PHYSICAL REVIEW D VOLUME 53, NUMBER 11 1 JUNE 1996

Hadron spectrum with Wilson fermions

Tanmoy Bhattacharya and Rajan Gupta
T-8, MS-B285, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

Gregory Kilcup
Physics Department, The Ohio State University, Columbus, Ohio 43210

Stephen Sharpe
Physics Department, University of Washington, Seattle, Washington 98195
(Received 22 December 1905

We present results of a high statistics study of the quenched spectrum using Wilson fermger @ton
328X 64 lattices. We calculate the masses of mesons and baryons composed of both degenerate and nondegen-
erate quarks. Using nondegenerate quark combinations allows us to study baryon mass splittings in detail. We
find significant deviations from the lowest order chiral expansion, deviations that are consistent with the
expectations of quenched chiral perturbation theory. We find that there~i2086 systematic error in the
extracted value ofng, depending on the meson mass ratio used to set its value. Using the largest estimate of
mg we find that the extrapolated octet mass splittings are in agreement with the experimental values, as is
M A-My , while the decuplet splittings are 30% smaller than experiment. Combining our results with data from
the GF11 collaboration we find considerable ambiguity in the extrapolation to the continuum limit. Our
preferred values arbl /M ,=1.387) andM /M ,=1.7310), suggesting that the quenched approximation is
good to only~10-15 %. We also analyze tl@@(ma) discretization errors in heavy quark masq&0556-
2821(96)02311-9

PACS numbd(s): 12.38.Gc, 14.20-c, 14.40—n

[. INTRODUCTION section we explain how we generate lattices and calculate
quark propagators. After a brief discussion of the fitting and
Precise measurements of the hadron spectrum using la&summary of the expected chiral behavior of hadron masses
tice QCD are crucial both to validate QCD as the correctn the quenched approximation, we present our results for
theory of strong interactions and to establish the reliability ofnesons and baryon masses. We then extrapolate mass ratios
numerical simulations for extracting weak matrix elementst0 the continuum limit by combining our results with those
Current lattice calculations suffer from a variety of system-Of the GF11 collaboratiofi2]. There turns out to be consid-
atic errors, most notably those due to quenching, discretizerable ambiguity in this exprapolauon. Our preferred values
tion, and the need to extrapolate to light quark masses. In thi®" the extrapolated ratios areéM\/M,=1.387) and
work we present a detailed study of these systematics for tht¥ a/M,=1.710). This suggests that the quenched approxi-
hadron spectrum. mation is good t0v10715 %, less accur_ate than suggeste'd in
Such a study requires small statistical errors. We hav&ef. [2]. We close with some conclusions and suggestions
reduced these by using a moderately large ensemble, 178" further work. _ _
lattices, and working on a large lattice,%3%4 at3=6.0, in We use the following conventions throughout t.he paper.
the quenched approximation. We use unimproved Wilsorfiadron masses are denoted by an upperéasevhile for
fermions. Preliminary results from a subset of 100 latticesiuark masses we use a lowercaseAll masses are in lattice
were presented at the Lattice '94 meetiag Our lattices are  UNits unless explicitly expressed in Me(dr GeV).
large enough that we expect finite size effects to be small.
The major technical features of our work g using two
kinds of sources that yield correlators that converge to their
asymptotic values from opposite directions, so as to improve Gauge configurations are generated using a combination
the reliability of the masses extractet)) calculating hadron of overrelaxed OR), pseudo-heat-battiPHB), and Metropo-
masses using nondegenerate light quarks, which allows us tis algorithms. Typically, fivd OR) sweeps are followed by a
study the quark-mass dependence in detail; émdusing PHB update, with the latter consisting of three hits, one in
ratios of correlators to obtain accurate estimates of mass diach of the S(2) subgroups. In some cases the PHB update
ferences. We find that terms of higher order than linear in thés replaced by a 20-hit Metropolis sweep. Two independent
guark mass are very significant and that their inclusion isstreams were generated, each starting from a lattice consist-
essential for the extrapolation to the physical light quarking of two independently thermalized ‘3&ttices joined to-
masses, particularly for mass splittings among spin-1/2 barygether. A further 2008 (50R+1PHB) thermalization
ons. Higher order terms are also important for vector mesonsweeps were then performed. Thereafter we analyze lattices
and spin-3/2 baryons. separated by 400(50R+1PHB) sweeps.
The outline of the paper is as follows. In the following  We calculate quark propagators using the simple Wilson

Il. DETAILS OF SIMULATIONS
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action, with periodic boundary conditions in all four direc- — T T
tions. We use two kinds of extended sources, Wuppertal and
Wall, at each of the five values of quark mass given by
x=0.135 (C), 0.153 @), 0.155 (U,), 0.1558 (U,), and N 1
0.1563(U5). These quarks correspond to pseudoscalar me- 03~  SL - 7]
sons of mass 2835, 983, 690, 545, and 431 MeV, respec- i l__l

tively, using 14=2.33 GeV for the lattice scale. We use the i . F

three light quarks to extrapolate the data to the physical isos- i JJ{j__‘ lj_ %:::;;5 ;;g;é%* ]

[ Comparison of M7, versus t |

pin symmetric light quark massi=(m,+my)/2, while the 0.295 e f: ey yuEs N

C and S « values are selected to be close to the physical ' L ;%% _ﬁ- ]

charm and strange quark masses. The physical value of the L %

strange quark, in fact, lies betwe&andU,, and we use L ﬁ 4
WL

these two points to interpolate to it. In most cases we find L
that the extrapolation tm can be done using the six combi- 0.29
nations of light quarksJ,U,, U,;U,, U;U;, U,U,, U,U5, . :
andU3U;. For brevity we usgU;U;} to refer to this set of TR AT Y Y S S S
masses. 0 10 20 30

We analyze three types of hadron correlators distin-
guished by the sources and sinks used to generate quaélt
propagators. These are wall source and point W),
Wuppertal source and point sifL), and Wuppertal source o . .
and sink(SS. The notation and details of the implementa- t|_me slice in add_|t|0n to the global value Whlch_could be
tion of the Wuppertal source are as in our previous Wik biased by time S|.ICGS clqsest to the source. We find that the
The smearing parameter is setiig;=0.181, corresponding ve;lues at 7t6he time slice farthest 7f1ré)m the source are
to a smearing size 0f)?>~3. (In [3] this was mistakenly Ir?/|x*~=10"° for the C quark and<10"** for other quarks.

written asQ)~3.) The generation of the Wuppertal sources 1his means that, even for the heaviest quark, the effect of
is a negligible overhead on the inversion. incomplete convergence is smaller than the statistical errors.

The Dirac equation is solved using the overrelaxed preS€cond, we double the number of inversion sweeps on ran-
conditioned (fourth order polynomial minimal residue domly selected lattices. We find that the relative change in

(MR4) algorithm described in Ref4]. The convergence rate the Y?Iue .of .hadror_nc. two-point correlation functions is
is quite insensitive to the overrelaxation parametes long =10 *» Which is negligible.
as it is in the range 1.2-1.35; we use=1.3. We set the
convergence criterigfor all values ofx) to |r?|/|x?|<10 4, L. FITTING
wherer is the remainder angl is the solution. This tolerance
is as small as we can demand, as we use IEEE single preci- To illustrate some of the issues involved in fitting, we
sion arithmetic. To ensure convergence we run the MR4 inshow, in Figs. 1-3, representative results for the effective
verter up to three times, refreshing the starting remaindefass. We define this ablqq(t) =In[C(t—1)/C(t)], plus
each time, and then switch to a conjugate gradient, and forceorrections due to periodicity in the time direction. The
it to run at least one cycle. To date, we have observed ngource lies at=0 in all plots. It is a general feature that the
failures of MR4. We note that the simple MR algorithms areWL effective masses approach their asymptotic value from
much less sensitive to our use of 32-bit arithmetic than the
CG-based algorithms, whose convergence rate depends on ——— T T T T T T T
maintaining orthogonality of a sequence of vectors. Indeed, i
we have found that MR4 is one of the most efficient and
stable of the algorithméVIR, MR2, MR4, CG, BiCG5[5], 044~ 5L § 7
and BiCGStalj6]), we have implemented on the CM5.

A technical detail of our MR4 algorithm that makes it
suitable for 32-bit precision is as follows. Tin¢h iterate of
the solutiony (and similarly the remainder) is given by
Xn=Xn-1+ wa,,_,. The global sums needed in the calcu- 0.42
lation of «, are done in double precision. Any residual errors "
day, can be absorbed inte and do not adversely affect the -
convergence rate as long @s= w(1+ d«,) stays within the r
optimal range. Our tests also show that the calculatioa,of r
can be done in single precision and that the convergence rate 04
is not affected provided the remainder is refreshed somewhat - .
more often depending on the quark mass. - [

The only place that round-off errors due to use of 32-bit
precision could affect the results is in the evaluation of the
final convergence. For this purpose we make two checks. FIG. 2. Comparison oMgx(t) for U;U; p correlators withSL
First, we monitor the final value df? and|r?/|x?| on each andWL sources.

FIG. 1. Comparison oM (t) for U;U; pion correlators with
andWL sources.

. Comparison of M%;, versus t
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0.75 —— sonable. Given that this is so, our jackknife errors should be
reliable.

(3) In a similar spirit, we have chosen to use single mass
fits for our final answers. We have also made fits with two
masses, but find that these fits require considerable tuning by
hand, because our minimization routines tend to give the
same result for the two masses for a few of the jackknife
samples. When we remove this problem, the resulting esti-
mate for the lightest mass is consistent with that from the
single mass fit, while the errors are 50% larger. Given the
large number of correlators that we fit, it is impractical to do
the tuning for each channel.

(4) Finally, we must choose a fit range. We choose the
minimum time by inspecting the effective mass plots and
deciding where the “plateau” region begins. The maximum
time is then taken to be that at which the diagonal errors
0 10 20 30 have roughly doubled compared to the beginning of the pla-

teau or that at which the signal shows a clear break. For the

FIG. 3. Comparison oM 4(t) for U;U,U; nucleon correlators  pion correlator, where the errors do not grow with time, this
with SL andWL sources. means that we use all points beyond the minimum time.

Our overriding criterion is to include as many time slices
NS possible in the fits. We have not succeeded in developing
robust automated procedure that meets this objective when
Using two mass fits or incorporating the full covariance ma-
trix. Since we analyze-4000 channels, it is not practical to

(1) A mr?Jor p“’b'e”.‘ IS trat’k;t theUZIeveI, Ithelconvehr- tune the fitting of each by hand. Thus, for consistency, we
gence to the asymptotic value b Is extremely slow. The o for a1 channels, single mass fits, keeping only the diag-

S,L and WL effective masses do come together eyentuglly fof)nal elements of the correlation matrix. We feel confident in
pion andp correlators, but for the nucleon the signal disap-poth our central values and our error estimates, however,
pears into noise before convergence has occurred. Massgg,ce in the many channels that we have fitted by hand, the

extracted from WL correlators are systematically lower tharyesuylts do not change significantly when we use the full cor-
those from SL or SS correlators. For the pion arthannels, relation matrix and two mass fits.

this difference is~ 10, while for the nucleons it is-(2-3)o.

o+

. Comparison of Mgﬁ versus

¢

0.7

O

0.65

0.6

LIS S B R N R B M R L L BRI

PSR N Y NN SR TN TR SR [ NN OO T S N WO N S

0.55

below, while those for SL and SS correlators approach fro
above. We consider in turn the problems we face and th
solutions we have adopted.

We_ think that this behavior is mainly due to limited IV. QUENCHING ERRORS
statistics—a recent study by the JLQCD Collaboratj@h _ _
indicates that fluctuations at ther2evel are the rule rather In the last few years it has been argued that, in the

than the exception. What we have done in practice is téluenched approximation, thg is a pseudo Goldstone boson
average the masses with weightin@WL+SL+S9/4. The and thatz' loops give rise to chlrlal Iogan_thms whlqh me}ke_
equal weighting of wall and Wuppertal sources ensures thgf!¢ _duenched approximation singular in the chiral limit
the resulting mass lies between the two sets of data on t ,10].”The same methodg quenched chiral perturbation
effective mass plot. Errors are obtained using single-t eory)_ have_be_en used fo estimate the_e_rrors due_to
elimination jackknife, performing a complete analysis- quenching. It is important to test the predictions of this

. . : . theory against numerical results. There is some supporting
g!;g';lg forming the average masyesn each jackknife evidence—see Ref$11] and[12] for recent reviews—but

. . more work is needed.
(2) The previous problem is exacerbated by the fact that ' \ye collect here the results of quenched chiral perturba-

we have been unable to do stable fitting using the full COIMetion theory relevant for this work. The expansion for the

lation matrix. When we do so, some fits lead to clearly Un-oss of a “pion” composed of quarks of masg andm, is
reasonable values for masses, presumably because small er-

rors in the correlation matrix are magnified when this matrix M2=c_ (m;+my){1— & In[(m+ mz)]}+ewm§+ e,

is inverted to calculatg?. This problem is well known, and (4.2
various remedies have been propof&f For example, one

can project against the eigenvectors of the correlation matriwith ¢, e, and § constants and the ellipsis representing
having small eigenvalues and then invert. Alternatively, onehigher order terms in the chiral expansion. Tr‘nél term is
can reduce the range of times to which one fits. We havehorthand both for analytic terms, i.e., those proportional to
tried both schemes, but find that the resulting mass estimatésn; +m,)?, m3, and m3, and for nonanalytic chiral loga-
are indistinguishable from those obtained fitting just with therithms of general forrrmé In(mg). Such terms are present
diagonal elements of the correlation matftuncorrelated both in quenched and in full QCD, although the constants
fits” ). Given that the schemes involve further subjective semultiplying them will be different in the two theories. In
lections(e.g., how many eigenvectors to discange choose contrast, thed term is an artifact of quenching—it arises
to use uncorrelated fits for our standard results. We do ustom %’ loops and is divergent in the chiral limit. Evidence
the “correlated fits,” however, to check that our fits are rea-for this divergence has been found with staggered fermions
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TABLE I. Meson masses frodVL correlators ap=0. Errors shown are in the last two decimal places.

T A4 A, Ayl A, p ag a,
CcC 1.21701) 1.21700) 1.21701) 1.21701) 1.22901) 1.43206) 1.43905)
CSs 0.85301) 0.85401) 0.85301) 0.85401) 0.87801) 1.10404)
CuU, 0.81301) 0.81401) 0.81301) 0.81401) 0.84101) 1.08107)
CU, 0.79701) 0.79801) 0.79801) 0.79801) 0.82601) 1.08Q10)
CU; 0.78701) 0.78902) 0.78902) 0.78902) 0.81602) 1.08113
SS 0.42100) 0.42101) 0.42201) 0.42101) 0.50401) 0.74315) 0.75305)
Sy, 0.36200) 0.36301) 0.36301) 0.36201) 0.46301) 0.72018) 0.72107)
Sy, 0.33§01) 0.33801) 0.33801) 0.33701) 0.44702  0.74331) 0.71209
SU; 0.32201) 0.32201) 0.32301) 0.32101) 0.43802 0.71412)
u,U, 0.29601) 0.29601) 0.29601) 0.29501) 0.42202) 0.72453) 0.68509)
u,.U, 0.26601) 0.26601) 0.26401) 0.26501)  0.40403) 0.67412)
U,Ujz 0.24601) 0.24401) 0.24701) 0.24501)  0.39303) 0.67215)
U,U, 023301 0.23301) 0.23401) 0.23201) 0.38603 0.66014)
U,U, 0.21Q01) 0.21401) 0.21101) 0.20901) 0.37103) 0.65618)
UsUj 0.18401) 0.18401) 0.18601) 0.18301) 0.35904) 0.64622)

[13], but the effect is small and becomes noticeable only at Similar comments apply to the vector meson masses. Al-

guark masses smaller than those we use. Thus when fittinhough these have not been discussed in the quenched chiral

the pion masses we ignore tldgerm. perturbation theory literature, it is straightforward to extend
The predicted form for baryon masses is, schematicalljhe work done in QCO)15] and arrive at the prediction

[14],

— 1/2 3/2 2
V2, 3/2 M,=a,+ éb,my“+c,(m;+m,)+d,m;“+e,mg+--- .
My=ay+ 8 bymg “+bymg In(mg) ]+ cymg+dymy 43
+eNm§+ o (4.2 Unlike for baryons, the detailed expressions lfgr c,, and

d, in terms of constants in the quenched chiral Lagrangian
where J is the same constant as in B¢.1), while ay—ey  are not known. Nevertheless, we expect thatdterm will
are additional constants. The expansion has the same form e small and again ignore it in our fitting.
full QCD, except that theS term, which again comes from'
loops, is absent. As for the pion, we ignore théerm in V. MESON MASSES
almost all fits. It is smallbecauses is smal) and, further-
more, is numerically indistinguishable from the higher order We give our results for meson masses in Tables I-1V. We
terms within our range of light quark masses. What we camuote separately the results for the three source-sink combi-
test in some detail, however, is the expected form ofithe ~ nations and the averag@WL+SL+SS/4. There are four
mﬁ’z, andmg terms. Here we benefit greatly from our use of columns for the pion in each table because we use Lorentz
nondegenerate quarks. structuresys=P and y,ys=A, for both source and sink.

TABLE Il. Meson masses fronSL correlators ap=0.

v A4/A4 A4/7T ’7T/A4 P ao al
CcC 1.21701) 1.2170)) 1.2170)) 1.21701) 1.23001) 1.42111) 1.44809)
CS 0.85401) 0.85401) 0.85501) 0.85401) 0.88101) 1.07917) 1.12612)

cu, 0.81501)  0.81501) 0.81501) 0.81401)  0.84402) 1.04722  1.09715
Cu, 0.80002  0.80002) 0.80002  0.80002)  0.82902)  1.04028  1.08918)
CU; 0.79402  0.79203)  0.79402  0.79202)  0.82103)  1.04838  1.09023)
ss 0.42301)  0.42201) 0.42301) 0.42301) 0.50402) 0.71616)  0.77713)
sy, 0.36401)  0.36301) 0.36401) 0.36401)  0.46403) 0.68424)  0.74116)
su, 0.34001)  0.33901)  0.34001)  0.34001)  0.45003) 0.69729  0.73119)
SU, 0.32401)  0.32302  0.32401)  0.32401)  0.44003) 0.73348)  0.72922
U,U, 029701 0.29601) 0.29701) 0.29701)  0.42303)  0.67437)  0.70520)
U,U, 026801 0.26702) 0.26801) 0.26801)  0.40604)  0.70442)  0.69525)
U,Us  0.24801) 024702  0.24802)  0.24801) 0.39605  0.73639)  0.69529
U,U, 0.23501) 023302 0.23502) 0.23501)  0.38905) 0.68730)
U,U;  0.21201) 021002  0.21202) 0.21202)  0.37706) 0.68836)
UsUs  0.18601)  0.18402  0.18602)  0.18502)  0.36309) 0.691(45)
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TABLE lIl. Meson masses fron$ Scorrelators ap=0.

w A4/A4 A4/7T ’7T/A4 P ao al
cc 1.21801)  1.218§01)  1.21801)  1.21701)  1.23001)  1.42112)  1.43§11)
CS 0.85401) 0.85501) 0.85501) 0.85401) 0.88001) 1.07%21) 1.11815)

cu, 0.81401) 0.81502) 0.81501) 0.81502  0.84302) 1.04329  1.08419)
cu, 0.79902)  0.80002  0.80002) 0.80002  0.82902)  1.04G38)  1.07423)
CU; 0.79102)  0.79203)  0.79403)  0.79203)  0.82003)  1.04542)  1.07229)
ss 0.42201)  0.42201) 0.42201) 0.42201) 050702 0.70718  0.77014)
sy, 0.36401)  0.36401) 0.36401) 0.36401) 0.46502) 0.67727)  0.73§13
Su, 0.34001)  0.33901)  0.34001)  0.33901)  0.44903) 0.69X31)  0.72519)
SU, 0.32401)  0.32402)  0.32401)  0.32401)  0.44003) 0.72429  0.72616)
U,U;  0.29701)  0.29601)  0.29701)  0.29701)  0.42203)  0.67239)  0.70415)
U,U, 0.26801) 0.26701) 0.26801) 0.26701)  0.40504)  0.69230)  0.69117)
U,Us  0.24801)  0.24702)  0.24801) 0.24802  0.39505  0.72632)  0.68720)

u,U, 0.23501) 0.23302) 0.23501) 0.23401) 0.38705) 0.67920)
U,U, 0.21201) 0.21Q02) 0.21202) 0.21102) 0.37507) 0.67524)
UjsUj, 0.18601) 0.18402) 0.18602) 0.18402) 0.36108) 0.67128)

Thus PP has a pseudoscalar interpolating field at bothand to test the forms predicted by quenched chiral perturba-
source and sink, whil® A, has an axial interpolating field at tion theory, we need to choose a definition of quark mass.
the sink. The four possibilities yield consistent results forWe consider two possibilities. The first is the standard per-
masses, and we use the average of the fimside our jack- turbative definition,
knife loop) to give our best estimate of ..

States ap=0 created by are labeledh, and those by Vs

, , , mMS=Z,(1/2x—1/2x,), (5.2)

Yyivsy are calleda;. The signal in these channels is not a
good. We only present data for those mass combinations ) )
where there is a “plateau” over at least three time slicesWhile the second is nonperturbatii/6],
Even in the best case the signal dies outtkyl4, and so
contamination from higher states is likely. We do not con- (0|A4(t)J(0)|0) Zp (My pt My )
sider the data good enough to warrant further analysis. —Mg (0[P(1)3(0)]0) 7 2 .

The tables show in detail how all the masses are system- A
atically lower for the WL correlators than for the SL or SS
correlators. The effect is, however, less thanfar the pion
andp. As discussed above, we take the results of Table IV aslereP andA, are local operators antl(which has the same
our best estimates. Lorentz structure as eithé? or A,) is constructed from the

To extrapolate the hadron masses towards the chiral limismeared Wuppertal source propagators. The data for the two

t—oo

(5.2

TABLE IV. Best estimates of meson masggiven by the average {®L+SL+S3/4 as explained in
the tex at p=0.

T A4 A, Ayl A, p ag a;
cC 1.21700) 1.21701) 1.21701) 1.21701) 1.22901) 1.42607) 1.44106)
Cs 0.85401)  0.85401) 0.85401) 0.85401) 0.87901 1.11308)
Ccu, 0.81401) 0.81401) 0.81401)  0.81401) 0.84201 1.08610)
CU, 0.79801) 0.79901) 0.79901) 0.79901) 0.82801) 1.08112)
CU; 0.78901) 0.79102)  0.79001) 0.79001)  0.81902) 1.08415)
SS 0.42201) 0.42201) 0.42201) 0.42201) 0.50501) 0.72912) 0.76308)
SU; 0.36301) 0.36301) 0.36401) 0.36301) 0.46401) 0.70016) 0.73Q08)
SU, 0.33901) 0.33901) 0.33901) 0.33§01) 0.44802) 0.71821) 0.72Q11
SU;z 0.32301) 0.32301) 0.32301) 0.32301) 0.43902 0.72q12)
U.U, 0.29601) 0.29601) 0.29701)  0.29601) 0.423202) 0.69931) 0.69410)
uU.U, 0.26401) 0.26601) 0.26401)  0.26601)  0.40502) 0.68312)
U,U; 0.24701) 0.24701) 0.24801)  0.24601)  0.39403) 0.68215)
U,U, 0.23401) 0.23301) 0.23401) 0.23301) 0.38703 0.67214)
UoU, 0.21101) 0.21001) 0.21X01)  0.21001) 0.37303) 0.66917)

UsUs 0.18501) 0.18401) 0.18601) 0.18401)  0.36105) 0.66420)
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choices of] are consistent, and so we use the average as the

best estimate. We use tadpole-improved renormalization Ol T AL
constants, defined Oy.7] - Lo A
In ol 2 0.01 - - -
B, ams(9*)| — In(xa)—0.01/, - L 1
NZyZ5Zp=\1-3k1/4Kk 1= 3K,k Foosf Lo _
X[1-0.316xy=(q*) ], L e _
VZ3 2220 = 1= 3k yJAr\T—BrylAx,
2 Lo 4

X 1+aM—5(q*)(—In(,ua)—1.03359). i Lo

m (1] 1= IR BRI Lo v b v v by o

(5.3 3.18 3.2 322 324  3.26

1/2x
Z}f are wave function renormalizations for the two quarks /
coupling to the bilinears, which have hopping parameters FIG. 4. Plot of data fomy, versus 1/2. The linear fit is to the
K12 respectively. Th& /s cancel in the rati@p/Z,. wis — SX {UiU;} (lightesy points. The vertical lines shown and the
the scale at which we match to the continuum renormalizaf@nge of estimates afs.
tion schemehereMS), while g* is a typical momentum in

the one-loop integral. We choosp=1/a and assume M2=a_+c_(m,+m,)=0.00135)
g* =1/a. The masses can be run to other scales using the TornT
two-loop anomalous dimension relatifh8] +2.29611)(my+m,)/2, 5.5
5.
m(Q) _(g%(Q)| "% g%(Q)-g*(w)
m(u) | g%(n) 16m° M ,=a,+C,(m;+my)=0.3276)+2.54 14)(m; + m,)/2.
Y1Bo— 70,31)
X| ——==]1 (5.9
( 2B, One interesting feature is that the pion intercept is slightly

inconsistent with zero, whereas in the continuum limit of full
QCD the intercept should vanish. This discrepancy could be
‘due to discretization errors: Faf2 to be proportional to
My, it must be true tha(0[A,|m)<M . [see Eq.(5.2)],
which is guaranteed only in the continuum limit. A violation
of this proportionality atO(a) would lead to an additional
Jferm in Eq.(5.5 proportional toyam, wherea is the lat-
tice spacing. This could give rise to a nonzero intercept.

We mostly quote results for the scal@ lbut also give some
results at scale 2 GeV, to allow comparison with other work
It is important to note that, although we do not labgj,
MS explicitly, both definitions yield estimates for the con-
tinuum mass in thé1S scheme and should agree in the con-
tinuum limit. We give our results for both definitions in
Table VII, below, and find a substantial difference betwee
them. Most likely this is due to the failure of the perturbative

expression forZ, [18,11. Details of this analysis will be
presented elsewhere. — T
This difference is not, however, important for our study, i Co
since the two definitions of mass turn out to be proportional
to very high accuracy for the six casgi;U;}. This is shown 0.15 -
in Fig. 4, in which we plot the average,, of the quark and
antiquark against the average value ofd/Zhe fit is given
by m,,=0.8614)(1/2x)—2.761). Thus, when extrapolating,
it does not matter which definition of mass one uses. We
choose to usen,, for most purposes in this paper—and we
will drop the subscript henceforth. The perturbative mass,
when it appears, will be distinguished by the superscript
MS. 0.05
We now consider extrapolations to the chiral limit. Fig-
ures 5 and 6 show, respectivei,2 andM , as a function of
the averagen,,. Only data from the combinationg);U;} oW
(the six points with the smallest maspend{SSSU;} (the o 0.02 0.04 0.06 0.08
rightmost four pointsare included. m
We first consider linear fits to the data. These work well
for the {U;U;} points and are the fits shown in the figures.  FIG. 5. M2 versusm,,. The linear fit is to the sixU;U;}
The fits give points.

2
PS

oo by e by by

op
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TABLE V. Estimates of the strange quark mass obtained by
matching different quantities with their physical values. Results are
given for (1) s, (2) the lattice nonperturbative mass,j/a evalu-
ated at 14 and 2 GeV, and3) the lattice perturbative mass
evaluated at 2 GeV. The latter three masses are in MeV.

LN N I S N N I U B B B B B S

Quantity Ks Mg n(1/a) mMga(2 GeV) mVS(2 GeV)
M2Z/M2 0.155 037) 87(2) 89(2) 1292)
My*/M, 0.1547919)  98(7) 100(7) 1459)
M4/M, 0.1546417) 1046) 106(6) 154(8)

M,=a,+c,(m;+my)+d,(m;+my)32
(5.8

T RN BT R — 2
030 0.02 0.04 0.06 0.08 My=a,+ C,(Mat )+ e(my+ my)*

My These fits, when extrapolated ten (calculated self-
consistently, yield smaller values oM p(ﬁ) and thus larger
scales than the linear fit:

FIG. 6. M, versusm,,. The linear fit is to the sixU;U;} points.

Other possible culprits are quenched chiral logarithms—the a }(M,)=2.36548) GeVv (m¥* fit),
terms proportional ta5 in Eq. (4.1)—and finite size effects. (5.9
We expect the latter to be insignificant, however, since a‘l(Mp)=2.34442) GeV (m? fit).

M ,L=6. Our data are not good enough to investigate this
effect further. As a result of the nonzero intercept, the chiralThe difference from the result of the linear fit is, however,
limit (defined byM _=0) is ath“"a' —0.000 5821). In the  within the statistical errors. Our data are good enough to see
following, when quoting quark masses in physical units wethe curvature, but not precise enough to study it in detail. In
usemy, mﬁg'"’“, i.e., we offset the zero of the mass scale.particular, we cannot distinguish between the two forms in
This offset is only significant fom. When we use masses in Eq. (5.8), both doing a good job of fitting the combined
lattice units, as we do in all our fits and extrapolations, we dqU;U;} and{SSSU;} data sets. In view of this, we chose to
not include this offset. use the scale from the linear fit for most of our subsequent
Using our linear fits we determimanp by extrapolating to  analysis. For comparison, we note that the scale we find from
the point where M2/M32=(137/768% finding m,, f,is 226557) MeV [19], while the NRQCD Collaboration
=0.000 9321). The resulting value oM ,a gives us an es- reports a value 2(4) GeV from a mean of charmonium and
timate of the scale Y spectroscopy20]. Thus different estimates based on me-
son correlators are consistent. In the remainder of the paper
we shall take the scale fro , and assign a 3% systematic
uncertainty to cover the spread @ * obtained from differ-
ent mesonic observables and different types of extrapola-
Using this value and including the offset in the mass scaletions.
we find m(1/a) =3.51(6) MeV [m(2 GeV)=3.605) MeV]. Using the linear fits defined in E.5), we determine the
To facilitate comparison with earlier calculations, it is useful lattice strange quark mass by first extrapolatig/M 2,
to give results for the critical and light quark hopping param-My«/M,, or M 4/M , to m and then linearly interpolating
eters. Using linear fits versus«l/we find betweenU, andS until these quantities match their physical
values. (We use M¢=495 MeV, M(*x=894 MeV, and
M4=1019 MeV). The results are given in Table V in terms
of k and the two definitions of quark mass discussed above,
except that we have here run the masses to a scale of 2 GeV
We note that linear fits work well for the subsample to facilitate comparison with other work.

a~(M,)=2.330141) GeV. (5.6

k.=0.157 1319), «,=0.1570469). (5.7

{SSSY;} (and for{CU;}, not shown in the figurgsas well, The three ratios lead to significantly different results for
and we use them below when calculating the masses afg, presumably because of a combination of quenching and
strange and charm mesons. discretization errors. UsingVl /M2 to fix mg implies

The figures show that linear fits are inadequate for thens=25m, since we use the lowest order chiral expansion to
combined{U;U;} and {SSSU;} data. This is particularly fit the data. On the other hand, the estimates usmgM
striking for M where there is a definite negative curvature,andMyx/M , are not constrained by the chiral expansion and
which, if |gnored could lead to an overestimateagf Thus ~ give m /m~30 in surprisingly good agreement with the
we have tried fits to the combined data involving highernext-to-leading chiral resul®21]. In this paper we quote all
order terms in the chiral expansion. A quadratic fitMd.  results usingng(M -
works well, but has little impact on extrapolations, increas- Recently Lacock and MichadP2] suggested using the
ing a,, by about br. For thep, motivated by chiral perturba- dimensionless quantityJ,=M,dM,/dM?2 to test the
tion theory, we have used two forms of higher order terms:quenched approximation. Using a linear fit, we find
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TABLE VI. Pseudoscalaffirst se} and vector(second s¢tmeson energies as a function of momentum. The data are the average of
and S Sestimates.

p*=1 p?=2 p?=3 p=4 p?=1 p?=2 p?=3 p=4
ccC 1.23101) 1.24401) 1.25502) 1.26801) 1.24301) 1.25501) 1.26702) 1.27802)
CS 0.87401) 0.89302 0.91303) 0.93002 0.89901) 0.91702 0.93703 0.95103)
CU,; 0.83602) 0.85502) 0.87603) 0.89502 0.86302) 0.88102) 0.90103) 0.91704)
CU, 0.82102) 0.84102 0.86104) 0.881(03) 0.84902) 0.86803) 0.88804) 0.90504)
CUg 0.81403 0.83303) 0.85304) 0.87303) 0.84103 0.86Q04) 0.88204) 0.89805)
SS 0.46601) 0.50402) 0.54704) 0.57804) 0.54102) 0.57503) 0.61405) 0.64204)
Sy, 0.41402) 0.45603) 0.50506) 0.53904) 0.50303) 0.54003) 0.58306) 0.61305)
SU, 0.39302) 0.43803) 0.48707) 0.52205) 0.48903) 0.52804) 0.57107) 0.60206)
SU; 0.38002) 0.42703) 0.47408) 0.51106) 0.48204) 0.52205) 0.56590) 0.59607)
u,u, 0.35702) 0.40603) 0.46Q08) 0.49706) 0.46504) 0.50805) 0.55308) 0.58306)
U,U, 0.33302) 0.38603) 0.43809) 0.48Q07) 0.45205) 0.49606) 0.541(10) 0.57207)
U,U; 0.31702) 0.37204) 0.42311) 0.46908) 0.44506) 0.49007) 0.53412) 0.56609)
U,Ug 0.30702) 0.36304) 0.41611) 0.46409) 0.43906) 0.48408) 0.52912) 0.56109)
U,Ug 0.29003) 0.34905) 0.39913 0.45411) 0.43209) 0.47810) 0.52015) 0.55410)
UsUj3 0.27203) 0.33305) 0.37916) 0.44513) 0.42410) 0.47113 0.50919) 0.54613)

Jkx»=0.41(1), J,=0.361), (5.10 Using this result, we have thd,=sinhM,. In Table VI

we compareM; and M, for the pseudoscalar and vector
to be compared to the experimental values~d.48 and mesons. The difference is tiny for the smallest quark masses,
~0.41, respectively. Again, the discrepancy is presumablyyt substantial for charmed mesons. Our results for charmed
due to a combination of discretization and quenching errorsneson masse®btained by linear extrapolation in the light
quark mass and witm; chosen to bec=0.135 are given in
VI. O(ma) DISCRETIZATION ERRORS Table VIII. There is a significant difference between the es-

At 8=6, the charm mass is such tiaga~1, and so there timates usingV; andM,: For theD mesons the difference
are potentially largeO(m.a) discretization errors in all 1S ~10 %, while for the charmonium system it is 25-30 %.
quantities involving charm quarks. These are in addition tol NS suggests thad(ma) corrections in the Wilson action
errors of O(Aqcpa), which are common to all quantities. are already large in the charm region. This is also apparent
One effect ofO(a) errors is that there is a difference be- from the mass splittings—the spin-spin and spin-orbit inter-
tween the “static” massM,;=E(p=0) and the “kinetic”  actions are underestimated by the Wilson action, as has been
massM ,=(J°E/dp?|,-o) ~*. Here the energy is determined previously observef23].
from the rate of exponential decay of the correlator,

C(t)xexd—E(p)t]. M, and M, agree in the continuum

limit, whatever the mass of the state. L LA e e s e s e
To evaluateM ,, we have tested four forms of dispersion 0.84 [0 sinh®(M/2)=sinh®*(E/2)~sin*(p/2) }i ~
relation: L o sinh®M  =sinh®E-sin®p E

(B) sint? E=sir? p+sin® M=M,=3% sinh M, - } 1
(6.2 = 0.82 -

E M ]
(C) sint? = =sir? 2 +sint? — = M,=sinh M, ! % { 1

(A) E?=p?+M?=M,=M,

HeateH e

E M M X ]
(D) sinhz—=sin2E+sinh2 —=M,=2sinh—. i i
4 4 4 2 0.8 - M? =E*-p?
I x sinh®*M/4)=sinh®*(E/4)—sin*(p/4) E
1 1 1 1 | 1 1 1 1 I 1 1 1 1 I 1 1 1 1

0 0.05 0.1 0.15 0.2
2

(A) is the continuum relation, whil¢B), (C), and (D) are
lattice forms following from different choices of lattice ac-
tion. In particular,(C) follows from the nearest neighbor
symmetric difference discretization of the action for a scalar.
Our results forE(p) are collected in Table VI, and in Fig. 7 FiG. 7. Test of four lattice dispersion relatiofsee Eq.(6.1)]

we show how the various dispersion relations fare for thesing the lattice pion data at various momenta for the €se.

CU; meson. For all heavy-heavy and heavy-light mesonsThe data favor the nearest-neighbor symmetric-difference relativis-
our results turn out to be consistent with dispersion relationic dispersion relation siffkE/2)—sin’(p/2)=sint’(M/2), as shown
(C), but not with the other forms. by the square symbols.
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TABLE VII. Comparison ofM;=E(p=0) andM,=sinhM,. We also give the values of the average
nonperturbativen,, and perturbative definitions of the quark mass inM® scheme as defined in Eq5.2)
and(5.3). Both are in lattice units, evaluated at the scak. 1/

M, M,

State M4 M, M4 M, My mg

CcC 1.2170) 1.5411) 1.2291) 1.5642) 0.45692) 0.65632)
CSs 0.8541) 0.9621) 0.8791) 0.9992) 0.26252) 0.38222)
CuU, 0.8141) 0.9082) 0.8421) 0.9472) 0.24193) 0.35572)
CuU, 0.7991) 0.8882) 0.8281) 0.92713) 0.23393) 0.34532)
CU; 0.79Q1) 0.87713) 0.8192) 0.9164) 0.22914) 0.33882)
SS 0.4221) 0.4351) 0.5051) 0.5282) 0.07562) 0.10812)
Sy, 0.3631) 0.3741) 0.4641) 0.4813) 0.0565%2) 0.08162)
Sy, 0.3391) 0.3441) 0.4482) 0.4653) 0.04902) 0.07112)
SU; 0.3231) 0.330Q1) 0.4392) 0.4544) 0.04452) 0.06472)
u,U, 0.2941) 0.3011) 0.4222) 0.4363) 0.03772) 0.055@2)
u,U, 0.2671) 0.2711) 0.4052) 0.4174) 0.03042) 0.04462)
U,Uj 0.2471) 0.25Q1) 0.3943) 0.4085) 0.02592) 0.03822)
u,U, 0.2341) 0.2341) 0.38713) 0.3985) 0.02322) 0.03422)
U,U; 0.2111) 0.2131) 0.3733) 0.3857) 0.01872) 0.02772)
UsUj 0.1851) 0.1841) 0.3615) 0.37Q09) 0.01432) 0.02132)

VIl. BARYON MASSES A. Correlators

o ) It is necessary to introduce some notation to explain the

Our baryon mass analysis is based on two overlappingorrelation functions we calculate. We adapt that used in
data sets. For the complete data @&t0 configurations we  quenched chiral perturbation theory for barydig]. As-
have results for only WL and SL correlators and for only asume that we have three flavors of quark, labelediby,
subset of possible quark combinations. On the last 110 corands. To create spin-1/2 baryons we can use the interpolat-
figurations we also calculate SS correlators and use all déng operators
generate and nondegenerate combinations made Smoé ; T abe
U; quarks. Our results for the masses are given in Tables IX, liik= (P, Cysihpj) Yo ke (7.0
X, and XI. The sample size is indicated by the subscript in o
the table headings. In the following, some analyses are On%herea, b, andc label color, whilei, j, andk label flavor.

possible on the smaller sample, and we label such results g/ IS SImple to show that ;)= —¢;i)c, SO that there are
an asterisk next to the error estimate. nly nine independent operators, eight(Sloctets and the
singletZijke”k@}jk . One way to project against the singlet is

to form
TABLE VIII. Comparison of lattice estimates @ meson and
charmonium masses with the experimental data. We show results Bik= it iy =Dk - (7.2
for M, and M, and for the two different ways of setting de-
scribed in the text. There are eight independeBf;’s, the relation to the usual

states being exemplified by
D meson masses in MeV

M4 M, Expt. \ép: _-%)duu: 2.%’uud= 2-—%)udua
Mp 180531) 199034) 1869 ASt—— B —op —op
Mp 187632) 208535) 2008 2= Tsuw= 2 uus= 2 usu @3
Mp [my(M)] 189630) 211232) 1969 S0= B et Busy= — Beud-
Mp [my(M )] 191426) 213727 1969
Mo, [me(M)] 1961(31) 2201(34) 2110? VEAO= 24— Fyen.
Mp.[Ms(M )] 197827) 222429) 21107
M., (*So) 283650) 359064) 2980 The overall factor in these equations is arbitrary, while the
My,(3S1) 286551) 364365) 3097 relative normalization is fixed by S8) symmetry.
M Xc0(3Po) 332460) 457286) 3415 All spin-1/2 baryon correlators are built out of the two
M, ,(3P1) 335760 464686) 3510 contractions shown in Fig. 8. The notati(BU)S=(UD)S
AM(CS;-1sp) 29(1) 53(2) 117 corresponds to quarks of flavots and D contracted into a
AM(CP;-3Py) 33(9) 74(18) 95 closed loop, while the propagator f8rcarries the spin quan-
AM(GPy-3S)) 45917) 92936) 318 tum numbers of the baryon. The notatioBS) corre-

sponds to a single ordered contraction of the three quarks.
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TABLE IX. Mass estimates fo-like baryons. S UD]=SDU]=(1/3)[(US)D+(DS)U+4(UD)S
WLys0 Slyso SSio AVy10 —(USD)—(DSU)+2(SUD)+2(SDU)

SRR 0.78603  0.79104 0.79304  0.784902) +2(UDS)+2(DUS)]. (7.5
S[SU] 0.734(04) 0.74004) 0.74204) 0.73802)

S[SU,] 0.71204  0.72q04)  0.72X04)  0.71603  \Whenm,#my, there is also a nonvanishing®—3° cross
S[SU3] 0.69804)  0.70705  0.70804)  0.70303)  correlator, but we have not found this to give useful results.
S[U,U4] 0.67804)  0.68104)  0.68804)  0.68303) We have calculated the two types of spin-1/2 baryon cor-
S[U1Uy] 0.65504)  0.66505  0.66504) 0.66003)  relator for all independent mass combinations involving

S[U,U4] 0.64005  0.65205 0.65105  0.64803) and S quarks. The results are given in Tables IX and X,
S[U,U,] 0.63005  0.64205  0.64205  0.63603 respectively. Masses from correlators of the fokfiAB] and
S[U,Ug4] 0.61406) 0.62706) 0.62705  0.62004) A{AB} are also included even though they are not
S[U3U3] 0.59707) 0.61107) 0.61006) 0.60404) independent—the correlators are related by

U.[SY 0.74004)  0.74704)  0.74904)  0.74403)
U,[SU;]  0.68705 0.69605) 0.69704)  0.69103) A[AB]=(3B[AA]+B{AA}),
U,[SU,]  0.66304) 067505 0.67505  0.66903) (7.6)

U.[SUs] 0.64805) 0.66105) 0.66105) 0.65503)
U,[U,U;] 0.63005 0.64305 0.64305  0.636093
U,[UU,] 0.60505  0.62006) 0.61905  0.61403 ,
U,[U,Us] 058906 0.60506 0.60406) 059704  ©One can think of Lhe risulttséefor t?\A{BB} and ,?[Bs]h
U U,U,] 057906 059806 059506 0.58704) masses as being those for ! and , respectively, witt
U[U,U] 056207 05807 057906  0.57X04) ms=m, andm,=my=mg. Unlike in the real world, there is
1n-2-3 ' ' ' ' nothing to stop these two masses being the same, i.e
U;[UsUs]  0.54408 0.56309 0.56207)  0.55305) o

my=mMmg, in the quenched approximation. Note, however,
V2[S9 072304 0.73X05 073304  0.72709) that in this case th& and A are also degenerate, i.e.,

Up[SU,] 0.66805  0.67905  0.6740Y  0.67403) M(A{AA})=M(A[AA]). Indeed, the contractions in the
U,[SU,] 0.64305) 0.65706) 0.65705) 0.65003) two cases are identical.

Ua[SUg] 0.62706) ~ 0.64306)  0.64306)  0.63304) The interpretation of the results for the completely non-
Up[U Uy 0.61006)  0.62606)  0.62305  0.61104)  gegenerate correlatoss[BC] and A{BC} is more compli-
Uy[U Up]  0.58406)  0.60207)  0.60X06)  0.59304)  cated. Because isospin is broken, % and A-like states
Up[UjUg]  0.56707)  0.58708)  0.58607)  0.57105  mix, with both correlators containing contributions from
Uy[UoUp]  0.55707)  0.57808)  0.57407)  0.56705  both physical states. Leé¥l, and M _ be the masses of the
U,[UoUs]  0.53908)  0.56109  0.56008)  0.55005  heavier and lighter states, respectively, afid the mass
U,[UsUs] 0520100 0.54311) 0.54309) 0.53206) difference. At long times, the effective mass for both corr-

A{AB}=1(B[AA]+3B{AA}).

Us[SY 0.71205  0.72205 0.72305  0.71703 elators will asymptote t&/1_ . However, at times short com-
U3[SUq] 0.65606) 0.67006) 0.66905  0.66304) pared to the inverse mass difference, i@Vt,,x<1, there
Us[SU,] 0.631(06)  0.64707) 0.64606) 0.63904) will be an approximate plateau at a value which is a

U3[SUs] 0.61407) 0.63208) 0.63107) 0.62304)  weighted average of the two masses. To see this, we pick the
Us[U,U;] 0.59806) 0.61607) 0.61506) 0.60704) A correlator and write it as

Us[U,U,] 0.57207) 0.59208) 0.59007)  0.58105)

Us[U,Us]  0.55408) 0.57609) 0.57408)  0.56405) Cr(t)=Ae M-Y(cogh+sirthe MYy+... = (7.7
Us[U,U,]  0.54408 0.56709 0.56508)  0.55505)

Us[UUgl 052509 055011  0.54909)  0.53706)  \yhere tand is the ratio of the amplitudes to create the two
Us[UsUg]  0.50811)  0.53X13)  0.53110) 0.51807)  mixed states and the ellipsis represents excited states. The
effective mass is

We consider two types of correlatorylike” and “ A like.” d InC, (1)
The former is exemplified by that of the’, M(A)eg(t)=— gt M _+sir?d 6M
X[14+O(6Mt)]~cogOM _ +sirPoM ., .
S{UD}=S[DU}=(-Zsud X)- F5ud 0)) 78

=(US)D+(DS)U+(USD)+(DSU). (7.9
Thus the effective mass is almost constant, and given our
errors, we cannot distinguish it from a plateau. We discuss
(This equation defines our sign conventions for the contracbelow the interpretation of the resulting “mass.”
tions) The proton, neutrony™, 37, % andE~ correla- We have also calculated the masses of spin-3/2 baryons.
tors are also of this type: They are, respectivéyUU}, Here there is only one type of operator, which is completely
U{DD}, S{UU}, S[DD}, U{SS, andD{SS. The second symmetric in flavor. Our results for all 20 mass combinations

type of correlator is that of tha® built out of U; and S quarks are given in Table XI.
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TABLE X. Mass estimates foE-like baryons.

WLy Sl SSio AVyo WLi79 SLi7o AVi70
S{Sg 0.78603) 0.79104) 0.79304) 0.78902) 0.78603) 0.79403) 0.79002)
S{SUy} 0.73804)  0.74504) 0.74604)  0.74203
S(SU,} 071804 072704 0.72804)  0.72303)
S(SU,) 070604 0.71605) 0.71705  0.71403)

S{U,U,}  0.68904 0.69905) 0.70004) 0.69503 0.68904) 0.70204)  0.69503
S{U,U,}  0.66905 0.68405 0.68205) 0.67603)
S{U,Us}  0.65705 0.67406) 0.67105)  0.66404)
S{U,U,}  0.64906) 0.66506) 0.66406) 0.65704) 0.64904) 0.66705)  0.65803)
S{U,Us}  0.63607) 0.65407) 0.65406)  0.64504)
S{UsUz}  0.62208  0.64409) 0.64308) 0.63305  0.62506) 0.64707)  0.63604)
U.{SS 0.73204) 0.73804) 0.73904) 0.7302) 0.73203) 0.74404)  0.73802)
U,{SU;}  0.68405 0.69004) 0.69004)  0.68803)
U{SU,}  0.65904) 0.67105) 0.67404)  0.66503)
U,{SUs}  0.64805 0.65905) 0.65805  0.65203)
U,{U,U;} 0.63005 0.64305 0.64205 0.63603 0.63005 0.64505)  0.63803
U,{U,U,} 0.60805 0.62406) 0.62305  0.61604)
U,{U;Us} 0.59406) 0.61207) 0.61106)  0.60304)
U,{U,U,} 0.58606) 0.60507) 0.60406) 0.59504) 0.58805) 0.60706)  0.59804)
U{U,Uz} 057207 0.59308) 0.59207)  0.58205)
U,{UsUg} 055709 0.58%10) 0.58008) 0.56906) 0.56407) 0.58308) 0.57305)
U,{SS 0.71G04)  0.71704) 0.718§04) 0.71403 0.70804) 0.72004)  0.71403)
U,{SU;}  0.65705 0.66705) 0.66704)  0.66303)
U,{SU,}  0.63405 0.64605) 0.64605  0.64003)
U,{SU;}  0.61906) 0.63306) 0.63305  0.62604)
U,{U,U;} 0.60305 0.61806) 0.618§05 0.61X03 0.60506) 0.62106) 0.61303)
U,{U,U,} 0.58006) 0.59807) 0.59706)  0.58904)
U,{U;Us} 0.56507) 0.58508) 0.58406)  0.57504)
U,{U,U,} 055707 0.57808) 0.57707) 0.56705 0.56106) 0.58107)  0.57104)
U,{U,Us} 054208 0.56509) 0.56408)  0.55305)
U,{UsUg} 0528100 0.5511) 0.55%09) 0.53806) 0.53408) 0.55509)  0.54406)
Us{SS 0.69605  0.70405 0.70404) 0.70003) 0.69404) 0.70805)  0.70103)
Us{SU;}  0.64206) 0.65305) 0.65205  0.64703)
Us{SU,}  0.61706) 0.63106) 0.63005  0.62404)
Us{SU;}  0.60207) 0.61607) 0.61606)  0.60904)
Us{U,U;}  0.58606) 0.60206) 0.60206) 0.59404) 0.58906) 0.60606)  0.59704)
Us{U,U,} 056307 0.58108) 0.58006) 0.57204)
Us{U;Us} 054708 0.56709) 0.56607)  0.55705)
Us{U,U,} 053908 0.56009) 0.55907) 0.54905 0.54308) 0.56408)  0.55305)
Us{U,Ug} 052309 0.54511) 0.54509)  0.53406)
Us{UsUg}  050811) 0.53%13) 053%10) 0.51807) 0.51510) 0.53610) 0.52507)

We analyze the baryon masses using the chiral expansioblere M, is spin-1/2 baryon mass in the chiral limit akd
We first consider the spin-1/2 baryons, returning to spin-3/2andD are the usual reduced matrix elements of scalar den-
baryons later in this section. We couch the discussion irsities. Note that there is no dependencengp since thed
terms similar to those used in full QCD. If we keep only quark does not enter the correlators. These results can also be
constants and terms linear in quark mas¢esd drop obtained using mass perturbation theory in full QCD and
nonanalytic terms of the forndmg'* as discussed in Sec. then deleting terms proportional to, +my+ ms, which cor-
IV), then itis straightforward to show, using quenched chirakespond to contributions from internal quark loops. We stress
perturbation theory14], that that these formulas apply to all the states we consider—for

example, the proton masshis(D{UU}) and is obtained by
M(SF)=M(S{UUY)=My+4Fm,+2(F—D)m;, replacingmg with my in the formula forM (2 %).
(7.9 At this order in the chiral expansion, it is simple to extend

the results to baryons composed of three nondegenerate
quarks. The mass matrix in th&°%A)=(S{UD},S[UD])

e 2D
3 basis is

3

i
3

M(A)=M(S[UU])=My+4 my+2 ms.
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a )\ \/j u d
= 2D (7.10
Yy B — (my—mg) 2D\ __ D
V3 Mo+4 F—? m+ 2 F+§ Mg

Diagonalizing this matrix gives the eigenvaluék. with a  where mp=(mg+m¢)/2. We make clear in the following
mixing angle 6. If we assume that the same mixing angle where we are using this assumption and where not.

applies for the interpolating fields, which we think is true up A large part of our analysis concerns mass splittings be-
to corrections of0(m?/?), then @ is the angle appearing in tween, for example, spin-1/2 baryons. In most cases, we have

q
our previous expressions for tikecorrelator{ Eq. (7.7)]. The  extracted these differences by directly fitting to the ratio of

“short-time effective mass,” Eq(7.8), is then the appropriate correlators. Thus, for example,
M(A) g~ COLOIM _ +SirP oM , = 3. (7.1 Ts) - ms-myr
(1) ’

A similar argument shows that ) ) ) . ) .
and so the mass difference is obtained from a single fit. This

has the advantage of both reducing some of the systematic
errors(e.g., those arising from excited state contamination
and of improving the statistical errors. We find that estimates

: . " ! . . ‘obtained in this manner are consistent with those obtained
tive masses are insensitive to the isospin breaking tgrm from individual fits, but have errors which are 3-5 times
Furthermore, the expressions farand g are exactly the ... '

same as the formulas applicable when isospin is unbroken,
Egs.(7.9), except tham, is replaced by the average mass

We have not extended this analysis to higher order in the
chiral expansion. Nevertheless, we use it as motivation for In this subsection we use our results for mass splittings
including our results for baryons composed of completelybetween spin-1/2 baryons to extract predictions for the
nondegenerate quarks by assuming that the effective massglsysical mass splittings and to study the chiral behavior of

M(3)e~SIPOM _ +COSOM , = a. (7.12

Thus we find the surprising result that the short-time effec

B. Spin-1/2 baryon mass splittings

satisfy baryon masses. It turns out that the leading chiral prediction,
Eq. (7.9, gives a poor description of our data. Higher order
M(A{BC})=M(A{DD}), M(A[BC])=M(A[DD]), terms are essential in order to extrapolate reliably from our

(7.13 quark masses and have a significant impact on the final re-

TABLE XI. Mass estimates for the decuplet baryons.

W I-110 S I-110 S S110 AVllO W I-170 S I-170 AV170
{ss$ 0.83205)  0.84306) 0.84307) 0.83704) 0.83104)  0.84505)  0.83803)
{ssu} 0.78806)  0.80307)  0.80207)  0.79505)
{SSu} 0.77007)  0.78907)  0.78608)  0.77906)
{Ssu} 0.76008)  0.78409  0.77808)  0.77006)

{SU,U;}  0.74408) 0.76408) 0.76108)  0.75306)
{SU,U,}  0.72510) 0.75009) 0.74708)  0.73607)
{SU,Us} 071011 0.74111) 0.73809  0.72508)
{SU,U,}  0.70510) 0.73611) 0.73209 0.71907)
{SU,Us} 069011 072713 0.72410) 0.70808)
{SU;Us} 067409 0.71815 0.71611) 0.69608)
{U;U,U;}  0.69708) 0.72610) 0.72409) 0.71006) 0.69908) 0.72409)  0.71006)
{U;U,U,}  0.67709) 0.71212) 0.70610)  0.69307)
{U;U U5} 0.66311) 0.70414) 0.69911) 0.68208)
{U;U,U,}  0.65609) 0.69914) 0.69311) 0.67608)
{U,U,Usl  0.64210) 0.69017) 0.68512)  0.66509)
{U;UzUsl  0.62909) 0.68221) 0.67813)  0.65409)
{U,U,U,}  0.63508) 0.68618 0.68012) 0.65908) 0.64411) 0.68312) 0.66408)
{U,U,Usl  0.62210) 0.67822 0.67314)  0.64910)
{U,UzUsl  0.60911) 0.67027) 0.66716)  0.63911)
{UsUsUsl  0.59613) 0.66133 0.66418) 0.62814) 0.61213 0.66022)  0.63G13)
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FIG. 8. Two different types of contractions for the baryon states. 02 ]
nl | Il 1 1 1 | 1 1 1 L | 1 1 L
sult. The higher order terms we use are motivated by 02 " _OM"; s
guenched chiral perturbation theory which predicts nonana- Mg s/ (my — M)

lytic terms of O(mq ) and analytic terms proportional to FIG. 9. Test for chiral corrections iMy—M, . The value ex-

mg. The form of these terms and some predictions for theit anolated to the physical point is shown by the burst symbol at the
coeff|C|ents_ hqve been W_orked out In RE24]. We attempt  extreme left. In this and subsequent figures, all masses are in lattice
only a qualitative comparison with these predictions, thoughynits.

we provide the results of our fits so that others can pursue
this further.

! ] ] o Here(and in the similar estimates &f.4 andF . below), we
We first consider the octet hyperfine splitting.“-A,”

use the nonperturbative definition of tMS quark mass cal-

M M M3 M3 culated in MeV, but depart from our usual practice by evalu-
—ABB] TABBI_ (_gp/3)+d, —2 BB ating it at the scale 2 GeVinstead of 14). Note thatD g
ma— Mg Ma—Mg differs from theD appearing in chiral expansions such as Eq.
M3 M3 (7.14), for it absorbs some of the higher order terms.
+d} u+91ms In our second fit we test to see whether our data can be
Ma— Mg represented as well by the analytic terms. We have found, by
+}(Ma+ M), (7.14 trial and error, that Eq(7.14 with d,=d;=0 ande;=e;

does a reasonable job; the plot is shown in Fig. 10. In this

. ] . — plot we have included the results for baryons composed of
whereM 5 is the mass of the pion with flavékB, etc. The  completely nondegenerate quarks, based on the discussion
constantgl; ande; can be expressed in terms of parameterso|iowing Egs.(7.11) and(7.12. To emphasize this, we have

of the quenched chiral Lagrangian. For reasonable choices @dpeled thex axis bym,+ my+m, instead ofm,+2mg . The
these parameters, one exped§ <|d,|. There is no useful data show definite curvature, and so we have extrapolated to
information concerning; or e; .

We fit our results in two ways. First, we assume that the
d, term is dominant and plot our data versus
(M 35—M3g)/(my—mg). The outcome is shown in Fig. 9.
The data should collapse onto a single curve, which should
be linear, and our results are reasonably consistent with this.
What is particularly striking, however, is the size of the
slope. This is a clear sign that terms of higher order than
linear in the quark mass are needed to describe our baryon
masses—recall that the linear term has been divided out in
this fit. If we extrapolate linearly to the physical point
(my=mg, mg=m), we find [the fit gives D=—0.363),
d;=—0.192) GeV 2|

£-A 1

Ms—M,=767) MeV. (7.15

oo by e by by

It is conventional to quote this result in terms of an effective 0 0.05 0.1 0.15 0.2
D parameter, m, + my + m,

FIG. 10. Quadratic fit ttMy — M ,/(m—my), including baryons
— 3(My— M_A) __ 293) Mev —-0.283) composed of completely nondegenerate quarks. The value extrapo-
eff 8(mg—m) mg—m | ' lated to the physical point is shown by the burst symbol at the
(7.16 extreme left.
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FIG. 11. Test for chiral corrections iy — My as described in FIG. 12. Quadratic fit tolls — M)/ (mg—m) for the 30 quark
Eq. (7.18. The physical point is shown by the burst symbol at the combinations. The results of the two ways of extrapolating to the
extreme left. physical value described in the text are shown by the burst symbols.

the physical point using a quadratic fitorresponding to  12. In the second we first extrapolate linearlyng=mc=m-
terms up tamy in the original expression for baryon masses and then interpolate ton,=mg. These two methods give
The fit yields almost identical results, as shown by the two “bursts” in the
lot. The mean of these two points gives
Ms—M,=808) MeV, P ponts g

—-30(3) MeV (7.17) Ms—My=26020) MeV,
Doy= - _0.293).
(ms_ m)
130(10) MeV
These results are consistent with those from theZ'” fit. Fer— Deﬁ:W =1.27110.  (7.20

Next we consider the 2-N" splitting, i.e., that between
two 3-like states having different strange quark masses. Th

) Y Fhe difference between the two estimates, H@sl9 and
chiral expansion is

(7.20), is indicative of the fact that neither of the forms fits
3 3 all the data well.

M -M Mixc—M X . . . .
—AlcG T8O _5(F_D)+d, —o —BC Third, we consider the differenceZ—N,” in which we
Ma— Mg M~ Mg study the effect of changing the mass of the two symme-
3 M3 trized quarks. We expect
, Maa BB
+d2 W +e,Mme
A 8 MA{BB}_MA{CC}:4F+d MiB_Mic , MEB_Mgc
+ey(My+mg). (7.18 mg— Mc  mg—mc 3 mg—mc
Chiral perturbation theory suggests thd§| <|d,|. Thus we +esma+ez(mg+me). (7.21)

first plot the data assumind, is the dominant coefficient
(Fig. 11). The collapse onto a single curve is reasonable, angt turns out that in quenched chiral perturbation theory we
a linear fit[F—D=1.305), d,=—0.3X3) GeV ] gives expectd;=d, ande;=e,. In this case, there is no expecta-
RV tion thatd; andd; should be substantially different in mag-
Ms—=My=22114) MeV, nitude. Nevertheless, for simplicity, we first plot the data

1147) MeV assumingl, is the dominant coefficient, as shown in Fig. 13.
Fo-Duow=——"l —11%7). 7.19 The data collapse reasonably onto a single curve, and a linear
eff eff 1( ) ( ) . N
(Mms—m) fit [F=0.923), d;=—0.303) GeV ?] yields

We also have investigated various analytic fits, none of
which do a good job of collapsi_ng t_he data onto a singIeM:_MN:338(19) MeV, Fop= 84(5) M_eV:0.82(5).
curve. Our best attempt, shown in Fig. 12, assunhesd, a (Ms—m)
=0 ande,=e,/4; i.e., we plot against the average mass of (7.22
the quarks in the two baryons. We again include nondegen-
erate baryons in this plot. Since the collapse is not good, wé quadratic fit to the average quark mdge., assuming;
use two different extrapolations to the physical point. The=e3) is slightly better, as shown in Fig. 14. The results are
first is a quadratic fit in the average mass as shown in Fignevertheless consistent with those from the first fit:
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TABLE XII. Tests of the Gell-Mann—Okubo mass formu-

T T T T T I T T T T I T T T
! la: results for GMO A,B).
- A B Method 1 Method 2 Method 3
g
| S Uy 0.00Q02) 0.00202) 0.001(01)
g S U, 0.00303) 0.00303) 0.00302)
< S (UK 0.00808) 0.00209) 0.00504)
g U, S 0.00202)
= U, U, 0.00102) 0.00q02) 0.00Q01)
L U, Us 0.00305) 0.00q06) 0.00202
8 U, S 0.00502)
2 U, U, 0.001(01) 0.00%01)
U, Us —.001(04)
" | | | ] Us S 0.00905)
' — e — Us U, 0.00504) 0.00302)
0.2 0.4 0.6 U, U, 0.00304)

(Mis - Mic)/(ms - mg)

FIG. 13. Test for chiral corrections i z — M) as described in 3 3 3 5
Eq. (7.21). The physical point is shown by the burst symbol at the GMO(A,B)=d;(Mp—2M g+ Mpg) +€4(My—mg)
extreme left. ' (7.25

895) MeV making it an interesting window on higher order terms. We
Mz—My=35521) MeV, Fer= (me—m) =0.875). have calculated GMQX,B) using three method$1) simply
(7.23  taking the differences of the mass¢2) using

. L GMO(A,B)=4[M ppgy—Mpgrr] —3[Mager— Mareg)]
It is important to note that, once again, higher order correc-
tions in the chiral expansion are substantial. —2[Mgian —Mgeg ], (7.26

To further investigate the mass splittings we have consid- . o
ered the combination of differences appearing in the GellWhere the differences within square brackets are calculated

Mann—Okubo (GMO) formula 3Vl ,+Ms—2My—2Mz from ratios of correlators; an®) using another combination

=0. In our notation, this combination is - of differences(calculated using ratios
GMOA B) =3 , X GMO(A,B)=[M pggy—Maaey] +3[Maree;— Meee;]
MO(A,B)=3M zrgg; T Magse; — 2Mpise; — 2Mpiaa; -
(88l {88} 188} (AR —2[Mgan—Mpal- (7.27)
(7.24
. Our results are given in Table XIl. They are consistent with
It is constructed to cancel th@(m,) terms, zero for all quark mass combinations, showing that higher

order chiral corrections are not uniformly large. This is in
qualitative agreement with experiment, where the GMO re-
lation works well: GMG=26 MeV or GMO=0.011 in lattice
units. It is difficult to make a quantitative comparison since
we cannot extrapolate our data to the physical point. We
note, however, that our results for the largest mass splitting,
A/B=S/U,, are consistent with the experimental value.

A summary of mass splittings in the octet multiplet is
given in Table XIII. Several comments are in order. First, the
“m3'?" fits show evidence for curvature, which, if included,
would likely make the results agree more closely with those

3.5+

—MN)/Amav

M

TABLE XIll. Estimates of mass splittings in the baryon octet,
using various fits explained in the text. Experimental results are
given for comparison. All results are in MeV.

2.5 -

P S T UYWAY SR WU WY SR N N SO SO N i Fit mglz mé Eq (79) EXpt

0.05 0.1 0.15 0.2
mg+? av(m,,) Ms-My 227(13«)  26020+)  19412+) 253

Mz-My 338(19¢) 35521x) 306(22¢) 375

FIG. 14. Quadratic fit toll=z—My) /(mZ,—mY) for 44 quark  Mz-My 107 (9+) 109 (8+) 11214+) 122
combinations. The result of the quadratic extrapolation to the physiM-M 76 (7%) 80 (8) 77
cal value is shown by the burst symbol.
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(Myrec; — Mpee) — Mcpany + Mcpssp)/(my — mg)

[ ,p_UsUs._ UU, SU, _ SU, 1 -3 |-AB= UiUs U,
[ AB="zlay y 102 gy, Ot ] i U,U, UU, SUg SUy
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0.6 0.8 1 1.2 1.4 0.6 0.8 1 1.2 14
(MEA - MgB)/(mA - mp) (M::A - MSB)/(mA — mp)

FIG. 15. The quantityXs determined from fits to the ratio of ~ FIG. 16. The quantityX, determined from the masses of the
correlators. The extrapolated value from whidh: — My is calcu- individual states. The point for physical quark masses is shown by
lated is given by the burst symbol at the left. the burst symbol at the left.
from the “m3” fits. Second, we reiterate that the data are Mz—Ms=1079) MeV,
extremely poorly represented by the first order mass formu-
las Eq.(7.9—this would predict that all the curves in Figs.

; : 53(5) MeV
9-14 are flat. If, nevertheless, we fit to the linear terms, we (Feff+ Do) = —————=0.525), (7.29

find the results listed in the third column. Finally, we note (ms—m)

the good agreement of the results from thé fit (which are

our most reliablg with the experimental splittings. consistent with the other estimates given in Table XIII. It is
To further investigate the applicability of quenched chiral noteworthy that the extrapolation required is minimal, unlike

perturbation theory, we have constructed several other quamhat for most of the mass differences considered above.

tities. Although most of these are peculiar to the quenched (2) We next consider the corresponding quantity for the

approximation, having no counterpart in QCD, they allow usA-like baryons,

to see how well we understand the extrapolations that are

needed for all quantities, including those which are physi- XA(AB,C)  Mpaco—Marce;—Mcian+ Mcgas

cally relevant. =

(1) We begin with the double difference Ma—Mg Ma—Mg
An—Mig
Xs(A,B,C) _ Maica—Maicop—Mcian T Mcier =~ 2F+10D/3+ds Ma— Mg
Mma—m ma—m
ATE ATE , , +e5(My+mg). (7.30
MAA_ M BB
=—2(F+D)+(d)—dy) ——— . . . .
2(F+D)+(dz~dy) ma— Mg This always involves a quenched particle with no correspon-

., dent in nature, e.g.M(U[SY). We plot X, in Fig. 16.
+(e;—e3)(Matmg). (728 Again, the expectation of no dependencenenis borne out,

but this time there are significant higher order terms. The fit
This is interesting for several reasons. First, the expecteglields 2F —10D/3=3.4(3) and ds=0.264) GeV 2, assum-
chiral form is simpler than the differences considered aboveing es=0. The data are equally well described usingegn
Second, forC=B or C=A, Xy reduces toM(A{BB}) term withds=0.
—M(B{AA}), which forA=s andB=u is mg—ms . Third, (3) In the quenched approximation, we can form two ad-
Xs is predicted to be independent i . Strictly speaking, ditional double differences, analogous to GMOB), in
this is true up to quenched artifacts proportionalstorhus ~ which theO(m,) terms cancel:
the mq dependence oKs is a window onto such artifacts.
Our data forXs , plotted in Fig. 15, confirm our expectations. = _ _
There is no szignificant dependence mp—indeed, there is Yx(AB.C.D)=Mace)~Mereq) MA{DD}JFMB{D??} ’31)
barely any dependence an, or mg either. The fit yields '
F+D=0.506) andd,—dj=—0.013(16) GeV? assuming YA(A,B,C,D)=Maicc)~Merce;~Maion; + Meiop -
e,—e;=0. Clearly, we could just as well fit with the’
terms. If we extrapolate to the physical poiassuming Yy picks out thed; ande; terms in Eqs(7.18 and(7.28).
M2=2MZ—M2), we find The predicted form is
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FIG. 17. Testing the mass dependencé/of(itself determined FIG. 19. Linear fit toMy and M, for the threeU;U;U; quark
from fits to the ratio of correlatoys combinations. The fourth degenerate pda8Sis also shown.
Ys(A,B,C,D) are again consistent with the expected form, although the
VPV VRN VE errors are larger sinc¥, is calculated from masses instead
AC BC AD BD of mass differences. The fit gives4.32.4) GeV 2 for the
(Ma—Mg)(Me—Mp) intercept and 320) GeV * for the slope.

(7.32 In summary, we have demonstrated that terms beyond
linear order in the quark mass are necessary to fit the octet

We test this in Fig. 17. What is most noteworthy is that,b‘fJlryon mass splittingfs. The lever arm provided by our fqur
unlike the GMO relation, there are significant higher order light” quark rg:;\sses 'Sé not, however, strong enough to dis-
corrections. We find a reasonable fitif~—5.4(1.4) GeV 2 entangle then®< and m* contributions. Indeed, it is impor-

ande,~44(11) GeV L. The large errors in the fit parameters tant to note that, if we did not have results for the baryons
are Zdue to the. fact that the two variables containing theS quark, our evidence for higher order terms

Mf\c—M %C_MiDJrM %D and (Mms—mg)(Me—mp) are would have been much weaker and our data would have

nearly proportional for our set of quark masses. There is thuEeen reascr)]nabhl/ \get” fit bg atD(tm) t(;,\rm aflor};a&;l'ms woulc?%f

a significant cancellation between the two terms in the fit. owever, tf"‘V? ? o_un erestimates ot all the mass ditier-

Indeed, we can obtain as good a fit settég-0 and replac- ences, particulariynsy —my .

ing it with a higher order term proportional to

Mp+ Mg+ Me+mp. C. Nucleon mass

(4) Finally, we considerY,, which is expected to have  \ye now turn to the overall mass scale of the spin-1/2

the same functional form a6y . The data, shown in Fig. 18, paryons, which we set using the nucleon mass. As for the

mass splittings, we expect to need terms of higher order than

=d,+e .
2T MEc—Mic— M3+ M3,

0 ——r linear in the chiral expansion to describe our data, and so we
B analyze the data with and without them. We first fit to the
a2 LT masses of the baryons containing three degenerate quarks.
f L The data are shown in Fig. 1@&long with those for the
82 spin-3/2 baryons We begin with a linear fit to the lightest
f - three baryons, yielding the fit shown in the figure. We find
= F My=0.4619)+4.7(2)m=108427) MeV.
| L
AT i Next, we fit all four masses including an3'? term, yielding
2 [ A/C=S /s o | M =107035) MeV. Finally, we fit all four masses includ-
ot A1 ﬁ?gzg ?g; oo ing anmj term, which givesM y=107231) MeV. In the last
s 5 i A/C=U,/U, x | two cases we have included the same form for the higher
i A/C=U,/U, & | order corrections iM , for the determination of the scale and
Lol 1}/C|=1{z/‘Uzl ;K. ] m. Thus the inclusion of curvature systematically reduces
My/M by about 0.o, although the precise functional form
0.24 0.26 0.28 b X .
(m,~m) (mg—my) /(M= M M3+ M2, of the higher order terms is not resolved. For our best esti-

mate we take the mean of the last two estimates, i.e.,
FIG. 18. QuantityY, determined from the masses of the indi- My=107135) MeV, corresponding t@ (M y)=206256)
vidual states. MeV.
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FIG. 20. Global fit to nucleon data using E@.9). The six cases FIG. 21. Linear fit toM gecupietfor the 20 quark combinations.

for my=U, are shown by square symbots,=U, by octagons, The four degenerate cases are shown with an octagon symbol.

andma= U5 by crosses.
D. Spin-3/2 baryon mass splittings

The analysis of the previous paragraph is based on our The analysis of the masses of the spin-3/2 baryons is more
full sample of lattices. Most of our results for mass differ- strajghtforward. As noted above, the correlators are labeled
ences came, by contrast, from our subsample of 110 latticeSpABC} and are completely symmetric between the three fla-
Thus it is interesting to repeat the extractionna§ on this  yors. We can form 20 states with our four masses, and none
subsample. We find that the results are slightly lower, thouglyf these mix with each other.
consistent within errors. For example, the linear “three point  Ag for the spin-1/2 baryons, we first concentrate on mass
fit"  to the lightest degenerate baryons vyields gpjittings. The chiral expansion for the spin-3/2 masses has
My =0.446(9)+5.04(21)n=1051(26) MeV, about & be-  peen worked out for the case of three non degenerate quarks

low the corresponding result from the full sample. Using the[24] and is(excluding quenched artifacts proportionaldo
subsample, however, we can attempt a global fit including

baryons with nondegenerate quarks. We have done this using/ (xgc;= Mo+ AM +c*(ma+Mg+mc) +d (Mig+M3c
the 3-like baryons composed dfi; quarks, fitting them to 3 A3 3 3 A

the linear chiral form of Eq(7.9), We include all eighteen +Mga) +d3(Maa+ Mgt Mgc) +er(mamg
The fh shown in Fig. 20, gives. T < A +MeMc t mem) + €5(m3 £ m3-+mg).  (7.39

_ AM is the decuplet-octet splitting in the chiral limit. In con-
Myn=0.4529*)+1.91(8* )mp+ 3.0 16x ) (mg+mc)/2
N 49+) 18*)my 1(16+)(mg+me) trast to the spin-1/2 baryons the terms of higher order than

=106426+) MeV. linear in the quark mass are small. This is shown in Fig. 21,
in which we give the result of a linear fit to all 20 masses.
This is in excellent agreement with the three point fit. TheWe have also done linear fits to the 10 baryons composed of
fact that the fit is reasonable underscores the point madd; quarks, and to the 3 lightest baryons composed of degen-
above that the need for higher order terms is not apparergrate quarks. We refer to these three fits as *“20-point,” “10-
using theU; quarks alone. A similar statement holds for the point,” and **3-point” fits, respectively. The results are con-
A-like states. sistent with one another:

M gecuple= 0.590116) +3.1834)m,,  3-point fit (full sample,

M gecupler= 0.578 16+ ) +3.4933¢)my,  3-point fit,

M gecuplet= 0-578 16x ) +3.5Q34* ) (Ma+mg+mc)/3,  10-point fit,

M gecupler= 0-58Q12% ) + 3.4 14+ ) (ma+ Mg+ mc)/3,  20-point fit, (7.39
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FIG. 22. M-M, mass splitting. The physical point is shown by  FIG. 23. Test of violations of the equal-spacing rule, &438.
the burst symbol at the left. The physical point is indicated by the burst symbol, here at the
right.
although there is a small systematic difference between the
results from the full sample and the subsample. ity, any reasonable extrapolation method using our ratio data

The higher order terms, though small, are neverthelesgives almost the same result. We also include the results of
present. We have investigated them using fits to ratios oéxtrapolating using the parameters from the 20-point linear
correlators. We first considévl ,— M, , which is obtained fit. The small difference between the two sets of results is

by fitting our data to due to the higher order terms. Both sets of results are signifi-
cantly smaller than the experimental splittings, and the inclu-
Miaay—Mieg, | AL A M3AA— M%B sion of the higher order terms makes the disagreement worse.
T ma—mg =3c%+3(dy +d3) Tma-mg These features are in marked contrast to those we saw in the
spin-1/2 baryons.
+3(ef +e5)(mat+mg). (7.35 We can study the higher order terms in more detail by

looking at violations of the “equal-spacing rule”

As before, we can fit our data keeping either tHe+d 5 or
thee? +e5 term. The former fit is shown in Fig. 22 and has  Maang—Maag=Mang— M{ags=M{aes — M (gsg; -
parametersc®=0.9412) and d{+d5=0.02316) GeV 2. 7.36
;hetséOpshisﬁgf ”p%ri]r?t (T;;génﬂlé;%rulga_n& 2E)X tﬁg%gtmgThjs rule hold_s when kegping up to the linear term in the
M — M, =30824) MeV. B chiral expansion. Experimentally, the three splittings are

We have also done the extrapolation using a more tradiMo—M=+=137.5 MeV, Mz —Ms~=148.1 MeV, and
tional method: We calculat® ({AAA})_M({BBB}) for ME*_ MA2151 l\/IeV The violations of the rule are thus
B=U, andA=S or U,, extrapolate linearly ton,=m, and small, _and_|t is interesting to see how well the quenched
then interpolate linearly ton,=m,. We refer to this as the approximation repro_duces the magmtgde and pattern of these
“3_point ratio” method. The result isMl,— M, =31618) violations. We consider two double differences
MeV and is consistent with oum3/2 estimate. The result
from our subsample, 3109+) MeV,q is consistent. ESUA.B)=(Miaan ~Miang) = (Miasgy—Mises).

We have repeated this analysis for the other two physi- ESAA B)=(M M _3(M M (7.37)
cally interesting mass splittings and collect the results in 2AA.B)=(Miaan—Miseg) = 3(Mang ~ M(ags))-
Table XIV. We only quote results from the “3-point ratio”

extrapolations, since, with such mild deviations from linear- € first becomesMg —Mzx) = (Mx+ =M;)=-13 MeV

whenm,=m; andmg=m. The expectation from quenched

TABLE XIV. Estimates of mass splittings in the baryon de- chiral perturbation theory is that

;lrjg)lﬁt.l\;ll':\tle.dlfferent methods are explained in the text. All results ESZI(A,B)Zde(Mf\AﬂL MEB_ 2Mi5)+2ef(mA— mB)Z;

(7.39

i.e., the form of the higher order terms is the same as that

Ratio Eq. (7.39

State 3 point 20 point Expt. appearing in the GMO relatigrEq. (7.25]. They are shown
Myx-M, 107(6+) 116(7+) 151 in Fig. 23 and are consistent with the expected chiral form
Mzx-M, 21512¢) 232(14%) 299 [d2=0.4643) GeV 2 e}=—8(7) GeV 1], with large errors.
Mqg—M, 316(18) 347(21%) 436 Extrapolating to the physical point, we find ES4(7)

MeV, marginally inconsistent with the experimental value.
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(m, + mp) FIG. 25. Comparison of the baryon masses obtained in this cal-
o _ culation with the experimental data indicated by the horizontal
FIG. 24. Test of violations of the equal-spacing rule, E439. |ines. The scale is set byM , and the data for all states are from
The physical point is indicated by the burst symbgécond from  the sub sample of 110 lattices.

left).

we use other definitions of the strange quark mass, e.g.,
my(Mg). We have also found some evidence for artifacts
due to quenching in the baryon spectrum. Given the size of
our errors, however, this result is far from definitive.

The second double difference ESR,B) is predicted to
vanish by the general form of E{7.33. The same is true in
chiral perturbation theory in full QCI25]. Thus it is a win-
dow onto the quenched artifacts proportional dowhose
form is predicted to b§24]

E. M, and My—My

ES2A,B)=5f2 chiralA,B), _ _ .
A ) X ) We close this section with our results for the overall scale

(7.39 of the spin-3/2 baryons and its relation to that of the spin-1/2
chiral(A,B) = (mu— mB)( IN(MAx/MGg) +2 baryons. Our preferred value ff , comes from the 3-point
linear fit to the full sample(shown in Fig. 19, yielding
2M2,In(M2 /M2,) M,=138236) MeV. Fits to the subsample, the parameters
_ AA AA T BB of which are given in Eq(7.34), yield values that are con-
Ma,—M3g ) sistent with one another, but lie slightly below that for the

full sample. For example, the 20-point fit gives

As explained in Sec. IV, we have omitted such artifacts fromm ,=136236%) MeV. We have also tried 4-point fits to the
previous expressions, but we include them here so as to hawegenerate states, includin@/z (or m?) corrections in both
a form to fit with. Note that the function chirgd(B) is an- A and p. These increase the estimatesMf, to 141448)
tisymmetric undeA« B, as it must be in order to match the [139543)], the bulk of the increase coming from the change
antisymmetry of the left-hand side. Note also that it divergesn scale due to the curvature M _ .
logarithmically whenm,—0, an example of the sickness of ~ We have calculate ,— M, from the ratios of correla-
the quenched approximation in the chiral limit. tors using the full data sample. Using linear extrapolation

Our results, shown in Fig. 24, are statistically differentfrom the three light mass points, we find 338) MeV. In-
from zero. We show a linear fit of ES&(B)/chiral(A,B)  cluding anmg/2 or mg term in bothM,—My and M, fits,
versusm, +mg, which yields an intercept 0§f*=0.2919)  we get 36544) and 34739), respectively. These values are
and a slope 0f-0.900.7) GeV . Interpolating to the physi- slightly higher than the experimental value 293 MeV. A
cal point, we find ES2 —29(18) MeV. This has the same summary of our baryon mass resultgithout extrapolation

sign as the experimental value to a=0) is shown in Fig. 25 along with the experimental
data.
Mo—=Mjy—3(Mz+—Ms«)=-8 MeV, We have also made fits to the negative parity baryon

states. The signal in the correlators is much poorer, falling

but its magnitude is much larger. It is important to realize,pelow the noise by=12. For this reason we only present the
however, that our values for ES2 range frorl to —10  symmary shown in Fig. 26.

MeV. The large value after extrapolation is due to the diver-
gence of chiralj,B) asm—0. We have attempted analytic
extrapolations, using a linear combination ai{—mg)* and
(ma—mg)(ma+mg)?, but this ansatz does not fit our data. ~ There exist three other high statistics calculations of the
The most important conclusion to be drawn from thisspectrum with Wilson fermions g8=6.0 on lattices of size
analysis is that the decuplet splittings are smaller than th@4®[26,27,7. Their results are given in Table XV along with
experimental values. This discrepancy is only made worse ibur best estimates. The data indicate that there are no signifi-

VIII. INFINITE VOLUME CONTINUUM RESULTS
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FIG. 26. Comparison of the negative parity baryon masses ob- FIG. 27. Linear extrapolation to the continuum limit of the ra-
tained in this calculation with the experimental data indicated by thetios My/M , andM /M, . Our data are shown as octagons, and the
horizontal lines. Shaded bands show the experimental uncertaintyest of the points are from the GF11 Collaborati@h The “012”

The scalea is set byM , and the data for all states are from the sub- sink points are labeled by squares and the sink “4” points by
sample of 110 lattices. crosses. The extrapolated values are shown by fancy crosses and are

cant differences between the*2thd 32 lattices. Thus we do
not apply any finite size corrections to our data.

shifted fromM ,a=0 for clarity. At 3=5.7 (M ,a~0.56, we have
shown the GF11 Collaboration’s data for bott® Hhd 24 lattices
even though they used only the®ldata in the fit and shifted their
continuum result by the difference to account for finite size effects.

Our best estimates g8=6.0 for various mass ratios of

interest are

Our results forM\/M, and M,/M, are larger than the

ﬂ:1_41335), Expt. 1.22, experimental values. It has been stressed by the GF11 Col-
M, laboration, however, that these ratios have a significant de-
M pendence om. In an attempt to check this we combine our
Ma results with those from the GF11 Collaborati@ at 8=5.7,

M =1.80047), Expt. 1.60, @D 5.93, and 6.17. The two calculations have similar statistics,

P
while the physical volume of our lattices is larger. The GF11

My Collaboration have made two separate extrapolations to the
M_N_1'27536)’ Expt. 1.31. continuum limit using different Gaussian smeared sinks. In
their notation, “012” is a combination of results from three

These are obtained by extrapolating individual masses linsinks with smearing radii 0, 1, and 2, while “4” refers to the
early tom and then taking ratios within the jackknife proce- use of a single larger smearing radius of size 4. In the final
dure. All extrapolations are done using only tbe quarks.  analysis they prefer to use the “012” result as it has smaller
To check for extrapolation errors we have also calculated thetatistical errors. We update these two linear (itsing the
ratios for each quark mass and then linearly extrapolatedame three data points used[#] and ours ai3=6.0), and
these tom. This yieldsM/M ,=1.423), M,/M,=1.794),  the results are shown in Fig. 27. After including our point,
andM ,/My=1.253), consistent with the first method. the extrapolated values for the “012” daf@otted line$

TABLE XV. Comparison of hadron masses obtained using Wilson fermion8=a3.0. Results from
32°x 64 lattices are from the present work, while’282 data are from Ref26], 24354 data are from Ref.
[27], and 24x64 data are from Ref7].

K Size Statistics m, m, my my
0.155 24x32 78 0.29®) 0.4284) 0.6476) 0.74514)
0.155 24x54 200 0.2972) 0.4224) 0.6449) 0.72811)
0.155 33x64 170 0.2961) 0.4222) 0.6383) 0.7106)
0.155 24x64 1000 0.2964) 0.4232) 0.6423)

0.1558 24x32 78 0.2343) 0.3975) 0.5748) 0.68625)
0.1558 33x64 170 0.2341) 0.38713) 0.5714) 0.6648)
0.1563 24x32 78 0.1843) 0.37810) 0.52214) 0.63645)
0.1563 24x54 200 0.1883) 0.35315) 0.53430) 0.67053)

0.1563 33x64 170 0.188L) 0.3615) 0.5257) 0.63613)




53 HADRON SPECTRUM WITH WILSON FERMIONS 6507

change from MN/Mp:1.2€{7) to 1.306) and from trapolated values for thé1,, and My is, however, small,
M,/M,=1.61(8) to 1.627). The x%/Npe for the new fits are  roughly comparable to the statistical errors. Higher order
2.1 and 0.85, respectively. The analogous numbers for theerms are also small for the decuplet baryons.

sink “4” data (solid line are 1.389)—1.387) and It is not surprising that higher order terms are needed
1.68910)—1.7310) with x*/Np for the new fits equal to 1.2 when considering quarks with masses ranging up to and be-
and 0.86, respectively. yond that of the physical strange quark. In previous calcula-

As is evident from Fig. 27, the main difference betweentions of baryons composed of degenerate quarks, these terms
the two fits comes from the difference in the “012” and “4” were small and often neglected. What is striking is how this
data atB=>5.7. On the basis of*/Npg, we find that combin- is not true for many of the mass differences involving bary-
ing our results with the sink “4” GF11 data is preferred, in ons composed of nondegenerate quarks.
which case there is very littla dependence. If we neglect One caveat concerning the results for mass splittings is
the point at strongest coupling=5.7, then the remaining the fact that there are substantial systematic errors in the
three points again show no clear dependence for both extraction ofmg. Different methods lead to results differing
M\/M, andM,/M , and give very similar values for the fit by up to~20%. This is presumably an error due to quench-
parameters. ing, although some part of it could be due to discretization.

The ambiguity in the extrapolation makes it clear that dateDur favored choice fom, is that determined by matching to
at more values of are needed in order to reliably extrapo- the ratioM ,/M ,. This gives the largest estimate fior; .
late to the continuum limit. Our preferred estimates are How does the spectrum g@=6 compare with experi-
M\/M,=1.387) andM /M ,=1.7310) from fits shown by = ment? We find that the rativ/m,=1.41(4) is too high,

a solid line in Fig. 27. This suggests that the quenched apwhile M ,/My=1.274) is consistent with experiments. Us-

proximation is good to only-~10-15 %. ing the larger estimate afng, the octet baryons splittings
agree with experiment, while those in the decuplet are too
IX. CONCLUSIONS small by 30%.

. ) Of course it is quite possible that there is substantial
We have presented a detailed analysis of the hadron spegaiation in some of these ratios as we extrapolate to the
trum in quenched QCD g8=6.0 with Wilson fermions, fo-  continuum limit. Combining our data with that of the GF11
cusing on states composed of light quarks. Our small statiscojlaboration, however, we conclude that there remains con-
tical errors and our use of several moderately light quarksjgeraple uncertainty in this extrapolation. Our preferred ex-
have allowed us to improve the extrapolations to the Chirah-ap0|ation givesM /M ,=1.397) and M /M =1.7310),
limit. This is particularly true of the mass splittings among pt the systematic errors exceed those from statistics. Thus,
the octet baryons. Here we find substantial contributiong, oyr view, it remains an open question how well the
from terms of higher order than linear in the quark massSquenched approximation represents full QCD when extrapo-

Motivated by quenched chiral perturbation theory, we hav@ated to the continuum limit. The errors could well be as
found good variables with which to extrapolate to the physiarge as~10-15 %.

cal quark masses. Our results show that the splittings are
larger than previously thought and are comparable with their

expenmen_tal values. These results emphasize the importance ACKNOWLEDGMENTS
of calculating masses of baryons composed of several com-
binations of nondegenerate quarks. These calculations have been done on the CM5 computer

The extrapolations required for the p, N, andA are less  at LANL as part of the U.S. DOE HPCC Grand Challenge
sensitive to higher order terms. There is a clear curvature iprogram and at NCSA under a Metacenter allocation. We
the p and nucleon channels, and it can be accommodatethank Jeff Mandula, Larry Smarr, Andy White, and the entire
either by including a term oO(mg”Z) (which would result  staff at the two centers for their tremendous support through-
from chiral loops or a termO(mﬁ). The effect on the ex- out this project.
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