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We de&e an expression for the magnetic p&&ability of the nucleon, as related to sums of 
products of its electromagnetic transition moments involving the electric and magnetic dipoles and 
mean-square radii, as well as the electric quadrupole moment. Two sum rules emerge from the 
calculation. 

PACS number(s): 13.60.F~ 
I. INTRODUCTION 

Recently we have’studied the third-order spin polariz- 
abilities of the nixleon [1,2] (hereafter called papers I and 
II, respectively), which are the coefficients of the spin- 
dependent terms of the excited state part of the Compton 
amplitude that are of third order in the frequency of the 
incoming photon, expressing them in terms of the nucleon 
transition moments up to quadrupole order. Looking at 
the second-order terms of the amplitude [2] and following 
the same methodology, we have found here an expression 
for the magnetic polar&ability fl of the nucleon in terms 
of its static properties and its transition moment matrix 
elements up to electric quadrupole order. Also, two sum 
rules emerge from the calculation when one makes use of 
the low-energy theorems which are associated with the 
second-order terms of the amplitude [l]. 

A formula for p has been found by Maksimenko and 
Shul’ga [3] in terms of derivatives of the nucleon tran- 
sition current matrix elements, by expanding the ampli- 
tude in terms of these quantities. A simpler formula for fl 
has been derived by L’Vov [4] using a dispersion method. 
This simpler formula is the one that we use to make the 
expansion of 0 in terms of the transition moments, using 
the multipole expansion of the nucleon transition current 
matrix elements derived before [l]. 

This work corrects and extends a previous one [5] 
which contains an incorrect expression for 0 that was 
based on an erroneous definition for the nucleon mag- 
netic moment transition, matrix elements [4] and an in- 
correct procedure when extracting the nucleon contribu- 
tion to the amplitude, by using identities for the current 
operator before expanding the amplitude in intermediate 
states. 

The experimental situation of the polarizabilities is 
discussed in Ref. 141. On the theoretical side a quark 
model calculation may come to mind and for that pur- 
pose expressions of the polarizabilities in terms of the 
nucleon transition moments can be of help. A calcu- 
lation of the multipole transition moments to low-lying 
nucleon resonances could be attempted by using avail- 
able experimental data allied with the determination of 
the nucleon transition matrix elements in the context of 
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the relativized quark model [6-81. On the assumption of 
low-lying resonances, we could then estimate the polar- 
izabilities. In turn, the two sum rules could be used as a 
test for the low-lying dominance hypothesis. 

In Sec. II we discuss the amplitude. In Sec. III we 
show that one of the sum rules appears from the analysis 
of the forward scattering amplitude, a procedure that, as 
we shall see, permits a derivation of the formula for fl [4] 
in a different way. After expressing these two results in 
terms of the multipole transition moments in Sec. IV, 
we go to the general, nonforward, situation and derive 
the second sum rule already in terms of the transition 
moments. This is done in Sec. V and in Sec. VI we 
discuss the results. 

II. SCATTERING AMPLITUDE 

Using the same notation as before [1,2], we write the 
reduced scattering amplitude of light by the nucleon, in 
the transverse gauge Ed = E; = 0, E k = E’ k’ = 0, as 

A = PTiiEj = p ~~~~ + u,) ej , (2.1) 

where 8 and & are the polarization vectors of the in- 
coming and outgoing photons with momenta kp = (w, k) 
and k” = (w’,k’), respectively. Following Low [9] we 
have separated out the contribution lJ, of the one- 
nucleon on-shell intermediate state. V;j is called the un- 
excited part of Tij and the rest, Eij, is the excited part. 
C&j is given by 

uij = vz (P’lJilP + k)(p + k(Jjlp) 
E(p+k)-E-w 

where c.t. stands for the crossed term (i c) j, k 
c) -k’, w c) -w’). V is the normalization volume and 
p (p’) designates the incoming (outgoing) nucleon mo- 
mentum with energy E (E’). Ip + k) is the one-nucleon 
on-shell intermediate state with energy E (p + k) and 
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64 S. RAGUSA r3 
mass rn, and a summation over the intermediate spin 
states is implied. An invariant normalization has been 
used and the nucleon current matrix element is then given 

= GQ(PZ) rJz”qy 1 u (PI) 1 

(2.3) 

with q = pz - PI and the normalization tiu = 1, and 
X is the anomalous magnetic moment of the nucleon in 
units of e/2m. The calculation of & U;j Ejis given in 
Appendix A for future reference, to the order w2 that we 
are interested in. The Br&t frame, where 

pl=-p=kg, E’ = E, co’ = w, (2.4) 

is the frame where the requirement of time-reversal in- 
variance achieves’its simplest form as used by Pais [lo] 

to find the minimal basis B$y) in which .?$j is to be ex- 
panded. To order w2 we have [l] 

Eij = c a~ (k, k’) B$?) 
N 

= [al(O) + al,lk. k’ + a,,,~“] bij + iwaz,le+,~~ 

+a~ (0) (-kik(i + k. k’&j) + aa(O)k:kj 

+Q(O) (k:k!j + kikj) (2.5) 

The expansion of the coefficients is in accordance with 
the even-crossing-symmetry property of E<j, that is, in- 
variance under the transformation i ff j, k C) -k’, w tf 
--w’ = --w. The coefficients al, a~,~, a~,l, a4, and a5 are 
the ones that obey low-energy theorems, with values in 
the Breit frame given by Eqs. (I-2.5a)-(I-2.5e), which we 
repeat here for convenience: 

Ij 

Q(O) =-c 
rn’ 

=2.1 = 
Q-1 2 
we ’ 

2 
al,1 = m> 

40) = 0, 

=5(O) = drn,3 
!4-!4,2 

1 

(2.6d) 

(2.6e) 

where p = 1 + X is the magnetic moment of the nucleon 
in units of e/2m. Because of the transversality condition, 
a4 and &will not be present in the amplitude but, as 
we shall see, their values will give one of the sum rules. 
Also, as discussed befoie [l], one needs the value of a5 to 
disentangle the known part of the coefficient aI,2 whose 
unknown part cr1 represents a first contribution to the 
electric polaizability of the nucleon [l]: 

2 (v-f) 2/12 - 1 
qz=a1+; 3+x 

( > 
. (2.7) 

Here, (cf) = 6Fi with Fi = [dFl(t)dt],=, and [11] 

al = 2c Ihwyw2 
M, rn ’ (2.8) 

n 

where the sum extends to all but the one-nucleon on- 
shell intermediate state, and (n, Old;[O) is the electric 
dipole transition matrix element between the nucleon and 
the excited state n, with mass M,, at rest. Our main 
purpose here is to obtain an expression for a,(O) which, 
as we shall discuss in Sec. III, is what is usu&y called 
the magnetic polarizability fl of the nucleon: 

=,(O) = P. (2.9) 

According to Eq. (H-3.8) we can write the explicit 
expression of the excited state part, in the Breit frame 
where D’ = --D. as a~ * I 

Eij = VZC (-PlJ~l~,P+k)(~,P+klJjlP) 

n E,(p+k)-E-w 

XE,F+k) +c.t. 1 +v(-PIPijlP) I (2.10) 

where the sum stands for all but the nucleon intermediate 
state itself, E, is the energy of the intermediate n state, 
and p;j, which is symmetric in i and j, is related to the 
time-space current commutation relation as 

It is easy to see that the last term of Eq. (2.10) can 
contain only even powers of w. In fact, being symmet- 
ric in i, j its expansion in terms of the basis elements 

@)defined in (2.5) can contain only the symmetric 

ones, N = 1 and N =3-5, to order w2. Next we ex- 
tract from ES~ another piece that is even in w by mul- 
tiplying the fist term inside the sum of Eq. (2.10) by 
En (p + k) - E and the second by E,(p - k’) - E’ to 
obtain [l] 

Eij = wrij +&j + V(--Pl/%jlP) 7 (2.12) 

where, in the Breit frame where E’ = E, 

(-P\Jil%P + k)(n,P + klJj(P) 
l-‘j = vz F [Em (p + k) - E] [E, (p + k) - E - w] 

MI 
‘E, (p + k) - c’t’ 

I 
(2.13) 
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and 

A, = vz c (-P/-+,P + k)(n,p + k&lp) 

n &(p+k)-E 

In the Breit linme l?;j is then odd under crossing while 
A, is even under the less restricted transformation, i cf 
j, k H -k’. As a consequence of this last fact it follows 
that the expansion of Ai, in terms of the basis elements 

Bj3y) defined in Eq. (2.5) can contain only those for N=l 
and N=3-5. Therefore A, is even in w. 

III. FORMULA FOR p AND A FIRST SUM RULE 

Before we study E;j in the general situation we con- 
sider the forward scattering amplitude k’ = k and show 
how we can get a closed expression for p [4], by making 
use of the second-order low-energy theorems. A first sum 
rule is also obtained. In the forward direction, the ex- 
cited state tensor amplitude (2.5) becomes, for i = j = 1, 

&I (k k) = *t(O) + [*I,I + *I,Z + *3(O)] w2 

+ [-a,(O) +*4(O) + 2%(O)] k:. (3.1) 

Therefore 

$+I (k, k) 
> 

= *1,1+ aI,2 + a,(O), (3.2) 
z 0 

where the zero indicates k=O. From (2.12) and (2.4), 

&I (k,k) = ~I-11 (k,k) + AI, (k,k) + V(Olpu(O). 

(3.3) 

The first-order term of l?;i, which is the only one that 
will contribute to the left-hand side of Eq. (3.2), is [I] 

I-!!) = LYlWbij. ‘I (3.4) 

Therefore (3.2) can be written 

( 

a 
al+ @II&~) o 

> 
= a,1 + *1,2 + Q(O). (3.5) 

Using now the low-energy result (2.6~) and Eq. (2.7) with 
(2.9) we get 

P=A+Pz (3.6) 

where 

and 

A= 
(, 

a 
eAn(kk) o 

> 
(3.7) 

(3.8) 
From Eqs. (2.14) and (2.4) we can write 

and introducing (/$) = (TI) + 3X/2& 

(3.9) 

(3.10) 

The formula for p agrees then with the one obtained by 
L’Vov 141 using a dispersion method. Notice now that 
fxom (3.1) we also have the relation 

&II (k, k) 
> 

= al,1 + q2 + a,(O) + 2%(O). 
cc 0 

(3.11) 

From (3.3) and (3.4), and making use of the low-energy 
results (2.6) and of (2.7) we then obtain 

&An(k,k))o=;(F+&). (3.12) 
2 

With (2.14) this gives the sum rule 

2v2 
i&F 

I(~,W~10)12 Mn 
E,(k)-rn E,(k) 

0 

=c 
( 

rn+-& 
rn 3 > 

(3.13) 

Using now the decomposition of the transition current 
in multipoles [l] we shall have both pl in Eq. (3.9) and 
the sum rule (3.13) expressed in terms of the nucleon 
multipole transition moments. We shall do so in the next 
section. 

We mention now that, as we have three low-energy 
theorems associated to second-order terms, given by 
Eqs. (2.6b)-(2.6d), we might expect another two sum 
rules. However, as the study of the general situation will 
show, there is only one more sum rule associated with 
the second order low-energy theorems. 

Before closing this section we shall justify Eq. (2.9). 
The electric and magnetic dipole polarizabilities a and 
0 are usually defined as the coefficients of the second- 
order spin-independent terms of the scattering amplitude 
after extracting the Born term contribution, through the 
relation 

A=Ag+aww’o.e’+p(k’ xe’).(k XE), (3.14) 

plus order w3. Ag is the Born amplitude, which is to 
be calculated with a point nucleon with charge e and 
anomalous moment X. Its expression is given in Eq. (A4) 
of Appendix A, in the Breit frame. On the other hand, 
Eq. (A3) gives the expression of the amplitude calculated 
from (2.1). One then sees that this amplitude is related : 
to the Born amplitude by the relation 
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A = AB + 

+a,(O) (k’ x c’) (k x E) 

From here and Eq. (3.13) we conclude that 

(3.15) 

(3.16) 

and 

P = MJl , (3.17) 

which is Eq. (2.9). Also, by using (2.7), we see that a 
in (3.16) is given by 

a=ce+az, (3.18) 

where a1 is given in (2.8) and 

,,=ez b&+X2+1 
( rn 3 --> 4m= ’ 

(3.19) 

which agrees with the result derived by L’Vov [4] using a 
dispersion approach. 

IV. MULTIPOLE EXPANSION OF p AND 
OF THE FIRST SUM RULE 

We shall now express & in Eq. (3.9) and the sum rule 
(3.13) in terms of the multipole transition moments. For 
that purpose we need the multipole expansion of the nu- 
cleon transition current matrix elements. This was dis- 
cussed in Ref. [l] and given for the excited state at 
rest. When the nucleon is at rest, which is what we 
need in Eqs. (3.9) and (3.13), the result, to order w2, is 

(f12.3 = +I) 

fkjj,‘k” (7z,Olm,~O) 

[ 

-~k’(n,OILr~IO 1 + O(d). (4.1) 

On the right-hand side, we first have the rest state tran- 
sition matrix of the electric dipole. The second matrix 
element contains those of the (traceless) quadrupole mo- 
ment, and of the charge mean-square radius [l], 

(%Ol&jalO) = (%Ol&jalO) + ~Jja(%OIClO) 1 (4.2) 

where (n,OlCIO) = -(n,OlQ”~lO) is the charge mean- 
square radius transition matrix element. The third is 

(%olOja*lO) = (~,OIOjablO) + ~[(~~olSjl0)& fc.P.1 I 

(4.3) 

where (“,OlSjlO) = -(~~~Ol~ja”lO) and where c.P. 
stands for the cyclic permutation of the indices j, a, b. 
The first term on the right of Eq. (4.3) is the matrix ele- 
ment of the (traceless) o&pole moment and the second 
is the matrix element of the electric dipole mean-square 
radius [see below Eq. (4.4)]. Next, we have in (4.1) the 
matrix element of the magnetic dipole moment, and the 
last term contains the matrix element of the magnetic 
quadrupole and of the magnetic dipole mean-square ra- 
dius: 

(12, OlhlO) = (% OlH,blO) + Gbrn(% OILlO) (4.4) 

A little explanation is probably in order [l]. In Eq. (4.2), 
the matrix elements on the right-hand side contain, re- 
spectively, the rest-state matrix elements of the usual 
traceless electric quadrupole operator and of the charge 
mean-square operator c = S J,y2dV, plus contributions 
of the moving electric dipole represented by a k” deriva- 
tive of (n,kldjlO) at k = 0. Likewise, the two matrix 
elements on the right of Eq. (4.3) correspond to the 
usual traceless electric octopole moment operator and 
to the electric dipole mean-square radius operator, sj = 
J” Jar%@‘, plus contributions of the moving dipole and 
quadrupole. The magnetic moment transition matrix el- 
ement in (4.1) contains the rest-&& matrix element of 
the magnetic dipole operator, ~6 = 4 S (r x J); dV, plus 
a contribution of the moving dipole moment [1], which 
we repeat here: 

(n,+%p) = (%Ol/lilO) - ; (Mn -rn) 

where again the zero stands for k=O. The last term of 
(4.5) was missing in the definition used in Ref. (51. Fi- 
nally, on the right of Eq. (4.4), the first matrix element 
refers to the usual traceless magnetic quadrupole opera- 
tor and the second to the magnetic dipole mean-square 
radius i, = 1 (r x J), &V, plus contributions of the 
moving magnetic dip& moment. All these generalized 
multipole transition moments can be expressed in terms 
of the transition current matrix element [l], as we can 
see from (4.1): 

v(n,opj~o) = i(M, - m)(n,oldjlo), (4.6) 

> 
= hOlml0L (4.7) 

0 

V 
K 

&(%klJA”))O+(j,a)] 

= (Mm - m) (n, OI&jaIO) > (4.8) 

where @,a) stands for the previous term with jand a 
interchanged. By subtracting and adding the trace, we 
obtain the matrix element of the quadrupole moment and 
mean-square radius. Next we have 
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1 
+c.p. = (M” -rn) (n,Ol~jablo) (4.9) 

and 

v Ev bj 
[ ( 

~(n,klJjlO))o+Ci.‘~~~~~~,] 

= (n,OlL,,IO) (4.10) 

From the equation of continuity we have 

[E,(k)-nl(n,klJolO)=-kj(n,klJjlO), (4.11) 
and hence the electric multipoles can also be calculated 
fr&n the charge density matrix element: 

V ~WlJoI’4 
( > 

= -i(n, OJ&JO) , (4.12) 
0 

V &W/JolO))o = -hW&jK’), 
( 

(4.13) 

V ak;aiIak,,, (~tklJ~lO))o = (ntW+nlo). (4.14) 
( 

We go back now to Eq. (4.1). We could substitute this 
equation directly in Eqs. (3.9) and (3.13) to reach ow 
aim but it is a somewhat simpler procedure to substitute 
Eq. (4.1) and its companion 
V(OlJiln,k) = -i&(k) -rn) [( 0 d I il n,O) + ;ka(O@i&,O) - ;k”kb(Ol&&z,O) 1 
-iei, “k” (Olmeln, 0) + ;k”(OlL,aln,O) 1 (4.15) 

directly in Eq. (2.14) for k’=k and afterwards use Eqs. (3.7) and (3.12). Also, this procedure is more akin to the one 
that we shall have to use in the nonforward situation in Sec. V. With the indication 

CT wlo) = w,, I (4.16) 

where N stands for the implicit,nucleon rest state, and paying attention that there are no cross products between 
matrix elements of multipoles with opposite parities, we obtain, to order w2, 

Aij(k,k) =xX 
” En(k) 

L%(k) - ml [(di)xv,, (%I,, + (kd] 
where (i,j) stands for the previous term with i and j 
interchanged. 

(“+ab),, 

Next we notice that, on reducing 
according to (4.3), the octopole can give no 

contribution since (d;),,+, (O+b)nN = 0. In fact, as 
d< has spin parity Jp = l- and Ojob is a 3-object, the 
state n in the first matrix element can be nonsero only 

if it is a $- 01 $-state and in the second it can only be 

a $-or ge state. Also, on reducing (Qio)Nn according 
to (4.2), the crossed quadrupole-charge mean-square ra- 
dius term can give no contribution, (Qia)nr, (C),, =,O, 
since &da is a 2+ object and C is a O+ object. We intro- 
duce now quantities which will be present in the right of 
Eq. (4.17) together with others that will appear when we 
shall study the amplitude in the nonforward direction. 
First we define 

CEwz [(Oldil~,O)(~,OldjlO) + (i,j)] = b&j, 

n 

1) = 1, 2, (4.18) 

where 
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rn 1 
EI,=~, Ez”=~. 

n TV 
(4.18a) 

The case 2r = 1 will be present here and 2) = 2 will appear 
in Sec. V. Then we define, for future reference in Sec. V, 

= -ihE<j,am (4.19) 

Next, in the order that will appear in (4.17), 

+(OlSjl~,O)(n~OldilO)] = C&j (4.20) 

A contribution c’E+,u” is excluded by the fact that 
under time reversal (2’) c”’ changes sign but the left- 
hand side of (4.20) does not, since (Old&, 0) goes into 
(n, 0ld;JO) and similarly for Sj. Next we define 

+(~lQj~l~~O)(~,OIQ~~l0) 
I 

which is symmetric and traceless in i and a, as 
is Qie, where 

F,,=l, Fz”==. (4.21a) 

A term &jC,hU “‘, properly symmetrized and made 
traceless, is excluded by T invariance. Then we define 

$ ~Fm (Mn -4 I(OIC~~,‘# = eu (4.22) 
n 

and 

,i ~[(~I~il~,O)(n~olrjlo) 
n 

-(0~1jl~,O)(O~d<~O)] = f&j. (4.23) 

Here a f ‘c;j,,,om contribution is excluded by 2’ invari- 
ance, since under time reversal (n,OlIjlO) goes into 
-(Olljln, 0) with a minus sign not present for di. Fi- 
nally, we define 
p- 
(“lmiln~o)~n~olmjlO) + (Gd = gvJij, 

M,-7ll 
(4.24) 

The quantities involving 

and 

(ajb),, h)..,v - (MT)ivn (&dN 

in (4.17) will be both equal to zero because the corre- 
sponding sums do not change sign under time reversal 
but both would have to have a term of the form &,a 
on their right-hand side, by parity invariance. We then 
obtain, to order w=, 

&j (k k) = C (Mn - m) [(&)Nn (dj),,v + (cJ’)] 
n 

+w’ (ba - 2~ + 6dlf 2f + gl) Sij 

+kikj (-4~ + 2dl+ 2q - 2f - 91) (4.25) 

Taking i = j = 1 and substituting in Eq. (3.7) we get 

A=blr2c+6dl+2f+g1. (4.26) 

Tbis gives the desired expression for the nonstatic piece 
of 0 in terms of the nucleon multipole transition ma- 
trix elements. It includes those up to electric quadrupole 
order. Explicitly we have, from (4.18)-(4.24), 

A = ~~lWlW)12 
n 

-;-j+fn - m)Re[(Old,ln,O)(n,OIS~IO)l 
n 

-$ c (Mn -4 Im [(O~d.~~,O)(~,Ol~~lO)1 
n 

lhw%10)12 
+2c ,,,f,,-m ’ (4.27) 

n 

where Re and Im stand for real and imaginary part of, 
respectively. Likewise, the sum rule (3.12) can now be 
expressed in terms of the multipole moments as 

;(q+&) =b,-6c+8dl+2el. (4.28) 

A second sum rule will be derived in the next section. 

V. MULTIPOLE EXPANSION OF THE 
AMPLITUDE IN THE GENERAL SITUATION 

In this section we shall study the second-order terms 
of Eij in the general, nonforward, situation. From 
Eq. (2.12) we see that one of them cc.mes &mn the first- 
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order term of rij and the others come from the last two 
terms which, as discussed before, are even in w. We shall 
start by expressing the last one in terms of the current 
matrix elements by making use of Eq. (2.11). We first 
take this equation between (-pi and Ip), multiply by 
exp(iQ r), take y = 0, and integrate over r. Then we 
introduce a complete set of intermediate states on the 
left-hand side and make an integration by parts on its 
right-hand side. Separating out the one-nucleon on-shell 
intermediate state we obtain, in the Breit frame, 
VQj(-~l~iil~) = VzE (pm+ kj N-PIJ~IP + QHP + QIJoIP) - (-pIJo -P - QK-P - QIJilpN 

-IrzQi F En (P + 4) [:(P + 4) - E] 

~[~~PIJ~I~~P+Q)(~~P+Q~J~~~)+~~PIJ~I~~~P~Q~~~~~P~QIJ~~P~~~ (5.1) 
where we have used the equation of continuity to write 
the excited state part in a convenient way. To obtain 
(-p(p~jIp) to order p’, that is, to order w2 by Eq. (2.4), 
we have to calculate the right-hand side of (5.1) to order 
Qp’. To this order the unexcited term is equal to 

-&(P---) 
rn3 

p . Qp’. (5.2) 
Therefore, Eq. (5.1) gives us 

I/‘(-PlfXjlP) = Wj + eij (5.3) 

where, to order w2, 

2 2 
uii = ---$ + rn 

2fi2 - 1 
4F; f - 

2n= 
P2&j 

-&(/1--1) 
rn3 

PiPj 

and 

(5.4) 
I 

Mn (-PlJ~l”~p)(~,plJjlp) + (-plJjln,-P)(n,-~IJiI~) eij =-V”C- 
n E,(P) En CP)- E 

(5.5) 
which is to be calculated to order p2 , where p is given 
by (2.4). Equation (5.3) is now to be substituted in 
Eq. (2.12). To order wz we shall have 

We shall need now the multipole expansion of the cur- 
rent matrix elements present in Eqs. (2.14) and (5.5). As 
(n,p + klJjlp) in Eq. (2.14) depends on two variables 
we shall tist reduce one of the states to rest by means of 
a Lorentz transformation, dealing thereafter with a sin- 
gle variable. In Ref. [I] we brought the excited state to 
rest but here we want it to be so for the nucleon state, to 
maintain close contact with the nucleon rest-state results 
derived in the previous section. V+ could bring the nu- 
cleon state to rest directly but to avoid a rotation matrix 
for the excited state we shall do so in two steps: First we 
bring the excited state to rest as before [l], by means of 
a Lorentz transformation L, with velocity 

and obtain, to the order w2 that we are interested in, 

(“,pfklJj(p) = (n,O(Jj +v,(+V.J + J,,)lq)D, (5.8) 

where 

(5.9) 
is the transformed of p by L and D, is the rotation 
matrix corresponding to the rotation of the nucleon mo- 
mentum p, 

D =l-i~.(vxP) 
P 4m 

+0(d). (5.10) 

Now we perform a second Lorentz transformation with 
velocity 

(5.11) 

to bring the nucleon state Iq) to rest. Tbis gives for 
the two matrix elements on the right of Eq. (5.8), to 
order w2, 

(n,OIJjlq) = (n,KIJj + q(;V’ J + Jr,)fO) (5.12) 

and 

(~,OlJols) = (n,KlJo +V’.JlO), (5.13) 

where K = -M,,V’ is the new momentum of the excited 
state, to order w2. On account of (5.11) and with the 
help of (5.7) and (5.9), it can be written 

(5.14a) 

plus terms of order w3, or by (2.4) 
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K+&)k’+;(l+%)k. (5.14b) 

Now we substitute (5.12) and (5.13) in (5.8) and notice 
that on account of (5.9) and (5.11), to order w3, 

After using the relation 

hKIJoI’4 = -K 
a (E KlJdJ) 

E, (K) _ m 3 (5.16) 

which follows from the equation of continuity, we get 

(n,p+klJjlp) = (n,KjJ,(O) 1 -i”‘(Tmx ‘)) 
( 

+(n,OjJ”IO) ‘2 

( 

_ kjPa - &Pi 
2nM, - 

Likewise 

(-~lJiln,p + k) 

= I -ir “Irn” ‘)] (O/J&K’) 
1 

'3 + kL;&---hp' + 

" 

K’=k+ I+% ‘PI 
( ) 

or, by (2.4), 

Notice that when k H -k’ we have Ktt -K’, and, as 
p + k = $ (k’ + k), V + -V. For the matrix elements 
that appear in (5.5) we shall have 

(-PIJ;I~,P) = (OlJiln,Ko) + (OIJaln,O) 

x P*Pi (Ml + 3m) 
2mZ (M, - rn) ’ 

(5.20) 

where 

and 

(5.21) 

(n, p)Jj)p) = (n, KolJjlO) + (G ‘WWp$ > (5.22) 
We use now these results together with (3.4), (4.1), and 
(4.15) to calculate (5.6). The calculation is rather long 
but straightforward, along the same line of thought that 
we used in the previous section. We quote here only the 
final results, giving the details in Appendix B. Calculat- 
ing the right-hand side of (5.6) in terms of the quantities 
defined in Eqs. (4.18)-(4.24) and comparing with (2.5) we 
reobtain the aeroth-order low-energy result (2.6a) and get 
the following five relations from the second-order terms. 

+b,-b,-4c+?dl 

+5dz + CI - ez + f + ; (91 - gz) + h, (5.24) 

2 
%.a = al + ; 

( 

(7;) 2p2 - 1 
3 + - 

> 4m2 ’ 
(5.25) 

and, as as(O) = 0, 

p= @(l-de2 
4m3 

+ b, f 2c - dl - 5dz - el 

+ez+f+&?1+g2)-h. (5.26) 

Then 

(Q) = p (p - 1) 2 
4m3 

+bz-2cfdl-5dzfel 

fez - f + ; (sz - a) - h , (5.27) 

and 

Equations (5.25) and (5.28) agree with the results (2.6e) 
and (2.7) obtained [l] by the gauge method. Equation 
(5.26) is an expression for p in term of the static proper- 
ties of the nucleon and its multipole transition moments 
up to electric quadrupole order. Finally Eqs. (5.24) and 
(5.28) will give us two sum rules when we make use of 
the low-energy results (2.6~) and (2.6d). Adding (5.24) 
and (5.26) and using (2.6~) the expression for p can be 
rewritten as 

-2c+6d1+2f +gl. (5.29) 

This agrees with (3.6), as given by (3.10) and (4.26). On 
the other hand, by adding (5.24) and (5.27) we obtain, 
after using (2.6~) and (2.6d), 

zp+-!L) =bl-6c+8dl+2q, (5.30) 
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which agrees with (4.28). We then recover the expres- 
sion for /3 and the sum rule obtained from the forward- 
direction analysis. The additional sum rule is, from 
(5.27) and (2.6d), 

p(1-p)e2=bz-2c+dl-5d2+e~+e 
4m3 2 

-f+;(g2-g1)-h. (5.31) 

VI. DISCUSSION 

By a direct analysis of the excited state part of the 
nucleon Compton scattering amplitude to the second or- 
der in the frequency of the incoming photon we have 
founded an expression for the magnetic polarizability 0 
of the nucleon, related to sums of products of its transi- 
tion moments up to quadrupole order. For that purpose 
we have used the multipole expansion of the transition 
current matrix elements between the nucleon and its ex- 
citations derived before [l], in the formula for 0 derived 
by L’Vov [4]. This formula, which was obtained using a 
dispersion method, is here reobtained by a method that 
immediately leads to a first sum rule, when one makes 
use of the low-energy theorems which are of second order 
in the frequency of the incoming photon. As the for- 
mula for p, this sum rule is also related to the nucleon 
transition current and, therefore, by using the tiultipole 
expansion it could also be put in terms of the nucleon 
transition multipoles. All this analysis has been made in 
the forward-scattering situation. Next we moved to the 
general, nonforward, case and obtain a second sum rule. 
The closed expression for the magnetic polarizability can 
be of help for a quark model calculation. This could be 
achieved by using the nucleon transition amplitudes de- 
rived in the context of the relativized quark model [6-81, 
on the assumption of dominance of the low-lying reso- 
nances. In turn, the two sum rules could be used to test 
tbis assumption. A further test could be provided by the 
other three sum rules previously obtained [l]. 
The whole’procedure developed here for the nucleon is 
quite general and can be applied to hadrons of arbitrary 
spin. 

APPENDIX A 

The calculation of&U:& is made somewhat easier by 
employing the equivalent expression 

(PzIJ,IPI) = ;a(pz) W + X~Z,)-Y, 
[ 

-$s (PZ + PI), 
I 

*(pd (Al) 

for the nucleon current matrix element. A straightfor- 
ward calculation gives, in the Breit frame, to second or- 
der, and with h = k x E, 

EqJ..Ej = ie2p 
‘3 =[k’.sa.h’-k.e’a.h-fiu.(h’xh)] 

+ $$[k’ ek E’ (2X + X’) 

-& e’k k’], W 

where cos 0 = k .k’~-~. Adding the excited part &‘“I@ 
with the low-energy results (2.6a)-(2.6c), we get, for the 
scattering amplitude, 

e= A = pjy. .cj - iE ct + iw 2/1-l 

,; m 
yp2” (d x E) 

+- 4m3 k k’e E’ + LZI,~W%. E’ + a3 (0) h’ h. (A3) 

The Born term is given by (Q = yPa,) 

AB=.“~(-P)[~~-~~~‘~~] cp+;+m2 

x [c+~“Ek]u(p)+C.t.. 

A rather long but direct calculation gives, to second or- 
der, 
AB=e2 
1 

---E.c’+iu 
2/J - 1 

rn 
-0 (e’ x E) + --y- 2;w [k’ w.h’-k.c’u.h-/n.(h’xh)] 

+ &{k k’e e’ + cos@[k’ Ek E’ (X” + 2X) - /?k. k’s’ E’] + (X” + 24 de. d} 

Comparing (A3) and (A4) we find Eq. (3.15). 

APPENDIX B 

Using (5.20) and (5.22) in (5.1) and recalling that p;j, and therefore e$), is symmetric we can write 

Wl~,Kb) hKolJj 10) + (OlJjln, -Kn) (n, -Kb(JilO) + c.t. 

&(P) -E 1 
[(Ji), (JOInN + (Ja)Nn (JdnN] [-$$ + ‘;$$;‘“m”:] + ct.}. WI 
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Using (4.1) and (4.15) in (Bl) and using (5.17) and (5.18) in (2.14) we obtain, to order w2, 

A~~)+~~~)=~[-~(l-~)+K”+K22~“K~-K~~] [(di)Nn(dj)“N+(i,j)] 

-; c (M, -m) ( (K”Kb - K,“Ki ;KFKy [(ddN” (Ojd)“, + (ojjob)Nn (di)nN] + .A} 

-; c { (K”K6 - WG y@) cja r [(di)Nn (LP*)nN - (L,a)N, (d&J + ..t.} 
n 

+; c W” - 4 pKb - KFK,b) [(QiO)Nn (S&g + (Qjb)Nn (&)nN] 

+; ;: {ptoK - KFKA) qs* [(QiO)Nn (s),N - b+vn (&)“,] + c.t.} 
n 

b (m),, (4,, + (TVS) 
+&go rEjb a c (K’“Kb - KtK,) 

M--m 
n 

From (5.14b), (5.19b), (5.21), and (5.23) we get the relations 

K’=fK=-K/,=-K;=2k.k’, (B3a) 

K”Kb - ; (K;K, + KzKf) = ; k;kb + k,kl, + % (k,ka - kbk;) 1 , PW
and 

K’aKb-K~Kbb=~(l+~)khkb+a (I-%)k.k;. 

Taking these relations in (B2) we get 

(B3c) 

A$‘+&‘= bl-bz-4e+7dl+5dz+el-ez+f+~(g,-gz)+h k.k’Jij 1 
+ 

[ 
bz-2c+dl-5dz+el+ez-f-~(g,-g,)-h k;kj 1 

+ 
[ 
-bz - 2c + dl + 5dz + Ed - ~2 - f - ; (fi + fi) + h] (kik; -k k’bii) (B4) 

Substituting tbis result in (5.6) together with (3.4) and (5.4), and comparing with (2.5) we reobtain the zeroth-order 

low-energy result (2.6a) and obtain Eqs. (5.24)-(5.28). 
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