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Noncompact lattice QED with two charges: Phase diagram and renormalization group flow
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The phase diagram of noncompact lattice QED in four dimensions with staggered fermions of charges 1 and
—1/2 is investigated. The renormalized charges are determined and found to be in agreement with perturbation
theory. This is an indication that there is no continuum limit with nonvanishing renormalized gauge coupling,
and that the theory has a validity bound for every finite value of the renormalized coupling. The renormaliza-
tion group flow of the charges is investigated and an estimate for the validity bound as a function of the cutoff
is obtained. Generalizing this estimate to all fermions in the standard model, it is found that a cutoff at the
Planck scale implies thatg has to be less than 1/80. Because of spontaneous chiral symmetry breaking,
strongly bound fermion-antifermion composite states are generated. Their spectrum is discs8588-
2821(96)05609-3

PACS numbgs): 11.15.Ha, 11.10.Hi, 12.20.Ds

[. INTRODUCTION with one charge, neutral pointlike Goldstone bosons and sca-
lar particles are generated due to the chiral symmetry-
Interest in nonperturbative investigations of QED has ddreaking phase transition. One could expect that in the two-
long history. From perturbation theory there are indicationscharge model there is a larger number of neutral pointlike
(Landau pole[1]) that the cutoff can only be removed from bound states which could, in principle, carry color charge
the theory if the renormalized charge vanishes. Also, it is &nd have an effect on thg function of QCD. Moreover,
yet-unsolved fundamental questif#] why the fine structure €lectrically charged bound states may appear which could
constant has the value=1/137. At strong coupling, QED ¢hange the behavior of the QEP function and push the
exhibits a chiral symmetry-breaking phase transition of secYlidity bound towards much lower energies. It is of interest
ond order[3-6], where tightly bound fermion-antifermion to see whether charge renormalization is in agreement with
pairs are generated. There one could expect a deviation fro erturbation theory and which states give relevant contribu-
the charge screening behavior known from perturbative'ons'

" To investigate nonperturbative phenomena in the coupling
QED. The phase transition makes strongly coupled)U between different species of fermions, a model with two spe-

gauge theories interesting also for appliqation;in technicologjag of staggered fermions with a ratio of their charges of
theories because of large anomalous dimensions of the op-1/o (“two-charge model’) was studied, comparable to
erator s [7]. For several years, the possibility of a non- and d quarks whose strong and weak interactions are
trivial continuum limit, or a nontrivial ultraviolet-stable fixed switched off.

point of the Callan-Symanzil@ function, has been investi- In Sec. Il of this paper a description of the model and
gated in the noncompact formulation of QED on the latticedetails of the simulation are given. The phase diagram, ob-
(see, for exampld,9—-16)). tained from the chiral condensates, and the scaling behaviour

Studying noncompact lattice QED with dynamical fermi- are discussed. The charged sector of the model is presented
ons, some groups find nontrivial scaling behayit2,17,18, in Sec. lll. The renormalized charges are determined nonper-
while others find their critical exponents to indicate triviality turbatively using current-photon correlation functions and
[13,19. The QEDg function has been studied nonperturba-are compared with renormalized lattice perturbation theory.
tively on the lattice{ 15,20, and by using Schwinger-Dyson There is a good agreement which leads to the conclusion that
equationg21]. It turns out to be in agreement with pertur- the model is trivial. Using perturbation theory, the renormal-
bation theory, and it shows no indication of a nontrivial fixed iZation group flow of the charges is determined, which leads
point. If QED is trivial in the limit of infinite cutoff, there is to an estimate of the vahqny _bound resulting from tr|V|aI_|ty.

a maximal cutoff corresponding to every finite value of theSPEctrum and renormalization group flows of fermion-

renormalized charge. One is interested in the size of thigntlfermlon composite states are discussed in Sec. IV. The

validity bound. A rough estimate of it has been made in aconclusmns are given in Sec. V.

lattice study of QED with one chard@s]. Il. PHASE DIAGRAM AND SCALING BEHAVIOR
In nature one finds several differently charged types of . . ' .
fermions. In the presence of several charges, new nonpertur- A. Action and simulation details

bative phenomena may arise which could affect the phase The “two-charge model” contains a noncompact gauge
structure. An important question is whether chiral symmetryield with the action

breaking sets in at the same value of the bare coupling for all

fermions or whether some fermion species can be massless B 2

and others in the chirally broken phase at the same time. The SGZEE ,;V (%), 2)
phase diagram of such a system has to be investigated with

respect to a physically interesting continuum limit. In QED Fu(X)=4,A,(X)—A,A,(X), 2
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TABLE |. Chiral condensates on the’8 12 lattice, region3~ B¢ .

B m, my (XuXu) (Xaxa)

0.00 0.09 0.09 0.6312(11) 0.6323(11)
0.04 0.04 0.04 0.6346(17) 0.4036(13)
0.05 0.02 0.02 0.6302(23) 0.1881(15)
0.05 0.04 0.04 0.6295(17) 0.2515(10)
0.05 0.09 0.09 0.6258(11) 0.3339(8)
0.06 0.02 0.04 0.6180(24) 0.1392(6)
0.06 0.04 0.04 0.6243(17) 0.1397(5)
0.075 0.02 0.02 0.6067(23) 0.03988(10)
0.075 0.04 0.04 0.6073(16) 0.07898(22)
0.075 0.09 0.09 0.6061(11) 0.1662(3)
0.10 0.02 0.02 0.5569(22) 0.02602(4)
0.10 0.04 0.04 0.5640(16) 0.05380(9)
0.10 0.09 0.09 0.5664(10) 0.1148(1)
0.12 0.02 0.04 0.4970(19) 0.04357(5)

and two sets each with four flavors of staggered fermions B. Determination of the critical points

which couple to the gauge fields with couplings 1 and ~1/2, |, honcompact QED with one set of staggered fermions,
corresponding tar andd quarks with only electromagnetic (he chiral condensate is consistent with an equation of
Interactions: state, similar to one arising from mean field theory but with
logarithmic corrections, motivated from a linear model
szz {XU(X)Mu,xyXu(y)+Xd(X)Md,xde(y)}- 3 [15,23. ) ] )
Xy The parameters in the equation of state are expanded in a
power series in the reduced coupling=B/B;), where 3.
denotes the critical coupling. The logarithmic corrections are
only expected to become important very close to the critical
point because of renormalization effects. It is expected that
also here they become relevant if one goes closer to the
critical point. From the results in Tables | and Il, and as
1 ‘ . illustrated for 8=0.18 in Fig. 1, it appears that the chiral
Dy xy(X) = 52 7, (){eWAN5, L —e WA s 1, condensates are fairly independent of the other fermion’s
u bare mass.
(4) Thus to determine the critical points in the two-charge
model, an ansatz with two uncoupled equations of state
(similar to those arising from mean field theory but with
logarithmic correctionsfor both fermions is used:

The couplingg is related to the bare electric charggsby
B=1/(cye)?, k=1,2. The lattice spacing is set to 1. The
fermion matrices are given by

M KX,y = Dk,xy+ mk5xy )

k=u, d; c,=1, c4=-1/2.

In the limit my— o, this model goes over into honcompact
QED with one charg¢9,14]. For the gauge fields, periodic o o3

boundary conditions in all four directions were chosen, for M= 27, k_l +40, k_l . k=u,d. (6)
the fermions, periodic spatial and antiperiodic temporal InPd| oy | In|o |

boundary conditions. The simulations were performed on lat- L L .
tices of size 8x 12. From simulations with one charge, one For_the determination of th.e renormalization group row; itis

expects that for the chosen values@fm,, andm, finite desirable to know the chiral condensates as a function of
size effects are smal(15]. For each simulated point ('B’m.“’md) in the vyhole paramgter space. It turns ou.t to be

(B,m,.mg) ~1000 configurations in equilibrium were gen- possible to approximate the chiral condensates fog allith

erated using a hybrid Monte Carlo algorithm. Every fifth Wasequalt.ions' of staté6), using the following expansion of the
stored for spectrum and charge calculations. couplings.
Staggered fermions are a useful choice for studying chiral 16 =+D(1— g/ + 31—g/ 3
symmetry properties at finite lattice spacing. The acti®n Tul Ou= (1= Bl Bel) + 77 (1= Bl Beu)
1/6,= 6+ 6,7 (1~ Bl Bew) + 6 (1= Bl Bo)®, (D)

of the two-charge model has for th¢h species of fermions
a chiral U(1),xU(1), symmetry, ifm=0. The order pa-
rameters are the chiral condensates and

o =X = —(TrM 1), (5

which are computed using a stochastic estimg2at. Simu-
lation results for the chiral condensates are shown in Tables
| and IL. Bex» 7P, 60013 andp, are fit parameters. Including

74/ 04= 74" (1= BI Bey),

1604= 0+ 605" (1— Bl Bea).- 8)
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TABLE II. Chiral condensates on the’8 12 lattice, region3~ B,

B my my (XuXu) (XaXa)
0.14 0.02 0.02 0.4222(19) 0.01951(3)
0.15 0.02 0.02 0.3741(18) 0.01880(2)
0.15 0.04 0.04 0.4031(12) 0.03810(5)
0.15 0.09 0.09 0.4469(09) 0.08451(9)
0.16 0.02 0.02 0.3236(17) 0.01813(2)
0.16 0.02 0.04 0.3316(16) 0.03595(3)
0.16 0.04 0.02 0.3656(12) 0.01815(2)
0.16 0.04 0.04 0.3629(12) 0.03611(3)
0.16 0.09 0.09 0.4168(8) 0.08146(8)
0.17 0.02 0.02 0.2742(15) 0.01772(2)
0.17 0.04 0.04 0.3238(12) 0.03539(4)
0.17 0.09 0.09 0.3908(8) 0.07871(7)
0.18 0.02 0.02 0.2167(14) 0.01741(2)
0.18 0.02 0.04 0.2227(15) 0.03435(3)
0.18 0.02 0.09 0.2255(14) 0.07602(7)
0.18 0.04 0.02 0.2850(11) 0.01725(2)
0.18 0.04 0.04 0.2854(11) 0.03524(5)
0.18 0.04 0.09 0.2844(12) 0.07702(8)
0.18 0.09 0.02 0.3611(8) 0.01737(2)
0.18 0.09 0.04 0.3618(8) 0.03473(3)
0.18 0.09 0.09 0.3621(8) 0.07716(7)
0.19 0.02 0.02 0.1870(15) 0.01669(1)
0.19 0.04 0.04 0.2444(10) 0.03370(4)
0.19 0.09 0.09 0.3372(7) 0.07502(6)
0.20 0.02 0.02 0.1416(10) 0.01649(1)
0.20 0.02 0.16 0.1462(15) 0.1263(1)
0.20 0.04 0.04 0.2167(9) 0.03283(3)
0.20 0.09 0.09 0.3108(8) 0.07420(6)
0.20 0.16 0.02 0.3785(6) 0.01677(1)
0.21 0.02 0.02 0.1143(7) 0.01624(1)
0.21 0.02 0.16 0.1072(7) 0.1254(1)
0.21 0.04 0.04 0.1838(8) 0.03331(6)
0.21 0.09 0.09 0.2882(7) 0.07280(6)
0.21 0.16 0.02 0.3605(5) 0.01660(1)
0.22 0.04 0.04 0.1601(7) 0.03222(3)
0.22 0.09 0.09 0.2693(6) 0.07162(6)
all results foro, simulated aim,<0.09, one obtaing, = values ofm, at a fixed value ofny or vice versa. One further

0.173. Values of the fit parameters and the fit errors are listedotices that in the regions where tbefermion undergoes a
in Table Ill. For a fit of oy, all results with3=<0.1 and transition, theu fermion is that far in the broken region that
my=<0.09 have been used, and the critical coupling iso is practically independent ah, (as well as ofmy).
B:q=0.047. From varying the range of the chiral conden-

sates included in the fit, one estimates the erroBgpand C. Renormalized fermion masses

Bea to be approximately 0.001, which is larger than the fit  The next step in the investigation of the critical behavior
error. Without including logarithmic correctiong., comes s the determination of the renormalized fermion masses or
out to be 0.183(1) ang.q to be 0.049(1)[25]. The cubic  jnyerse fermionic correlation lengths. Because the fermions
term in Eq.(7) is included to obtain an approximate descrip- gre charged, their correlation functions are gauge dependent.
tion of o, also in the region wher@~B.4. It has been  For the calculation of their expectation value, a technique as
checked that with a fit in the range 02<0.22, including  described in Refd26,15 is used. First, the Landau gauge is

only linear terms in the reduced coupling, one obtains theijxed by imposing the gauge-fixing condition
same result foB., within errors. As seen in Fig. 2, Eq&®)

give a good description for the chiral condensates in the E A ~0 9
range of couplingg=0.05. Two or three of the same sym- i uw(X)=0, ©
bols lying on top of each other at the values 0.06, 0.16, _

0.18, 0.20, and 0.21 correspond to simulations at variousthereA, denotes the backward derivative on the lattice. An
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additional gaugelike degree of freedom is the invariance oéxpectation value QKM taken over the given subset, for the
the action under the local transformation

A (X)—=AL(X)+A  a(x),

X(x)— ey (x),

d fermion with the expectation value of A,/2. The fits
were performed with the routineiINuIT. The ansatz gives a
good description of the data. An example for this is shown in
Fig. 4. Results are given in Tables IV and V. Another indi-
cation that the fermion correlation functions behave similar
to free propagators with a renormalized masggyr, is ob-

X)€%y (x), (10 tained by comparing the simulation data for the chiral con-
with densates with free propagator expressions:
w0=S T ez (11) TSy MRy 1)
w L, e <Xk)(">_vpﬂ S ,Sirfp,+mig’ —4a
The lattice average of the gauge field
with the lattice momenta
— 1
A”—V; AL (x), v—1;[ L, (12) .
pi=-—n;, n=1,...L;, i=1,...,3
has a nonvanishing expectation value on drelatively L
small ensembles. By shifting it by multiples of AL ,,
such that it is restricted to the intervat-@#/L ,,27/L ], o 05 10 15 20
this additional degree of freedom was fixed. In the two- o s B e B e B B
charge model, this interval is chosen twice as large asina 49 | o9
model with fermions of charge 1. This is necessary to pre- : 3
serve also the boundary conditions of dhéermion, which 08 | 308
couples with charge-1/2. A, is approximately constant @ 07 |F 407
over ~10-20 configurations. Following the procedure de- § 0.6 & Jos
scribed in[26,15, the set of data samples at each parameter & c .
value was divided into subsets of 10-20. The correlation % 05 | 305
functions were averaged over each subset and fitted with the ; 0.4 [ =
free form of a staggered fermion propagator in a constant & E ]
background field,, . For theu fermion, B, agrees with the g 03 3 308
0.2 | —4 0.2
TABLE lll. Fit parameters for the equation of state with loga-
rithmic corrections. 0.1 & ER
0.0 b uil T 3 0.0
Beu 0.1729(2) Bed 0.04675(7) 0 05 .10 15 20
7D —1.78(1) R —1.469(9) ’
Tl((iz)) 0.48(3) © FIG. 2. Chiral condensatdspen symbolsaruﬂ, filled symbols:
0y 2.61(2) by 2.41(2) o4) as a function of with a mean-field fit with logarithmic cor-
o) —-1.3(1) o5 —1.42(2) rections. Triangles corresponditg, = 0.02, squares tm, = 0.04,
6% —~5.7(6) asterisks tan, = 0.09, and circles ton, = 0.16,k=u,d. The solid
Py 0.588(6) Py 0.074(3) lines show the result of the fits and the dashed lines solutions of the

equations of state witin, set to 0.
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FIG. 3. u fermion propagators g8=0.16 andm,=my=0.02. Crosses correspond to positive values of the correlation function, squares
to negative values. Solid lines denote the fit.

The scaling behavior of the is thus in this region close to
the perturbative behavior, which is very different from the
behavior of theu fermion in this region. For very largg,
Figures 5 and 6 show that for small masses the resultB0th renormalized masses follow Ed5). In the neighbor-
agree quite well with Eqg13). The fermion wave function hood of 8=B¢q, Egs.(6) and(7) indicate that
renormalization constant is of order 1. Singggx _ _
for small myg, Egs.(6) and(7) imply that ne:rziéfr)t(ﬁé MarIN llg(mdF%)ocm‘l’B' (16
renormalizedu mass scales according to

o
p4=L—4(2n4—1), n4:1, e ,L4.

In this region the difference between the bare and renormal-

muRIn‘l’3(mJR1)ocmﬁ’3, (14) ized masses of thé becomes small.
and the renormalized mass according to D. Phase diagram
o1 Figure 7 shows a sketch of the phase diagram. The agree-
MgrIn~Pd(Myg)ocmg. (19 ment of the results with Eq6) suggests that there are two
0 5 10 0 5 10
10! ) 10 P S RS S S |
Re Gd(t)s- Im cd(t)s-

24 24

10% - 100

] 5 10 t [¢] 5 10 t

FIG. 4. d fermion propagators g8=0.16 andm,=my=0.02. The meaning of the symbols is explained in the caption of the previous
figure.
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TABLE IV. Renormalized fermion masses and coupling, regibnB.q-

B my My Mur MR Br

0.05 0.02 0.02 5.000(675) 0.326(7) 0.073(1)
0.05 0.04 0.04 4.935(143) 0.446(4) 0.069(1)
0.05 0.09 0.09 5.646(604) 0.644(7) 0.063(1)
0.06 0.02 0.04 2.872(393) 0.258(4) 0.087(1)
0.06 0.04 0.04 2.573(382) 0.252(3) 0.088(1)
0.075 0.02 0.02 2.018(143) 0.085(1) 0.123(1)
0.075 0.04 0.04 1.993(210) 0.149(2) 0.116(1)
0.075 0.09 0.09 2.912(126) 0.295(2) 0.104(1)
0.10 0.02 0.02 1.518(074) 0.050(1) 0.163(2)
0.10 0.04 0.04 1.864(120) 0.090(1) 0.154(1)
0.10 0.09 0.09 1.662(92) 0.209(2) 0.139(1)
0.12 0.02 0.04 1.124(37) 0.072(1)

TABLE V. Renormalized fermion masses and coupling, regiong,,, .

B my My mygr Mgr Br

0.14 0.02 0.02 0.917(28) 0.034(1) 0.238(3)
0.15 0.02 0.02 0.753(13) 0.032(1) 0.257(2)
0.15 0.04 0.04 0.858(9) 0.065(1) 0.239(2)
0.15 0.09 0.09 1.023(13) 0.148(1) 0.215(2)
0.16 0.02 0.02 0.609(7) 0.031(1) 0.276(3)
0.16 0.02 0.04 0.617(8) 0.063(1) 0.264(3)
0.16 0.04 0.02 0.727(9) 0.033(1) 0.272(2)
0.16 0.04 0.04 0.714(10) 0.064(1) 0.258(2)
0.16 0.09 0.09 0.918(9) 0.143(1) 0.232(2)
0.17 0.02 0.02 0.485(7) 0.030(1) 0.304(3)
0.17 0.04 0.04 0.607(8) 0.061(1) 0.274(3)
0.17 0.09 0.09 0.815(5) 0.139(1) 0.250(2)
0.18 0.02 0.02 0.366(7) 0.029(1) 0.329(3)
0.18 0.02 0.04 0.384(5) 0.058(1) 0.321(3)
0.18 0.02 0.09 0.379(4) 0.130(1) 0.305(3)
0.18 0.04 0.02 0.506(5) 0.029(1) 0.315(3)
0.18 0.04 0.04 0.512(6) 0.058(1) 0.303(3)
0.18 0.04 0.09 0.512(5) 0.130(1) 0.288(3)
0.18 0.09 0.02 0.720(4) 0.030(1) 0.291(2)
0.18 0.09 0.04 0.715(4) 0.060(1) 0.278(2)
0.18 0.09 0.09 0.720(6) 0.133(1) 0.268(2)
0.19 0.02 0.02 0.319(6) 0.029(1) 0.357(3)
0.19 0.04 0.04 0.425(4) 0.057(1) 0.321(3)
0.19 0.09 0.09 0.658(4) 0.134(1) 0.279(2)
0.20 0.02 0.02 0.229(7) 0.028(1) 0.388(3)
0.20 0.02 0.16 0.245(4) 0.219(1) 0.351(3)
0.20 0.04 0.04 0.372(5) 0.056(1) 0.342(3)
0.20 0.09 0.09 0.596(6) 0.128(1) 0.299(2)
0.20 0.16 0.02 0.807(6) 0.030(1) 0.303(2)
0.21 0.02 0.02 0.182(4) 0.027(1) 0.415(2)
0.21 0.02 0.16 0.171(2) 0.213(1) 0.351(3)
0.21 0.04 0.04 0.311(3) 0.055(1) 0.367(3)
0.21 0.09 0.09 0.528(5) 0.125(1) 0.315(2)
0.21 0.16 0.02 0.735(7) 0.029(1) 0.318(2)
0.22 0.04 0.04 0.268(4) 0.054(1) 0.386(3)
0.22 0.09 0.09 0.491(3) 0.124(1) 0.328(2)

6421
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0 2 4 6 8 10 12 FIG. 7. Sketch of the phase diagram.

FIG. 5. Chiral condensatéy,x,) for 8=0.14 plotted against Bc/4 (~0.046, using the result dfi5]). In the two-charge

the renormalized mass,g. The line denotes Ed13). model, a value very close to this is obtaingghy=0.047.
Below B.,, no continuum limit with two fermion species is

possible. For the investigated parameter valueg<a0.14,
the renormalizedl masses are of order 1 in lattice units,
\fhich means the: fermion is, in this parameter region, es-

distinct regions of chiral symmetry breaking for both ferm-
ion species. This does not correspond to the expectations in

colggnlng thecl)r}[/. éf fh'ral sfymmetr¥ breaking '%noncor?psatsentially not present in the spectrum. In the region
QED was related to confinement, one would expect bottp~ 5 * hoth fermion masses can go to zero, so this region

species of fermions to develop chiral condensates in thiy ihe most interesting candidate for a continuum limit of the
same time. The end points of the phase boundary otithe ,ogel.

which separates the symmetric phase of theon the

m,=0 surface from its broken phase, are givengy, and Ill. THE RENORMALIZED COUPLING
Bc, the critical point of QED with one set af fermions[15]
which is the limit of the two-charge modelifiy;— . In the
presence of more charges, the critical point is shifted towards The Ward identities ensure that the charge renormaliza-
stronger coupling, s@., is slightly smaller tharg,. In the  tion is entirely determined by the wave function renormal-

limit m,—0, which corresponds to QED with one set of ization of the photon:

A. Charge determination on the lattice

- . _ 2 -
charges with couplingg=4/e“, one expects this to occur at eﬁ,dR: Zseﬁ,d- (17)
Z; is given by the zero-momentum limit of the gauge-
10 invariant part of the photon propagator:
o 0 2 4 6 8 10 12 ~ ,8
o PRI EFR RURTIN EURRTI SRS RS o Ry~ ~
%03 FPF D=y 2 KAALURAL-K) [0, (18
45 3 E 45 kY 4w k|k?=const,
3 o kMZO
/'\D 40 —: ~ 40
> 3 r Z3;=I1limD(k). (19
|>_<O 35 4 E 35 k—0
\Y% _ = F
30 = 30 The sum in Eq(18) runs over all directiong. and for each
2 . . w over allN, choices ofk with fixed k? andk,= 0. Because
3 £ of the lattice, the momenta enter the photon propagator as
20 E 20 ~ Al A A
] : k,=e*u—1 and k?=k,k* . 20
15 3 T ” g mom 0
0 ﬁ £ 0 The right-hand sidéRHS) of (18) turns out to be strongly
3 C fluctuating and inappropriate for an extrapolationkte>0.
5 -5 Thus for the calculation oD(k), a method analogous to
o E . Refs.[14,15,27 is used. The photon propagatolk) is re-
. ) A A expressed using the Ward identitjgz8] in terms of a corr-
MR 10 - elator between the gauge field and the fermion current:
1 — N
FIG. 6. Chiral condensatgyqxg) plotted againsiyg. The line D(k)=1- mz (Ju(K)AL(—K)) . (21
k k

denotes Eq(13). =0
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where in the two-charge model HE}}L(O,mR,V)#O for a finiteV. This would correspond to a
finite photon mass, and the term is subtracted. Here, a fixed

(0= 2+ Y (VIM 2 w has been chosen with, = 0. Finally, one obtains, for the
()= 5a (X)E Day)Muyaxu(2)+ xdy)Mayaxa(2)} photon propagator in the two-charge model,
(22)

The correlator in Eq(21) has less fluctuations and could be

used for an extrapolation @ (k) to k— 0. The fermion cur- = Br+ (0 m,g,Myr,%°) —II(k,myg,Myr,V).

rent was computed using a stochastic estimator with 30—75 D(k) (26)
inversions of the fermion matrices.
B. Comparison with perturbation theory Extrapolating this tov —, k—0,
Taking contributions of both fermions into account, in
one-loop perturbation theory the vacuum polarization tensor
has the form Br=B—11(0myg,Myr,*) (27)

LBIL, (K. Mur,Mar, V) =TT (K, Myr, V)
. gives the perturbative relation between the bare and the
+e3Il!; J(k,mgr,V), (23)  renormalized coupling. Combining the last two expressions,

1 one gets the fit formula for the Monte Carlo results for
whereIl{})(k,mg,V) is the vacuum polarization tensor for a p):

single set of fermions with the renormalized mass on a
lattice of volumeV. Projection onto the gauge-invariant part

yields
D(k) :BR+H(O!muR1de!w)_H(kvmuledR!V)-
D(k)=1+elI1M(k,myg,V) + eIV (k,mgg,V),

(24) (28)
where ITM(k,mg,V) is the one-loop vacuum polarization _ o _
function for one set of staggered fermions: The renormalized couplin@g is the only free parameter in

the fit.

For the calculation of[(0,m,g,Myr,*), the effect of the
zero modesA,, of the gauge field has to be taken into ac-
count. Their contribution is important where fermions are

(1)(0 Mg, V) 1|k —o- (250 light, as are thel fermions at the simulated parameter values
. with B8~ B.,. To calculate the perturbative vacuum polariza-
The second term on the right-hand side occurs becaud®n functions, the background fields are integrated over:

Y (k,mg,V)= kz[H“)(k mg,V)

| atAdetD,+ my)derDy+ M) S p(p kA Mg Mge V)
p
H(k,myr,Myr, V)= — : (29)
jd4Ade(Du+mu)de(Dd+md)

Also, in the presence of constant background fields the fermion determinant of free fermions can be written as a product of
contributions with definite momentum:

1/2

deﬂ\/li:de‘(Dieri):l;[ , i=u,d, (30)

mZ+ Y, sirf(k; ,+ ciA_,L)
o

with ¢, = 1 andcy=—1/2. Choosingu=3 in Eq.(25), the functionp looks as

_ )
2. [coski )sin(p,/2)] 1

1 2l
= —2—— = +sir?[ (k; )/2[ -— } cog(ki ), (31
’ i;wd D(ki—p,mir)D(ki+p,mig) [(.=pa)i2] D(ki—p,mg)  D(ki+p,mipg) (sl
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FIG. 8. Photon propagatgs = 0.17,m, = my = 0.02. The FIG. 9. Renormalized couplings in the region of snmajjg and

circles describe the data and the asterisks the fit with the per’[urbEde_ The line denotes the small mass limit of One_|oop perturbation
tive formula. The extrapolation tt—0 is denoted by an asterisk. theory.

The variableK2 on the x axis is defined &62=576/(2m)?k? to be

an integer. theory[30]. There does not seem to be any effect on charge
renormalization from possible charged bound states.
where The agreement with perturbation theory indicates that this
model is trivial in the limit of infinite cutoff, and that all
2 : renormalized charges vanish if only one fermion mass goes
Dk, mg)=mg-+ % sz(kf‘/z) (32 to zero. The renormalized coupling vanishes in those parts of
the phase diagrartsee Fig. 7 whereo, or o4 equal zero.
and One would now like to find a relation between a finite
renormalized coupling and a corresponding cutoff. The ratio
’gu:ku+A_ and ’Izd=kd—A_/2. (33  of the renormalized masses has to be kept constant while the
cutoff is varied. Reexpressing(34) in terms of

The integral over the background fields was evaluated usinf=Mur/Myr @nd exponentiating, one obtains
a Monte Carlo method, representing the background fields
thr(_)ugh Gaussian_ random _numb_ers and calculating the muR=1.365R1/5exr( _
weight of the fermion determinant in the presence of these
background fields. Figure 8 shows an example for a fit of ] ] ) ) ]
D(k) with one-loop perturbation theory in the presence offrom this eqyatlon one will be ablg to estimate the m§1X|maI
background fields. The oscillations @f(k) are caused by Cutoff belonging to each renormalized charge. For this, one
the dependence df on the direction because of the asym- "€€ds to know whictB coordinate the point with maximal
metry of the lattice. The renormalized couplings are listed ircUtoff on a renormalization group flow line with fixefl
Tables IV and V. andR has. This flow line will be the intersection between the
The renormalized coupling can be calculated directly inSurface with fixed? and the one with fixegg in the three-
perturbation theory using E¢27). One would like to com- dimensional parameter space.
pare the data with the perturbative result. Since this is of
interest especially in regions of a high cutoff, i.e. for small C. Renormalization group flow of the coupling
masses, the limitn,z,Myr<<1 of the vacuum polarization It is not feasible to cover all the regions of the phase
function (27) is taken, which gives diagram that are of interest with simulations. For a determi-
1 nation of the renormalization group flows of the charge, one
4 therefore has to make use of extrapolation methods. If one is
Br=B=~T1(0Myr.Mar,) = = gz IN(MygMar) +5¢/4. ™04 a functional dependepnce of the renormalized
(39 mass on the bare parameters, it is possible to calculate the
renormalized coupling using perturbation theory from Eq.
From QED with one species of fermions with charge 1, it is(27). The chiral condensates can be approximated as func-
known thatc=0.0210[15]. Figure 9 shows that in the small tions of 8, m,, andmy through the equations of state. Fig-
mass limit the renormalized charges indeed follow the logaures 5 and 6 suggest that the renormalized masses can be
rithmic behavior as in the right-hand side of E4). For  expressed as functions of the chiral condensate, where for
larger massed] is no more a function on'nﬁRde alone, but  small masses there is agreement with the free propagator
the simulation results are still in agreement with perturbatiorrelation Eq.(13), and the leading term is linear. For the

2

67
T(BR_,B) : (35
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TABLE VI. Fit parameters for the renormalized fermion
masses.
P 1.54(1) Q, 1.726(3)
P, 3.5(1) Q>

renormalization group flows, one is primarily interested in
regions where both fermion masses are smaller than 1, so

m, is fitted for 8=0.14 with the ansatz

Myr= P1<X_uXu> + P2<X_u)(u>3-

Here, x? per degree of freedom is 1.5. The following fit

gives a good description for the mass for3=0.14:

Mar=Q1{XdaXd):
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FIG. 11. Surfaces witlBg=0.27 (black andR=5 (grey). The
little spheres denot@., and B.q-

with x? per degree of freedom equal to 2.2. A cubic term is
not needed here. The fit paramet&sand Q are given in
Table VI. As illustrated in Fig. 10, one thus obtains a good
description for the renormalized masses.

To obtain the renormalized masses as a function of the
bare parameters, first the equations of state were solved ex-
plicitly for the chiral condensates using Mer's method
[31] for calculating zeros of nonlinear functions. The results
were thus inserted into the fit equatio(®6) and (37), re-
spectively.

Using this method, a grid of values for the mass r&im
the phase diagram is generated and, using renormalized per-
turbation theory, also foBg . Using a graphics package, sur-
faces of constanBg andR can be drawn. Figure 11 shows a
surfaceSg_ (black with a constanigr and its intersection

with a surfaceSg (grey) of constantR of O(1).

For largem, and my,both renormalized fermion masses
are large. Thereforggg~ B which implies that surfaces with
fixed B are nearly perpendicular to tieaxis. The behavior
at smallm,, my can be read off from Eq(34). If m, is
lowered, the surfaces bend over until they end on the
m,=0 plane below the line where the chiral symmetry of the
u fermion is broken. The large8y is, the closer the end line
of the surface on then,=0 plane comes to the critical line
of the u, except for very smaling. In a whole range of
B<B., and small bare massesyyr is much smaller than
myr and for constanimy nearly constant. So, surfaces with
constantBr bend at smallny towards smal|3, as the black
surface in Fig. 11 indicates. They intersect thg=0 plane
in the broken phase of thekfermion, and thus cut thg axis
at B<B.q- The important point to note is thS‘gR intersects

FIG. 10. Renormalized masses as a function of the chiral conthe surfacesn,=0 or my=0 only in regions where both
densates. The squares denote simulation results and lines the f@normalized fermion masses are nonzero.
according to Eqs(36) and(37), respectively. Surfaces of constam end for 3= ., on theg axis. The
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TABLE VII. Sign factors for the meson operators. The particle is provided with a hat to avoid
confusion with the chiral condensates introduced earlier.

i si(X,t) Quantum numbers Continuum states
1 (—1)t oF* o
0;+ -
2 (_1)x1+x2+x3+t 0;* _
0;°" T
scaling behavior of the masses in E¢s4) and (15) implies 372
that at3=.,, these surfaces obey the relatiog~cmj, amgr=3.68 ex% - TIBR]
wherec is a constant. If8 is lowered past3.,, myg in-
creases quickly. As indicated in Fig. 11, the end line of the X(R,R)YER,RR)YRyRRy) Y%, (40)
surfaces with constam on them,=0 plane therefore has to
turn away from the8 axis and stay at a finite value af;. ~ WhereR,=megr/m g, etc. The relation between the lattice

For an estimate of the validity bound, the intersection line ofspacinga and the cutoffA is approximately given by the
both surfaces is of interest, as it represents a flow line whereelation
bothR andBg are constant while the cutoff scale is changed.

It ends on than,=0 plane aiB<B;,. As one moves down A=1la. (41)
along the intersection line, the cutoff becomes larger, but . _ . .
. Using the physical fermion masses and the physical value of
never reaches infinity. ;
the fine structure constant 1/137, one gets the cutoff
D. Validity bound A=<10* GeV. (42)

In noncompact QED with four flavors of staggered fermi-
ons of charge 1, the@ function goes, in the limit of small This is much larger than the Planck scale f18eV). How-
renormalized mass, over into the prediction of one-loop congVer, if there are more charged particles, e.g., because of
tinuum perturbation theory for four fermion flavors of charge SUpersymmetry, the exponential dependence on the number
1[15]. In the two-charge model with four flavors of charge Of charged particles might cause this cutoff to become con-
1 and four flavors of charge 1/2, a corresponding relation Siderably lower.

is satisfied(34). This suggests that in the presenceNo$pe- If, on the other hand, one sets the validity bound of QED
cies of fermions, the renormalized charge can be approxit© be at the Planck scale, one obtains the upper bound on the
mated with the formula fine structure constant

NQ? N ag=1/80, 43

Q.
Br—B=—2 s In(amp)+ 2 Qfc. (39
=1 =1 which is surprisingly small. One also has to note that in Eq.

. . . L . ) (43), the effect of chargedlv= bosons is not yet included.
In this section the lattice spaciryis kept explicitly, to il-

lustrate the dependence on the cutoff. In QED with one

charge and in the two-charge model, it was reasonable to IV. COMPOSITE STATES
approximate the bare charge corresponding to the point of A. Lattice operators and fits
maximal cutoff by the critical coupling of the fermion with . . —
the strongest coupling. This critical coupling is dependent on_CorreIatlon fu_nctlon.s of scalar and pseudoscaiarand
the number of dynamical fermions. Comparigy, deter- dd states were investigated:

mined using mean field equations of state or mean field

equations of state with logarithmic corrections, in the Cu,i(t):<z si(;xt)X_u()zut)Xu()zyt)X_u(O)Xu(o)>:
guenched case, in models with four flavors of chard#5l, X

with eight flavors of charge [132] and the two-charge model,

one finds the behavior i=1,2, (44)
N
Bo(Nspecies= (quenchegi— 21 Q. (39 Cd,i<t>=<2x_ si<xit)x_d<>2,t>xd<i,t>m0>xd<0>>,
wheree=0.01. i=1,2. (45

In the standard model, one has three generations of fermi-
ons of charge 1, three generations and colors of charge 2/3he sign factors; determine the lattice representation a state
and three generations and colors of charge 1/3. Expressirgglongs to[34]. The corresponding continuum quantum
the electron mass in units of the cutoff and the other fermiomumbers and states in QCD terminology are listed in Table
masses in terms of ratios with the electron mass, one obtaindl. To reduce statistical fluctuations, for each correlation
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TABLE VIII. Energies of neutral composite states, regi@r B¢q-

B my my m., M., My,
0.05 0.02 0.02 0.305(1) 0.431(1) 0.714(12)
0.05 0.04 0.04 0.431(0) 0.556(1) 0.950(21)
0.05 0.09 0.09 0.648(0) 0.783(1) 1.219(16)
0.06 0.02 0.04 0.307(1) 0.694(2) 0.798(3)
0.06 0.04 0.04 0.433(1) 0.695(2) 0.794(3)
0.075 0.02 0.02 0.311(1) 0.937(2) 0.934(2)
0.075 0.04 0.04 0.438(1) 0.933(2) 0.941(2)
0.075 0.09 0.09 0.657(0) 0.965(1) 1.045(2)
0.10 0.02 0.02 0.319(1) 1.124(3) 1.126(3)
0.10 0.04 0.04 0.450(1) 1.042(3) 1.052(3)
0.10 0.09 0.09 0.671(1) 1.142(3) 1.173(3)
TABLE IX. Energies of neutral composite states, reg®n B, -
B my my m,, m,, m,, m,,
0.15 0.02 0.02 0.361(1) 1.229(2) 0.822(130) 1.229(2)
0.15 0.04 0.04 0.502(1) 1.189(2) 1.216(99) 1.191(2)
0.15 0.09 0.09 0.723(1) 1.241(2) 1.332(94) 1.255(2)
0.16 0.02 0.02 0.381(1) 1.239(2) 0.847(53) 1.240(2)
0.16 0.02 0.04 0.379(1) 1.261(2) 0.769(52) 1.262(2)
0.16 0.04 0.02 0.515(1) 1.264(2) 1.161(68) 1.264(2)
0.16 0.04 0.04 0.514(1) 1.274(2) 1.083(55) 1.275(2)
0.16 0.09 0.09 0.737(1) 1.267(2) 1.320(55) 1.279(2)
0.17 0.02 0.02 0.407(1) 1.217(2) 0.881(33) 1.217(2)
0.17 0.04 0.04 0.539(1) 1.243(2) 1.010(33) 1.244(2)
0.17 0.09 0.09 0.752(1) 1.307(2) 1.266(36) 1.318(2)
0.18 0.02 0.02 0.444(1) 1.192(2) 0.774(15) 1.193(2)
0.18 0.02 0.04 0.431(1) 1.242(2) 0.762(15) 1.243(2)
0.18 0.02 0.09 0.436(1) 1.280(2) 0.755(14) 1.287(2)
0.18 0.04 0.02 0.558(1) 1.274(2) 1.003(19) 1.274(2)
0.18 0.04 0.04 0.563(1) 1.188(3) 0.958(17) 1.184(3)
0.18 0.04 0.09 0.563(1) 1.241(2) 0.946(16) 1.254(2)
0.18 0.09 0.02 0.767(1) 1.283(2) 1.266(24) 1.277(2)
0.18 0.09 0.04 0.768(1) 1.276(2) 1.252(23) 1.284(2)
0.18 0.09 0.09 0.769(1) 1.282(2) 1.256(23) 1.293(2)
0.19 0.02 0.02 0.444(1) 1.305(2) 0.734(11) 1.305(2)
0.19 0.04 0.04 0.588(1) 1.262(2) 0.903(9) 1.260(2)
0.19 0.09 0.09 0.776(1) 1.327(2) 1.246(18) 1.334(2)
0.20 0.02 0.02 0.509(2) 1.282(2) 0.655(4) 1.281(2)
0.20 0.02 0.16 0.496(2) 1.357(2) 0.647(5) 1.390(2)
0.20 0.04 0.04 0.600(1) 1.306(2) 0.856(73) 1.307(2)
0.20 0.09 0.09 0.802(1) 1.294(2) 1.159(10) 1.302(2)
0.20 0.16 0.02 0.995(1) 1.314(2) 1.432(17) 1.314(2)
0.21 0.02 0.02 0.579(2) 1.271(2) 0.659(2) 1.271(2)
0.21 0.02 0.16 0.592(2) 1.317(2) 0.667(3) 1.366(2)
0.21 0.04 0.04 0.645(1) 1.212(3) 0.824(4) 1.205(3)
0.21 0.09 0.09 0.806(1) 1.326(2) 1.154(9) 1.332(2)
0.21 0.16 0.02 1.009(1) 1.285(2) 1.395(13) 1.286(2)
0.22 0.04 0.04 0.679(2) 1.282(2) 0.817(4) 1.281(2)
0.22 0.09 0.09 0.818(1) 1.336(2) 1.134(7) 1.343(2)
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FIG. 12. Correlation functions type 3 = 0.05,m, = my = 0.02, 7, (left), and 74 (right). Crosses denote positive values of the
correlation function, the solid line denotes the fit.

function, 32 local sources distributed over the lattice wereenergy of the lightest scalar state. The constakfsand
used. Masses were determined by fits to the formula: A, correspond to single fermions which propagate in the
B o B I time direction around the latticésee [33]). Here, they
C(=Ay(e" 5 e BT )+ Ap(—1)(e ™2 +e =) e not needed for fits aiu states in any parameter re-
+As+(—1)'A,. (46)  gion investigated. Masses of neutral composite states for
B~ B, are presented in Table VIII and foB~B.q in
Here,E; is the energy of the lightest pseudoscalar Badhe  Table IX.
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FIG. 13. Correlation functions type & = 0.17,m, = my = 0.02, 7, (left), and 74 (right). The symbols have the same meaning as
above.
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to B.q, the mass of ther, is nearly independent of the fit
interval, which indicates that there is a good overlap of the
pointlike interpolating field with the pion. Fg8<0.19, the
masses of theu pions are smaller thanrg,g, thus one can
speak of bound states, which become lighter the deeper one
goes into the broken phase. F8&=0.20, thesr, masses lie
above In,i. This is an indication that the pion is not bound
any more; instead there is possibly, in the infinite volume
limit, a resonance in the pseudoscalar channel. It has to be
noted that when a spectrum with many states is fitted with a
*1 I single exponential, the fit result might be an average between
the lowest-lying state aroundnZ; and the excited states
[33.

For dd states, the fit range was g 0.10 chosen to be
tmin/tmax = 1/11. For largerd, good fits could not be ob-
2] A tained unless the constaris andA, were includedA; and
A, are about 10° smaller tharA,. The fit interval was, in
this B8 range, chosen to bg,,/tmax = 2/10. Thewy masses
are aroundB.q4 below 2myg, for 8>0.05 there is no bound
2 ' L pseudoscaladd state.

Figures 14 and 15 show typical correlation functions of
type 1 for couplings close t@., and B.q. For 8 values
much lower thang,,, there is no clear signal for the,

FIG. 14. Correlation functions type B = 0.05,m, = mq =  correlation function. The results shown in Tables VIII and
0.02,04. Crosses denote positive and squares negative values X were obtained without including the pseudoscalar contri-
the correlation function, the solid line denotes the fit. bution in the fit. Apparently, the pseudoscalar state does not

give any important contribution to correlation functions of

For correlation functions of type 2, fits were done with type 1, its amplitude is about an order of magnitude smaller
A, set to zero. In this channel, only the Goldstone pion conthan the one of the scalar state gyfdper degree of freedom
tributes, since states with the quantum numbets @annot  is the same whether the pseudoscalar state is included in the
be realized in the quark model. Figure 12 shows correlatiofit or not. The difference in the results from both fits is of the
functions of type 2 a3~ B.q and Fig. 13 atB~B.,. For  same order as the error because of the choice of the fit inter-
uu states, a fit interval i, /tax = 1/11 was chosen. Close val. Fit intervals weret i /tmax = 2/10. For 8 values be-
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FIG. 15. Correlation functions type B = 0.17,m, = myg = 0.02, o, (left), and o4 (right). The symbols have the same meaning as

above.
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tween 0.15 and 0.17, thé, energies lie slightly below 09 T BT R T B S
2myR so that they might be bound in this region. For larger m
B they get larger than twice the renormalized fermion mass. g
In the parameter region studied, ajj masses are larger than
2myr. From the simulation results g8=0.075, one ob- 07
serves that far in the symmetric phase, and o4 States are
degenerate, as one would expect from restoration of chiral .06
symmetry.

Correlation functions for charged composite stated)( .05
have been calculated f@ values aroungB.,, B.q and for
B=0.12. For smallg, the correlation functions suffer from 04
bad noise problems, and the signal appears to fall off with an

energy larger than the inverse lattice spacing. For lg8ge 03
there is a good signal, but the correlation function falls off

with an energy which i©(1) in lattice units and thus much 02
larger than the sum of the renormalized fermion masses. At o1

B=0.12, there is a signal in the channel considered and the
energy is of the order ofn,r. However, the renormalized 0
u mass is largg O(1)] at those values of the coupling and
cannot be determined reliably because correlators are very
noisy. Thus no evidence for charged bound states, with small
energies in the limit of large cutoff, has been found.

v by b sl b b loaa gl caaliaas
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15 .16 a7 .18 .19 ‘2/(3 .21

FIG. 16. Lines with constantn,z/m,, in the m,=mqy plane.
The black dot denoteg,,, .

B. Renormalization group flows with a constant rati®=m,g/m,, in them,=mq plane.Sis

In Sec. IIl it was discussed that in the two-charge modelyaried in steps of 0.1 from 0.4 to 2.1. The picture suggests
the cutoff cannot be removed if the renormalized coupling ishat the lines flow intoB.,. Generalizing this to different
kept finite. In such cases there is always the question if thergg|yes ofm, andmy, one obtains a picture about the flows
are parameter regions where physics can be kept fairly corys shown in Fig. 17. Surfac&= const are expected to end
stant while the cutoff is changed. In QED with one set ofon them,=0 plane at the phase boundary of theAs the
charges, in general flow lines of constant mass ratios involvenick plack line in Fig. 17 indicates, one generally cannot
ing composite states cross flow lines of constant renormakeep the ratio of fermion and pion masses constant on a line
ized charge even before the maximal cutoff resulting fromyith constant fermion mass ratio and renormalized charge,
triviality is reached. Only in the sector with very small except probably in the perturbative region.
charges and masses are the flow lines nearly parallel, and Figyre 18 shows lines with a constant ratio
physics can be kept nearly constant. There are indication§—m ./m; . Sis varied in steps of 0.025 from 0.3 to 0.6.

. . . oo "
that the situation can be improved if four-fermion interac-, - jines do not flow intoB,,. One expects that lines of

tions are included21]. In the two-charge model, the two . S :
. . : . onstantBg and fermion mass ratio will also, in general, not
species of fermions interact with each other only weakly and;

one expects the behavior of flow lines belonging to dhie i€ on t_he su_rface one obtains from generalizigo the
. . . three-dimensional parameter space. However, for very small

be completely different from the behavior of those belonging
to theu.

The physically most interesting region in the phase dia-
gram is aroung3= 8., and at small bare masses. Looking at
Table IX, it seems reasonable to assume that energies of
composite states of one fermion only have a very small de- m,
pendence on the bare mass of the other fermion and thus the
flow lines in the planen=m,=m, can easily be generalized
to the two-dimensional flow surface. To obtain flow lines in
the my=my plane, an interpolation between the grid of ac-
tual simulation results in this plane is performed. For this,
the dependence of mass ratison the simulation param-
eters is assumed to be as follows:

InNS=a+bg, m fixed, (47

InNS=c+dinm, B fixed. (48)

my

The ansatz in Eq47) is motivated by the logarithmic rela-
tion Eq. (35 between renormalized masses and the charge, FIG. 17. Sketch of a surface with constatand a surface with
whereas EQq(48) is motivated by the scaling behavior ex- constanim,g/m,, . The thick black line denotes a constant fermion
pected from the equations of state. Figure 16 shows linesass ratio on the surface with consta.
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FIG. 18. Lines with constantn,g/m, in the my=my plane. FIG. 19. Lines with constantnyg/m,_ in the m,=my plane.
The black dot denoteg,,, . The black dot denote8.,, .

couplings and masses it seems that flow lines with constar@d"éement with perturbation theory indicates that the renor-
coupling and fermion mass ratio follow surfaces with con-Malized charge of all fermions vanishes even if only one
stant mass ratios closely and renormalizability is essentiallP€COMes massless. An estimate for the validity bound of the
restored. Lines with constaBt= myg/m,. are shown in Fig. wo-charge model was obtained and generalized to all
19.Sis varied in steps of 0.0125 from 0.025 to 0.1. The “nescharged fermions in the standard model. Including all known

show that this mass ratio is, for large couplings, fairly 'nde'gzirgzguﬁgzI(S]ED(igebge\}zliznu;ﬁgetrhgoslgﬁycigs%;gg !
pendent ofmy. - }

Study of composite statesi§ anddd) has shown that in
the neighborhood of the physically interesting pojy,,
only theuu states are bound. Massesduf states ar€(1) in

In this paper a lattice study of noncompact QED with two lattice units in this region of the phase_ diggram. It appears
sets of staggered fermions with chargesu) @nd — 1/2 that beca_luse of the shape of renormallzatlon group flows of.
(d) (“two-charge model, is presented. The phase diagram Mass ratios, one cannot keep physics constant even approxi-
is obtained from the chiral condensates. They can be dehately in the investigated parameter region. The theory
scribed by a fit with equations of state of af2Dsymmetric ~ S€€ms to already become |nconS|s_te_nt_ at scales which are
linear & model with logarithmic corrections to the mean-field /ower than the cutoff because of triviality. However, there
equations. Chiral symmetry breaking occurs at different val&re indications that renormalizability is approximately re-
ues of the bare coupling for both fermions, for théermion stored in 'the perturbative region. The S|tuat|on_that the
at B.,=0.173(1) and for thel fermion atB.4=0.0471). the_ory is, in general, not ren_ormallzable_, may be improved
The most interesting candidate for a continuum limit of thePY including other operators into the action.
modgl is atBcy, With_mu =my = 0. This_ is the end point of ACKNOWLEDGMENTS
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