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SU„3… decomposition of two-bodyB decay amplitudes

Benjamı´n Grinstein* and Richard F. Lebed†
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~Received 5 February 1996!

We present the complete flavor SU~3! decomposition of decay amplitudes for decays of the triplet (Bu
1 ,

Bd
0 , Bs

0) of B mesons nonleptonically into two pseudoscalar mesons. This analysis holds for arbitrarily brok
SU~3! and can be used to generate amplitude relations when physical arguments permit one to neglect or r
any of the reduced amplitudes.
PACS number~s!: 13.25.Hw, 11.30.Hv
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I. INTRODUCTION

The current understanding of charge-changing quark tr
sitions in terms of the Cabibbo-Kobayashi-Maskawa~CKM!
mixing matrix @1# is becoming progressively more open t
scrutiny. Large numbers of new experimental results invo
ing the physics ofb quarks permit one to perform incisive
tests on the ill-known parameters of the third quark gene
tion. The decays ofB mesons should provide an ample tes
ing ground for determining quantities of interest. Wheth
the CKM matrix is really unitary, the significance of the siz
hierarchy observed in CKM elements, and the origin ofCP
violation are issues that might be resolved, at least in pa
within the next decade, owing to improved experimental i
formation.

Before this optimistic program can be undertaken, ho
ever, one requires tools of analysis that facilitate the extr
tion of the relevant parameters from the data. The chief pro
lem is that virtually all decays ofB mesons contain at leas
one hadron, and fundamental quark-related quantities are
toriously difficult to extract from the corresponding hadron
quantities. Furthermore, the neutralB mesonsBd

0 andBs
0 mix

with their antiparticles, thus complicating particle identifica
tion. Nevertheless, one can make progress in both of th
areas from knowing the symmetry of the underlying theo
and a few of its dynamical properties.

A case in point is an interesting series of papers@2#, in
which it is claimed that one can disentangle CKM elemen
and strong-interaction final-state phase shifts from nonle
tonic two-bodyB decays. The key ingredient in this analys
is the idea@3# that the numerous possible experimental me
surements of nonleptonic decays of the mesonsBu

1 , Bd
0 , and

Bs
0 can be related using the flavor SU~3! approximate sym-

metry of the strong interaction Lagrangian. Such a symme
exists owing to the relative smallness of theu, d, and s
quark masses compared to the QCD scaleLQCD. According
to Refs.@2#, with ~i! a large number of these rates eventual
measured and~ii ! mild dynamical assumptions on the stron
interaction physics interpreted at the quark level, one obta
through group theory an overdetermined system of eq
tions, which can be solved to isolate CKM elements a
strong-interaction final-state phase shifts. TheB decays in
this approach are described in terms of naive quark diagra

*Electronic address: bgrinstein@ucsd.edu
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5321/96/53~11!/6344~17!/$10.00
an-

o
lv-

ra-
t-
er
e

rt,
n-

w-
ac-
b-
t
no-
ic

-
ese
ry

ts
p-
is
a-

try

ly
g
ins
ua-
nd

ms,

some of which are taken to be suppressed on physi
grounds; for instance, the diagram describing the annihi
tion of the valence quark-antiquark pair is said to be su
pressed by a factor of the meson decay constant over
mass. Then, since the SU~3! flavor structure of the interme-
diate quark lines is simple, one can calculate a set of dec
amplitudes in terms of reduced SU~3! amplitudes and look
for relations between them. Because the coefficients are p
portional to CKM elements and strong interaction phase
solving the system of equations permits one to extract the
quantities. However, the quark diagram approach has t
major drawbacks. First, the exact nature of SU~3! group
theory is not fully manifest in such a description, so tha
relations thus derived tend to appear as surprising cance
tions between diagrams, and second, the dynamical assu
tions mentioned above are at best only semiquantitative a
do not lend themselves well to systematic corrections.

In this paper, we remedy the first problem by presentin
the complete SU~3! decomposition for two-body nonleptonic
decays of theB triplet to pseudoscalar mesons with an
without charm, including arbitrary breaking of SU~3! ~as
well as isospin! symmetry. Many of the relations derived in
Refs. @2# correspond to the suppression of Hamiltonian o
erators transforming under particular irreducible represen
tions of SU~3!, while others correspond to chance cancell
tions owing to the phenomenological neglect of particul
quark diagrams in their description. The second problem w
be addressed in a future publication@4#. The current paper is
a reference work that permits one to perform the SU~3!
analysis of these decays using any particular set of dyna
cal assumptions. Its chief advantage is that, while one c
write down an Hamiltonian with an arbitrary number of pa
rameters to produce a model, the number of SU~3! reduced
amplitudes for given initial and final states is a finite an
exactly calculable number, and all relations obtained due
symmetry alone are made explicit.

This paper is organized as follows. In Sec. II, we describ
two equivalent means by which one may obtain the nece
sary Clebsch-Gordan coefficients to decompose the phys
amplitudes in terms of SU~3! amplitudes. In Sec. III, we
explain the counting of these two types of amplitudes in ful
broken SU~3!. In Sec. IV the means by which relations be
tween physical amplitudes are obtained is explored. We co
sider examples arising from the assumption of an unbrok
SU~3! Hamiltonian defined through a four-quark operator, a
well as the inclusion of linear SU~3! breaking. Section V
discusses directions for future work and concludes. T
group-theoretical results are contained in the Appendix.
6344 © 1996 The American Physical Society
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53 6345SU~3! DECOMPOSITION OF TWO-BODYB DECAY AMPLITUDES
II. SU„3… GROUP THEORY

A full treatment of the SU~3! decomposition of physical
amplitudes is completely equivalent to the application of t
Wigner-Eckart theorem for the group SU~3!. One obtains the
amplitudes for the decays of physical particles into reduc
SU~3! amplitudes, and the connections between these t
bases are simply Clebsch-Gordan coefficients. There are
ways to achieve such a decomposition.

The first method is to work with roots, weights, and lad
der operators in the usual manner of Wigner to obtain t
desired coefficients. Tables of SU~3! Clebsch-Gordan coef-
ficients for smaller irreducible representations have exis
for some time@5#, although tables containing all the repre
sentations one requires can be more difficult to find@6#. Even
with the coefficients in hand, one must convolve several la
ers of Clebsch-Gordan coefficients to complete this task; t
follows because combining two representations is a bina
operation, and each additional initial- and final-state partic
requires another product. One must also take care to obs
the proper phase conventions, which ultimately arise wh
one requires representations and their conjugates to obe
multaneously the same phase convention for ladder ope
tors.

The second method is to work directly with tensors. I
deed, Clebsch-Gordan coefficients are simply the coefficie
of the couplings of tensors that have been appropriately sy
metrized, normalized, and rendered traceless. The appea
this approach is that one can immediately think of the tens
as pieces of the interaction Hamiltonian. In any case, bo
methods must give identical results, and we have confirm
this through direct calculation.

In either approach, the phase differences between rep
sentations and their conjugates must be included in so
fashion. These phases arise from the convention one ad
in relating physical states to weights in group space. T
most convenient means of doing so is to take the fundam
tal and fundamental conjugate representations to consis
the quark flavor states

35S u

d

s
D , 3̄5S d̄

2ū

s̄
D . ~2.1!

Including an additional sign for eachū permits one to assign
the physical mesons to the weights in SU~3! representations
without additional phases. In this convention, the flav
wave functions of the mesons of interest are

K151us̄, K051ds̄, ~2.2!

p151ud̄, p052
1

A2
~1uū2dd̄!, p252dū,

~2.3!

h852
1

A6
~1uū1dd̄22ss̄!, ~2.4!

K̄051sd̄, K252sū, ~2.5!
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h152
1

A3
~1uū1dd̄1ss̄! ~2.6!

for the light meson nonetP,

Bu
151b̄u, Bd

051b̄d, Bs
051b̄s ~2.7!

for the tripletB’s,

D̄051 c̄u, D251 c̄d, Ds
251 c̄s ~2.8!

for the tripletD ’s, and

D052cū, D151cd̄, Ds
151cs̄ ~2.9!

for the antitripletD ’s. In addition, there is the charmonium
singlet

hc51 c̄c. ~2.10!

The physical mesonsh,h8 are defined through the SO~2!
rotation

S h

h8
D 5S 2cosu 1sinu

2sinu 2cosu D S h8

h1
D , ~2.11!

where the peculiar sign conventions on the mixing are de
fined so that the angleu agrees with that of Gilman and
Kauffmann@7#, in which the mixing is phenomenologically
determined to assume a value ofu.220°.

In the tensor approach the signs from the above phas
convention are ignored. Indeed, the light meson pseudosca
octet is taken to be represented by the traceless matrix

M5S 1

A2
p01

1

A6
h8 p1 K1

p2
2

1

A2
p01

1

A6
h8 K0

K2 K̄0 2A2

3
h8

D ,

~2.12!

so that the signs ofp0, p2, h8 , andK
2 are opposite to

those in Eqs.~2.2!–~2.6!. Similarly, in a direct tensor ap-
proach one drops the above signs for bothh1 andD

0. These
differences in convention result in different signs in the
physical amplitudes; there is one relative sign change fo
each time one of the aforementioned particles appears in
amplitude. These differences are trivial to implement.

III. COUNTING AMPLITUDES

In completely broken flavor SU~3! for a sector of given
quantum numbers~corresponding to a Hamiltonian with par-
ticular eigenvalues of the diagonal generators taken to be th
isospin third componentI 3 and the hyperchargeY) there
must be exactly as many reduced SU~3! amplitudes as dis-
tinct physical processes. This is just a statement of the com
pleteness of the amplitude basis in either physical or group
theoretical terms. For example, consider the case o
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B→PP, whereP here and throughout the paper designat
the light pseudoscalar nonet consisting ofp, K, h, h8 @the
octet and singlet components of the physicalh andh8 are
designatedh8 andh1 , respectively, and are related by Eq
~2.11!#. Because group theory relates processes with
same HamiltonianDI 3 and DY ~which are equivalent to
electric chargeDQ and strangenessDS changes1!, and in
any process electric charge is conserved, sets of amplitu
with a particular strangeness changeDS are related by group
theory. For processes not changing strangeness between
tial and final states, for example, one counts 12 amplitud
when bothP’s are octet mesons, four with one octetP and
the other being the singleth1 , and one (Bd

0→h1h1) with
both P’s being singlets. It must be that there are exac
equal numbers of SU~3! reduced amplitudes for each set o
particle representations, and this is indeed the case~see the
Appendix!.

In order to count these amplitudes, one must construct
most general possible transformation structure for the int
action Hamiltonian. Because the Hamiltonian connects init
to final states via the matrix elements^ f uHu i &, the most gen-
eral interaction Hamiltonian consists of exactly those rep
sentationsR appearing inf^ ī. The labelsi and f here are
used to denote both states and SU~3! representations. There
is one further complication in that states of SU~3! represen-
tations are uniquely distinguished when eigenvalues of
only I 3 andY but also the isospin CasimirI 2 are specified.
The full reduced SU~3! amplitude is thus described by the
notation^ f uuRI uu i &.

If the two final-state particles are both in the same SU~3!
representationf8, then their amplitudes obey one further re
striction owing to the Pauli exclusion principle. Because t
initial and both final particles are spin zero, the spatial part
the final wave function iss-wave and therefore symmetric
under interchange of particle labels. But because the fin
state bosons transform under the same representation
SU~3!, they are identical particles modulo SU~3! indices, and
the total wave function must be symmetric under exchang
the two particles. Therefore, the flavor wave function alo
must also be symmetric under this interchange. This symm
trization, which we write asf5(f8^ f8)S , eliminates a num-
ber of possible representations. For example, in the case
B→PP with P in the octet, the amplitudesa priori trans-
form as

8^851%8S%8A%10%10%27, ~3.1!

but the only ones allowed by the exclusion principle are

~8^8!S51%8S%27. ~3.2!

Note that this restriction fails to hold if the final state doe
not possess a completely symmetric spatial wave function

1The exact relations areQ5I 31
1
2Y1Qh andS5Y2

1
3T, where

Qh is the charge of quarks not belonging to the SU~3! flavor triplet,
andT is the triality of the SU~3! representation, which is the num
ber of fundamental representation indices modulo 3 required
build a tensor transforming under the given representation. F
3,3̄, this number is61, whereas for octets and singlets it is zero
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is the case for arbitrary initial and final spin states. It is als
required that the final-state particles occupy two weights
the same representationf8, not merely two distinct copies of
f8.

It may seem odd that what we call the reduced matr
element^ f uuRI uu i & is dependent upon the isospin CasimirI ,
not just the SU~3! irreducible representation, of the Hamil-
tonian operator. This seems to contradict the Wigner-Ecka
theorem, which states thatall of the matrix elements of a
particular tensor operator, for states in given initial- an
final-state representations, are related by Clebsch-Gordan
efficients. While the theorem is certainly true for each tens
operator contributing to a physical process, the Hamiltonia
itself may have dynamical coefficients that are unequal fo
different components of a given representation. To be e
plicit, let us adopt the notation for SU~3! Clebsch-Gordan
coefficients of de Swart@5#. The coefficient coupling the
representationsRa^Rb→Rc is indicated by

S Ra Rb Rc

I aI a3Ya I bI b3Yb I cI c3Yc
D . ~3.3!

For brevity, let us denote the quantum numbersI ,I 3 ,Y
within an SU~3! representation by the collective labeln.
Then the physical amplitudeA is decomposed into our re-
duced matrix elements by

A~ i nc
Rc→ f na

Raf nb

Rb!5~21! S I31
Y
2 1

T
3 D

R̄c (R,n
R8,n8

SRa Rb R8

na nb n8
D

3SR8 R̄c R

n8 2nc n
D ^R8uuRnuuRc&.

~3.4!

Note the order of coupling of the representations: First, th
final-state representations are coupled viaRa^Rb→R8, and
this representation in turn is coupled to the Hamiltonia
through the conjugate of the initial representation
R8^ R̄c→R, or f^ ī→H. As pointed out in the Appendix,
coupling in this order ensures that the Clebsch-Gordan m
trices are orthogonal. The phase in the above express
arises from the fact that we use not the initial representatio
i, but its conjugateī; T is the triality of the representation
R̄c , as defined in Sec. II, and guarantees the reality of th
phase. In the present case, it induces an additional sign
decays ofBu

1 but notBd
0 or Bs

0 . On the other hand, we may
choose to couple representations in a more standard order
we decompose the Hamiltonian as

H5(
R,n

cR,nHn
R , ~3.5!

then the expression for the physical amplitude becomes

A~ i nc
Rc→ f na

Raf nb

Rb!5(
R,n

cR,n (
R8,n8

SRa Rb R8

na nb n8
D

3SR Rc R8

n nc n8
D ^R8uuRuuRc&, ~3.6!

-
to
or
.
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which produces the usual Wigner-Eckart reduced amplitu
^R8uuRuuRc&, independent of any other quantum number
but the Hamiltonian coefficientsc have nontrivialn depen-
dence in general. Note that the products performed here
Ra^Rb→R8 andR^Rc→R8 or H^ i→f. The relation be-
tween the two reduced amplitudes can be established by
use of symmetry and completeness relations satisfied by
SU~3! Clebsch-Gordan coefficients@5#. Up to a phase depen-
dent upon the representations coupled,

^R8uuRnuuRc&5cR,nAdimR8

dimR
^R8uuRuuRc&. ~3.7!

From this expression we see that the two definitions differ
that ours absorbs the dynamical coefficient appearing w
the given operator in the Hamiltonian. Once one specifies,
in the Appendix, the values ofI 3 andY for the Hamiltonian
operator, the only free index remaining inn is I . Finally, in
the case that the two final-state particles are in the sa
representation as described above so thatRa5Rb , then in
the above expressions one makes the symmetrizing subs
tion

SRa Rb R8

na nb n8
D→ 1

A2
F SRa Rb R8

na nb n8
D 1SRb Ra R8

nb na n8
D G .

~3.8!

Note that, for identical final-state particles (na5nb), this
substitution induces an additional factor ofA2 in the ampli-
tude. While this factor complicates what we mean by t
physical amplitude, the substitution Eq.~3.8! nevertheless
preserves the orthogonality of the Clebsch-Gordan matric
as can be shown by either symbolic or direct numerical c
culation. A trivial example of this factor is illustrated by th
analogous case of spin SU~2!, where starting with the four
two-spin basis states↑↑, ↑↓, ↓↑, ↓↓, the symmetrization
indicated by Eq.~3.8! correctly gives 1/A2 (↑↓1↓↑), but
also 1/A2 (2↑↑) and 1/A2 (2↓↓).

We close this section by explaining the physical interpr
tation of the amplitudes computed in the Appendix. Where
the physical amplitude for distinct spinless final-state pa
ticles (naÞnb) simply squares to the measurable rate, o
must include additional Bose symmetry factors when t
final-state particles are identical (Ra5Rb and na5nb). We
have noted that the amplitude given by Eq.~3.4! with the
substitution Eq.~3.8! for identical particles is a factorA2
larger than the naive definition of the physical amplitude. O
the other hand, to obtain the decay rate one multiplies
naive amplitude by an exchange factor 2!~giving the usual
physical amplitude!, squares, and divides by an identical pa
ticle factor 2! in the rate to avoid multiple counting. It fol
lows that the rate forna5nb is twice the naive amplitude
squared, or simply the amplitude of Eq.~3.4! squared, the
same as fornaÞnb . Because the universal rule rate5 am-
plitude2 is simpler than keeping track of factors of 2 in ce
tain cases, we present in the Appendix the amplitudes giv
by Eq. ~3.4!, using Eq.~3.8! in all cases whereRa5Rb .
de
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IV. AMPLITUDE RELATIONS

The above counting describes how one enumerates
complete set of amplitudes for arbitrarily broken SU~3!. This
counting holds even if there is no good physical reason
organize particles into SU~3! multiplets. For example, one
could take eight arbitrary particles and call them an octet
SU~3!, and the group-theoretical decomposition, which i
purely mathematical, would remain true. Clearly one re
quires physical input to make practical use of the grou
theory. If one finds a physical reason why a particular SU~3!
reduced amplitude should vanish, then the particular comb
nation of physical amplitudes to which it is equal also van
ishes. This corresponds to taking the inverse of the transfo
mation matrix O, for which each row decomposes a
particular physical amplitude into reduced SU~3! amplitudes.
However, as noted in the Appendix, the SU~3! reduced ma-
trix elements are normalized so that the basis transformati
matricesO are orthogonal; hence,O215OT, and the rela-
tion associated with the vanishing of a particular SU~3! re-
duced amplitude is obtained by merely reading off the entrie
from the corresponding column ofO. The relations also hold
for the charge-conjugated states, although the presence
CP violation means that amplitudes for individual processe
do not necessarily equal the amplitudes for their conjuga
processes. Finally, as discussed in Sec. II, these matrices
obtained using a particular phase convention. Choosing a
other either results in changing the signs of particular partic
states in terms of their quark-antiquark indices or changin
the signs in the definition of reduced matrix elements. The
correspond respectively to changing the signs of rows or co
umns of the matrices in the Appendix, operations which d
not affect their orthogonality.

One begins by assuming a form for the unbroken Hami
tonian. For the case ofB decay, this is of course the four-
quark Hamiltonian derived from the tree-level weak interac
tion:

Hint5
4GF

A2
Vq1b
* Vq2q3

~ b̄Lg
mq1L!~ q̄2Lgmq3L!, ~4.1!

whereq1,2 are charge12/3 (u,c) quarks andq3 is a charge
–1/3 (d,s) quark. Note that there are several physical a
sumptions already included in this ansatz. In writing th
Hamiltonian this way, the physicalB decay is assumed to be
dominated by the decay of theb̄ quark into ac̄ or ū quark
with the emission of a virtualW2, which subsequently de-
cays into a quark-antiquark pair. All other contributions in
volving QCD renormalization effects or penguins, for ex
ample, are considered negligible in this limit.

One can analyze the Hamiltonian for each case of flav
content. The field operatorsqi , q̄i for qi5u,d,s transform as
components of 3̄, 3 respectively, because these operators r
spectively destroy initial-state quarks and antiquarks;qi5c
is of course a singlet in flavor SU~3!. For the caseDC50
with no cc̄ pair in the final state (B→PP), the SU~3! rep-
resentations allowed byH int are those in

3̄^ 3̄^353̄% 3̄%6% 1̄5. ~4.2!
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The redundancy of the3̄ representation in the Hamiltonian is
irrelevant, because one cannot distinguish in this case
two contributions, which transform in the same way. It fo
lows that the lowest-order Hamiltonian has pieces transfor
ing as3̄, 6, and15, but not24 or 42 @see Eqs.~A2!, ~A6!#,
and so for eitherDS50 orDS511 there are five amplitude
relations corresponding to the five vanishing amplitude co
binations transforming under24 or 42 in Eqs.~A2!, ~A6!. It
is readily seen why the24 and 42 representations do not
appear at leading order: These representations require t
indices in either the fundamental or fundamental conjuga
representation@see Eq.~A1!#, and this is impossible with a
four-quark~two-quark, two-antiquark! operator. These rela-
tions may be obtained as the amplitude combinations t
obtain no contributions from the operators analyzed in Re
@3#.

In order to analyze isospin content, we must furth
specify the number of strange quarks created or destroye
the process. ForB→PP with DS50, the possible isospins
are those in12^

1
2^

1
2, namely,I5

1
2,

3
2; and forDS511 only

two quarks are light, soI50,1 are possible. In the SU~3!
symmetry limit, this does not eliminate any additional am
plitudes besides the ones mentioned above. The analysis
other values ofDS in B→PP is straightforward: Mores
or s̄ quarks implies that the maximum allowedI from a
four-quark Hamiltonian is smaller.

Let us now consider SU~3!-breaking corrections to the
lowest-order Hamiltonian. The simplest such breaking orig
nates through insertions of the strange quark mass,

Hs5mss̄s, ~4.3!

which transforms as anI50, Y50 octet plus singlet in
SU~3!. Clearly neither piece changes the isospin of t
Hamiltonian; this would be accomplished by insertions
the up or down masses, which are much smaller. Let
consider SU~3! breaking linear inms . In the case of
B→PP, the Hamiltonian contains pieces transforming und

~ 3̄%6%15! ^ ~1%8!53̄%6%15%24%42, ~4.4!

not counting multiplicities. Comparing to Eqs.~A2! and
~A6!, we see that every allowed Hamiltonian SU~3! repre-
sentation occurs. Nothing is gained group theoretically
stopping at linear order in strange-quark masses. This in
esting conclusion turns out to be true for every decay co
sidered in the Appendix, when all allowed values ofDS are
considered. It is generally true for an amplitude with a tot
of three mesons~each of which is group theoretically a
quark-antiquark state! between the initial and final states
because the Hamiltonian is a six-quark~three-quark, three-
antiquark! operator, and so every representation that can c
nect the initial and final states can occur in the Hamiltonia
On the other hand, becauses̄s is an I50 operator, the re-
striction that onlyI5 1

2,
3
2 are allowed forDS50 andI50,1

are allowed forDS511 remains true even when the lowes
order Hamiltonian is corrected with an arbitrary numb
of s̄s insertions. One then still has the relations

^27uu42I55/2uu3&50 ~ for DS50!, ~4.5!

^27uu42I52uu3&50 ~ for DS511!. ~4.6!
the
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These relations follow entirely from the fact that we hav
broken the SU~3! symmetry in the Hamiltonian, but not iso-
spin.

A similar analysis holds for Hamiltonians with different
flavor contents. In general, the group theory is simpler fo
decays with charm quarks in the final state, since char
transforms as an SU~3! singlet.

Amplitude relations may also appear for particular value
of DS since entire SU~3! representations may be disallowed
by the particular Hamiltonian used. For example, in the ca
B→DD̄ or B→hcP with DS511 @Eqs.~A33!, ~A38!#, the
lowest-order tree-level Hamiltonian is

H0;~ b̄c!~ c̄s!, ~4.7!

where we have suppressed all except flavor indices. In ter
of flavor SU~3!, this operator falls into the3̄ representation.
If we include one insertion of SU~3! breaking of the form
Eq. ~4.3!, then

dH;~ b̄c!~ c̄s!~ s̄s!. ~4.8!

Group theoretically, one may first combine (s^s)P6̄%3.
However,3 does not contain a state with the hypercharg
Y512/3 of (s^s) and so does not occur. Taking the prod
uct of these representations with the remainings̄,

6̄^3515% 3̄, 3^356% 3̄. ~4.9!

In particular, a Hamiltonian6, which is allowed if all values
of DS are considered, does not occur in the caseDS511,
and so one obtains an amplitude relation

^8uu6I51uu3&50. ~4.10!

Similar reasoning applies to the decaysB→D̄P with
DS511 @Eq. ~A27!#, for which one finds

^15uu10I53/2uu3&50 ~4.11!

for tree-level plus first-order SU~3! symmetry-breaking terms
in the Hamiltonian. Note that this conclusion is specific to
the choice of form for the Hamiltonian. It should also be
noted that these relations may be obtained through the is
spin analysis described above.

In greatest generality, the SU~3! reduced matrix elements
are all independent, because the physical amplitudes ne
not be related in any way. Each such reduced matrix eleme
corresponds to a component of the Hamiltonian transformin
under a particular representation of SU~3! with a particular
value of isospin, and so in the most general situation th
coefficient of each component is independent. However,
the usual case, one uses a Hamiltonian with particular ope
tors ~typically written in terms of quark fields! that can be
explicitly decomposed under SU~3!. Then the reduced matrix
elements allowed by these operators are related by a prod
of the Clebsch-Gordan coefficients obtained by projectin
the given operators onto SU~3! representations multiplied by
the explicit coefficients of the original operators themselve
As an example, consider theB→PP reduced matrix ele-
ments ^ f uu15I51uu i & ~in DS50) and ^ f uu15I53/2uu i & ~in
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DS511). A tree-level analysis suggests that these mat
elements are dominated by the Hamiltonian

Hint5
4GF

A2
@Vub* Vud~ b̄Lg

muL!~ ūLgmdL!

1Vub* Vus~ b̄Lg
muL!~ ūLgmsL!#. ~4.12!

The gluonic penguin diagram does not contribute to the p
of the Hamiltonian transforming as a15 when SU~3! is un-
broken since the gluon is an SU~3! singlet, and so too must
be the quark-antiquark pair produced by it. Thus the peng
process has flavor content only through the decaysb̄→d̄
(I5 1

2! or b̄→ s̄ (I50), which transform as components o
a 3̄. The SU~3! structure of the four-quark operators in Eq
~4.12! is manifest, and one can immediately project the
onto the15 to obtain the corresponding Clebsch-Gordan c
efficients. The two Hamiltonian operators otherwise diff
only in their coefficients, two combinations of CKM ele
ments. The result of the calculation is

^ f uu15I51uu i &

^ f uu15I53/2uu i &
51

A3
2

Vus

Vud
, ~4.13!

regardless of the initial- or final-state representations (i , f ) of
the particles. The corresponding expression within a giv
strangeness sector is even simpler, because then the C
element for each15 component is the same. In particular,

^ f uu15I51/2uu i &

^ f uu15I53/2uu i &
51

1

2A2
,

^ f uu15I50uu i &

^ f uu15I51uu i &
51

1

A2
~4.14!

for DS50 andDS511, respectively. The key to the sim
plicity of the ratios in this example is that only one operat
structure ~the four-quark operator! dominates the Hamil-
tonian for the given decays; when several different opera
structures contribute to the Hamiltonian for a particular d
cay, ratios like Eqs.~4.13!, ~4.14! are replaced by

^ f uuRI uu i &
^ f uuRI 8

8 uu i &
5

( j cjCj
(kckCk8

, ~4.15!

whereC andC8 are Clebsch-Gordan coefficients, andc are
coefficients of the different components of the Hamiltonia
This is the case when, for example, penguin diagrams, d
grams involving the participation of the spectator quark,
SU~3! corrections are significant. For example, in the case
the 15, O(ms) corrections to the Hamiltonian~4.12! intro-
duce an additional operator transforming as a15, since, in
Eq. ~4.2!, 15^8.15. On the other hand, even lowest-orde
Hamiltonian operators transforming under3̄ or 6 corrected
by the SU~3! octet breaking produce15’s. Then the relations
~4.13!, ~4.14! are replaced with ones of the form~4.15!. For
the15 such corrections may be small, but it is often the ca
that two or more operators of the same numerical order a
distinct coefficients appear when considering a particu
Hamiltonian representation; in such cases, Eq.~4.15! must be
used.

We comment briefly on the relations that can be deriv
through the above analysis and those derived in Refs.@2#.
Each relation unbroken by the full set of quark interactio
described in@2# appears because the quark diagrams may
reinterpreted as collections of quark fields with defini
rix
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SU~3! flavor properties in a Hamiltonian, and as such giv
rise to a set of SU~3! irreducible representations. In this way,
the quark diagram approach is group-theoretically equivale
to the more formal approach, as was first pointed out b
Zeppenfeld@3#. All possible representations that do not ap
pear in the Hamiltonian thus give rise to amplitude relation
The analysis of isospin relations is particularly straightfor
ward, as we have discussed. Indeed, in addition to the n
merous isospin relations derived in@2#, we add one they have
omitted,

A~Bs
0→hcp

0!50, ~4.16!

which vanishes because neither the Hamiltonian Eq.~4.7!
nor the SU~3!-breaking correction~4.8! contains anI51
piece, while the process in question is pureI51 ~only the
pion carries isospin in the decay!. The latter fact is corrobo-
rated by a quick glance at the third row of Eq.~A38!. The
SU~3! relations in@2# may be obtained through analysis like
that leading to Eqs.~4.13! and ~4.14!, whereas their more
detailed analysis of neglecting certain quark diagrams wou
be obtained in our language by decomposing the correspon
ing Hamiltonian quark operator into a combination of differ
ent SU~3! representations. Finally, a number ofh,h8 rela-
tions are possible when one includes a value for the mixin
of h1 ,h8 as discussed in Sec. II.

V. PROSPECTS AND IMPROVEMENTS

The purpose of the discussion and formulas contained
this work is to provide a complete analysis of the group
theoretical problem of the decay ofB mesons into two pseu-
doscalar mesons. Because it is completely general in t
mathematical sense, it provides a valuable tool of analys
for researchers performing computations of such process
But this strength is also its weakness: No physical conte
was included, except for trivial illustrative examples. Never
theless, once any particular Hamiltonian is adopted, one c
immediately see exactly which physical amplitudes vanish
are related for symmetry reasons, and why.

The fully consistent application of this analysis to the
physical problem of unambiguously extracting CKM ele
ments and strong-interaction final-state phase shifts requi
one to impose an SU~3! decomposition on the full Hamil-
tonian taking part in theB decay, including short-distance
QCD corrections and SU~3! symmetry breaking. Because
gluons transform as singlets under flavor SU~3!, many ex-
tremely complicated diagrams involving large numbers o
gluons and sea quark-antiquark pairs can still be taken in
account in a simple way using the flavor symmetry. On th
other hand, complications may arise, such as the presence
potentially important electroweak penguin diagrams@8#,
which have a nontrivial flavor structure and thus must b
treated carefully. By choosing reduced matrix elements in
sensitive to these corrections, one may be able to avoid t
difficulty. Amplitude relations that survive these correction
will be invaluable for studying the detailed structure of the
CKM matrix.

There is much to be learned even from the amplitudes th
are not suppressed. In this case, the interesting question
whether the reduced matrix elements obey the numerical
erarchy predicted by a more naive analysis, based upon so
physical model, that estimates the size of operator coef
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cients. With enough rates eventually measured, one will
able to compute reduced matrix elements directly, witho
recourse to model-dependent assumptions. For example,
issue of whether gluonic penguins or tree-level amplitud
dominate a given process will be directly resolved, inasmu
as their corresponding Hamiltonians transform different
under SU~3!. This knowledge can be applied to many oth
interactions involving heavy quarks. We plan to addre
these questions in greater detail in a future publication.

Note added in proof.The decompositions appearing in
this paper apply equally well when the two final-state lig
pseudoscalar mesons are replaced with the two light vec
mesons occupying the corresponding positions in SU~3!
weight space. In this case, the decompositions hold for e
helicity amplitude separately.
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APPENDIX: CLEBSCH-GORDAN TABLES

Presented below is the complete decomposition in ter
of SU~3! reduced amplitudes for decays of a flavor-triple
B meson into a pair of pseudoscalars withDC50, 11, or
21. The phase convention is chosen to agree with that
Condon and Shortley@9# for isospin SU~2!, which is defined
by two conditions. First, the phase in the definition of th
isospin raising and lowering operators acting on a given is
spin eigenstate is chosen to be11; this establishes phase
within a particular isomultiplet. Second, to establish the re
tive phase between multiplets~in this case isomultiplets with
a common value of hypercharge!, one considers the cou-
plings of the two factor representations (I (a), I (b), with
I (a)>I (b)) to a given product representationI . Then, for the
state of highest weight in the product multiplet (I 35I ), the
coupling ^I (a)I 3

(a) ;I (b)I 3
(b)uII & is chosen to have phase11

when I 3
(a) is the largest such value that a nonzero coupli

occurs. The relative phases for states with different values
be
ut
the
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hypercharge are fixed in the SU~3! convention of de Swart
@5#, in that the first condition of the Condon-Shortley con
vention is extended to hold for both isospin andV spin
(V3[

3
4Y1 1

2I 3). The arbitrary choice ofV spin instead of
U spin or some combination leads to the convention in Se
II that the fundamental conjugate stateū transforms with
phase opposite to that ofd̄, s̄. The phase convention on the
physical states is also described in Sec. II. Each matrix,
one can check, is orthogonal, thus establishing that the SU~3!
reduced amplitudes form an orthonormal basis equivalent
the amplitudesA.

The physical decay rate is obtained in all cases by squ
ing the quantityA. If the two final-state particles are identi-
cal, the quantityA is the usual physical amplitude~which
already includes an identical particle factor! divided byA2,
as described in Sec. III.

All SU~3! representations are indicated below merely b
their dimensions; this creates no problem for us, since no t
distinct representations with the same dimensionality app
in this analysis. For convenience, we also present here
equivalent weight notation (p,q), where p and q respec-
tively indicate the number of fundamental and fundamen
conjugate indices in the tensor representation. The You
tableau then consists of a row ofp1q boxes over a row of
q boxes. The representation is labeled with a bar ifp,q:

15~0,0!, 35~1,0!, 65~2,0!,

85~1,1!, 105~3,0!, 155~2,1!,

245~3,1!, 275~2,2!, 425~3,2!. ~A1!

The expressions below are divided into sections first
particle content of the final state, and then by the number
units of strangeness changed in theB decay.

1. B˜P,P

a. DS50 (DI 3511
2, DY521

3)

For P,P both octet mesons, denoteu8,8
S505O8,8

S50v8,8
S50 ,

where
u8,8
S5051

A~Bu
1→K1K̄0!

A~Bu
1→p1p0!

A~Bu
1→p1h8!

A~Bd
0→K1K2!

A~Bd
0→p1p2!

A~Bd
0→p0p0!

A~Bd
0→p0h8!

A~Bd
0→h8h8!

A~Bd
0→K0K̄0!

A~Bs
0→K̄0p0!

A~Bs
0→K̄0h8!

A~Bs
0→K2p1!

2 , v8,8
S5051

^1uu3̄I5 1/2uu3&

^8uu3̄I5 1/2uu3&

^8uu6I5 1/2uu3&

^8uu15I5 1/2uu3&

^8uu15I5 3/2uu3&

^27uu15I5 1/2uu3&

^27uu15I5 3/2uu3&

^27uu24I5 1/2uu3&

^27uu24I5 3/2uu3&

^27uu42I5 1/2uu3&

^27uu42I5 3/2uu3&

^27uu42I5 5/2uu3&

2 , ~A2!
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~A3!

1
A~Bu

1→p1h1!

A~Bd
0→p0h1!

A~Bd
0→p1h1!

A~Bs
0→p0h1!

2 51
2
1

2
A3

2
2
1

2
2

1

2A6
2

1

A3

2
A3
4

2
1

2A2
2

1

4A3
1A2

3

1
1

4
2
1

2
A3

2
1
3

4
0

2
1

2
A3

2
1
1

2
1
1

2
A3

2
0

2 1
^8uu3̄I5 1/2uu3&

^8uu6̄I5 1/2uu3&

^8uu15I5 1/2uu3&

^8uu15I5 3/2uu3&

2 , ~A4!

and

A~Bd
0→h1h1!5~11!^1uu3̄I51/2uu3&. ~A5!
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b. DS511 (DI 350, DY512
3)

For P,P both octet mesons, denoteu8,8
S515O8,8

S51v8,8
S51 , where

u8,8
S5151

A~Bu
1→K0p1!

A~Bu
1→K1p0!

A~Bu
1→K1h8!

A~Bd
0→K1p2!

A~Bd
0→K0p0!

A~Bd
0→K0h8!

A~Bs
0→p1p2!

A~Bs
0→p0p0!

A~Bs
0→p0h8!

A~Bs
0→h8h8!

A~Bs
0→K1K2!

A~Bs
0→K0K̄0!

2 , v8,8
S5151

^1uu3̄I50uu3&

^8uu3̄I50uu3&

^8uu6I51uu3&

^8uu15I50uu3&

^8uu15I51uu3&

^27uu15I50uu3&

^27uu15I51uu3&

^27uu24I51uu3&

^27uu24I52uu3&

^27uu42I50uu3&

^27uu42I51uu3&

^27uu42I52uu3&

2 , ~A6!

~A7!
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~A7!

1
A~Bu

1→K1h1!

A~Bd
0→K0h1!

A~Bs
0→p0h1!

A~Bs
0→h8h1!

2 51
2
1

2
A3

2
1
1

2
2

1

2A2
2
1

2

2
1

2
A3

2
2
1

2
2

1

2A2
1
1

2

0 1
1

A2
0 1

1

A2

2
1

2
0 1

A3
2

0

2 1
^8uu3̄I50uu3&

^8uu6̄I51uu3&

^8uu15I50uu3&

^8uu15I51uu3&

2 , ~A8!

and

A~Bs
0→h1h1!5~11!^1uu3̄I50uu3&. ~A9!

c. DS521 (DI 3511, DY524
3)

1
A~Bu

1→K̄0p1!

A~Bd
0→K̄0p0!

A~Bd
0→K̄0h8!

A~Bd
0→K2p1!

A~Bs
0→K̄0K̄0!

2 51
0 2

1

3
A5

2
2
2

3
2
1

6
2
1

2

2A 3

10
2

2

3A5
2

1

3A2
2

1

3A2
1

1

A2

2
1

A10
1

1

A15
2

1

A6
1A2

3
0

1A3

5
2

1

3A10
2
1

3
1
1

6
1
1

2

0 2
A5
3

1
A2
3

1
A2
3

0

2 1
^8uu15I51uu3&

^27uu15I51uu3&

^27uu24I51uu3&

^27uu42I51uu3&

^27uu42I52uu3&

2 ~A10!

and

A~Bd
0→K̄0h1!5~11!^1uu15I51uu3&. ~A11!

d. DS512 (DI 3521
2, DY515

3)

1
A~Bu

1→K1K0!

A~Bd
0→K0K0!

A~Bs
0→K0p0!

A~Bd
0→K1p2!

A~Bs
0→K0h8!

2 51
0 2

1

3
A5

2
1
2

3
2

1

3A2
2

A2
3

0 2
A5
3

2
A2
3

2
1

3
1
1

3

2A 3

10
1

1

6A5
1

A2
3

2
1

6
1
2

3

1A3

5
2

1

3A10
1
1

3
1

1

3A2
1

A2
3

2
1

A10
2
1

2
A3

5
0 1

A3
2

0

2 1
^8uu15I5 1/2uu3&

^27uu15I5 1/2uu3&

^27uu24I5 3/2uu3&

^27uu42I5 1/2uu3&

^27uu42I5 3/2uu3&

2 ~A12!

and

A~Bs
0→K0h1!5~11!^1uu15I5 1/2uu3&. ~A13!
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e.DS522 (DI 3513
2, DY527

3)

A~Bd
0→K̄0K̄0!5~11!^27uu42I53/2uu3&. ~A14!

f. DS513 (DI 3521, DY518
3)

A~Bs
0→K0K0!5~11!^27uu42I51uu3&. ~A15!

2. B˜D,P

a. DS50 (DI 350, DY522
3)

For P an octet meson, denoteuD,8
S505OD,8

S50vD,8
S50 , where

uD,8
S5051

A~Bu
1→D1p0!

A~Bu
1→D1h8!

A~Bu
1→D0p1!

A~Bu
1→Ds

1K̄0!

A~Bd
0→D1p2!

A~Bd
0→D0p0!

A~Bd
0→D0h8!

A~Bd
0→Ds

1K2!

A~Bs
0→D1K2!

A~Bs
0→D0K̄0!

2 , vD,8
S5051

^3̄uu3I50uu3&

^3̄uu6̄I51uu3&

^6uu3I50uu3&

^6uu15I50uu3&

^6uu15I51uu3&

^15uu6̄I51uu3&

^15uu15I50uu3&

^15uu15I51uu3&

^15uu24I51uu3&

^15uu24I52uu3&

2 , ~A16!

~A17!

and
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S A~Bu
1→D1h1!

A~Bd
0→D0h1!

D 5S 2
1

A2
2

1

A2

2
1

A2
1

1

A2
D S ^3̄uu3I50uu3&

^3̄uu6̄I51uu3&
D . ~A18!

b. DS511 (DI 3521
2, DY511

3)

For P an octet meson, denoteuD,8
S515OD,8

S51vD,8
S51 , where

uD,8
S5151

A~Bu
1→D1K0!

A~Bu
1→D0K1!

A~Bu
1→Ds

1p0!

A~Bu
1→Ds

1h8!

A~Bd
0→D0K0!

A~Bd
0→Ds

1p2!

A~Bs
0→D1p2!

A~Bs
0→D0p0!

A~Bs
0→D0h8!

A~Bs
0→Ds

1K2!

2 , vD,8
S5151

^3̄uu3I5 1/2uu3&

^3̄uu6̄I5 1/2uu3&

^6uu3I5 1/2uu3&

^6uu15I5 1/2uu3&

^6uu15I5 3/2uu3&

^15uu6̄I5 1/2uu3&

^15uu15I5 1/2uu3&

^15uu15I5 3/2uu3&

^15uu24I5 1/2uu3&

^15uu24I5 3/2uu3&

2 , ~A19!

~A20!

and



6356 53BENJAMÍN GRINSTEIN AND RICHARD F. LEBED
S A~Bu
1→Ds

1h1!

A~Bs
0→D0h1!

D 5S 1
1

A2
2

1

A2

1
1

A2
1

1

A2
D S ^3̄uu3I51/2uu3&

^3̄uu6̄I51/2uu3&
D . ~A21!

c. DS521 (DI 3511
2, DY525

3)

S A~Bu
1→D1K̄0!

A~Bd
0→D1K2!

A~Bd
0→D0K̄0!

D 5S 0 2A2

3
2

1

A3

1
1

A2
2

1

A6
1

1

A3

1
1

A2
1

1

A6
2

1

A3

D S ^6uu15I51/2uu3&

^15uu15I51/2uu3&

^15uu24I53/2uu3&

D . ~A22!

d. DS512 (DI 3521, DY514
3)

S A~Bu
1→Ds

1K0!

A~Bs
0→D0K0!

A~Bs
0→Ds

1p2!

D 5S 0 1A2

3
2

1

A3

1
1

A2
1

1

A6
1

1

A3

2
1

A2
1

1

A6
1

1

A3

D S ^6uu15I51uu3&

^15uu15I51uu3&

^15uu24I51uu3&

D . ~A23!

3. B˜D̄,P

a. DS50 (DI 3511, DY50)

For P an octet meson, denoteu
D̄,8

S50
5O

D̄,8

S50
v
D̄,8

S50
, where

u
D̄,8

S50
5S A~Bu

1→D̄0p1!

A~Bd
0→D2p1!

A~Bd
0→D̄0p0!

A~Bd
0→D̄0h8!

A~Bd
0→Ds

2K1!

A~Bs
0→D̄0K̄0!

A~Bs
0→Ds

2p1!

D , v
D̄,8

S50
5S ^3uu8I51uu3&

^6̄uu8I51uu3&

^6̄uu10I51uu3&

^15uu8I51uu3&

^15uu10I51uu3&

^15uu27I51uu3&

^15uu27I52uu3&

D , ~A24!
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O
D̄,8

S50
51

0 0 0 22A 2

15
2

1

A6
2

1

2A5
2
1

2

2
1

2
A3

2
1

1

2A3
2

1

A6
2
1

2
A 3

10
0 2

1

2A5
1
1

2

1
A3
4

2
1

2A6
1

1

2A3
2
1

4
A5

3
2

1

2A3
0 1

1

A2

1
1

4
1

1

2A2
2
1

2
1

1

4A5
2
1

2
1A 3

10
0

2
1

2
A3

2
2

1

2A3
1

1

A6
1

1

2A30
2

1

A6
1

1

A5
0

0 2
1

A3
2

1

A6
2A 2

15
1

1

A6
1

1

A5
0

0 1
1

A3
1

1

A6
2A 2

15
1

1

A6
1

1

A5
0

2 , ~A25!

and

A~Bd
0→D̄0h1!5~11!^3uu8I51uu3&. ~A26!

b. DS511 (DI 3511
2, DY511)

For P an octet meson, denoteu
D̄,8

S51
5O

D̄,8

S51
v
D̄,8

S51
, where

u
D̄,8

S51
5S A~Bu

1→D̄0K1!

A~Bd
0→D2K1!

A~Bd
0→D̄0K0!

A~Bs
0→D2p1!

A~Bs
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and

A~Bs
0→D̄0h1!5~11!^3uu8I51/2uu3&. ~A29!

c. DS521 (DI 3513
2, DY521)

S A~Bd
0→D̄0K̄0!

A~Bd
0→Ds

2p1!
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1
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1

1
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1
1
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1

1
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d. DS512 (DI 350, DY512)
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1
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4. B˜D,D̄

a. DS50 (DI 3511
2, DY521

3)

1
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b. DS511 (DI 350, DY512
3)

1
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c. DS521 (DI 3511, DY524
3)

A~Bd
0→D1Ds

2!5~11!^8uu15I51uu3&. ~A34!
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d. DS512 (DI 3521
2, DY515

3)

A~Bs
0→Ds

1D2!5~11!^8uu15I51/2uu3&. ~A35!

5. B˜hc ,P

a. DS50 (DI 3511
2, DY521

3)

1
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1!
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and

A~Bd
0→hch1!5~11!^1uu3̄I51/2uu3&. ~A37!

b. DS511 (DI 350, DY512
3)

1
A~Bu

1→hcK
1!

A~Bd
0→hcK

0!
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and

A~Bs
0→hch1!5~11!^1uu3̄I50uu3&. ~A39!

c. DS521 (DI 3511, DY524
3)

A~Bd
0→hcK̄

0!5~11!^8uu15I51uu3&. ~A40!

d. DS512 (DI 3521
2, DY515

3)
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