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Noncompact lattice QED with two charges: Phase diagram and renormalization group flow

A. Ali Khan
Department of Physics and Astronomy, University of Glasgow, Glasgow G12 8QQ, United Kingdom

~Received 13 November 1995!

The phase diagram of noncompact lattice QED in four dimensions with staggered fermions of charges 1 and
21/2 is investigated. The renormalized charges are determined and found to be in agreement with perturbation
theory. This is an indication that there is no continuum limit with nonvanishing renormalized gauge coupling,
and that the theory has a validity bound for every finite value of the renormalized coupling. The renormaliza-
tion group flow of the charges is investigated and an estimate for the validity bound as a function of the cutoff
is obtained. Generalizing this estimate to all fermions in the standard model, it is found that a cutoff at the
Planck scale implies thataR has to be less than 1/80. Because of spontaneous chiral symmetry breaking,
strongly bound fermion-antifermion composite states are generated. Their spectrum is discussed.@S0556-
2821~96!05609-3#

PACS number~s!: 11.15.Ha, 11.10.Hi, 12.20.Ds
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I. INTRODUCTION

Interest in nonperturbative investigations of QED has
long history. From perturbation theory there are indicatio
~Landau pole@1#! that the cutoff can only be removed from
the theory if the renormalized charge vanishes. Also, it is
yet-unsolved fundamental question@2# why the fine structure
constant has the valuea.1/137. At strong coupling, QED
exhibits a chiral symmetry-breaking phase transition of se
ond order@3–6#, where tightly bound fermion-antifermion
pairs are generated. There one could expect a deviation f
the charge screening behavior known from perturbati
QED. The phase transition makes strongly coupled U~1!
gauge theories interesting also for applications in technico
theories because of large anomalous dimensions of the
erator c̄c @7#. For several years, the possibility of a non
trivial continuum limit, or a nontrivial ultraviolet-stable fixed
point of the Callan-Symanzikb function, has been investi-
gated in the noncompact formulation of QED on the lattic
~see, for example,@9–16#!.

Studying noncompact lattice QED with dynamical ferm
ons, some groups find nontrivial scaling behavior@12,17,18#,
while others find their critical exponents to indicate trivialit
@13,19#. The QEDb function has been studied nonperturba
tively on the lattice@15,20#, and by using Schwinger-Dyson
equations@21#. It turns out to be in agreement with pertur
bation theory, and it shows no indication of a nontrivial fixe
point. If QED is trivial in the limit of infinite cutoff, there is
a maximal cutoff corresponding to every finite value of th
renormalized charge. One is interested in the size of t
validity bound. A rough estimate of it has been made in
lattice study of QED with one charge@15#.

In nature one finds several differently charged types
fermions. In the presence of several charges, new nonper
bative phenomena may arise which could affect the pha
structure. An important question is whether chiral symme
breaking sets in at the same value of the bare coupling for
fermions or whether some fermion species can be mass
and others in the chirally broken phase at the same time. T
phase diagram of such a system has to be investigated w
respect to a physically interesting continuum limit. In QE
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with one charge, neutral pointlike Goldstone bosons and s
lar particles are generated due to the chiral symmetr
breaking phase transition. One could expect that in the tw
charge model there is a larger number of neutral pointli
bound states which could, in principle, carry color charg
and have an effect on theb function of QCD. Moreover,
electrically charged bound states may appear which co
change the behavior of the QEDb function and push the
validity bound towards much lower energies. It is of intere
to see whether charge renormalization is in agreement w
perturbation theory and which states give relevant contrib
tions.

To investigate nonperturbative phenomena in the coupli
between different species of fermions, a model with two sp
cies of staggered fermions with a ratio of their charges
21/2 ~‘‘two-charge model’’! was studied, comparable tou
and d quarks whose strong and weak interactions a
switched off.

In Sec. II of this paper a description of the model an
details of the simulation are given. The phase diagram, o
tained from the chiral condensates, and the scaling behavi
are discussed. The charged sector of the model is presen
in Sec. III. The renormalized charges are determined nonp
turbatively using current-photon correlation functions an
are compared with renormalized lattice perturbation theo
There is a good agreement which leads to the conclusion t
the model is trivial. Using perturbation theory, the renorma
ization group flow of the charges is determined, which lea
to an estimate of the validity bound resulting from triviality
Spectrum and renormalization group flows of fermion
antifermion composite states are discussed in Sec. IV. T
conclusions are given in Sec. V.

II. PHASE DIAGRAM AND SCALING BEHAVIOR

A. Action and simulation details

The ‘‘two-charge model’’ contains a noncompact gaug
field with the action

Sg5
b

2(x (
m,n

Fmn
2 ~x!, ~1!

Fmn~x!5DmAn~x!2DnAm~x!, ~2!
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53 6417NONCOMPACT LATTICE QED WITH TWO CHARGES: PHASE . . .
TABLE I. Chiral condensates on the 83312 lattice, regionb;bcd .

b mu md ^x̄uxu& ^x̄dxd&

0.00 0.09 0.09 0.6312(11) 0.6323(11)
0.04 0.04 0.04 0.6346(17) 0.4036(13)
0.05 0.02 0.02 0.6302(23) 0.1881(15)
0.05 0.04 0.04 0.6295(17) 0.2515(10)
0.05 0.09 0.09 0.6258(11) 0.3339(8)
0.06 0.02 0.04 0.6180(24) 0.1392(6)
0.06 0.04 0.04 0.6243(17) 0.1397(5)
0.075 0.02 0.02 0.6067(23) 0.03988(10)
0.075 0.04 0.04 0.6073(16) 0.07898(22)
0.075 0.09 0.09 0.6061(11) 0.1662(3)
0.10 0.02 0.02 0.5569(22) 0.02602(4)
0.10 0.04 0.04 0.5640(16) 0.05380(9)
0.10 0.09 0.09 0.5664(10) 0.1148(1)
0.12 0.02 0.04 0.4970(19) 0.04357(5)
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and two sets each with four flavors of staggered fermio
which couple to the gauge fields with couplings 1 and –1
corresponding tou andd quarks with only electromagnetic
interactions:

Sf5(
x,y

$x̄u~x!Mu,xyxu~y!1x̄d~x!Md,xyxd~y!%. ~3!

The couplingb is related to the bare electric chargesek by
b51/(ckek)

2, k51,2. The lattice spacinga is set to 1. The
fermion matrices are given by

Mk,x,y5Dk,xy1mkdxy ,

Dk,xy~x!5
1

2(m hm~x!$eckiAm~x!dy,x1m̂2e2ckiAm~y!dy,x2m̂%,

~4!

k5u, d; cu51, cd521/2.

In the limit md→`, this model goes over into noncompac
QED with one charge@9,14#. For the gauge fields, periodic
boundary conditions in all four directions were chosen, f
the fermions, periodic spatial and antiperiodic tempor
boundary conditions. The simulations were performed on l
tices of size 83312. From simulations with one charge, on
expects that for the chosen values ofb, mu , andmd finite
size effects are small@15#. For each simulated point
(b,mu ,md) ;1000 configurations in equilibrium were gen
erated using a hybrid Monte Carlo algorithm. Every fifth wa
stored for spectrum and charge calculations.

Staggered fermions are a useful choice for studying chi
symmetry properties at finite lattice spacing. The action~3!
of the two-charge model has for thekth species of fermions
a chiral U(1)V3U(1)A symmetry, ifmk50. The order pa-
rameters are the chiral condensates

sk[^x̄kxk&52^TrMk
21&, ~5!

which are computed using a stochastic estimator@22#. Simu-
lation results for the chiral condensates are shown in Tab
I and II.
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B. Determination of the critical points

In noncompact QED with one set of staggered fermion
the chiral condensates is consistent with an equation of
state, similar to one arising from mean field theory but wit
logarithmic corrections, motivated from a linears model
@15,23#.

The parameters in the equation of state are expanded i
power series in the reduced coupling (12b/bc), wherebc
denotes the critical coupling. The logarithmic corrections ar
only expected to become important very close to the critic
point because of renormalization effects. It is expected th
also here they become relevant if one goes closer to t
critical point. From the results in Tables I and II, and a
illustrated forb50.18 in Fig. 1, it appears that the chiral
condensates are fairly independent of the other fermion
bare mass.

Thus to determine the critical points in the two-charg
model, an ansatz with two uncoupled equations of sta
~similar to those arising from mean field theory but with
logarithmic corrections! for both fermions is used:

mk52tk
sk

lnpkusk
21u

14uk
sk
3

lnusk
21u

, k5u,d. ~6!

For the determination of the renormalization group flows it i
desirable to know the chiral condensates as a function
(b,mu ,md) in the whole parameter space. It turns out to b
possible to approximate the chiral condensates for allb with
equations of state~6!, using the following expansion of the
couplings:

tu /uu5tu
~1!~12b/bcu!1tu

~3!~12b/bcu!
3,

1/uu5uu
~0!1uu

~1!~12b/bcu!1uu
~3!~12b/bcu!

3, ~7!

and

td /ud5td
~1!~12b/bcd!,

1/ud5ud
~0!1ud

~1!~12b/bcd!. ~8!

bck , tk
(1,3) , uk

(0,1,3), andpk are fit parameters. Including
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TABLE II. Chiral condensates on the 83312 lattice, regionb;bcu .

b mu md ^x̄uxu& ^x̄dxd&

0.14 0.02 0.02 0.4222(19) 0.01951(3)
0.15 0.02 0.02 0.3741(18) 0.01880(2)
0.15 0.04 0.04 0.4031(12) 0.03810(5)
0.15 0.09 0.09 0.4469(09) 0.08451(9)
0.16 0.02 0.02 0.3236(17) 0.01813(2)
0.16 0.02 0.04 0.3316(16) 0.03595(3)
0.16 0.04 0.02 0.3656(12) 0.01815(2)
0.16 0.04 0.04 0.3629(12) 0.03611(3)
0.16 0.09 0.09 0.4168(8) 0.08146(8)
0.17 0.02 0.02 0.2742(15) 0.01772(2)
0.17 0.04 0.04 0.3238(12) 0.03539(4)
0.17 0.09 0.09 0.3908(8) 0.07871(7)
0.18 0.02 0.02 0.2167(14) 0.01741(2)
0.18 0.02 0.04 0.2227(15) 0.03435(3)
0.18 0.02 0.09 0.2255(14) 0.07602(7)
0.18 0.04 0.02 0.2850(11) 0.01725(2)
0.18 0.04 0.04 0.2854(11) 0.03524(5)
0.18 0.04 0.09 0.2844(12) 0.07702(8)
0.18 0.09 0.02 0.3611(8) 0.01737(2)
0.18 0.09 0.04 0.3618(8) 0.03473(3)
0.18 0.09 0.09 0.3621(8) 0.07716(7)
0.19 0.02 0.02 0.1870(15) 0.01669(1)
0.19 0.04 0.04 0.2444(10) 0.03370(4)
0.19 0.09 0.09 0.3372(7) 0.07502(6)
0.20 0.02 0.02 0.1416(10) 0.01649(1)
0.20 0.02 0.16 0.1462(15) 0.1263(1)
0.20 0.04 0.04 0.2167(9) 0.03283(3)
0.20 0.09 0.09 0.3108(8) 0.07420(6)
0.20 0.16 0.02 0.3785(6) 0.01677(1)
0.21 0.02 0.02 0.1143(7) 0.01624(1)
0.21 0.02 0.16 0.1072(7) 0.1254(1)
0.21 0.04 0.04 0.1838(8) 0.03331(6)
0.21 0.09 0.09 0.2882(7) 0.07280(6)
0.21 0.16 0.02 0.3605(5) 0.01660(1)
0.22 0.04 0.04 0.1601(7) 0.03222(3)
0.22 0.09 0.09 0.2693(6) 0.07162(6)
r
or
ns
nt.
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n

all results forsu simulated atmu<0.09, one obtainsbcu 5
0.173. Values of the fit parameters and the fit errors are lis
in Table III. For a fit of sd , all results withb<0.1 and
md<0.09 have been used, and the critical coupling
bcd50.047. From varying the range of the chiral conde
sates included in the fit, one estimates the error onbcu and
bcd to be approximately 0.001, which is larger than the
error. Without including logarithmic corrections,bcu comes
out to be 0.183(1) andbcd to be 0.049(1)@25#. The cubic
term in Eq.~7! is included to obtain an approximate descri
tion of su also in the region whereb;bcd . It has been
checked that with a fit in the range 0.16<b<0.22, including
only linear terms in the reduced coupling, one obtains
same result forbcu within errors. As seen in Fig. 2, Eqs.~6!
give a good description for the chiral condensates in
range of couplingsb>0.05. Two or three of the same sym
bols lying on top of each other at theb values 0.06, 0.16,
0.18, 0.20, and 0.21 correspond to simulations at vario
ted

is
n-

fit

p-

the

the
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values ofmu at a fixed value ofmd or vice versa. One further
notices that in the regions where thed fermion undergoes a
transition, theu fermion is that far in the broken region that
su is practically independent ofmu ~as well as ofmd).

C. Renormalized fermion masses

The next step in the investigation of the critical behavio
is the determination of the renormalized fermion masses
inverse fermionic correlation lengths. Because the fermio
are charged, their correlation functions are gauge depende
For the calculation of their expectation value, a technique
described in Refs.@26,15# is used. First, the Landau gauge is
fixed by imposing the gauge-fixing condition

(
m

D̄mAm~x!50, ~9!

whereD̄m denotes the backward derivative on the lattice. A
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FIG. 1. Dependence ofsu on
m[md ~left! and of sd on
m[mu ~right!. Circles denotem
5 0.02, squaresm 5 0.04, and
diamonds m 5 0.09. b50.18.
Statistical errors are smaller than
the symbols.
n
-
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additional gaugelike degree of freedom is the invariance
the action under the local transformation

Am~x!→Am~x!1Dma~x!,

x~x!→e2 icka~x!xk~x!,

x̄ k~x!→eicka~x!x̄k~x!, ~10!

with

a~x!5(
m

4p

Lm
nmxm , nmPZ. ~11!

The lattice average of the gauge field

Ām5
1

V(
x
Am~x!, V5)

m
Lm , ~12!

has a nonvanishing expectation value on our~relatively
small! ensembles. By shifting it by multiples of 4p/Lm ,
such that it is restricted to the interval (22p/Lm,2p/Lm#,
this additional degree of freedom was fixed. In the two
charge model, this interval is chosen twice as large as in
model with fermions of charge 1. This is necessary to pr
serve also the boundary conditions of thed fermion, which
couples with charge21/2. Ām is approximately constant
over ;10–20 configurations. Following the procedure de
scribed in@26,15#, the set of data samples at each parame
value was divided into subsets of 10–20. The correlati
functions were averaged over each subset and fitted with
free form of a staggered fermion propagator in a consta
background fieldBm . For theu fermion,Bm agrees with the

TABLE III. Fit parameters for the equation of state with loga
rithmic corrections.

bcu 0.1729(2) bcd 0.04675(7)
tu
(1) 21.78(1) td

(1) 21.469(9)

tu
(3) 0.48(3)

uu
(0) 2.61(2) ud

(0) 2.41(2)

uu
(1) 21.3(1) ud

(1) 21.42(2)

uu
(3) 25.7(6)
pu 0.588(6) pd 0.074(3)
of

-
a

e-

-
ter
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nt

expectation value ofĀm , taken over the given subset, for the
d fermion with the expectation value of2Ām/2. The fits
were performed with the routineMINUIT . The ansatz gives a
good description of the data. An example for this is shown i
Fig. 4. Results are given in Tables IV and V. Another indi
cation that the fermion correlation functions behave simila
to free propagators with a renormalized massmu,dR , is ob-
tained by comparing the simulation data for the chiral con
densates with free propagator expressions:

^x̄kxk&5
1

V(
pm

mkR

(msin
2pm1mkR

2 , k5u,d, ~13!

with the lattice momenta

pi5
2p

Li
ni , ni51, . . . ,Li , i51, . . . ,3

FIG. 2. Chiral condensates~open symbols:su
b , filled symbols:

sd) as a function ofb with a mean-field fit with logarithmic cor-
rections. Triangles correspond tomk 5 0.02, squares tomk 5 0.04,
asterisks tomk 5 0.09, and circles tomk 5 0.16,k5u,d. The solid
lines show the result of the fits and the dashed lines solutions of t
equations of state withmk set to 0.

-
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FIG. 3. u fermion propagators atb50.16 andmu5md50.02. Crosses correspond to positive values of the correlation function, squa
to negative values. Solid lines denote the fit.
l-

e-
p45
p

L4
~2n421!, n451, . . . ,L4 .

Figures 5 and 6 show that for small masses the res
agree quite well with Eqs.~13!. The fermion wave function
renormalization constant is of order 1. SincemkR}^x̄kxk&
for smallmkR , Eqs.~6! and ~7! imply that nearb.bcu the
renormalizedu mass scales according to

muRln
21/3~muR

21!}mu
1/3, ~14!

and the renormalizedd mass according to

mdRln
2pd~mdR

21!}md . ~15!
ults

The scaling behavior of thed is thus in this region close to
the perturbative behavior, which is very different from the
behavior of theu fermion in this region. For very largeb,
both renormalized masses follow Eq.~15!. In the neighbor-
hood ofb.bcd , Eqs.~6! and ~7! indicate that

mdRln
21/3~mdR

21!}md
1/3. ~16!

In this region the difference between the bare and renorma
ized masses of thed becomes small.

D. Phase diagram

Figure 7 shows a sketch of the phase diagram. The agre
ment of the results with Eq.~6! suggests that there are two
us
FIG. 4. d fermion propagators atb50.16 andmu5md50.02. The meaning of the symbols is explained in the caption of the previo
figure.
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TABLE IV. Renormalized fermion masses and coupling, regionb;bcd .

b mu md muR mdR bR

0.05 0.02 0.02 5.000(675) 0.326(7) 0.073(1)
0.05 0.04 0.04 4.935(143) 0.446(4) 0.069(1)
0.05 0.09 0.09 5.646(604) 0.644(7) 0.063(1)
0.06 0.02 0.04 2.872(393) 0.258(4) 0.087(1)
0.06 0.04 0.04 2.573(382) 0.252(3) 0.088(1)
0.075 0.02 0.02 2.018(143) 0.085(1) 0.123(1)
0.075 0.04 0.04 1.993(210) 0.149(2) 0.116(1)
0.075 0.09 0.09 2.912(126) 0.295(2) 0.104(1)
0.10 0.02 0.02 1.518(074) 0.050(1) 0.163(2)
0.10 0.04 0.04 1.864(120) 0.090(1) 0.154(1)
0.10 0.09 0.09 1.662(92) 0.209(2) 0.139(1)
0.12 0.02 0.04 1.124(37) 0.072(1)

TABLE V. Renormalized fermion masses and coupling, regionb;bcu .

b mu md muR mdR bR

0.14 0.02 0.02 0.917(28) 0.034(1) 0.238(3)
0.15 0.02 0.02 0.753(13) 0.032(1) 0.257(2)
0.15 0.04 0.04 0.858(9) 0.065(1) 0.239(2)
0.15 0.09 0.09 1.023(13) 0.148(1) 0.215(2)
0.16 0.02 0.02 0.609(7) 0.031(1) 0.276(3)
0.16 0.02 0.04 0.617(8) 0.063(1) 0.264(3)
0.16 0.04 0.02 0.727(9) 0.033(1) 0.272(2)
0.16 0.04 0.04 0.714(10) 0.064(1) 0.258(2)
0.16 0.09 0.09 0.918(9) 0.143(1) 0.232(2)
0.17 0.02 0.02 0.485(7) 0.030(1) 0.304(3)
0.17 0.04 0.04 0.607(8) 0.061(1) 0.274(3)
0.17 0.09 0.09 0.815(5) 0.139(1) 0.250(2)
0.18 0.02 0.02 0.366(7) 0.029(1) 0.329(3)
0.18 0.02 0.04 0.384(5) 0.058(1) 0.321(3)
0.18 0.02 0.09 0.379(4) 0.130(1) 0.305(3)
0.18 0.04 0.02 0.506(5) 0.029(1) 0.315(3)
0.18 0.04 0.04 0.512(6) 0.058(1) 0.303(3)
0.18 0.04 0.09 0.512(5) 0.130(1) 0.288(3)
0.18 0.09 0.02 0.720(4) 0.030(1) 0.291(2)
0.18 0.09 0.04 0.715(4) 0.060(1) 0.278(2)
0.18 0.09 0.09 0.720(6) 0.133(1) 0.268(2)
0.19 0.02 0.02 0.319(6) 0.029(1) 0.357(3)
0.19 0.04 0.04 0.425(4) 0.057(1) 0.321(3)
0.19 0.09 0.09 0.658(4) 0.134(1) 0.279(2)
0.20 0.02 0.02 0.229(7) 0.028(1) 0.388(3)
0.20 0.02 0.16 0.245(4) 0.219(1) 0.351(3)
0.20 0.04 0.04 0.372(5) 0.056(1) 0.342(3)
0.20 0.09 0.09 0.596(6) 0.128(1) 0.299(2)
0.20 0.16 0.02 0.807(6) 0.030(1) 0.303(2)
0.21 0.02 0.02 0.182(4) 0.027(1) 0.415(2)
0.21 0.02 0.16 0.171(2) 0.213(1) 0.351(3)
0.21 0.04 0.04 0.311(3) 0.055(1) 0.367(3)
0.21 0.09 0.09 0.528(5) 0.125(1) 0.315(2)
0.21 0.16 0.02 0.735(7) 0.029(1) 0.318(2)
0.22 0.04 0.04 0.268(4) 0.054(1) 0.386(3)
0.22 0.09 0.09 0.491(3) 0.124(1) 0.328(2)
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distinct regions of chiral symmetry breaking for both ferm
ion species. This does not correspond to the expectations
confining theory. If chiral symmetry breaking in noncompa
QED was related to confinement, one would expect bo
species of fermions to develop chiral condensates in
same time. The end points of the phase boundary of theu,
which separates the symmetric phase of theu on the
mu50 surface from its broken phase, are given bybcu and
bc , the critical point of QED with one set ofu fermions@15#
which is the limit of the two-charge model ifmd→`. In the
presence of more charges, the critical point is shifted towa
stronger coupling, sobcu is slightly smaller thanbc . In the
limit mu→`, which corresponds to QED with one set o
charges with couplingb54/e2, one expects this to occur a

FIG. 5. Chiral condensatêx̄uxu& for b>0.14 plotted against
the renormalized massmuR . The line denotes Eq.~13!.

FIG. 6. Chiral condensatêx̄dxd& plotted againstmdR . The line
denotes Eq.~13!.
-
in a
ct
th
the

rds

f
t

bc/4 (;0.046, using the result of@15#!. In the two-charge
model, a value very close to this is obtained,bcd.0.047.
Below bcu , no continuum limit with two fermion species is
possible. For the investigated parameter values atb<0.14,
the renormalizedu masses are of order 1 in lattice units,
which means theu fermion is, in this parameter region, es-
sentially not present in the spectrum. In the regio
b*bcu , both fermion masses can go to zero, so this regio
is the most interesting candidate for a continuum limit of th
model.

III. THE RENORMALIZED COUPLING

A. Charge determination on the lattice

The Ward identities ensure that the charge renormaliz
tion is entirely determined by the wave function renormal
ization of the photon:

eu,dR
2 5Z3eu,d

2 . ~17!

Z3 is given by the zero-momentum limit of the gauge-
invariant part of the photon propagator:

D~k!5
b

NkV
(

m,kuk25const,
km50

k̂2^Ãm~ k̂!Ãm~2 k̂!& ukm50 , ~18!

Z35 lim
k→0

D~k!. ~19!

The sum in Eq.~18! runs over all directionsm and for each
m over allNk choices ofk with fixed k

2 andkm50. Because
of the lattice, the momenta enter the photon propagator as

k̂m5eikm21 and k̂25 k̂mk̂m* . ~20!

The right-hand side~RHS! of ~18! turns out to be strongly
fluctuating and inappropriate for an extrapolation tok→0.
Thus for the calculation ofD(k), a method analogous to
Refs.@14,15,27# is used. The photon propagatorD(k) is re-
expressed using the Ward identities@28# in terms of a corr-
elator between the gauge field and the fermion current:

D~k!512
1

NkV
( ^ j̃ m~ k̂!Ãm~2 k̂!& U

km50
, ~21!

FIG. 7. Sketch of the phase diagram.
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where in the two-charge model

j m~x!5
d

dAm~x!(yz $x̄u~y!Mu,yzxu~z!1x̄d~y!Md,yzxd~z!%.

~22!

The correlator in Eq.~21! has less fluctuations and could b
used for an extrapolation ofD(k) to k→0. The fermion cur-
rent was computed using a stochastic estimator with 30–
inversions of the fermion matrices.

B. Comparison with perturbation theory

Taking contributions of both fermions into account, i
one-loop perturbation theory the vacuum polarization tens
has the form

1/bPmn~k,muR ,mdR ,V!5eu
2Pmn

~1!~k,muR ,V!

1ed
2Pmn

~1!~k,mdR ,V!, ~23!

wherePmn
(1)(k,mR ,V) is the vacuum polarization tensor for a

single set of fermions with the renormalized massmR on a
lattice of volumeV. Projection onto the gauge-invariant par
yields

D~k!511eu
2P~1!~k,muR ,V!1ed

2P~1!~k,mdR ,V!,
~24!

whereP (1)(k,mR ,V) is the one-loop vacuum polarization
function for one set of staggered fermions:

P~1!~k,mR ,V!5
1

k̂2
@Pmm

~1! ~k,mR ,V!

2Pmm
~1! ~0,mR ,V!#ukm50 . ~25!

The second term on the right-hand side occurs beca
e

75

n
or

t

use

Pmm
(1)(0,mR ,V)Þ0 for a finiteV. This would correspond to a

finite photon mass, and the term is subtracted. Here, a fix
m has been chosen withkm50. Finally, one obtains, for the
photon propagator in the two-charge model,

b

D~k!
5bR1P~0,muR ,mdR ,`!2P~k,muR ,mdR ,V!.

~26!

Extrapolating this toV→`, k→0,

bR5b2P~0,muR ,mdR ,`! ~27!

gives the perturbative relation between the bare and t
renormalized coupling. Combining the last two expression
one gets the fit formula for the Monte Carlo results fo
D(k):

b

D~k!
5bR1P~0,muR ,mdR ,`!2P~k,muR ,mdR ,V!.

~28!

The renormalized couplingbR is the only free parameter in
the fit.

For the calculation ofP(0,muR ,mdR ,`), the effect of the
zero modesĀm of the gauge field has to be taken into ac
count. Their contribution is important where fermions ar
light, as are thed fermions at the simulated parameter value
with b;bcu . To calculate the perturbative vacuum polariza
tion functions, the background fields are integrated over:
duct of
P~k,muR ,mdR ,V!5

E d4Ādet~Du1mu!det~Dd1md!(
p

r~p,k,Ā,muR ,mdR ,V!

E d4Ādet~Du1mu!det~Dd1md!

. ~29!

Also, in the presence of constant background fields the fermion determinant of free fermions can be written as a pro
contributions with definite momentum:

detMi5det~Di1mi !5)
ki

Fmi
21(

m
sin2~ki ,m1ciĀm!G1/2, i5u,d, ~30!

with cu 5 1 andcd521/2. Choosingm53 in Eq. ~25!, the functionr looks as

r5 (
i5u,d

F 22
(
mÞ3

@cos~ k̃i ,m!sin~pm/2!#2

D~ k̃i2p,miR!D~ k̃i1p,miR!
1sin2@~ k̃i ,32p3!/2#H 1

D~ k̃i2p,miR!
2

1

D~ k̃i1p,miR!
J 2G cos2~ k̃i ,3!, ~31!
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where

D~k,mR!5mR
21(

m
sin2~km/2! ~32!

and

k̃u5ku1Ā and k̃d5kd2Ā/2. ~33!

The integral over the background fields was evaluated us
a Monte Carlo method, representing the background fie
through Gaussian random numbers and calculating
weight of the fermion determinant in the presence of the
background fields. Figure 8 shows an example for a fit
D(k) with one-loop perturbation theory in the presence
background fields. The oscillations ofD(k) are caused by
the dependence ofk on the direction because of the asym
metry of the lattice. The renormalized couplings are listed
Tables IV and V.

The renormalized coupling can be calculated directly
perturbation theory using Eq.~27!. One would like to com-
pare the data with the perturbative result. Since this is
interest especially in regions of a high cutoff, i.e. for sma
masses, the limitmuR ,mdR!1 of the vacuum polarization
function ~27! is taken, which gives

bR2b52P~0,muR ,mdR ,`!52
1

6p2 ln~muR
4 mdR!15c/4.

~34!

From QED with one species of fermions with charge 1, it
known thatc.0.0210@15#. Figure 9 shows that in the sma
mass limit the renormalized charges indeed follow the log
rithmic behavior as in the right-hand side of Eq.~34!. For
larger masses,P is no more a function ofmuR

4 mdR alone, but
the simulation results are still in agreement with perturbati

FIG. 8. Photon propagatorb 5 0.17,mu 5 md 5 0.02. The
circles describe the data and the asterisks the fit with the pertu
tive formula. The extrapolation tok→0 is denoted by an asterisk
The variableK2 on the x axis is defined asK25576/(2p)2k2 to be
an integer.
ing
lds
the
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of
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theory@30#. There does not seem to be any effect on charg
renormalization from possible charged bound states.

The agreement with perturbation theory indicates that th
model is trivial in the limit of infinite cutoff, and that all
renormalized charges vanish if only one fermion mass go
to zero. The renormalized coupling vanishes in those parts
the phase diagram~see Fig. 7! wheresu or sd equal zero.

One would now like to find a relation between a finite
renormalized coupling and a corresponding cutoff. The rat
of the renormalized masses has to be kept constant while t
cutoff is varied. Reexpressing~34! in terms of
R5muR /mdR and exponentiating, one obtains

muR51.365R1/5expS 2F6p2

5
~bR2b!G D . ~35!

From this equation one will be able to estimate the maxima
cutoff belonging to each renormalized charge. For this, on
needs to know whichb coordinate the point with maximal
cutoff on a renormalization group flow line with fixedbR
andR has. This flow line will be the intersection between the
surface with fixedR and the one with fixedbR in the three-
dimensional parameter space.

C. Renormalization group flow of the coupling

It is not feasible to cover all the regions of the phas
diagram that are of interest with simulations. For a determ
nation of the renormalization group flows of the charge, on
therefore has to make use of extrapolation methods. If one
able to find a functional dependence of the renormalize
mass on the bare parameters, it is possible to calculate
renormalized coupling using perturbation theory from Eq
~27!. The chiral condensates can be approximated as fun
tions ofb, mu , andmd through the equations of state. Fig-
ures 5 and 6 suggest that the renormalized masses can
expressed as functions of the chiral condensate, where
small masses there is agreement with the free propaga
relation Eq. ~13!, and the leading term is linear. For the

rba-
.

FIG. 9. Renormalized couplings in the region of smallmuR and
mdR . The line denotes the small mass limit of one-loop perturbatio
theory.
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53 6425NONCOMPACT LATTICE QED WITH TWO CHARGES: PHASE . . .
renormalization group flows, one is primarily interested
regions where both fermion masses are smaller than 1
muR is fitted forb>0.14 with the ansatz

muR5P1^x̄uxu&1P2^x̄uxu&
3. ~36!

Here, x2 per degree of freedom is 1.5. The following fi
gives a good description for thed mass forb>0.14:

mdR5Q1^x̄dxd&, ~37!

FIG. 10. Renormalized masses as a function of the chiral c
densates. The squares denote simulation results and lines th
according to Eqs.~36! and ~37!, respectively.

TABLE VI. Fit parameters for the renormalized fermio
masses.

P1 1.54(1) Q1 1.726(3)
P2 3.5(1) Q2
in
, so

t

with x2 per degree of freedom equal to 2.2. A cubic term
not needed here. The fit parametersP andQ are given in
Table VI. As illustrated in Fig. 10, one thus obtains a goo
description for the renormalized masses.

To obtain the renormalized masses as a function of t
bare parameters, first the equations of state were solved
plicitly for the chiral condensates using Mu¨ller’s method
@31# for calculating zeros of nonlinear functions. The result
were thus inserted into the fit equations~36! and ~37!, re-
spectively.

Using this method, a grid of values for the mass ratioR in
the phase diagram is generated and, using renormalized p
turbation theory, also forbR . Using a graphics package, sur
faces of constantbR andR can be drawn. Figure 11 shows a
surfaceSbR

~black! with a constantbR and its intersection

with a surfaceSR ~grey! of constantR of O(1).
For largemu andmd ,both renormalized fermion masses

are large. Therefore,bR;b which implies that surfaces with
fixedbR are nearly perpendicular to theb axis. The behavior
at smallmu , md can be read off from Eq.~34!. If mu is
lowered, the surfaces bend over until they end on th
mu50 plane below the line where the chiral symmetry of th
u fermion is broken. The largerbR is, the closer the end line
of the surface on themu50 plane comes to the critical line
of the u, except for very smallmd . In a whole range of
b,bcu and small bare masses,mdR is much smaller than
muR and for constantmd nearly constant. So, surfaces with
constantbR bend at smallmd towards smallb, as the black
surface in Fig. 11 indicates. They intersect themd50 plane
in the broken phase of thed fermion, and thus cut theb axis
atb,bcd . The important point to note is thatSbR

intersects

the surfacesmu50 or md50 only in regions where both
renormalized fermion masses are nonzero.

Surfaces of constantR end forb>bcu on theb axis. The

on-
e fit

FIG. 11. Surfaces withbR50.27 ~black! andR55 ~grey!. The
little spheres denotebcu andbcd .

n
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TABLE VII. Sign factors for the meson operators. Thes particle is provided with a hat to avoid
confusion with the chiral condensates introduced earlier.

i si(xW ,t) Quantum numbers Continuum states

1 (21)t 0s
11 ŝ

0a
21 p8

2 (21)x11x21x31t 0a
12 2

0a
21 p
e

of

of
ber
n-

D
the
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te

ble
n

scaling behavior of the masses in Eqs.~14! and~15! implies
that atb5bcu , these surfaces obey the relationmu;cmd

3 ,
where c is a constant. Ifb is lowered pastbcu , muR in-
creases quickly. As indicated in Fig. 11, the end line of th
surfaces with constantR on themu50 plane therefore has to
turn away from theb axis and stay at a finite value ofmd .
For an estimate of the validity bound, the intersection line
both surfaces is of interest, as it represents a flow line wh
bothR andbR are constant while the cutoff scale is change
It ends on themu50 plane atb,bcu . As one moves down
along the intersection line, the cutoff becomes larger, b
never reaches infinity.

D. Validity bound

In noncompact QED with four flavors of staggered ferm
ons of charge 1, theb function goes, in the limit of small
renormalized mass, over into the prediction of one-loop co
tinuum perturbation theory for four fermion flavors of charg
1 @15#. In the two-charge model with four flavors of charg
1 and four flavors of charge21/2, a corresponding relation
is satisfied~34!. This suggests that in the presence ofN spe-
cies of fermions, the renormalized charge can be appro
mated with the formula

bR2b52(
i51

N Qi
2

6p2 ln~amiR!1(
i51

N

Qi
2c. ~38!

In this section the lattice spacinga is kept explicitly, to il-
lustrate the dependence on the cutoff. In QED with on
charge and in the two-charge model, it was reasonable
approximate the bare charge corresponding to the point
maximal cutoff by the critical coupling of the fermion with
the strongest coupling. This critical coupling is dependent
the number of dynamical fermions. Comparingbc , deter-
mined using mean field equations of state or mean fie
equations of state with logarithmic corrections, in th
quenched case, in models with four flavors of charge 1@15#,
with eight flavors of charge 1@32# and the two-charge model,
one finds the behavior

bc~Nspecies!5bc~quenched!2e(
i51

N

Qi
2 , ~39!

wheree.0.01.
In the standard model, one has three generations of fer

ons of charge 1, three generations and colors of charge 2
and three generations and colors of charge 1/3. Express
the electron mass in units of the cutoff and the other fermi
masses in terms of ratios with the electron mass, one obta
e

of
ere
d.

ut

i-

n-
e
e

xi-

e
to
of

on

ld
e

mi-
/3,
ing
on
ins

ameR*3.68 expH 2
3p2

4
bRJ

3~RmRt!
1/8~RuRcRt!

1/6~RdRsRb!
1/24, ~40!

whereRm5meR/mmR , etc. The relation between the lattic
spacinga and the cutoffL is approximately given by the
relation

L.1/a. ~41!

Using the physical fermion masses and the physical value
the fine structure constant 1/137, one gets the cutoff

L&1032 GeV. ~42!

This is much larger than the Planck scale (1019 GeV!. How-
ever, if there are more charged particles, e.g., because
supersymmetry, the exponential dependence on the num
of charged particles might cause this cutoff to become co
siderably lower.

If, on the other hand, one sets the validity bound of QE
to be at the Planck scale, one obtains the upper bound on
fine structure constant

aR&1/80, ~43!

which is surprisingly small. One also has to note that in E
~43!, the effect of chargedW6 bosons is not yet included.

IV. COMPOSITE STATES

A. Lattice operators and fits

Correlation functions of scalar and pseudoscalarūu and
d̄d states were investigated:

Cu,i~ t !5K (
xW
si~xW ,t !x̄u~xW ,t !xu~xW ,t !x̄u~0!xu~0!L ,

i51, 2, ~44!

Cd,i~ t !5K (
xW
si~xW ,t !x̄d~xW ,t !xd~xW ,t !x̄d~0!xd~0!L ,

i51, 2. ~45!

The sign factorssi determine the lattice representation a sta
belongs to @34#. The corresponding continuum quantum
numbers and states in QCD terminology are listed in Ta
VII. To reduce statistical fluctuations, for each correlatio
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TABLE VIII. Energies of neutral composite states, regionb;bcd .

b mu md mpu
mpd

msd

0.05 0.02 0.02 0.305(1) 0.431(1) 0.714(12)
0.05 0.04 0.04 0.431(0) 0.556(1) 0.950(21)
0.05 0.09 0.09 0.648(0) 0.783(1) 1.219(16)
0.06 0.02 0.04 0.307(1) 0.694(2) 0.798(3)
0.06 0.04 0.04 0.433(1) 0.695(2) 0.794(3)
0.075 0.02 0.02 0.311(1) 0.937(2) 0.934(2)
0.075 0.04 0.04 0.438(1) 0.933(2) 0.941(2)
0.075 0.09 0.09 0.657(0) 0.965(1) 1.045(2)
0.10 0.02 0.02 0.319(1) 1.124(3) 1.126(3)
0.10 0.04 0.04 0.450(1) 1.042(3) 1.052(3)
0.10 0.09 0.09 0.671(1) 1.142(3) 1.173(3)

TABLE IX. Energies of neutral composite states, regionb;bcu .

b mu md mpu
mpd

msu
msd

0.15 0.02 0.02 0.361(1) 1.229(2) 0.822(130) 1.229(2)
0.15 0.04 0.04 0.502(1) 1.189(2) 1.216(99) 1.191(2)
0.15 0.09 0.09 0.723(1) 1.241(2) 1.332(94) 1.255(2)
0.16 0.02 0.02 0.381(1) 1.239(2) 0.847(53) 1.240(2)
0.16 0.02 0.04 0.379(1) 1.261(2) 0.769(52) 1.262(2)
0.16 0.04 0.02 0.515(1) 1.264(2) 1.161(68) 1.264(2)
0.16 0.04 0.04 0.514(1) 1.274(2) 1.083(55) 1.275(2)
0.16 0.09 0.09 0.737(1) 1.267(2) 1.320(55) 1.279(2)
0.17 0.02 0.02 0.407(1) 1.217(2) 0.881(33) 1.217(2)
0.17 0.04 0.04 0.539(1) 1.243(2) 1.010(33) 1.244(2)
0.17 0.09 0.09 0.752(1) 1.307(2) 1.266(36) 1.318(2)
0.18 0.02 0.02 0.444(1) 1.192(2) 0.774(15) 1.193(2)
0.18 0.02 0.04 0.431(1) 1.242(2) 0.762(15) 1.243(2)
0.18 0.02 0.09 0.436(1) 1.280(2) 0.755(14) 1.287(2)
0.18 0.04 0.02 0.558(1) 1.274(2) 1.003(19) 1.274(2)
0.18 0.04 0.04 0.563(1) 1.188(3) 0.958(17) 1.184(3)
0.18 0.04 0.09 0.563(1) 1.241(2) 0.946(16) 1.254(2)
0.18 0.09 0.02 0.767(1) 1.283(2) 1.266(24) 1.277(2)
0.18 0.09 0.04 0.768(1) 1.276(2) 1.252(23) 1.284(2)
0.18 0.09 0.09 0.769(1) 1.282(2) 1.256(23) 1.293(2)
0.19 0.02 0.02 0.444(1) 1.305(2) 0.734(11) 1.305(2)
0.19 0.04 0.04 0.588(1) 1.262(2) 0.903(9) 1.260(2)
0.19 0.09 0.09 0.776(1) 1.327(2) 1.246(18) 1.334(2)
0.20 0.02 0.02 0.509(2) 1.282(2) 0.655(4) 1.281(2)
0.20 0.02 0.16 0.496(2) 1.357(2) 0.647(5) 1.390(2)
0.20 0.04 0.04 0.600(1) 1.306(2) 0.856(73) 1.307(2)
0.20 0.09 0.09 0.802(1) 1.294(2) 1.159(10) 1.302(2)
0.20 0.16 0.02 0.995(1) 1.314(2) 1.432(17) 1.314(2)
0.21 0.02 0.02 0.579(2) 1.271(2) 0.659(2) 1.271(2)
0.21 0.02 0.16 0.592(2) 1.317(2) 0.667(3) 1.366(2)
0.21 0.04 0.04 0.645(1) 1.212(3) 0.824(4) 1.205(3)
0.21 0.09 0.09 0.806(1) 1.326(2) 1.154(9) 1.332(2)
0.21 0.16 0.02 1.009(1) 1.285(2) 1.395(13) 1.286(2)
0.22 0.04 0.04 0.679(2) 1.282(2) 0.817(4) 1.281(2)
0.22 0.09 0.09 0.818(1) 1.336(2) 1.134(7) 1.343(2)
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FIG. 12. Correlation functions type 2,b 5 0.05,mu 5 md 5 0.02,pu ~left!, andpd ~right!. Crosses denote positive values of the
correlation function, the solid line denotes the fit.
e

for
function, 32 local sources distributed over the lattice we
used. Masses were determined by fits to the formula:

C~ t !5A1~e
2E1t1e2E1~T2t !!1A2~21! t~e2E2t1e2E2~T2t !!

1A31~21! tA4 . ~46!

Here,E1 is the energy of the lightest pseudoscalar andE2 the
reenergy of the lightest scalar state. The constantsA3 and
A4 correspond to single fermions which propagate in th
time direction around the lattice~see @33#!. Here, they
were not needed for fits ofūu states in any parameter re-
gion investigated. Masses of neutral composite states
b;bcu are presented in Table VIII and forb;bcd in
Table IX.
s
FIG. 13. Correlation functions type 2,b 5 0.17,mu 5 md 5 0.02,pu ~left!, andpd ~right!. The symbols have the same meaning a
above.
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For correlation functions of type 2, fits were done wit
A2 set to zero. In this channel, only the Goldstone pion co
tributes, since states with the quantum numbers 012 cannot
be realized in the quark model. Figure 12 shows correlati
functions of type 2 atb;bcd and Fig. 13 atb;bcu . For
ūu states, a fit intervaltmin /tmax 5 1/11 was chosen. Close

FIG. 14. Correlation functions type 1,b 5 0.05,mu 5 md 5
0.02, ŝd . Crosses denote positive and squares negative values
the correlation function, the solid line denotes the fit.
h
n-

on

to bcd , the mass of thepu is nearly independent of the fit
interval, which indicates that there is a good overlap of th
pointlike interpolating field with the pion. Forb<0.19, the
masses of theūu pions are smaller than 2muR , thus one can
speak of bound states, which become lighter the deeper o
goes into the broken phase. Forb>0.20, thepu masses lie
above 2muR . This is an indication that the pion is not bound
any more; instead there is possibly, in the infinite volum
limit, a resonance in the pseudoscalar channel. It has to
noted that when a spectrum with many states is fitted with
single exponential, the fit result might be an average betwe
the lowest-lying state around 2mR and the excited states
@33#.

For d̄d states, the fit range was atb,0.10 chosen to be
tmin /tmax 5 1/11. For largerb, good fits could not be ob-
tained unless the constantsA3 andA4 were included.A3 and
A4 are about 1023 smaller thanA1 . The fit interval was, in
this b range, chosen to betmin /tmax 5 2/10. Thepd masses
are aroundbcd below 2mdR , for b.0.05 there is no bound
pseudoscalard̄d state.

Figures 14 and 15 show typical correlation functions o
type 1 for couplings close tobcu and bcd . For b values
much lower thanbcu, there is no clear signal for theŝu
correlation function. The results shown in Tables VIII an
IX were obtained without including the pseudoscalar contr
bution in the fit. Apparently, the pseudoscalar state does n
give any important contribution to correlation functions o
type 1, its amplitude is about an order of magnitude small
than the one of the scalar state andx2 per degree of freedom
is the same whether the pseudoscalar state is included in
fit or not. The difference in the results from both fits is of th
same order as the error because of the choice of the fit int
val. Fit intervals weretmin /tmax 5 2/10. Forb values be-

of
s
FIG. 15. Correlation functions type 1,b 5 0.17,mu 5 md 5 0.02, ŝu ~left!, and ŝd ~right!. The symbols have the same meaning a
above.
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6430 53A. ALI KHAN
tween 0.15 and 0.17, theŝu energies lie slightly below
2muR so that they might be bound in this region. For large
b they get larger than twice the renormalized fermion mas
In the parameter region studied, allŝd masses are larger than
2mdR . From the simulation results atb>0.075, one ob-
serves that far in the symmetric phase,pd and ŝd states are
degenerate, as one would expect from restoration of ch
symmetry.

Correlation functions for charged composite states (ūd)
have been calculated forb values aroundbcu , bcd and for
b50.12. For smallb, the correlation functions suffer from
bad noise problems, and the signal appears to fall off with
energy larger than the inverse lattice spacing. For largeb
there is a good signal, but the correlation function falls o
with an energy which isO(1) in lattice units and thus much
larger than the sum of the renormalized fermion masses.
b50.12, there is a signal in the channel considered and
energy is of the order ofmuR . However, the renormalized
u mass is large@O(1)# at those values of the coupling and
cannot be determined reliably because correlators are v
noisy. Thus no evidence for charged bound states, with sm
energies in the limit of large cutoff, has been found.

B. Renormalization group flows

In Sec. III it was discussed that in the two-charge mod
the cutoff cannot be removed if the renormalized coupling
kept finite. In such cases there is always the question if th
are parameter regions where physics can be kept fairly c
stant while the cutoff is changed. In QED with one set o
charges, in general flow lines of constant mass ratios invo
ing composite states cross flow lines of constant renorm
ized charge even before the maximal cutoff resulting fro
triviality is reached. Only in the sector with very smal
charges and masses are the flow lines nearly parallel,
physics can be kept nearly constant. There are indicatio
that the situation can be improved if four-fermion interac
tions are included@21#. In the two-charge model, the two
species of fermions interact with each other only weakly a
one expects the behavior of flow lines belonging to thed to
be completely different from the behavior of those belongin
to theu.

The physically most interesting region in the phase di
gram is aroundb.bcu and at small bare masses. Looking a
Table IX, it seems reasonable to assume that energies
composite states of one fermion only have a very small d
pendence on the bare mass of the other fermion and thus
flow lines in the planem[mu5md can easily be generalized
to the two-dimensional flow surface. To obtain flow lines i
themu5md plane, an interpolation between the grid of ac
tual simulation results in this plane is performed. For thi
the dependence of mass ratiosS on the simulation param-
eters is assumed to be as follows:

lnS5a1bb, m fixed, ~47!

lnS5c1dlnm, b fixed. ~48!

The ansatz in Eq.~47! is motivated by the logarithmic rela-
tion Eq. ~35! between renormalized masses and the char
whereas Eq.~48! is motivated by the scaling behavior ex
pected from the equations of state. Figure 16 shows lin
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with a constant ratioS5muR /mpu
in themu5md plane.S is

varied in steps of 0.1 from 0.4 to 2.1. The picture sugge
that the lines flow intobcu . Generalizing this to different
values ofmu andmd , one obtains a picture about the flow
as shown in Fig. 17. SurfacesS5const are expected to end
on themu50 plane at the phase boundary of theu. As the
thick black line in Fig. 17 indicates, one generally cann
keep the ratio of fermion and pion masses constant on a
with constant fermion mass ratio and renormalized char
except probably in the perturbative region.

Figure 18 shows lines with a constant rati
S5muR /mŝu

. S is varied in steps of 0.025 from 0.3 to 0.6

The lines do not flow intobcu . One expects that lines o
constantbR and fermion mass ratio will also, in general, no
lie on the surface one obtains from generalizingS to the
three-dimensional parameter space. However, for very sm

FIG. 16. Lines with constantmuR /mpu
in the mu5md plane.

The black dot denotesbcu .

FIG. 17. Sketch of a surface with constantbR and a surface with
constantmuR /mpu

. The thick black line denotes a constant fermio
mass ratio on the surface with constantbR .
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couplings and masses it seems that flow lines with const
coupling and fermion mass ratio follow surfaces with con
stant mass ratios closely and renormalizability is essentia
restored. Lines with constantS5 mdR/mpd

are shown in Fig.

19.S is varied in steps of 0.0125 from 0.025 to 0.1. The line
show that this mass ratio is, for large couplings, fairly ind
pendent ofmd .

V. CONCLUSIONS

In this paper a lattice study of noncompact QED with tw
sets of staggered fermions with charges 1 (u) and 21/2
(d) ~‘‘two-charge model’’!, is presented. The phase diagram
is obtained from the chiral condensates. They can be
scribed by a fit with equations of state of an O~2! symmetric
linears model with logarithmic corrections to the mean-fiel
equations. Chiral symmetry breaking occurs at different va
ues of the bare coupling for both fermions, for theu fermion
at bcu50.173(1) and for thed fermion atbcd50.047(1).
The most interesting candidate for a continuum limit of th
model is atbcu , withmu 5 md 5 0. This is the end point of
the line on theb axis where renormalized masses of bo
fermions are zero in units of the cutoff. There are indicatio
that for smallerb, the renormalizedd mass can go to zero,
while the renormalizedu mass is finite. Ifb is lowered past
bcd , both renormalized masses are always finite.

The renormalized coupling has been determined a
found to be compatible with perturbation theory. Other e
fects to the charge renormalization, such as possible char
bound states, seem not to give a noticeable contribution. T

FIG. 18. Lines with constantmuR /msu
in the mu5md plane.

The black dot denotesbcu .
ant
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agreement with perturbation theory indicates that the reno
malized charge of all fermions vanishes even if only on
becomes massless. An estimate for the validity bound of t
two-charge model was obtained and generalized to
charged fermions in the standard model. Including all know
charged fermions, one gets an upper bound ofaR&1/80 if
one assumes QED to be valid up to the Planck scale.

Study of composite states (ūu and d̄d) has shown that in
the neighborhood of the physically interesting pointbcu ,
only theūu states are bound. Masses ofd̄d states areO~1! in
lattice units in this region of the phase diagram. It appea
that because of the shape of renormalization group flows
mass ratios, one cannot keep physics constant even appr
mately in the investigated parameter region. The theo
seems to already become inconsistent at scales which
lower than the cutoff because of triviality. However, ther
are indications that renormalizability is approximately re
stored in the perturbative region. The situation that th
theory is, in general, not renormalizable, may be improve
by including other operators into the action.
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in the mu5md plane.

The black dot denotesbcu .
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