! 0.888~04! 0.905~04!
CU3 0.814~03! 0.833~03! 0.853~04! 0.873~03! 0.841~03! 0.860~04! 0.882~04! 0.898~05!
SS 0.466~01! 0.504~02! 0.547~04! 0.578~04! 0.541~02! 0.575~03! 0.614~05! 0.642~04!
SU1 0.414~02! 0.456~03! 0.505~06! 0.539~04! 0.503~03! 0.540~03! 0.583~06! 0.613~05!
SU2 0.393~02! 0.438~03! 0.487~07! 0.522~05! 0.489~03! 0.528~04! 0.571~07! 0.602~06!
SU3 0.380~02! 0.427~03! 0.474~08! 0.511~06! 0.482~04! 0.522~05! 0.565~90! 0.596~07!
U1U1 0.357~02! 0.406~03! 0.460~08! 0.497~06! 0.465~04! 0.508~05! 0.553~08! 0.583~06!
U1U2 0.333~02! 0.386~03! 0.438~09! 0.480~07! 0.452~05! 0.496~06! 0.541~10! 0.572~07!
U1U3 0.317~02! 0.372~04! 0.423~11! 0.469~08! 0.445~06! 0.490~07! 0.534~12! 0.566~08!
U2U3 0.307~02! 0.363~04! 0.416~11! 0.464~09! 0.439~06! 0.484~08! 0.529~12! 0.561~09!
U2U3 0.290~03! 0.349~05! 0.399~13! 0.454~11! 0.432~08! 0.478~10! 0.520~15! 0.554~10!
U3U3 0.272~03! 0.333~05! 0.379~16! 0.445~13! 0.424~10! 0.471~13! 0.509~19! 0.546~13!
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JK*50.41~1!, Jr50.36~1!, ~5.10!

to be compared to the experimental values of'0.48 and
'0.41, respectively. Again, the discrepancy is presuma
due to a combination of discretization and quenching erro

VI. O„ma… DISCRETIZATION ERRORS

At b56, the charm mass is such thatmca;1, and so there
are potentially largeO(mca) discretization errors in all
quantities involving charm quarks. These are in addition
errors ofO~LQCDa!, which are common to all quantities
One effect ofO(a) errors is that there is a difference be
tween the ‘‘static’’ massM15E(pW 50) and the ‘‘kinetic’’
massM2[(]2E/]p2up50)

21. Here the energy is determined
from the rate of exponential decay of the correlato
C(t)}exp@2E(pW )t#. M1 and M2 agree in the continuum
limit, whatever the mass of the state.

To evaluateM2, we have tested four forms of dispersio
relation:

~A! E25p21M2⇒M25M ,

~B! sinh2 E5sin2 p1sinh2 M⇒M25
1
2 sinh 2M ,

~6.1!

~C! sinh2
E

2
5sin2

p

2
1sinh2

M

2
⇒M25sinhM ,

~D! sinh2
E

4
5sin2

p

4
1sinh2

M

4
⇒M252 sinh

M

2
.

~A! is the continuum relation, while~B!, ~C!, and ~D! are
lattice forms following from different choices of lattice ac
tion. In particular, ~C! follows from the nearest neighbor
symmetric difference discretization of the action for a scal
Our results forE(pW ) are collected in Table VI, and in Fig. 7
we show how the various dispersion relations fare for t
CU1 meson. For all heavy-heavy and heavy-light meson
our results turn out to be consistent with dispersion relati
~C!, but not with the other forms.
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Using this result, we have thatM25sinhM1. In Table VII
we compareM1 and M2 for the pseudoscalar and vecto
mesons. The difference is tiny for the smallest quark mass
but substantial for charmed mesons. Our results for charm
meson masses~obtained by linear extrapolation in the ligh
quark mass and withmc chosen to bek50.135! are given in
Table VIII. There is a significant difference between the e
timates usingM1 andM2: For theD mesons the difference
is ;10 %, while for the charmonium system it is 25–30 %
This suggests thatO(ma) corrections in the Wilson action
are already large in the charm region. This is also appar
from the mass splittings—the spin-spin and spin-orbit inte
actions are underestimated by the Wilson action, as has b
previously observed@23#.

FIG. 7. Test of four lattice dispersion relations@see Eq.~6.1!#
using the lattice pion data at various momenta for the caseCU1.
The data favor the nearest-neighbor symmetric-difference relativ
tic dispersion relation sinh2~E/2!2sin2~p/2!5sinh2~M /2!, as shown
by the square symbols.
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TABLE VII. Comparison ofM15E(pW 50) andM25sinhM1. We also give the values of the average
nonperturbativemnp and perturbative definitions of the quark mass in theMS scheme as defined in Eqs.~5.2!
and ~5.3!. Both are in lattice units, evaluated at the scale 1/a.

State

Mp M r

mnp mqM1 M2 M1 M2

CC 1.217~0! 1.541~1! 1.229~1! 1.564~2! 0.4569~2! 0.6563~2!

CS 0.854~1! 0.962~1! 0.879~1! 0.999~2! 0.2625~2! 0.3822~2!

CU1 0.814~1! 0.908~2! 0.842~1! 0.947~2! 0.2419~3! 0.3557~2!

CU2 0.799~1! 0.888~2! 0.828~1! 0.927~3! 0.2339~3! 0.3453~2!

CU3 0.790~1! 0.877~3! 0.819~2! 0.916~4! 0.2291~4! 0.3388~2!

SS 0.422~1! 0.435~1! 0.505~1! 0.528~2! 0.0756~2! 0.1081~2!

SU1 0.363~1! 0.372~1! 0.464~1! 0.481~3! 0.0565~2! 0.0816~2!

SU2 0.339~1! 0.346~1! 0.448~2! 0.465~3! 0.0490~2! 0.0711~2!

SU3 0.323~1! 0.330~1! 0.439~2! 0.454~4! 0.0445~2! 0.0647~2!

U1U1 0.296~1! 0.301~1! 0.422~2! 0.436~3! 0.0377~2! 0.0550~2!

U1U2 0.267~1! 0.271~1! 0.405~2! 0.417~4! 0.0304~2! 0.0446~2!

U1U3 0.247~1! 0.250~1! 0.394~3! 0.406~5! 0.0259~2! 0.0382~2!

U2U2 0.234~1! 0.236~1! 0.387~3! 0.398~5! 0.0232~2! 0.0342~2!

U2U3 0.211~1! 0.213~1! 0.373~3! 0.385~7! 0.0187~2! 0.0277~2!

U3U3 0.185~1! 0.186~1! 0.361~5! 0.370~9! 0.0143~2! 0.0213~2!
e
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t-

e

ks.
VII. BARYON MASSES

Our baryon mass analysis is based on two overlapp
data sets. For the complete data set~170 configurations!, we
have results for only WL and SL correlators and for only
subset of possible quark combinations. On the last 110 c
figurations we also calculate SS correlators and use all
generate and nondegenerate combinations made up ofS and
Ui quarks. Our results for the masses are given in Tables
X, and XI. The sample size is indicated by the subscript
the table headings. In the following, some analyses are o
possible on the smaller sample, and we label such results
an asterisk next to the error estimate.

TABLE VIII. Comparison of lattice estimates ofD meson and
charmonium masses with the experimental data. We show res
for M1 andM2 and for the two different ways of settingms de-
scribed in the text.

D meson masses in MeV
M1 M2 Expt.

MD 1805~31! 1990~34! 1869
MD* 1876~32! 2085~35! 2008
MDs

@ms(MK)# 1896~30! 2112~32! 1969
MDs

@ms(Mf)# 1914~26! 2137~27! 1969
MD

s
* @ms(MK)# 1961~31! 2201~34! 2110?

MD
s
* @ms(Mf)# 1978~27! 2224~29! 2110?

Mhc
(1S0) 2836~50! 3590~64! 2980

MJ/c(
3S1) 2865~51! 3643~65! 3097

Mxc0
(3P0) 3324~60! 4572~86! 3415

Mxc1
(3P1) 3357~60! 4646~86! 3510

DM (3S1-
1S0) 29~1! 53~2! 117

DM (3P1-
3P0) 33~9! 74~18! 95

DM (3P0-
3S1) 459~17! 929~36! 318
ing
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A. Correlators

It is necessary to introduce some notation to explain th
correlation functions we calculate. We adapt that used
quenched chiral perturbation theory for baryons@14#. As-
sume that we have three flavors of quark, labeled byu, d,
ands. To create spin-1/2 baryons we can use the interpola
ing operators

O ~ i j !k5~ca,i
T Cg5cb, j !cc,ke

abc, ~7.1!

wherea, b, andc label color, whilei , j , andk label flavor.
It is simple to show thatO ( i j )k52O ( j i )k , so that there are
only nine independent operators, eight SU~3! octets and the
singlet( i jke

i jkO i jk . One way to project against the singlet is
to form

B i jk5O ~ i j !k1O ~ ik ! j5B ik j . ~7.2!

There are eight independentBi jk ’s, the relation to the usual
states being exemplified by

&p52Bduu52Buud52Budu ,

&S152Bsuu52Buus52Busu,
~7.3!

S05Buds1Bdsu52Bsud.

)L05Buds2Bdsu.

The overall factor in these equations is arbitrary, while th
relative normalization is fixed by SU~3! symmetry.

All spin-1/2 baryon correlators are built out of the two
contractions shown in Fig. 8. The notation^DU&S5^UD&S
corresponds to quarks of flavorsU andD contracted into a
closed loop, while the propagator forS carries the spin quan-
tum numbers of the baryon. The notation (DUS) corre-
sponds to a single ordered contraction of the three quar

ults
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We consider two types of correlator, ‘‘( like’’ and ‘‘ L like.’’
The former is exemplified by that of the(0,

S$UD%5S$DU%[^Bsud~x!Bsud~0!&

5^US&D1^DS&U1~USD!1~DSU!. ~7.4!

~This equation defines our sign conventions for the contra
tions.! The proton, neutron,S1, S2, J0, andJ2 correla-
tors are also of this type: They are, respectively,D$UU%,
U$DD%, S$UU%, S$DD%, U$SS%, andD$SS%. The second
type of correlator is that of theL0

TABLE IX. Mass estimates forL-like baryons.

WL110 SL110 SS110 AV110

S[SS] 0.786~03! 0.791~04! 0.793~04! 0.789~02!
S[SU1] 0.734~04! 0.740~04! 0.742~04! 0.738~02!
S[SU2] 0.712~04! 0.720~04! 0.721~04! 0.716~03!
S[SU3] 0.698~04! 0.707~05! 0.708~04! 0.703~03!
S[U1U1] 0.678~04! 0.687~04! 0.688~04! 0.683~03!
S[U1U2] 0.655~04! 0.665~05! 0.665~04! 0.660~03!
S[U1U3] 0.640~05! 0.652~05! 0.651~05! 0.646~03!
S[U2U2] 0.630~05! 0.642~05! 0.642~05! 0.636~03!
S[U2U3] 0.614~06! 0.627~06! 0.627~05! 0.620~04!
S[U3U3] 0.597~07! 0.611~07! 0.610~06! 0.604~04!
U1[SS] 0.740~04! 0.747~04! 0.749~04! 0.744~03!
U1[SU1] 0.687~05! 0.696~05! 0.697~04! 0.691~03!
U1[SU2] 0.663~04! 0.675~05! 0.675~05! 0.669~03!
U1[SU3] 0.648~05! 0.661~05! 0.661~05! 0.655~03!
U1[U1U1] 0.630~05! 0.643~05! 0.642~05! 0.636~03!
U1[U1U2] 0.605~05! 0.620~06! 0.619~05! 0.612~03!
U1[U1U3] 0.589~06! 0.605~06! 0.604~06! 0.597~04!
U1[U2U2] 0.579~06! 0.596~06! 0.595~06! 0.587~04!
U1[U2U3] 0.562~07! 0.580~07! 0.579~06! 0.571~04!
U1[U3U3] 0.544~08! 0.563~09! 0.562~07! 0.553~05!
U2[SS] 0.723~04! 0.731~05! 0.732~04! 0.727~03!
U2[SU1] 0.668~05! 0.679~05! 0.679~05! 0.674~03!
U2[SU2] 0.643~05! 0.657~06! 0.657~05! 0.650~03!
U2[SU3] 0.627~06! 0.643~06! 0.643~06! 0.635~04!
U2[U1U1] 0.610~06! 0.626~06! 0.625~05! 0.617~04!
U2[U1U2] 0.584~06! 0.602~07! 0.601~06! 0.593~04!
U2[U1U3] 0.567~07! 0.587~08! 0.586~07! 0.577~05!
U2[U2U2] 0.557~07! 0.578~08! 0.577~07! 0.567~05!
U2[U2U3] 0.539~08! 0.561~09! 0.560~08! 0.550~05!
U2[U3U3] 0.520~10! 0.543~11! 0.543~09! 0.532~06!
U3[SS] 0.712~05! 0.722~05! 0.723~05! 0.717~03!
U3[SU1] 0.656~06! 0.670~06! 0.669~05! 0.663~04!
U3[SU2] 0.631~06! 0.647~07! 0.646~06! 0.639~04!
U3[SU3] 0.614~07! 0.632~08! 0.631~07! 0.623~04!
U3[U1U1] 0.598~06! 0.616~07! 0.615~06! 0.607~04!
U3[U1U2] 0.572~07! 0.592~08! 0.590~07! 0.581~05!
U3[U1U3] 0.554~08! 0.576~09! 0.574~08! 0.564~05!
U3[U2U2] 0.544~08! 0.567~09! 0.565~08! 0.555~05!
U3[U2U3] 0.525~09! 0.550~11! 0.549~09! 0.537~06!
U3[U3U3] 0.506~11! 0.531~13! 0.531~10! 0.518~07!
c-

S@UD#5S@DU#[~1/3!@^US&D1^DS&U14^UD&S

2~USD!2~DSU!12~SUD!12~SDU!

12~UDS!12~DUS!#. ~7.5!

WhenmuÞmd , there is also a nonvanishingL02S0 cross
correlator, but we have not found this to give useful resul

We have calculated the two types of spin-1/2 baryon co
relator for all independent mass combinations involvingUi
and S quarks. The results are given in Tables IX and X
respectively. Masses from correlators of the formA[AB] and
A$AB% are also included even though they are n
independent—the correlators are related by

A@AB#5 1
4 ~3B@AA#1B$AA%!,

~7.6!

A$AB%5 1
4 ~B@AA#13B$AA%!.

One can think of the results for theA$BB% and A[BB]
masses as being those for theS andL, respectively, with
ms5mA andmu5md5mB . Unlike in the real world, there is
nothing to stop these two masses being the same, i
mA5mB , in the quenched approximation. Note, howeve
that in this case theS and L are also degenerate, i.e.
M (A$AA%)5M (A[AA]). Indeed, the contractions in the
two cases are identical.

The interpretation of the results for the completely non
degenerate correlatorsA[BC] and A$BC% is more compli-
cated. Because isospin is broken, theS0- andL-like states
mix, with both correlators containing contributions from
both physical states. LetM1 andM2 be the masses of the
heavier and lighter states, respectively, anddM the mass
difference. At long times, the effective mass for both cor
elators will asymptote toM2 . However, at times short com-
pared to the inverse mass difference, i.e.,dMtmax!1, there
will be an approximate plateau at a value which is
weighted average of the two masses. To see this, we pick
L correlator and write it as

CL~ t !5Ae2M2t~cos2u1sin2ue2dMt!1••• , ~7.7!

where tanu is the ratio of the amplitudes to create the tw
mixed states and the ellipsis represents excited states.
effective mass is

m~L!eff~ t !52
d lnCL~ t !

dt
5M21sin2u dM

3@11O~dMt !#'cos2uM21sin2uM1 .

~7.8!

Thus the effective mass is almost constant, and given o
errors, we cannot distinguish it from a plateau. We discu
below the interpretation of the resulting ‘‘mass.’’

We have also calculated the masses of spin-3/2 baryo
Here there is only one type of operator, which is complete
symmetric in flavor. Our results for all 20 mass combination
built out of Ui and S quarks are given in Table XI.
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TABLE X. Mass estimates forS-like baryons.

WL110 SL110 SS110 AV110 WL170 SL170 AV170

S$SS% 0.786~03! 0.791~04! 0.793~04! 0.789~02! 0.786~03! 0.794~03! 0.790~02!
S$SU1% 0.738~04! 0.745~04! 0.746~04! 0.742~03!
S$SU2% 0.718~04! 0.727~04! 0.728~04! 0.723~03!
S$SU3% 0.706~04! 0.716~05! 0.717~05! 0.711~03!
S$U1U1% 0.689~04! 0.699~05! 0.700~04! 0.695~03! 0.689~04! 0.702~04! 0.695~03!
S$U1U2% 0.669~05! 0.682~05! 0.682~05! 0.676~03!
S$U1U3% 0.657~05! 0.672~06! 0.671~05! 0.664~04!
S$U2U2% 0.649~06! 0.665~06! 0.664~06! 0.657~04! 0.649~04! 0.667~05! 0.658~03!
S$U2U3% 0.636~07! 0.654~07! 0.654~06! 0.645~04!
S$U3U3% 0.622~08! 0.644~09! 0.643~08! 0.633~05! 0.625~06! 0.647~07! 0.636~04!
U1$SS% 0.732~04! 0.738~04! 0.739~04! 0.736~02! 0.732~03! 0.744~04! 0.738~02!
U1$SU1% 0.681~05! 0.690~04! 0.690~04! 0.686~03!
U1$SU2% 0.659~04! 0.671~05! 0.671~04! 0.665~03!
U1$SU3% 0.646~05! 0.659~05! 0.658~05! 0.652~03!
U1$U1U1% 0.630~05! 0.643~05! 0.642~05! 0.636~03! 0.630~05! 0.645~05! 0.638~03!
U1$U1U2% 0.608~05! 0.624~06! 0.623~05! 0.616~04!
U1$U1U3% 0.594~06! 0.612~07! 0.611~06! 0.603~04!
U1$U2U2% 0.586~06! 0.605~07! 0.604~06! 0.595~04! 0.588~05! 0.607~06! 0.598~04!
U1$U2U3% 0.572~07! 0.593~08! 0.592~07! 0.582~05!
U1$U3U3% 0.557~09! 0.581~10! 0.580~08! 0.569~06! 0.562~07! 0.583~08! 0.573~05!
U2$SS% 0.710~04! 0.717~04! 0.718~04! 0.714~03! 0.708~04! 0.720~04! 0.714~03!
U2$SU1% 0.657~05! 0.667~05! 0.667~04! 0.662~03!
U2$SU2% 0.634~05! 0.646~05! 0.646~05! 0.640~03!
U2$SU3% 0.619~06! 0.633~06! 0.633~05! 0.626~04!
U2$U1U1% 0.603~05! 0.618~06! 0.618~05! 0.611~03! 0.605~06! 0.621~06! 0.613~03!
U2$U1U2% 0.580~06! 0.598~07! 0.597~06! 0.589~04!
U2$U1U3% 0.565~07! 0.585~08! 0.584~06! 0.575~04!
U2$U2U2% 0.557~07! 0.578~08! 0.577~07! 0.567~05! 0.561~06! 0.581~07! 0.571~04!
U2$U2U3% 0.542~08! 0.565~09! 0.564~08! 0.553~05!
U2$U3U3% 0.526~10! 0.552~11! 0.551~09! 0.538~06! 0.534~08! 0.555~09! 0.544~06!
U3$SS% 0.696~05! 0.704~05! 0.704~04! 0.700~03! 0.694~04! 0.708~05! 0.701~03!
U3$SU1% 0.642~06! 0.653~05! 0.652~05! 0.647~03!
U3$SU2% 0.617~06! 0.631~06! 0.630~05! 0.624~04!
U3$SU3% 0.602~07! 0.616~07! 0.616~06! 0.609~04!
U3$U1U1% 0.586~06! 0.602~06! 0.602~06! 0.594~04! 0.589~06! 0.606~06! 0.597~04!
U3$U1U2% 0.563~07! 0.581~08! 0.580~06! 0.572~04!
U3$U1U3% 0.547~08! 0.567~09! 0.566~07! 0.557~05!
U3$U2U2% 0.539~08! 0.560~09! 0.559~07! 0.549~05! 0.543~08! 0.564~08! 0.553~05!
U3$U2U3% 0.523~09! 0.545~11! 0.545~09! 0.534~06!
U3$U3U3% 0.506~11! 0.531~13! 0.531~10! 0.518~07! 0.515~10! 0.536~10! 0.525~07!
-
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We analyze the baryon masses using the chiral expans
We first consider the spin-1/2 baryons, returning to spin-3
baryons later in this section. We couch the discussion
terms similar to those used in full QCD. If we keep onl
constants and terms linear in quark masses~and drop
nonanalytic terms of the formdmq

1/2 as discussed in Sec
IV !, then it is straightforward to show, using quenched chir
perturbation theory@14#, that

M ~S1!5M ~S$UU%!5M014Fmu12~F2D !ms ,
~7.9!

M ~L!5M ~S@UU# !5M014S F2
2D

3 Dmu12S F1
D

3 Dms .
ion.
/2
in
y

.
al

HereM0 is spin-1/2 baryon mass in the chiral limit andF
andD are the usual reduced matrix elements of scalar den
sities. Note that there is no dependence onmd , since thed
quark does not enter the correlators. These results can also
obtained using mass perturbation theory in full QCD and
then deleting terms proportional tomu1md1ms , which cor-
respond to contributions from internal quark loops. We stres
that these formulas apply to all the states we consider—fo
example, the proton mass isM (D$UU%) and is obtained by
replacingms with md in the formula forM ~S1!.

At this order in the chiral expansion, it is simple to extend
the results to baryons composed of three nondegenera
quarks. The mass matrix in the~S0,L!5(S$UD%,S[UD])
basis is
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S a
g

l
b D5S M014Fm̄12~F2D !ms

2D

)
~mu2md!

2D

)
~mu2md!

M014S F2
2D

3 D m̄12S F1
D

3 Dms

D . ~7.10!
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Diagonalizing this matrix gives the eigenvaluesM6 with a
mixing angleu. If we assume that the same mixing ang
applies for the interpolating fields, which we think is true u
to corrections ofO(mq

3/2), thenu is the angle appearing in
our previous expressions for theL correlator@Eq. ~7.7!#. The
‘‘short-time effective mass,’’ Eq.~7.8!, is then

M ~L!eff'cos2uM21sin2uM15b. ~7.11!

A similar argument shows that

M ~S!eff'sin2uM21cos2uM15a. ~7.12!

Thus we find the surprising result that the short-time effe
tive masses are insensitive to the isospin breaking termg.
Furthermore, the expressions fora and b are exactly the
same as the formulas applicable when isospin is unbrok
Eqs.~7.9!, except thatmu is replaced by the average massm̄.

We have not extended this analysis to higher order in t
chiral expansion. Nevertheless, we use it as motivation
including our results for baryons composed of complete
nondegenerate quarks by assuming that the effective ma
satisfy

M ~A$BC%!5M ~A$DD%!, M ~A@BC# !5M ~A@DD# !,
~7.13!
le
p
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en,
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wheremD5(mB1mC)/2. We make clear in the following
where we are using this assumption and where not.

A large part of our analysis concerns mass splittings
tween, for example, spin-1/2 baryons. In most cases, we h
extracted these differences by directly fitting to the ratio
the appropriate correlators. Thus, for example,

GS~ t !

GN~ t !
;e2~MS2MN!t,

and so the mass difference is obtained from a single fit. T
has the advantage of both reducing some of the system
errors ~e.g., those arising from excited state contaminatio!
and of improving the statistical errors. We find that estima
obtained in this manner are consistent with those obtai
from individual fits, but have errors which are 3–5 time
smaller.

B. Spin-1/2 baryon mass splittings

In this subsection we use our results for mass splittin
between spin-1/2 baryons to extract predictions for t
physical mass splittings and to study the chiral behavior
baryon masses. It turns out that the leading chiral predicti
Eq. ~7.9!, gives a poor description of our data. Higher ord
terms are essential in order to extrapolate reliably from o
quark masses and have a significant impact on the final
TABLE XI. Mass estimates for the decuplet baryons.

WL110 SL110 SS110 AV110 WL170 SL170 AV170

$SSS% 0.832~05! 0.843~06! 0.843~07! 0.837~04! 0.831~04! 0.845~05! 0.838~03!
$SSU1% 0.788~06! 0.803~07! 0.802~07! 0.795~05!
$SSU2% 0.770~07! 0.789~07! 0.786~08! 0.779~06!
$SSU3% 0.760~08! 0.781~09! 0.778~08! 0.770~06!
$SU1U1% 0.744~08! 0.764~08! 0.761~08! 0.753~06!
$SU1U2% 0.725~10! 0.750~09! 0.747~08! 0.736~07!
$SU1U3% 0.710~11! 0.741~11! 0.738~09! 0.725~08!
$SU2U2% 0.705~10! 0.736~11! 0.732~09! 0.719~07!
$SU2U3% 0.690~11! 0.727~13! 0.724~10! 0.708~08!
$SU3U3% 0.674~09! 0.718~15! 0.716~11! 0.696~08!
$U1U1U1% 0.697~08! 0.726~10! 0.721~09! 0.710~06! 0.699~08! 0.721~09! 0.710~06!
$U1U1U2% 0.677~09! 0.712~12! 0.706~10! 0.693~07!
$U1U1U3% 0.663~11! 0.704~14! 0.699~11! 0.682~08!
$U1U2U2% 0.656~09! 0.699~14! 0.693~11! 0.676~08!
$U1U2U3% 0.642~10! 0.690~17! 0.685~12! 0.665~09!
$U1U3U3% 0.629~09! 0.682~21! 0.678~13! 0.654~09!
$U2U2U2% 0.635~08! 0.686~18! 0.680~12! 0.659~08! 0.644~11! 0.683~12! 0.664~08!
$U2U2U3% 0.622~10! 0.678~22! 0.673~14! 0.649~10!
$U2U3U3% 0.609~11! 0.670~27! 0.667~16! 0.639~11!
$U3U3U3% 0.596~13! 0.661~33! 0.662~18! 0.628~14! 0.612~13! 0.660~22! 0.636~13!
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sult. The higher order terms we use are motivated
quenched chiral perturbation theory which predicts nona
lytic terms ofO(mq

3/2) and analytic terms proportional to
mq

2. The form of these terms and some predictions for th
coefficients have been worked out in Ref.@24#. We attempt
only a qualitative comparison with these predictions, thou
we provide the results of our fits so that others can purs
this further.

We first consider the octet hyperfine splitting ‘‘S2L,’’

MA$BB%2MA@BB#

mA2mB
5~28D/3!1d1

MAB
3 2MBB

3

mA2mB

1d18
MAA

3 2MBB
3

mA2mB
1e1mB

1e18~mA1mB!, ~7.14!

whereMAB is the mass of the pion with flavorĀB, etc. The
constantsdi andei can be expressed in terms of paramete
of the quenched chiral Lagrangian. For reasonable choice
these parameters, one expectsud18u!ud1u. There is no useful
information concerninge1 or e18 .

We fit our results in two ways. First, we assume that t
d1 term is dominant and plot our data versu
(M AB

3 2M BB
3 )/(mA2mB). The outcome is shown in Fig. 9

The data should collapse onto a single curve, which sho
be linear, and our results are reasonably consistent with t
What is particularly striking, however, is the size of th
slope. This is a clear sign that terms of higher order th
linear in the quark mass are needed to describe our bar
masses—recall that the linear term has been divided ou
this fit. If we extrapolate linearly to the physical poin
~mA5ms , mB5m̄!, we find @the fit gives D520.36~3!,
d1520.19~2! GeV22#

MS2ML576~7! MeV. ~7.15!

It is conventional to quote this result in terms of an effectiv
D parameter,

Deff[
3~MS2ML!

8~ms2m̄!
5

229~3! MeV

ms2m̄
520.28~3!.

~7.16!

FIG. 8. Two different types of contractions for the baryon state
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Here~and in the similar estimates ofDeff andFeff below!, we
use the nonperturbative definition of theMS quark mass cal-
culated in MeV, but depart from our usual practice by eval
ating it at the scale 2 GeV~instead of 1/a!. Note thatDeff
differs from theD appearing in chiral expansions such as E
~7.14!, for it absorbs some of the higher order terms.

In our second fit we test to see whether our data can
represented as well by the analytic terms. We have found,
trial and error, that Eq.~7.14! with d15d1850 ande15e18
does a reasonable job; the plot is shown in Fig. 10. In th
plot we have included the results for baryons composed
completely nondegenerate quarks, based on the discus
following Eqs.~7.11! and~7.12!. To emphasize this, we have
labeled thex axis bymu1md1ms instead ofmA12mB . The
data show definite curvature, and so we have extrapolated

s.

FIG. 9. Test for chiral corrections inMS2ML . The value ex-
trapolated to the physical point is shown by the burst symbol at t
extreme left. In this and subsequent figures, all masses are in lat
units.

FIG. 10. Quadratic fit toMS2ML/(m̄2ms), including baryons
composed of completely nondegenerate quarks. The value extra
lated to the physical point is shown by the burst symbol at th
extreme left.
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the physical point using a quadratic fit~corresponding to
terms up tomq

3 in the original expression for baryon masses!.
The fit yields

MS2ML580~8! MeV,
~7.17!

Deff5
230~3! MeV

~ms2m̄!
520.29~3!.

These results are consistent with those from the ‘‘mq
3/2’’ fit.

Next we consider the ‘‘S-N’’ splitting, i.e., that between
two S-like states having different strange quark masses. T
chiral expansion is

MA$CC%2MB$CC%

mA2mB
52~F2D !1d2

MAC
3 2MBC

3

mA2mB

1d28
MAA

3 2MBB
3

mA2mB
1e2mC

1e28~mA1mB!. ~7.18!

Chiral perturbation theory suggests thatud28u,ud2u. Thus we
first plot the data assumingd2 is the dominant coefficient
~Fig. 11!. The collapse onto a single curve is reasonable, a
a linear fit @F2D51.30~5!, d2520.31~3! GeV22# gives

MS2MN5227~14! MeV,

Feff2Deff5
114~7! MeV

~ms2m̄!
51.11~7!. ~7.19!

We also have investigated various analytic fits, none
which do a good job of collapsing the data onto a sing
curve. Our best attempt, shown in Fig. 12, assumesd25d28
50 ande25e28/4; i.e., we plot against the average mass
the quarks in the two baryons. We again include nondeg
erate baryons in this plot. Since the collapse is not good,
use two different extrapolations to the physical point. Th
first is a quadratic fit in the average mass as shown in F

FIG. 11. Test for chiral corrections inMS2MN as described in
Eq. ~7.18!. The physical point is shown by the burst symbol at th
extreme left.
he
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12. In the second we first extrapolate linearly tomB5mC5m̄
and then interpolate tomA5ms . These two methods give
almost identical results, as shown by the two ‘‘bursts’’ in the
plot. The mean of these two points gives

MS2MN5260~20! MeV,

Feff2Deff5
130~10! MeV

~ms2m̄!
51.27~10!. ~7.20!

The difference between the two estimates, Eqs.~7.19! and
~7.20!, is indicative of the fact that neither of the forms fits
all the data well.

Third, we consider the difference ‘‘J2N,’’ in which we
study the effect of changing the mass of the two symme
trized quarks. We expect

MA$BB%2MA$CC%

mB2mC
54F1d3

MAB
3 2MAC

3

mB2mC
1d38

MBB
3 2MCC

3

mB2mC

1e3mA1e38~mB1mC!. ~7.21!

It turns out that in quenched chiral perturbation theory we
expectd35d2 ande35e2 . In this case, there is no expecta-
tion thatd3 andd38 should be substantially different in mag-
nitude. Nevertheless, for simplicity, we first plot the data
assumingd3 is the dominant coefficient, as shown in Fig. 13.
The data collapse reasonably onto a single curve, and a line
fit @F50.92~3!, d3520.30~3! GeV22# yields

MJ2MN5338~19! MeV, Feff5
84~5! MeV

~ms2m̄!
50.82~5!.

~7.22!

A quadratic fit to the average quark mass~i.e., assuminge3
5e38! is slightly better, as shown in Fig. 14. The results are
nevertheless consistent with those from the first fit:

e
FIG. 12. Quadratic fit to (MS2MN)/(ms2m̄) for the 30 quark

combinations. The results of the two ways of extrapolating to the
physical value described in the text are shown by the burst symbols
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MJ2MN5355~21! MeV, Feff5
89~5! MeV

~ms2m̄!
50.87~5!.

~7.23!

It is important to note that, once again, higher order corre
tions in the chiral expansion are substantial.

To further investigate the mass splittings we have cons
ered the combination of differences appearing in the Ge
Mann–Okubo ~GMO! formula 3ML1MS22MN22MJ

50. In our notation, this combination is

GMO~A,B!53MA@BB#1MA$BB%22MB$BB%22MB$AA% .

~7.24!

It is constructed to cancel theO(mq) terms,

FIG. 13. Test for chiral corrections inMJ2MN as described in
Eq. ~7.21!. The physical point is shown by the burst symbol at th
extreme left.

FIG. 14. Quadratic fit to (MJ2MN) /(mav
J 2mav

N ) for 44 quark
combinations. The result of the quadratic extrapolation to the phy
cal value is shown by the burst symbol.
c-

id-
ll-

GMO~A,B!5d4~MAA
3 22MAB

3 1MBB
3 !1e4~mA2mB!2

1••• , ~7.25!

making it an interesting window on higher order terms. We
have calculated GMO(A,B) using three methods:~1! simply
taking the differences of the masses;~2! using

GMO~A,B!54@MA$BB%2MB$BB%#23@MA$BB%2MA@BB##

22@MB$AA%2MB$BB%#, ~7.26!

where the differences within square brackets are calculate
from ratios of correlators; and~3! using another combination
of differences~calculated using ratios!,

GMO~A,B!5@MA$BB%2MB$BB%#13@MA@BB#2MB$BB%#

22@MB$AA%2MB$BB%#. ~7.27!

Our results are given in Table XII. They are consistent with
zero for all quark mass combinations, showing that highe
order chiral corrections are not uniformly large. This is in
qualitative agreement with experiment, where the GMO re
lation works well: GMO526 MeV or GMO50.011 in lattice
units. It is difficult to make a quantitative comparison since
we cannot extrapolate our data to the physical point. W
note, however, that our results for the largest mass splitting
A/B5S/U3 , are consistent with the experimental value.

A summary of mass splittings in the octet multiplet is
given in Table XIII. Several comments are in order. First, the
‘‘mq

3/2’’ fits show evidence for curvature, which, if included,
would likely make the results agree more closely with those

e

si-

TABLE XII. Tests of the Gell-Mann–Okubo mass formu-
la: results for GMO (A,B).

A B Method 1 Method 2 Method 3

S U1 0.000~01! 0.002~01! 0.001~01!
S U2 0.003~03! 0.003~03! 0.003~02!
S U3 0.008~08! 0.002~09! 0.005~04!
U1 S 0.002~02!
U1 U2 0.001~01! 0.000~02! 0.000~01!
U1 U3 0.003~05! 0.000~06! 0.002~02!
U2 S 0.005~02!
U2 U1 0.001~01! 0.001~01!
U2 U3 2.001~04!
U3 S 0.009~05!
U3 U1 0.005~04! 0.003~02!
U3 U2 0.003~04!

TABLE XIII. Estimates of mass splittings in the baryon octet,
using various fits explained in the text. Experimental results ar
given for comparison. All results are in MeV.

Fit mq
3/2 mq

2 Eq. ~7.9! Expt.

MS-MN 227~13* ! 260~20* ! 194~12* ! 253
MJ-MN 338~19* ! 355~21* ! 306~22* ! 375
MJ-MS 107 ~9* ! 109 ~8* ! 112~14* ! 122
MS-ML 76 ~7* ! 80 ~8* ! 77
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from the ‘‘mq
2’’ fits. Second, we reiterate that the data ar

extremely poorly represented by the first order mass form
las Eq.~7.9!—this would predict that all the curves in Figs
9–14 are flat. If, nevertheless, we fit to the linear terms, w
find the results listed in the third column. Finally, we not
the good agreement of the results from themq

2 fit ~which are
our most reliable! with the experimental splittings.

To further investigate the applicability of quenched chir
perturbation theory, we have constructed several other qu
tities. Although most of these are peculiar to the quench
approximation, having no counterpart in QCD, they allow u
to see how well we understand the extrapolations that
needed for all quantities, including those which are phy
cally relevant.

~1! We begin with the double difference

XS~A,B,C!

mA2mB
5
MA$CC%2MB$CC%2MC$AA%1MC$BB%

mA2mB

522~F1D !1~d282d38!
MAA

3 2MBB
3

mA2mB

1~e282e38!~mA1mB!. ~7.28!

This is interesting for several reasons. First, the expec
chiral form is simpler than the differences considered abo
Second, forC5B or C5A, XS reduces toM (A$BB%)
2M (B$AA%), which forA5s andB5u ismJ2mS . Third,
XS is predicted to be independent ofmC . Strictly speaking,
this is true up to quenched artifacts proportional tod. Thus
themC dependence ofXS is a window onto such artifacts.
Our data forXS , plotted in Fig. 15, confirm our expectations
There is no significant dependence onmC—indeed, there is
barely any dependence onmA or mB either. The fit yields
F1D50.50~6! and d282d38520.013(16) GeV22 assuming
e282e3850. Clearly, we could just as well fit with thee8
terms. If we extrapolate to the physical point~assuming
M ss

2 52M K
22M p

2 !, we find

FIG. 15. The quantityXS determined from fits to the ratio of
correlators. The extrapolated value from whichMJ2MS is calcu-
lated is given by the burst symbol at the left.
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MJ2MS5107~9! MeV,

~Feff1Deff!5
53~5! MeV

~ms2m̄!
50.52~5!, ~7.29!

consistent with the other estimates given in Table XIII. It is
noteworthy that the extrapolation required is minimal, unlike
that for most of the mass differences considered above.

~2! We next consider the corresponding quantity for the
L-like baryons,

XL~A,B,C!

mA2mB
5
MA@CC#2MB@CC#2MC@AA#1MC@BB#

mA2mB

522F110D/31d5
MAA

3 2MBB
3

mA2mB

1e5~mA1mB!. ~7.30!

This always involves a quenched particle with no correspon
dent in nature, e.g.,M (U[SS]). We plot XL in Fig. 16.
Again, the expectation of no dependence onmC is borne out,
but this time there are significant higher order terms. The fi
yields 2F210D/353.4~3! and d550.26~4! GeV22, assum-
ing e550. The data are equally well described using ane5
term withd550.

~3! In the quenched approximation, we can form two ad
ditional double differences, analogous to GMO(A,B), in
which theO(mq) terms cancel:

YS~A,B,C,D !5MA$CC%2MB$CC%2MA$DD%1MB$DD% ,
~7.31!

YL~A,B,C,D !5MA@CC#2MB@CC#2MA@DD#1MB@DD# .

YS picks out thed28 ande28 terms in Eqs.~7.18! and ~7.28!.
The predicted form is

FIG. 16. The quantityXL determined from the masses of the
individual states. The point for physical quark masses is shown b
the burst symbol at the left.
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YS~A,B,C,D !

MAC
3 2MBC

3 2MAD
3 1MBD

3

5d21e2
~mA2mB!~mC2mD!

MAC
3 2MBC

3 2MAD
3 1MBD

3 . ~7.32!

We test this in Fig. 17. What is most noteworthy is tha
unlike the GMO relation, there are significant higher ord
corrections. We find a reasonable fit ifd2'25.4~1.4! GeV22

ande2'44~11! GeV21. The large errors in the fit parameter
are due to the fact that the two variable
M AC

3 2M BC
3 2M AD

3 1M BD
3 and (mA2mB)(mC2mD) are

nearly proportional for our set of quark masses. There is th
a significant cancellation between the two terms in the
Indeed, we can obtain as good a fit settinge250 and replac-
ing it with a higher order term proportional to
mA1mB1mC1mD .

~4! Finally, we considerYL , which is expected to have
the same functional form asYS . The data, shown in Fig. 18,

FIG. 17. Testing the mass dependence ofYS ~itself determined
from fits to the ratio of correlators!.

FIG. 18. QuantityYL determined from the masses of the ind
vidual states.
t,
er

s
s
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fit.

are again consistent with the expected form, although th
errors are larger sinceYL is calculated from masses instead
of mass differences. The fit gives24.3~2.4! GeV22 for the
intercept and 35~20! GeV21 for the slope.

In summary, we have demonstrated that terms beyo
linear order in the quark mass are necessary to fit the oc
baryon mass splittings. The lever arm provided by our fou
‘‘light’’ quark masses is not, however, strong enough to dis
entangle them3/2 andm2 contributions. Indeed, it is impor-
tant to note that, if we did not have results for the baryon
containing theS quark, our evidence for higher order terms
would have been much weaker and our data would ha
been reasonably well fit by anO(m) term alone. This would,
however, have led to underestimates of all the mass diffe
ences, particularlymS2mN .

C. Nucleon mass

We now turn to the overall mass scale of the spin-1/
baryons, which we set using the nucleon mass. As for th
mass splittings, we expect to need terms of higher order th
linear in the chiral expansion to describe our data, and so w
analyze the data with and without them. We first fit to th
masses of the baryons containing three degenerate qua
The data are shown in Fig. 19~along with those for the
spin-3/2 baryons!. We begin with a linear fit to the lightest
three baryons, yielding the fit shown in the figure. We find

MN50.461~9!14.7~2!m̄51084~27! MeV.

Next, we fit all four masses including anmq
3/2 term, yielding

MN51070~35! MeV. Finally, we fit all four masses includ-
ing anmq

2 term, which givesMN51072~31! MeV. In the last
two cases we have included the same form for the high
order corrections inM r for the determination of the scale and
m̄. Thus the inclusion of curvature systematically reduce
MN/M r by about 0.5s, although the precise functional form
of the higher order terms is not resolved. For our best es
mate we take the mean of the last two estimates, i.e
MN51071~35! MeV, corresponding toa21(MN)52062~56!
MeV.

i-

FIG. 19. Linear fit toMN andMD for the threeUiUiUi quark
combinations. The fourth degenerate pointSSSis also shown.



ore
led
a-
ne

ss
as
rks

-
an
1,
s.
of
en-
-
-

53 6503HADRON SPECTRUM WITH WILSON FERMIONS
The analysis of the previous paragraph is based on
full sample of lattices. Most of our results for mass diffe
ences came, by contrast, from our subsample of 110 lattic
Thus it is interesting to repeat the extraction ofmN on this
subsample. We find that the results are slightly lower, thou
consistent within errors. For example, the linear ‘‘three poi
fit’’ to the lightest degenerate baryons yield
MN50.446(9)15.04(21)m̄51051(26) MeV, about 1s be-
low the corresponding result from the full sample. Using th
subsample, however, we can attempt a global fit includi
baryons with nondegenerate quarks. We have done this u
the S-like baryons composed ofUi quarks, fitting them to
the linear chiral form of Eq.~7.9!, We include all eighteen
UA$UBUC% correlators, using the prescription of Eq.~7.13!.
The fit, shown in Fig. 20, gives

MN50.452~9* !11.91~8* !mA13.01~16* !~mB1mC!/2

51064~26* ! MeV.

This is in excellent agreement with the three point fit. Th
fact that the fit is reasonable underscores the point ma
above that the need for higher order terms is not appar
using theUi quarks alone. A similar statement holds for th
L-like states.

FIG. 20. Global fit to nucleon data using Eq.~7.9!. The six cases
for mA5U1 are shown by square symbols,mA5U2 by octagons,
andmA5U3 by crosses.
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D. Spin-3/2 baryon mass splittings

The analysis of the masses of the spin-3/2 baryons is m
straightforward. As noted above, the correlators are labe
$ABC% and are completely symmetric between the three fl
vors. We can form 20 states with our four masses, and no
of these mix with each other.

As for the spin-1/2 baryons, we first concentrate on ma
splittings. The chiral expansion for the spin-3/2 masses h
been worked out for the case of three non degenerate qua
@24# and is~excluding quenched artifacts proportional tod!

M $ABC%5M01DM1cD~mA1MB1mC!1d1
D~MAB

3 1MBC
3

1MCA
3 !1d2

D~MAA
3 1MBB

3 1MCC
3 !1e1

D~mAmB

1mBmC1mCmA!1e2
D~mA

21mB
21mC

2 !. ~7.33!

DM is the decuplet-octet splitting in the chiral limit. In con
trast to the spin-1/2 baryons the terms of higher order th
linear in the quark mass are small. This is shown in Fig. 2
in which we give the result of a linear fit to all 20 masse
We have also done linear fits to the 10 baryons composed
Ui quarks, and to the 3 lightest baryons composed of deg
erate quarks. We refer to these three fits as ‘‘20-point,’’ ‘‘10
point,’’ and ‘‘3-point’’ fits, respectively. The results are con
sistent with one another:

FIG. 21. Linear fit toMdecuplet for the 20 quark combinations.
The four degenerate cases are shown with an octagon symbol.
Mdecuplet50.590~16!13.18~34!mq , 3-point fit ~full sample!,

Mdecuplet50.578~16* !13.49~33* !mq , 3-point fit,

Mdecuplet50.578~16* !13.50~34* !~mA1mB1mC!/3, 10-point fit,

Mdecuplet50.580~12* !13.42~14* !~mA1mB1mC!/3, 20-point fit, ~7.34!
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6504 53BHATTACHARYA, GUPTA, KILCUP, AND SHARPE
although there is a small systematic difference between
results from the full sample and the subsample.

The higher order terms, though small, are neverthele
present. We have investigated them using fits to ratios
correlators. We first considerMV2MD , which is obtained
by fitting our data to

M $AAA%2M $BBB%

mA2mB
53cD13~d1

D1d2
D!

MAA
3 2MBB

3

mA2mB

13~e1
D1e2

D!~mA1mB!. ~7.35!

As before, we can fit our data keeping either thed 1
D1d 2

D or
thee1

D1e2
D term. The former fit is shown in Fig. 22 and ha

parameterscD50.94~12! and d 1
D1d 2

D50.023~16! GeV22.
The slope is small and marginally significant. Extrapolatin
to the physical point ~using M ss

2 52M K
22M p

2 ! yields
MV2MD5308~24! MeV.

We have also done the extrapolation using a more tra
tional method: We calculateM ($AAA%)2M ($BBB%) for
B5Ui andA5S or U1, extrapolate linearly tomB5m̄, and
then interpolate linearly tomA5ms . We refer to this as the
‘‘3-point ratio’’ method. The result isMV2MD5316~18!
MeV and is consistent with ourmq

3/2 estimate. The result
from our subsample, 310~19* ! MeV, is consistent.

We have repeated this analysis for the other two phy
cally interesting mass splittings and collect the results
Table XIV. We only quote results from the ‘‘3-point ratio’’
extrapolations, since, with such mild deviations from linea

FIG. 22.MV-MD mass splitting. The physical point is shown b
the burst symbol at the left.

TABLE XIV. Estimates of mass splittings in the baryon de
cuplet. The different methods are explained in the text. All resu
are in MeV.

State
Ratio
3 point

Eq. ~7.34!
20 point Expt.

MS* -MD 107~6* ! 116~7* ! 151
MJ* -MD 215~12* ! 232~14* ! 299
MV2MD 316~18! 347~21* ! 436
the
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ity, any reasonable extrapolation method using our ratio da
gives almost the same result. We also include the results
extrapolating using the parameters from the 20-point line
fit. The small difference between the two sets of results
due to the higher order terms. Both sets of results are sign
cantly smaller than the experimental splittings, and the incl
sion of the higher order terms makes the disagreement wo
These features are in marked contrast to those we saw in
spin-1/2 baryons.

We can study the higher order terms in more detail b
looking at violations of the ‘‘equal-spacing rule’’

M $AAA%2M $AAB%5M $AAB%2M $ABB%5M $ABB%2M $BBB% .
~7.36!

This rule holds when keeping up to the linear term in th
chiral expansion. Experimentally, the three splittings a
MV2MJ*5137.5 MeV, MJ*2MS*5148.1 MeV, and
MS*2MD5151 MeV. The violations of the rule are thus
small, and it is interesting to see how well the quenche
approximation reproduces the magnitude and pattern of th
violations. We consider two double differences

ES1~A,B!5~M $AAA%2M $AAB%!2~M $ABB%2M $BBB%!,
~7.37!

ES2~A,B!5~M $AAA%2M $BBB%!23~M $AAB%2M $ABB%!.

The first becomes (MV2MJ* )2(MS*2MD)5213 MeV
whenmA5ms andmB5m̄. The expectation from quenched
chiral perturbation theory is that

ES1~A,B!52d1
D~MAA

3 1MBB
3 22MAB

3 !12e1
D~mA2mB!2;

~7.38!

i.e., the form of the higher order terms is the same as th
appearing in the GMO relation@Eq. ~7.25!#. They are shown
in Fig. 23 and are consistent with the expected chiral for
@d1

D50.46~43! GeV22, e1
D528~7! GeV21#, with large errors.

Extrapolating to the physical point, we find ES1524~7!
MeV, marginally inconsistent with the experimental value.

y

-
lts

FIG. 23. Test of violations of the equal-spacing rule, Eq.~7.38!.
The physical point is indicated by the burst symbol, here at t
right.
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53 6505HADRON SPECTRUM WITH WILSON FERMIONS
The second double difference ES2 (A,B) is predicted to
vanish by the general form of Eq.~7.33!. The same is true in
chiral perturbation theory in full QCD@25#. Thus it is a win-
dow onto the quenched artifacts proportional tod, whose
form is predicted to be@24#

ES2~A,B!5d f D chiral~A,B!,
~7.39!

chiral~A,B!5~mA2mB!S ln~MAA
2 /MBB

2 !12

2
2MAA

2 ln~MAA
2 /MBB

2 !

MAA
2 2MBB

2 D .
As explained in Sec. IV, we have omitted such artifacts fro
previous expressions, but we include them here so as to h
a form to fit with. Note that the function chiral(A,B) is an-
tisymmetric underA↔B, as it must be in order to match the
antisymmetry of the left-hand side. Note also that it diverg
logarithmically whenmA→0, an example of the sickness o
the quenched approximation in the chiral limit.

Our results, shown in Fig. 24, are statistically differe
from zero. We show a linear fit of ES2(A,B)/chiral(A,B)
versusmA1mB , which yields an intercept ofd f D50.29~19!
and a slope of20.9~0.7! GeV21. Interpolating to the physi-
cal point, we find ES25229~18! MeV. This has the same
sign as the experimental value

MV2MD23~MJ*2MS* !528 MeV,

but its magnitude is much larger. It is important to realiz
however, that our values for ES2 range from21 to 210
MeV. The large value after extrapolation is due to the dive
gence of chiral(A,B) as m̄→0. We have attempted analytic
extrapolations, using a linear combination of (mA2mB)

3 and
(mA2mB)(mA1mB)

2, but this ansatz does not fit our data
The most important conclusion to be drawn from th

analysis is that the decuplet splittings are smaller than
experimental values. This discrepancy is only made worse

FIG. 24. Test of violations of the equal-spacing rule, Eq.~7.39!.
The physical point is indicated by the burst symbol~second from
left!.
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we use other definitions of the strange quark mass, e
ms(MK). We have also found some evidence for artifac
due to quenching in the baryon spectrum. Given the size
our errors, however, this result is far from definitive.

E. MD and MD2MN

We close this section with our results for the overall sca
of the spin-3/2 baryons and its relation to that of the spin-1
baryons. Our preferred value forMD comes from the 3-point
linear fit to the full sample~shown in Fig. 19!, yielding
MD51382~36! MeV. Fits to the subsample, the paramete
of which are given in Eq.~7.34!, yield values that are con-
sistent with one another, but lie slightly below that for th
full sample. For example, the 20-point fit gives
MD51362~36* ! MeV. We have also tried 4-point fits to the
degenerate states, includingm3/2 ~or m2! corrections in both
D and r. These increase the estimates ofMD to 1410~48!
@1395~43!#, the bulk of the increase coming from the chang
in scale due to the curvature inM r .

We have calculatedMD2MN from the ratios of correla-
tors using the full data sample. Using linear extrapolatio
from the three light mass points, we find 318~30! MeV. In-
cluding anmq

3/2 or mq
2 term in bothMD2MN andM r fits,

we get 365~44! and 347~39!, respectively. These values are
slightly higher than the experimental value 293 MeV. A
summary of our baryon mass results~without extrapolation
to a50! is shown in Fig. 25 along with the experimenta
data.

We have also made fits to the negative parity baryo
states. The signal in the correlators is much poorer, falli
below the noise byt512. For this reason we only present th
summary shown in Fig. 26.

VIII. INFINITE VOLUME CONTINUUM RESULTS

There exist three other high statistics calculations of t
spectrum with Wilson fermions atb56.0 on lattices of size
243 @26,27,7#. Their results are given in Table XV along with
our best estimates. The data indicate that there are no sign

FIG. 25. Comparison of the baryon masses obtained in this c
culation with the experimental data indicated by the horizont
lines. The scalea is set byM r and the data for all states are from
the sub sample of 110 lattices.
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6506 53BHATTACHARYA, GUPTA, KILCUP, AND SHARPE
cant differences between the 243 and 323 lattices. Thus we do
not apply any finite size corrections to our data.

Our best estimates atb56.0 for various mass ratios of
interest are

MN

M r
51.412~35!, Expt. 1.22,

MD

M r
51.800~47!, Expt. 1.60, ~8.1!

MD

MN
51.275~36!, Expt. 1.31.

These are obtained by extrapolating individual masses
early tom̄ and then taking ratios within the jackknife proce
dure. All extrapolations are done using only theUi quarks.
To check for extrapolation errors we have also calculated
ratios for each quark mass and then linearly extrapola
these tom̄. This yieldsMN/M r51.42~3!, MD/M r51.79~4!,
andMD/MN51.25~3!, consistent with the first method.

FIG. 26. Comparison of the negative parity baryon masses
tained in this calculation with the experimental data indicated by t
horizontal lines. Shaded bands show the experimental uncertai
The scalea is set byM r and the data for all states are from the su
sample of 110 lattices.
lin-
-

the
ted

Our results forMN/M r andMD/M r are larger than the
experimental values. It has been stressed by the GF11 C
laboration, however, that these ratios have a significant d
pendence ona. In an attempt to check this we combine ou
results with those from the GF11 Collaboration@2# atb55.7,
5.93, and 6.17. The two calculations have similar statistic
while the physical volume of our lattices is larger. The GF1
Collaboration have made two separate extrapolations to
continuum limit using different Gaussian smeared sinks.
their notation, ‘‘012’’ is a combination of results from three
sinks with smearing radii 0, 1, and 2, while ‘‘4’’ refers to the
use of a single larger smearing radius of size 4. In the fin
analysis they prefer to use the ‘‘012’’ result as it has small
statistical errors. We update these two linear fits~using the
same three data points used in@2# and ours atb56.0!, and
the results are shown in Fig. 27. After including our poin
the extrapolated values for the ‘‘012’’ data~dotted lines!

ob-
he
nty.
b-

FIG. 27. Linear extrapolation to the continuum limit of the ra
tiosMN/M r andMD/M r . Our data are shown as octagons, and th
rest of the points are from the GF11 Collaboration@2#. The ‘‘012’’
sink points are labeled by squares and the sink ‘‘4’’ points b
crosses. The extrapolated values are shown by fancy crosses an
shifted fromM ra50 for clarity. At b55.7 ~M ra'0.56!, we have
shown the GF11 Collaboration’s data for both 163 and 243 lattices
even though they used only the 163 data in the fit and shifted their
continuum result by the difference to account for finite size effec
TABLE XV. Comparison of hadron masses obtained using Wilson fermions atb56.0. Results from
323364 lattices are from the present work, while 243332 data are from Ref.@26#, 243354 data are from Ref.
@27#, and 243364 data are from Ref.@7#.

k Size Statistics mp mr mN mD

0.155 243332 78 0.298~2! 0.428~4! 0.647~6! 0.745~14!
0.155 243354 200 0.297~2! 0.422~4! 0.644~9! 0.728~11!
0.155 323364 170 0.296~1! 0.422~2! 0.638~3! 0.710~6!

0.155 243364 1000 0.2964~4! 0.423~2! 0.642~3!

0.1558 243332 78 0.234~3! 0.397~5! 0.574~8! 0.686~25!
0.1558 323364 170 0.234~1! 0.387~3! 0.571~4! 0.664~8!

0.1563 243332 78 0.184~3! 0.378~10! 0.522~14! 0.636~45!
0.1563 243354 200 0.185~3! 0.353~15! 0.536~30! 0.670~53!
0.1563 323364 170 0.185~1! 0.361~5! 0.525~7! 0.636~13!
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53 6507HADRON SPECTRUM WITH WILSON FERMIONS
change from MN/M r51.28~7! to 1.30~6! and from
MD/M r51.61~8! to 1.62~7!. Thex2/NDF for the new fits are
2.1 and 0.85, respectively. The analogous numbers for
sink ‘‘4’’ data ~solid line! are 1.33~9!→1.38~7! and
1.68~10!→1.73~10! with x2/NDF for the new fits equal to 1.2
and 0.86, respectively.

As is evident from Fig. 27, the main difference betwee
the two fits comes from the difference in the ‘‘012’’ and ‘‘4’’
data atb55.7. On the basis ofx2/NDF, we find that combin-
ing our results with the sink ‘‘4’’ GF11 data is preferred, i
which case there is very littlea dependence. If we neglec
the point at strongest couplingb55.7, then the remaining
three points again show no cleara dependence for both
MN/M r andMD/M r and give very similar values for the fit
parameters.

The ambiguity in the extrapolation makes it clear that da
at more values ofb are needed in order to reliably extrapo
late to the continuum limit. Our preferred estimates a
MN/M r51.38~7! andMD/M r51.73~10! from fits shown by
a solid line in Fig. 27. This suggests that the quenched
proximation is good to only;10–15 %.

IX. CONCLUSIONS

We have presented a detailed analysis of the hadron sp
trum in quenched QCD atb56.0 with Wilson fermions, fo-
cusing on states composed of light quarks. Our small sta
tical errors and our use of several moderately light quar
have allowed us to improve the extrapolations to the chi
limit. This is particularly true of the mass splittings amon
the octet baryons. Here we find substantial contributio
from terms of higher order than linear in the quark mas
Motivated by quenched chiral perturbation theory, we ha
found good variables with which to extrapolate to the phy
cal quark masses. Our results show that the splittings
larger than previously thought and are comparable with th
experimental values. These results emphasize the importa
of calculating masses of baryons composed of several co
binations of nondegenerate quarks.

The extrapolations required for thep, r, N, andD are less
sensitive to higher order terms. There is a clear curvature
the r and nucleon channels, and it can be accommoda
either by including a term ofO(mq

3/2) ~which would result
from chiral loops! or a termO(mq

2). The effect on the ex-
the

n

n
t

ta
-
re

ap-

ec-

tis-
ks
ral
g
ns
s.
ve
si-
are
eir
nce
m-

in
ted

trapolated values for theM r and MN is, however, small,
roughly comparable to the statistical errors. Higher orde
terms are also small for the decuplet baryons.

It is not surprising that higher order terms are neede
when considering quarks with masses ranging up to and b
yond that of the physical strange quark. In previous calcul
tions of baryons composed of degenerate quarks, these te
were small and often neglected. What is striking is how th
is not true for many of the mass differences involving bary
ons composed of nondegenerate quarks.

One caveat concerning the results for mass splittings
the fact that there are substantial systematic errors in t
extraction ofms . Different methods lead to results differing
by up to;20%. This is presumably an error due to quench
ing, although some part of it could be due to discretization
Our favored choice forms is that determined by matching to
the ratioMf/M r . This gives the largest estimate forms .

How does the spectrum atb56 compare with experi-
ment? We find that the ratioMN/mr51.41~4! is too high,
while MD/MN51.27~4! is consistent with experiments. Us-
ing the larger estimate ofms , the octet baryons splittings
agree with experiment, while those in the decuplet are to
small by 30%.

Of course it is quite possible that there is substanti
variation in some of these ratios as we extrapolate to th
continuum limit. Combining our data with that of the GF11
Collaboration, however, we conclude that there remains co
siderable uncertainty in this extrapolation. Our preferred e
trapolation givesMN/M r51.38~7! and MD/M r51.73~10!,
but the systematic errors exceed those from statistics. Th
in our view, it remains an open question how well the
quenched approximation represents full QCD when extrap
lated to the continuum limit. The errors could well be a
large as;10–15 %.
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