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SU(3) decomposition of two-bodyB decay amplitudes
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We present the complete flavor 8) decomposition of decay amplitudes for decays of the triphsf (
BY, BY) of B mesons nonleptonically into two pseudoscalar mesons. This analysis holds for arbitrarily broken
SU(3) and can be used to generate amplitude relations when physical arguments permit one to neglect or relate
any of the reduced amplitudes.
PACS numbdps): 13.25.Hw, 11.30.Hv

[. INTRODUCTION some of which are taken to be suppressed on physical

grounds; for instance, the diagram describing the annihila-

The current understanding of charge-changing quark trartion of the valence quark-antiquark pair is said to be sup-

sitions in terms of the Cabibbo-Kobayashi-Maskai@M)  pressed by a factor of the meson decay constant over its
mixing matrix [1] is becoming progressively more open to Mass. Then, since the &) flavor structure of the interme-

scrutiny. Large numbers of new experimental results involv-diate quark lines is simple, one can calculate a set of decay
ing the physics ob quarks permit one to perform incisive @MPplitudes in terms of reduced &) amplitudes and look

tests on the ill-known parameters of the third quark generator rglatlons between them. Because the .coefflcqents are pro-

tion. The decays oB mesons should provide an ample test- port|_onal to CKM elements_ and strong interaction phases,

ing ground for determining quantities of interest. WhetherSOIV'n.g. the system of equations permits one to extract these

the CKM matrix is really unitary, the significance of the size quantities. However, the quark diagram approach has two

hierarchy observed in CKM elements, and the origirCd? major drawbacks. First, the exact nature of (SUgroup

iolati : that miaht b ved. at least i theory is not fully manifest in such a description, so that
violation are issues that might be resolved, at least in party ions thys derived tend to appear as surprising cancella-
within the next decade, owing to improved experimental in

. “tions between diagrams, and second, the dynamical assump-
formation.

Before thi Gimisti b dertaken. h tions mentioned above are at best only semiquantitative and
etore this optimistic program can be Undertaxen, NoW+, 4t jend themselves well to systematic corrections.

ever, one requires tools of analysis that facilitate the extrac- | ; , ;
. . n this paper, we remedy the first problem by presentin
tion of the relevant parameters from the data. The chief prob bap y P y P g

. . . the complete S(B) decomposition for two-body nonleptonic
lem is that virtually all decays 0B mesons contain at least decays of theB triplet to pseudoscalar mesons with and
one hadron, and fundamental quark-related quantities are n

; b i NQithout charm, including arbitrary breaking of &) (as
tonou;!y difficult to extract from the corresp%ndmg Qaqromc well as isospih symmetry. Many of the relations derived in
quantities. Furthermore, the neutBamesonsB; andBg mix

. . L L o ”  Refs.[2] correspond to the suppression of Hamiltonian op-
with their antiparticles, thus complicating particle identifica- o 4tors transforming under particular irreducible representa-

tion. Nevertheless, one can make progress in both of thesg,ns of SU3), while others correspond to chance cancella-
areas from knowing the symmetry of the underlying theorysjong owing to the phenomenological neglect of particular
and a few of its dynamical properties. _ quark diagrams in their description. The second problem will
A case in point is an interesting series of pap@s in e addressed in a future publicatipfi. The current paper is
which it is claimed that one can disentangle CKM elements, |aference work that permits one to perform the(BU
and strong-interaction final-state phase shifts from ”Onlepénalysis of these decays using any particular set of dynami-
tonic two-bodyB decays. The key ingredient in this analysis c5| assumptions. Its chief advantage is that, while one can
is the ided 3] that the numerous possible experim%ntal Meayyrite down an Hamiltonian with an arbitrary number of pa-
surements of nonleptonic decays of the mesBiis By, and  rameters to produce a model, the number of BUeduced
B2 can be related using the flavor 8) approximate sym- amplitudes for given initial and final states is a finite and
metry of the strong interaction Lagrangian. Such a symmetrgxactly calculable number, and all relations obtained due to
exists owing to the relative smallness of the d, ands  symmetry alone are made explicit.
quark masses compared to the QCD sc¢elgp. According This paper is organized as follows. In Sec. Il, we describe
to Refs.[2], with (i) a large number of these rates eventuallytwo equivalent means by which one may obtain the neces-
measured andi) mild dynamical assumptions on the strong sary Clebsch-Gordan coefficients to decompose the physical
interaction physics interpreted at the quark level, one obtaingmplitudes in terms of S(3) amplitudes. In Sec. Ill, we
through group theory an overdetermined system of equaexplain the counting of these two types of amplitudes in fully
tions, which can be solved to isolate CKM elements andbroken SU3). In Sec. IV the means by which relations be-
strong-interaction final-state phase shifts. TBedecays in  tween physical amplitudes are obtained is explored. We con-
this approach are described in terms of naive quark diagramsider examples arising from the assumption of an unbroken
SU(3) Hamiltonian defined through a four-quark operator, as
well as the inclusion of linear S3) breaking. Section V
*Electronic address: bgrinstein@ucsd.edu discusses directions for future work and concludes. The
"Electronic address: rlebed@ucsd.edu group-theoretical results are contained in the Appendix.
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Il. SU(3) GROUP THEORY

1 - —
A full treatment of the S(B) decomposition of physical M= ﬁ(+uu+dd+ss) (26

amplitudes is completely equivalent to the application of the
Wigner-Eckart theorem for the group 8). One obtains the for the light meson none®,
amplitudes for the decays of physical particles into reduced

SU(3) amplitudes, and the connections between these two B/=+bu, BJ=+bd, BJl=+bs 2.7
bases are simply Clebsch-Gordan coefficients. There are two
ways to achieve such a decomposition. for the tripletB’s,
The first method is to work with roots, weights, and lad- < — I R
der operators in the usual manner of Wigner to obtain the D*=+cu, D" =+cd, Dg=+cs (2.8

desired coefficients. Tables of &) Clebsch-Gordan coef-
ficients for smaller irreducible representations have existe
for some time[5], although tables containing all the repre-
sentations one requires can be more difficult to f@ld Even
with the coefficients in hand,_ one must convolve s'everal lay.Tor the antitripletD’s. In addition, there is the charmonium
ers of Clebsch-Gordan coefficients to complete this task; th'%inglet
follows because combining two representations is a binary
operation, and each additional initial- and final-state particle 7.= +CC. (2.10
requires another product. One must also take care to observe
the proper phase conventions, which ultimately arise wheThe physical mesonsg;, »’ are defined through the %2
one requires representations and their conjugates to obey sbtation
multaneously the same phase convention for ladder opera-
tors.

The second method is to work directly with tensors. In-
deed, Clebsch-Gordan coefficients are simply the coefficients
of the couplings of tensors that have been appropriately symwhere the peculiar sign conventions on the mixing are de-
metrized, normalized, and rendered traceless. The appeal fifed so that the angl® agrees with that of Gilman and
this approach is that one can immediately think of the tensor&auffmann[7], in which the mixing is phenomenologically
as pieces of the interaction Hamiltonian. In any case, bothletermined to assume a value &% — 20°.
methods must give identical results, and we have confirmed In the tensor approach the signs from the above phase
this through direct calculation. convention are ignored. Indeed, the light meson pseudoscalar

In either approach, the phase differences between reprectet is taken to be represented by the traceless matrix
sentations and their conjugates must be included in some
fashion. These phases arise from the convention one adopts 1 1
. . - . . 04 =
in relating physical states to weights in group space. The \/577 + \/6778
most convenient means of doing so is to take the fundamen-
tal and fundamental conjugate representations to consist OfM 1 1

= T —— %+ = KO '
the quark flavor states 2 /6 8

u B d K- F _\/27]8
3=| d 3= . (2.1 3

S S (2.12

. so that the signs ofr®, 7, ng, andK~ are opposite to
Including an additional sign for eachpermits one to assign those in Eqs(2.2—(2.6). Similarly, in a direct tensor ap-
the physical mesons to the weights in SUrepresentations proach one drops the above signs for bgthandD®. These
without additional phases. In this convention, the flavordifferences in convention result in different signs in the

fpr the tripletD’s, and

D°=—cu, D*=+cd, Di=+cs (2.9

Y

!

n

—cos +sind\ | g
| —sing  —cow)\ n,

, (2.1

’7T+ K+

wave functions of the mesons of interest are physical amplitudes; there is one relative sign change for
L o each time one of the aforementioned particles appears in an
K*=+us, K%=+ds, (2.2 amplitude. These differences are trivial to implement.
— 1 [ o [ll. COUNTING AMPLITUDES
m=+ud, #°=--—=(+uu—dd), = =-du,
2 In completely broken flavor S@3) for a sector of given

(2.3 quantum number&orresponding to a Hamiltonian with par-
ticular eigenvalues of the diagonal generators taken to be the

1 o isospin third component; and the hypercharg¥) there
ng=— T(+uu+dd—235), (2.9 must be exactly as many reduced (8Uamplitudes as dis-
6 tinct physical processes. This is just a statement of the com-

L o o pleteness of the amplitude basis in either physical or group-
K=+sd, K =-su, (2.5 theoretical terms. For example, consider the case of



6346 BENJAMIN GRINSTEIN AND RICHARD F. LEBED 53

B— PP, whereP here and throughout the paper designatess the case for arbitrary initial and final spin states. It is also
the light pseudoscalar nonet consistingmfK, %, ' [the  required that the final-state particles occupy two weights in
octet and singlet components of the physigabnd »' are  the same representatiéh not merely two distinct copies of
designatedng and »;, respectively, and are related by Eq. f’.
(2.11]. Because group theory relates processes with the It may seem odd that what we call the reduced matrix
same HamiltonianAl; and AY (which are equivalent to element(f||R/||i) is dependent upon the isospin Casitjir
electric chargeAQ and strangenesAS changed, and in  not just the SUB) irreducible representation, of the Hamil-
any process electric charge is conserved, sets of amplitudésnian operator. This seems to contradict the Wigner-Eckart
with a particular strangeness chany8 are related by group theorem, which states thatl of the matrix elements of a
theory. For processes not changing strangeness between iparticular tensor operator, for states in given initial- and
tial and final states, for example, one counts 12 amplitude§nal-state representations, are related by Clebsch-Gordan co-
when bothP’s are octet mesons, four with one ocfetand  efficients. While the theorem is certainly true for each tensor
the other being the singley,, and one Bg_> 71m1) With operator contributing to a physical process, the Hamiltonian
both P’s being singlets. It must be that there are exactlyitself may have dynamical coefficients that are unequal for
equal numbers of S@) reduced amplitudes for each set of different components of a given representation. To be ex-
particle representations, and this is indeed the ¢sse the  Plicit, let us adopt the notation for §8) Clebsch-Gordan
AppendiX. coefficients of de Swarf5]. The coefficient coupling the
In order to count these amplitudes, one must construct theepresentation®,® R,— R, is indicated by
most general possible transformation structure for the inter-
action Hamiltonian. Because the Hamiltonian connects initial Ra Ry Re
to final states via the matrix elemenrt§7|i), the most gen- lalasYa lolpsYp leleaYe)
eral interaction Hamiltonian consists of exactly those repre-
sentationsR appearing inf®i. The labelsi andf here are For brevity, let us denote the quantum numbeérks,Y
used to denote both states and(SUrepresentations. There Within an SU3) representation by the collective label
is one further complication in that states of @Urepresen- Then the physical amplitudel is decomposed into our re-
tations are uniquely distinguished when eigenvalues of notluced matrix elements by
only I; andY but also the isospin Casimif are specified.
The full reduced S(B) amplitude is thus described by the
notation{f||R|[i). ~
If the two final-state particles are both in the samg3U R v’
representatio’, then their amplitudes obey one further re-
striction owing to the Pauli exclusion principle. Because the ,
initial and both final particles are spin zero, the spatial part of L (R'IIR,/IRq)-
the final wave function is-wave and therefore symmetric ¢ (3.4)
under interchange of particle labels. But because the final-
state bosons transform under the same representation Nbte the order of coupling of the representations: First, the
SU(3), they are identical particles modulo &) indices, and final-state representations are coupledRj@ R,—R’, and
the total wave function must be symmetric under exchanginghis representation in turn is coupled to the Hamiltonian
the two particles. Therefore, the flavor wave function alonethrough the conjugate of the initial representation,
must also be symmetric under this interchange. This symmer’gR.—R, or fei—H. As pointed out in the Appendix,
trization, which we write a$= (f'®f')s, eliminates a num-  coupling in this order ensures that the Clebsch-Gordan ma-
ber of possible representations. For example, in the case @fices are orthogonal. The phase in the above expression
B— PP with P in the octet, the amplitudes priori trans-  arises from the fact that we use not the initial representation
form as i, but its conjugatd; T is the triality of the representation
_ R., as defined in Sec. Il, and guarantees the reality of the
888=198508,0 10010027, (3.9 phase. In the present case, it induces an additional sign on
decays o, but notB§ or BY. On the other hand, we may
choose to couple representations in a more standard order. If
we decompose the Hamiltonian as

(3.3

' ‘ R, R, R
A(iRCHfRabe):(_l)‘\ler;+%‘]EZ ( a b )
Ve Va Vp R !

Vg Vp V

R R, R
14

but the only ones allowed by the exclusion principle are

(8®8)s=1085327. (3.2
Note that this restriction fails to hold if the final state does H=> cr, MY, (3.5
not possess a completely symmetric spatial wave function, as R

then the expression for the physical amplitude becomes

The exact relations ar®=1;+3Y+Q, and S=Y— 3T, where
Qy, is the charge of quarks not belonging to the(S){lavor triplet, A Re_, fRag Rb) — E Cr, 2
andT is the triality of the SW3) representation, which is the num- Ve Ya "' Ry R v/
ber of fundamental representation indices modulo 3 required to ,
build a tensor transforming under the given representation. For X( R R R )(R’||R||R) (3.6
3,3, this number is+ 1, whereas for octets and singlets it is zero. v’ e '

v, v, Vv

R, Ry R’)
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which produces the usual Wigner-Eckart reduced amplitude IV. AMPLITUDE RELATIONS
(R'[[R[|R;), independent of any other quantum numbers, The above counting describes how one enumerates the

but the Hamiltonian coefficients have nontrivialv depen- . o )
dence in general. Note that the products performed here aFeompIete set of amplitudes for arbitrarily broken S} This

R.®R,—R’ andR®R.—R’ or Hai—f. The relation be- counting holds even if there is no good physical reason to

. . organize particles into S3) multiplets. For example, one
tween the two reduced amplitudes can b.e establ!shed by thceould take eight arbitrary particles and call them an octet of
use of symmetry and completeness relations satisfied by th@

L U(3), and the group-theoretical decomposition, which is
SW3) Clebsch-Gordan coe_ff|C|enE5]. Up to a phase depen- purely mathematical, would remain true. Clearly one re-
dent upon the representations coupled,

quires physical input to make practical use of the group
theory. If one finds a physical reason why a particulak3U
imR’ reduced amplitude should vanish, then the particular combi-
(R'IRJIR)=cr, \/ 5=5(R’IIR||Rs). (3.7  nation of physical amplitudes to which it is equal also van-
dimR ishes. This corresponds to taking the inverse of the transfor-
mation matrix O, for which each row decomposes a

From this expression we see that the two definitions differ irﬁ{artlcular physmalda_mplrl]tuo'la\e mto(;fedur(ied (Swa;nplltgdes.
that ours absorbs the dynamical coefficient appearing wit owever, as noted in the Appendix, t eew_re uced ma- |
the given operator in the Hamiltonian. Once one specifies, alix elements are normalized so that the basis transformation

H . —-1_ T
in the Appendix, the values of, andY for the Hamiltonian ~ MatricesO aredort'hrc])gﬁnal, h'e?]pé? f—O ' gndl the rela-
operator, the only free index remaining#nis |I. Finally, in tion associated with the vanishing of a particular(Sjure-

the case that the two final-state particles are in the sam uced amplitude is obtained by merely reading off the entries

representation as described above so B¢ R, , then in rom the corresponding column @&. The relations also hold

the above expressions one makes the symmetrizing substit o the charge-conjugated stgtes, aIthqug_h_the presence of
tion P violation means that amplitudes for individual processes

do not necessarily equal the amplitudes for their conjugate
processes. Finally, as discussed in Sec. Il, these matrices are
obtained using a particular phase convention. Choosing an-
other either results in changing the signs of particular particle
states in terms of their quark-antiquark indices or changing
(3.8 the signs in the definition of reduced matrix elements. These
correspond respectively to changing the signs of rows or col-
umns of the matrices in the Appendix, operations which do
not affect their orthogonality.

One begins by assuming a form for the unbroken Hamil-
onian. For the case d decay, this is of course the four-
guark Hamiltonian derived from the tree-level weak interac-

_—

2

!

!
Vg Vp V

!
Vg Vp V

Vyp Vg V

(Ra R R’) 1{(Ra R R’)+(Rb Ra R/)_

Note that, for identical final-state particles & vy), this
substitution induces an additional factor ¢2 in the ampli-
tude. While this factor complicates what we mean by thet
physical amplitude, the substitution E¢B.8) nevertheless

preserves the orthogonality of the Clebsch-Gordan matrice

as can be shown by either symbolic or direct numerical cal- o

culation. A trivial example of this factor is illustrated by the

analogous case of spin &), where starting with the four 4G¢ _ L

two-spin basis state$?, 1|, |1, ||, the symmetrization Hint:fvglbquqs(bLY’LQu)(QZLm%L)' 4.1

indicated by Eq.(3.8) correctly gives 1{2 (1| +|1), but
also 1A/2 (211) and 142 (2] |).

We close this section by explaining the physical interprewherequz are charget2/3 (u,c) quarks andys is a charge
tation of the amplitudes computed in the Appendix. Whereas-1/3 (d,s) quark. Note that there are several physical as-
the physical amplitude for distinct spinless final-state parsumptions already included in this ansatz. In writing the
ticles (vo# v,) simply squares to the measurable rate, oneHamiltonian this way, the physic@ decay is assumed to be
must include additional Bose symmetry factors when theyominated by the decay of the quark into ac or u quark
final-state particles are identicaR{=R, and v,=vp). We  yth the emission of a virtuaW~, which subsequently de-
have noted that the amplitude given by E§.4) with the  cays into a quark-antiquark pair. All other contributions in-
substitution Eq.(3.8) for identical particles is a factot2  volving QCD renormalization effects or penguins, for ex-
larger than the naive definition of the physical amplitude. Ongmple, are considered negligible in this limit.
the other hand, to obtain the decay rate one multiplies the One can analyze the Hamiltonian for each case of flavor
naive amplitude by an exchange factor(glving the usual  content. The field operatots, q; for g;=u,d,s transform as
physical amplitudg squares, and divides by an identical par- components of_,33 respectively, because these operators re-

ticle factor 2! in the rate to a}void_multiple cpunting. _It fol- spectively destroy initial-state quarks and antiquaks: c
lows that the rate fow,=wvy is twice the naive amplitude 5 ot course a singlet in flavor SB). For the case\C=0

squared, or simply the amplitude of E@.4) squared, the | iin no cc pair in the final stateB— PP), the SU3) rep-
same as fow,# v,. Because the universal rule rateam- | oqentations allowed bit ;. are those in
n

plitude? is simpler than keeping track of factors of 2 in cer-
tain cases, we present in the Appendix the amplitudes given o .
by Eq.(3.4), using Eq.(3.9) in all cases wher®,=R;,. 3®3®3=3®3®6515. (4.2
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The redundancy of th@ representation in the Hamiltonian is These relations follow entirely from the fact that we have
irrelevant, because one cannot distinguish in this case theroken the S(B) symmetry in the Hamiltonian, but not iso-
two contributions, which transform in the same way. It fol- spin.

lows that the lowest-order Hamiltonian has pieces transform- A similar analysis holds for Hamiltonians with different
ing as3, 6, andT5, but not24 or 42 [see Eqs(A2), (A6)], flavor con'tents. In general, t.he group theory is §impler for
and so for eitheAS=0 or AS= +1 there are five amplitude decays with charm quarks in the final state, since charm
relations corresponding to the five vanishing amplitude comiransforms as an §@) singlet. _

binations transforming undé4 or 42 in Egs.(A2), (A6). It Amplitude relations may also appear for particular values
is readily seen why th@4 and 42 representations do not Of AS since entire S(B) representations may be disallowed
appear at leading order: These representations require thr8¥ the particular Hamiltonian used. For example, in the case
indices in either the fundamental or fundamental conjugat®— DD or B— 5P with AS=+1 [Egs.(A33), (A38)], the
representatiofisee Eq.(A1)], and this is impossible with a lowest-order tree-level Hamiltonian is

four-quark (two-quark, two-antiquankoperator. These rela-

tions may be obtained as the amplitude combinations that Ho~(bc)(cs), 4.7
obtain no contributions from the operators analyzed in Refs.
[3]. where we have suppressed all except flavor indices. In terms

In order to analyze isospin content, we must furtherof flavor SU3), this operator falls into th& representation.
specify the number of strange quarks created or destroyed ifi we include one insertion of S(3) breaking of the form
the process. FOB— PP with AS=0, the possible isospins EQ. (4.3), then
are those i® 33, namely,| =3,3; and forAS=+1 only -
two quarks are light, sé=0,1 are possible. In the $B) oH~(bc)(cs)(ss). (4.8
symmetry limit, this does not eliminate any additional am- _
plitudes besides the ones mentioned above. The analysis f@roup theoretically, one may first combine&s) € 6& 3.
other values ofAS in B—PP is straightforward: Mores ~ However, 3 does not contain a state with the hypercharge
or s quarks implies that the maximum allowddfrom a  Y=+2/3 of (s®s) and so does not occur. Taking the prod-

four-quark Hamiltonian is smaller. uct of these representations with the remairéng
Let us now consider S@3)-breaking corrections to the _ - o
lowest-order Hamiltonian. The simplest such breaking origi- 603=1503, 3®3=683. (4.9

nates through insertions of the strange quark mass,
_ In particular, a Hamiltonia®, which is allowed if all values
Hs=mss, (4.3 of AS are considered, does not occur in the cAS= +1,

which transforms as ah=0, Y=0 octet plus singlet in and so one obtains an amplitude relation

SU(3). Clearly neither piece changes the isospin of the (8/6,_,]13)=0 4.10
Hamiltonian; this would be accomplished by insertions of =1 ' '
the up or down masses, which are much smaller. Let u
consider SWB) breaking linear inmgs. In the case of
B— PP, the Hamiltonian contains pieces transforming unde

Similar reasoning applies to the deca%EP with
IAS= +1 [Eq. (A27)], for which one finds

(306015 (168)= 306015624042, (4.4) (15|10 -543)=0 (4.1

not counting multiplicities. Comparing to Eq¢A2) and for tree-level plus first-order SB) symmetry-breaking terms
(AB), we see that every allowed Hamiltonian @Urepre-  in the Hamiltonian. Note that this conclusion is specific to
sentation occurs. Nothing is gained group theoretically bythe choice of form for the Hamiltonian. It should also be
stopping at linear order in strange-quark masses. This intefoted that these relations may be obtained through the iso-
esting conclusion turns out to be true for every decay conSPin analysis described above. _

sidered in the Appendix, when all allowed valuesA® are In greatest generality, the &) reduced matrix elements
considered. It is generally true for an amplitude with a total@re all independent, because the physical amplitudes need
of three mesongeach of which is group theoretically a not be related in any way. Each such reduceq matrix elem_ent
quark-antiquark stalebetween the initial and final states, corresponds to a component of the Hamiltonian transforming
because the Hamiltonian is a six-quétkree-quark, three- under a particular representation of SUwith a particular
antiquark operator, and so every representation that can cori/@lue of isospin, and so in the most general situation the

nect the initial and final states can occur in the Hamiltoniancoefficient of each component is independent. However, in
On the other hand, because is anl=0 operator, the re- the usual case, one uses a Hamiltonian with particular opera-

striction that onlyl = 1,2 are allowed forAS=0 andl=0,1  tors (typically written in terms of quark fieldsthat can be

are allowed forA S= + 1 remains true even when the lowest- exPlicitly decomposed under $8). Then the reduced matrix
order Hamiltonian is corrected with an arbitrary numberéléments allowed by these operators are related by a product

of ss insertions. One then still has the relations of the Clebsch-Gordan coefficients obtained by projecting
the given operators onto $8) representations multiplied by
(27142,-5/4|3)=0 (for AS=0), (4.5  the explicit coefficients of the original operators themselves.

As an example, consider ti8— PP reduced matrix ele-
(27142,-,||3)=0 (for AS=+1). (4.6)  ments (f||I5_4]]i) (in AS=0) and (f||15_34l]i) (in
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AS=+1). A tree-level analysis suggests that these matrixSU(3) flavor properties in a Hamiltonian, and as such give

elements are dominated by the Hamiltonian rise to a set of S(B) irreducible representations. In this way,
4G the quark diagram approach is group-theoretically equivalent
F _— N . .
Hie=—=[ VX V(b y*u ) (U y,d) to the more formal approach, as was first pointed out by
N Zeppenfeld[3]. All possible representations that do not ap-
. — _ pear in the Hamiltonian thus give rise to amplitude relations.
+VipVus(bLy*u) (U y,so) 1. (412 The analysis of isospin relations is particularly straightfor-

The gluonic penguin diagram does not contribute to the parvard, as we have discussed. Indeed, in addition to the nu-

of the Hamiltonian transforming as when SU3) is un-  Merous isospin relations derived[i2], we add one they have

broken since the gluon is an &) singlet, and so too must omitted,

be the quark-antiquark pair produced by it. Thus the penguin A(Bg—> 2e70) =0, (4.16

process has flavor content only through the dedaysd ) . i o

(I1=3) or b—s (1=0), which transform as components of which vanishes begause nelthgr the Ham|ltpn|an @0

a 3. The SUQ3) structure of the four-quark operators in Eq. nor the S_l.dS)—breakmg cqrrectlor(4.8)_ contains anl =1
piece, while the process in question is plirel (only the

4.12 is manifest, and one can immediately project them'. o . .
E)ntOZ)thel_S to obtain the corresponding Clebgcr?-GJordan co-plon carries isospin in the decayrhe latter fact is corrobo-

o S ) ... _rated by a quick glance at the third row of E§38). The
eff'c"?”ts- The two Hamﬂtoman operators otherwise dlfferSU(B) relations in[2] may be obtained through analysis like
only in their coefficients, two combinations of CKM ele- hat leadi Eas(4.1 d41l h hei
ments. The result of the calculation is t at_ea N9 to_ qs4.13 an (4. 493 W ereas_t elr more

' detailed analysis of neglecting certain quark diagrams would

(F]|15,_4]i) B V3 Vs be obtained in our language by decomposing the correspond-
<f||E i) =+ 2 V' (4.13 ing Hamiltonian quark operator into a combination of differ-
1=3/2 ent SU3) representations. Finally, a number 9f7’ rela-

regardless of the initial- or final-state representationf) (0f  tions are possible when one includes a value for the mixing
the particles. The corresponding expression within a giverf 5, 4 as discussed in Sec. IL.

strangeness sector is even simpler, because then the CKM

element for eacfl5 component is the same. In particular, V. PROSPECTS AND IMPROVEMENTS
(F115,_ 141} . 1 (F]115,_|li) . 1 The purpose of the discussion and formulas contained in
(f||1_5,:3,2||i> 22’ <f||1_5|:1||i> 2 this work is to provide a complete analysis of the group-

14 theoretical problem of the decay Bfmesons into two pseu-
doscalar mesons. Because it is completely general in the
. T X mathematical sense, it provides a valuable tool of analysis
plicity of the rafios in this example is th_at only one operators, researchers performing computations of such processes.
St“%C‘“re (the fqur-quark operata)rdomlnate§ the Hamil- But this strength is also its weakness: No physical content
tonian for the given decays; when several different operatoy ¢ incjyded, except for trivial illustrative examples. Never-
structur_es c_ontrlbute to the Hamiltonian for a particular de'theless, once any particular Hamiltonian is adopted, one can
cay, ratios like Eqs(4.13, (4.14) are replaced by immediately see exactly which physical amplitudes vanish or

(FlIRI)  =ZjeC; are related for symmetry reasons, and why.

(f||R|',||i> - Sl (4.19 The fully consistent appll_catlon of this a_naIyS|s to the

physical problem of unambiguously extracting CKM ele-

whereC andC’ are Clebsch-Gordan coefficients, andire  ments and strong-interaction final-state phase shifts requires
coefficients of the different components of the Hamiltonian.one to impose an SB8) decomposition on the full Hamil-
This is the case when, for example, penguin diagrams, diaonian taking part in the8 decay, including short-distance
grams involving the participation of the spectator quark, orQCD corrections and S3) symmetry breaking. Because
SU(Qcorrections are significant. For example, in the case ofjluons transform as singlets under flavor (3)) many ex-
the 15, O(my) corrections to the Hamiltoniat¥.12) intro-  tremely complicated diagrams involving large numbers of
duce an additional operator transforming asfa since, in  gluons and sea quark-antiquark pairs can still be taken into
Eq. (4.2, 158D 15. On the other hand, even lowest-order account in a simple way using the flavor symmetry. On the
Hamiltonian operators transforming underor 6 corrected other hand, complications may arise, such as the presence of
by the SU3) octet breaking producgs's. Then the relations potentially important electroweak penguin diagraf,
(4.13, (4.14) are replaced with ones of the ford.15. For  which have a nontrivial flavor structure and thus must be
the 15 such corrections may be small, but it is often the casareated carefully. By choosing reduced matrix elements in-
that two or more operators of the same numerical order andensitive to these corrections, one may be able to avoid this
distinct coefficients appear when considering a particuladifficulty. Amplitude relations that survive these corrections
Hamiltonian representation; in such cases, Bdl5 must be  will be invaluable for studying the detailed structure of the
used. CKM matrix.

We comment briefly on the relations that can be derived There is much to be learned even from the amplitudes that
through the above analysis and those derived in R@fs. are not suppressed. In this case, the interesting question is
Each relation unbroken by the full set of quark interactionswhether the reduced matrix elements obey the numerical hi-
described if 2] appears because the quark diagrams may berarchy predicted by a more naive analysis, based upon some
reinterpreted as collections of quark fields with definitephysical model, that estimates the size of operator coeffi-

for AS=0 andAS=+1, respectively. The key to the sim-
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cients. With enough rates eventually measured, one will b&ypercharge are fixed in the &) convention of de Swart
able to compute reduced matrix elements directly, withouf5], in that the first condition of the Condon-Shortley con-
recourse to model-dependent assumptions. For example, thention is extended to hold for both isospin akdspin
issue of whether gluonic penguins or tree-level amplitude§V,=3Y+ 3I3). The arbitrary choice ol spin instead of
dominate a given process will be directly resolved, inasmuchu spin or some combination leads to the convention in Sec.
as their corresponding Hamiltonians transform differentlyll that the fundamental conjugate statetransforms with
under SU3). This knowledge can be applied to many otherphase opposite to that df s. The phase convention on the
interactions involving heavy quarks. We plan to addresghysical states is also described in Sec. Il. Each matrix, as
these questions in greater detail in a future publication.  one can check, is orthogonal, thus establishing that th@SU
Note added in proofThe decompositions appearing in reduced amplitudes form an orthonormal basis equivalent to
this paper apply equally well when the two final-state lightthe amplitudesA.
pseudoscalar mesons are replaced with the two light vector The physical decay rate is obtained in all cases by squar-
mesons occupying the corresponding positions in(33U ing the quantityA. If the two final-state particles are identi-
wei_g_ht space. In this case, the decompositions hold for eackg|, the quantity4 is the usual physical amplitudevhich
helicity amplitude separately. already includes an identical particle fadtdivided by 2,
ACKNOWLEDGMENTS as described in Sec. III.' o
All SU(3) representations are indicated below merely by
This work was supported in part by the Department oftheir dimensions; this creates no problem for us, since no two
Energy under Contract No. DOE-FG03-90ER40546. The redistinct representations with the same dimensionality appear
search of B.G. was also funded in part by the Alfred P. Sloarn this analysis. For convenience, we also present here the
Foundation. equivalent weight notationp(q), wherep and q respec-
) tively indicate the number of fundamental and fundamental
APPENDIX: CLEBSCH-GORDAN TABLES conjugate indices in the tensor representation. The Young
Presented below is the complete decomposition in terméableau then consists of a row pftq boxes over a row of
of SU(3) reduced amplitudes for decays of a flavor-tripletd boxes. The representation is labeled with a bar<fq:
B meson into a pair of pseudoscalars wAIC=0, +1, or

—1. The phase convention is chosen to agree with that of 1=(0,0, 3=(1,0, 6=(2,0,

Condon and Shortle}g] for isospin SUW2), which is defined 8=(1,1), 10=(3,0, 15=(2,1),

by two conditions. First, the phase in the definition of the

isospin raising and lowering operators acting on a given iso- 24=(3,1), 27=(2,2, 42=(3,2. (A1)

spin eigenstate is chosen to bel; this establishes phases

within a particular isomultiplet. Second, to establish the rela- The expressions below are divided into sections first by
tive phase between multiplet® this case isomultiplets with ~ particle content of the final state, and then by the number of
a common value of hyperchangeone considers the cou- units of strangeness changed in Bielecay.

plings of the two factor representation$®, 1, with

|®=1(®) to a given product representatibn Then, for the 1.B>P,P

state of highest weight in the product multiplét€1), the N L
coupling (1®1@:1®P|11) is chosen to have phasel 2. AS=0 (Aly=+3 AY=—3)

when 1§ is the largest such value that a nonzero coupling For P,P both octet mesons, denotg;°=055%g5°,
occurs. The relative phases for states with different values akhere
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ABg—m* ) (8/115,_ 3,,l13)
ssoon| ABTTTY oo | (AT -uld) | "2
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0

b. AS=+1 (Al3=0, AY=+3)
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e.AS=-2 (Al;=+3, AY=—1
A(B—KKO) =(+1)(27|32,_5|3). (A14)
f. AS=+3 (Alz;=—1, AY=+5)
A(BI—KOKO) = (+1)(2742,_,][3). (A15)
2.B—D,P
a. AS=0 (Al;=0, AY=—2)

For P an octet meson, denotg ’= O3 PV ¢, Where
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A(B;—Dg 7) +

A(BZ—D7y) +

Sl ol
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(31131=12l(3)

(361214 13)

_|_

wil= Sl
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and
A(B2—D7y)=(+1)(3||8,143). (A29)

c. AS=—1 (Alz=+3 AY=-1)
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d. AS=+2 (Al;=—3, AY=+3)

AB2—DID7)=(+1)(8|15-143). (A35)
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2Nz "2 o5 2 i
= (A38)
1
A(BZ— ncm) 0 += 0o 42| (8B 4ll3
7 7 (8[15-0[|3)
0 L 0 \/5 0
A(Bg— 1¢7m8) ) Ty (8115,_4]|3)
and
A(B— 7671) = (+1)(1]|3-l13). (A39)
c.AS=—1 (Alg=+1, AY=—1%)
A(BI— 76K®) = (+1)(8|T5,-4]|3). (A40)
d. AS=+2 (Alz=—3, AY=+3)
A(BI— 1K) =(+1)(8][15,- 1,J[3). (A41)
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