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Landau-Pomeranchuk-Migdal effect for finite targets
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In this paper the high-energy expansion for scattering from extended targets that the authors previously
applied to beamstrahlung radiation and pair production is applied to the problem of radiation in a medium with
multiple scattering. The suppression of the emission of long-wavelength photons, the Landau-Pomeranchuk-
Migdal effect, is treated and explained in physical terms. This treatment of single-photon emission extends
previous classical treatments of the problem to the quantum domain and corrects certain approximations made
in these earlier works. The effects of finite target thickness is treated. A quantum treatment of multiple
scattering is also given to aid in the physical interpretation of the suppression effect and to completely define
our model of multiple scatteringS0556-282(196)01211-9

PACS numbegs): 41.60—m, 13.40—f, 11.80.Fv

I. INTRODUCTION AND MOTIVATION dN~dK/(pyLK). 1.1

Perhaps the most ubiquitous process in high-energy physubsequently, Migdal9] presented a gquantum-mechanical
ics is the bremsstrahlung of photons by a charged particle iderivation of this effect, treating multiple scattering via the
the field of an atom first described by Bethe and Hejtldr ~ Vlasov equation and including the effects of electron spin
Following the experimental confirmation in 1993 of the and energy loss. His derivation contains a number of ap-
Landau-Pomeranchuk-Migd&LPM) effect [2—5], there is  proximations that are formally difficult, not very transparent
renewed interest in extensions of this process as well as @0 physical grounds, and numerically not well controlled.
strong interaction analogue, gluon radiation at very high enThese works have been extended by several auftiOis
ergies in heavy nuclei. In this paper we describe the applica- The approach presented here is a simple application of the
tion of eikonal techniques developed for the beamstrahlun§ikonal formalism previously developed for high-energy
procesq 6] that lead to a simpler, more straightforward, and eamstrahlung processes and has the advantage of greater

physically transparent quantum-mechanical derivation of thggnerality and physical transparency. Aside from providing a

LPM suppression of soft-photon radiation from high-energys'mple and intuitive framework for more accurate studies of

electrons in dense matter. This exposition fills in some of the[t.he LPM effecf[, including f!n'te target thickness, our motiva-
important steps omitted in our recent prepfintand extends lon is to provide a forr_na_llsm that may be adap_tgd to other

: problems such as radiation by electrons transiting random
the treatment in two ways. We analyze more fully our model

£ th d . di d | | hmagnetic domains and non-Abelian gluon radiation by
of the ran _OT“'Sca“e””Q medium, and we aiso analyze t fuarks transiting heavy nuclei and undergoing multiple in-
effects of finite-target thickness for comparison with the re-

elastic collisiond11,17.
cent data. _ _ As described earlier, the essential physics used in LPM
This effect was first described by Landau and Pomerangeading to the behavior ifl.1) is the random scattering of
chuk[8], who treated the classical radiation of a high-energythe electron while transiting matter. The radiation lengtis
particle in the fluctuating and random field inside an infi- energy independent at h|gh energy, being given for screened
nitely thick medium. The minimum longitudinal-momentum Coulomb fields by
transfer,q, by a high-energy electron of momentymmand
massm, radiating a photon of momentuk=(1—x)p, is
given by g"=m?(1—x)/2xp. The uncertainty principle is
used to define the formation length=(1/q""), which at
high energies f>m) and soft-photon emissiofii—x)<1  wherer,=a/m=2.8 fm andn is the number density of tar-
can become large relative to the scattering mean free path gkt particles. The mean free path is definedbs|In travers-
the electron. When this occurs, coherence is lost, leading tmg a path lengtltz, the longitudinal momentum transfer due

1
T =4nar2z?In(18312*53), (1.2

suppression of the radiation. to multiple scattering of the electron increases to
In their classical derivation, which is appropriate to this
kinematic limit, k<p, Landau and Pomeranchuk were the B m?+(8p, ) m’+(5p, )
first to show that the familiar Bethe-Heitler radiated photon =|E- 2p —| k+xE- 2Xp
spectrum,dN~dk/k, is modified by the multiple scattering
of the electron as it traverses the rapidly varying electric L [m2+(86,)2], 1.3

fields of the medium. When the mean free path of the elec- - 2xp
tron, L, is comparable to or less than the formation length

I+, they found that the spectrum is suppressed, ultimatelwhere the classically calculated, mean-square, transverse
achieving the form momentum transfer is given by
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2

. 12z . 1
(8p,)%~ fo dZ'E, (Z') (1.4 =p'z—xo(z,b.) - o [x1(z.b,)+ixa(z,b,)].

(2.9
E, (z') is the random(from one electron to the nexatomic T :
eﬁactric field that scatters the electron over its path length o?‘UbSt'tUt'on into(2.4) then yields
(1/2)z, the average for both the incident and scattered elec- . z .
tron; higher-order effects, such as scattering of the photon by Xo(z,b,)= f dz'Vv(z',b,), (2.9
the medium, are neglectdd3]. The standard formula for T

multiple scattering by statistically independent atomglig which is recognized as the usual eikonal form. The leading

2 (1/p) corrections aréfor pL not zerg

R 2_E§ 1 , 4mm )

(6pu)°=1"|52], Es=———~(21 MeV). T o
19 xa(@b)=5 [ a2, xo(z 6]

Identifying q,,s~1/z by the uncertainty principle, we obtain _251'€LX0(Z',51)],

from (1.3
- 1 (2 - -
g2 |t xa(z6)=5 | a2 b1 @)
=i\ 1+ 5 z) (1.6) .

For the final state with incoming-wave boundary condi-
so that in the Bethe-Heitler limit of no multiple scattering, tions, the leading term b must contain the final electron
Zgu~ls<1/k, whereas for strong multiple scattering,py momentum wntten ap =(zp' +bpl) The phase function
~ k. to order (1p") will be written as

This simple argument, confirming..1), indicates that the L
1/p corrections are necessary in the eikonal treatment. As P > > . >
emphasized 6] the zeroth-order eikonal approximation q)f:pf'HTO(Z‘biHHf [r(zb, ) +i7a(z,b1)],
treats straight-line propagation through the medium in the (2.8
limit of zero transfer of longitudinal momentumy,—0. In
contrast, here the multiple-scattering corrections to a finiténd then substitution int(2.4) yields the solution
g,~ 1/p are of interest, as shown {(A.3). Let us now turn to .
some details of the formulation and calculation. TO(Z!BL)ZJ dz'V(z',b,), (2.9

z

Il. EIKONAL TREATMENT which is again in the familiar eikonal form, and the leading

We review here the eikonal formulation for high-energy corrections in this case are
scattering by the static fields of a medium at rest; for more
details, sed6]. For simplicity [15] we consider the Klein- z. b f dZz [TV (2 b,)12+2p" -V 7'b
Gordon equation for a scalar particle of massin a static m(2.0,) [V, 70(2,b) 14261V 70(2',b,)]
external field, which can be written

N 1 (- - -
[(E_V)2+v§2_m2]¢(r"):0' (21) TZ(Z!bL):E J; dZ,[VzTO(Z/,bL)]. (21@

and write the scattering potential in cylindrical coordinates, The total phase appearing in the bremsstrahlung matrix
R R element also includes the phaEk5] of the photon wave
V(r)=V(z,b,), b?=x?+y? (2.2 function A(r) Deﬂnmg the momentum transfer to the me-
dium asg=p’+k—p', the total phase can be written in the
We look for solutions satisfying the requisite initial and final form
(outgoing and incomingboundary conditions. The solution

will be written in the form D= - P —k-F
¢(r)=exdid(r)], (2.3 -—g r—Xg’t(bl)——[X“"(z b)+ix%(zb,)],
where the phase functiob satisfies the equation (2.11
(E—V)2—m2=[Vd(F)]2—iV2D(r). (2.4  where from now onp=p', and total phase functions have

been introduced as the appropriate sum gfand ar. There-

For the incident wave, the leading termdn will be p'z ~ fore the zeroth-order term is independentzof
for the incident particle momentum along tlzeaxis. The
phase function to ord(_ar (rl'/) for initial (outgoing scattering tot(bl f dz'V(z' bL) (2.12
boundary conditions is written
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while the first-order terms still retain sonzedependence: potential. In this case, théfunction in Eq.(3.3) is replaced
by C(z,—z;) =(a\27) texp{— (z,— z;)%/2a%}, wherea is
the range of the potential. For all but the lightest nuclei the
screening radiua is much smaller than the interatomic spac-
ing, andC(z,—z;)— 8(z,—z;).

For notational clarity we define the integrals

- - 1 -
X1'(zb)=xi(zbi)+ 2 ma(z,by),

- - 1 -
Xz'(zb)=xa(zb)+ 5 m(zb), (213

> o N z R
| ! !
where, as defined earlier=p'/p'. The termy®is crucial in AL(D)==V. xo(z.b))= f_ocdz E.(Z),
a proper description of both multiple scattering and the LPM
process. It represents a leading correction to zhaepen- _ . . w
dence of the total phase, since as we sa\lif), g, is also Ai(z)= -V, ro(z,bl)zf dZ’E, (Z'), (3.9
of order 1p. However, there is no need to retain the 1/ z
corrections to the amplitude at high energies. Therefore the . ,
term X‘Z"t, which describes the amplitude change of the wave £ _ j AZE,(2)), A (2p.20)= J 24z’ E,(2).
functions, can be neglected as unimportant in this applica- —w 7
tion.
The quantity,& , (z,,2;) evidently represents the total trans-
Il. MODEL OF THE RANDOM MEDIUM verse momentum accumulated in going from the painto

] ) the pointz, in the target.
To define a model for the medium, we use the fact thatthe The zeroth-order phases can be written as

eikonal phase, as shown in Eg&.6)—(2.13, involves
longitudinal-line integrals through the target. As the electron  y (z.b,)=—b,-Al (z), 7o(zb,)=—b,-Al(2),

traverses the target, it will be subject to accelerations due to 3.5
the electric fields of the individual nearby atoms that it O Y= —P. . A '
passes Xo(b)=—=b,-A,

The simplest model of a random medium incorporates th%vherextot(k; ) depends only o . On the other hand. the
physical assumption that the sum of transverse fields alongeal firsg-oréer correction termsidepend only upom tr’ns
any segment of the particle's trajectory that includes many o del:
atoms—i.e., when the segment is I9ng compared with the
interatomic spacing—is independenttnf, the particle's im- 1 (z N -
pact parameter in the medium. Therefore, in this model the x1(2)=7 j dz'[AL(2')-A\ (2],

1/p terms in the eikonal phase that record the transverse o
momenta transferred to the particle depend only on the path

: 1 (> . . .
lengthz =3 [ dzIAl@) Al 260 ALzl 39
- N z
Xx1(z,b)=x1(2) and 7(z,b,)=7(2). (3.)
Consistent with this assumption, we set xY(2)=x1(2) + : 71(2).
X
V(z,b,)=—b, -E, (2). (3.2

. . . IV. MULTIPLE SCATTERIN
The transverse field varies with deptlfrom atom to atom. . s¢ G

The quantityE, (z)dz is the differential transverse momen-  In this section we consider the propagation of a wave

tum acquired in traversing from to z+dz. Its fluctuating  packet through the scattering medium in order to develop a
nature, from one incident particle to the next, is expressed byeometric picture that confirms the interpretation we gave to
the statistical, or ensemble, average given by A, as the net transverse momentum acquired by the particle
(7 in traversing the medium.

(E,(2)-E,(21))= FE 8(2o—21), 33 We assume an incident plane-wave packet of the form

dp o

in the absence of correlations between fields at different ¢’o(r:t):f W(p,p')exp{l[p,r—E(p)t]}, 4.9
depths. In Eq(3.3) (p?) is the average transverse momen-
tum aCCUmUIated Via mu|l‘|p|e Scattering in traversing a rawhere<5'5i> is a normalized Gaussian packet of width
diation lengthL. This relation, independent &f, allows one
to compute all the statistical averages that will be needed in <5,|3i):N exr[—wz(ﬁ—ﬁ‘)z], 4.2
the following discussion. This is a quantum version of the
classical model introduced by Landau and Pomeran¢Buk — with N the normalization constant. Expandi&gp) to linear
in their original paper. terms in @—p'), the incident packet becomes

A simple physical description can be given of this model
of the scattering along the trajectory of the projectile by ap-  ¢o(r,t)=expi[p'-F—Ejt]}exd — (F—v't)?/(4w?)],
proximating the screened Coulomb potentials by a Gaussian 4.3
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where v'=(v',0,) is the incident packet velocity and o
E;=E(p;). Thus the packet probability distribution is (z-hH=

- = t—T)).
Lz aain]

| po(r,t)|2=exd — (F—v't)%/(2w?)]. (4.4)
After passing through the medium, the packet moves linearly
We consider a particle traversing a medium extendingwvith time with a reducea component of velocity, and it is

from z=0 to | in which the scatterers are randomly placed,therefore compelling to identify the angle of deviation of the
and calculate the eikonal phase of its wave funciin,t) particle 6, as
as defined in Eqs(2.5 and (3.1). For (z<0), there are no
interactions and the phase 8 -r. Inside the medium
(0=z=lI), the phase changes as a functionzads the par- cog )=
ticle trajectory encounters additional scatterers. On the far
side on the medium,z(1), beyond the range of any poten-
tial, the phase integrals saturate and remain constant:

[1+[1/2(p)2A2 (1]’ @10

or *~[A, (I)/p']2 This is in agreement with the interpreta-

tion of A, as the net transverse momentum acquired by the
. | R particle in traversing the medium, and is consistent with

)(O(I,bl)zf dz’Vv(z',b)) (3.3.

0 The transverse position of the center of the packet also

tracks the longitudinal position,

and
- - - -1 - Lo
A (D==V xo(l,b,), (4.9 Bfa ((Z—I)AL(IHdeZ’AL(Z’))- (4.12
Xi(2)=(z—1) E &(')'&(')JFX%('), The center of the packet moves at an angleith respect to
2 the incident direction, where to order pl/
R 4.6 sine)~|A, ()|p'.
x1(2=(z=DHA, ()+x1(1), Using Eq. (3.3 to perform the ensemble averages over
the packet probability distribution for multiple scattering
where the two terms in Eq2.7) are through the random medium, we find to the inherent accu-
racy of our eikonal wave function and as expected from Eq.

1 rl - - . ' - 4.11):
Xi“):gdeZ’AL(Z’)'A'L(Z')y Xﬂ')zfodZ'Al(Z')- 4.1
) N | | - -
@9 (p'>2<02>=<Ai<l>>:fodzfodz%a(z»a(z'»
Expanding the phase function to first order around the
central value of the packet momentuph=(p',0,), one gets o

- @'=(p-p)-R(zb,), () 1
2\ _ ML/ T
where
1 | _ _ The average transit time also shows quadratic growth with
Rz(z)=z+m (z—l)Af(|)+fodz'AL(z').A'l(z') ,  the thickness
: 1 I - - o -
... . - U|<T'>:1+W deZ,<AIL(Z,va)'AIL(Z,abL»
R (z,b,)=b, — = (z—I)AL(I)+f0dz’AL(z’)}.
4.8 |[1+ (p7) | 1
AP L (419

Therefore, the probability distribution of the wave packet
after emerging from the medium is As the statistically averaged packet exits from the target it is
R . centered about the same value mf as was the incident
|p(r,0)|?=exd —[R(z,b,)—v't]#(2w?)]. (4.9  packet. However, the square of the packet widthis in-
creased. The mean-square width of the packet when it
Introducing ¢, BL) as the coordinates of the center of the emerges from the medium at the pomt| is therefore
packet andT, as the time the packet emerges from the me-

dium, one finds from(4.8) that E
w2+ (B2)=w?+(6?) TR (4.19
1 . .
Ti=l+ 5= | dZA z(")-Al (Z' 4.1
! 2(p") Jo ZA2()-AL(Z) (410 For large times, one finds that the root-mean-square width of

the transmitted packet increaseszaswvhich in turn grows
and linearly int.
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V. BREMSSTRAHLUNG IN A FIXED FIELD M= ({7 |A-T— Agdl b)) (5.1)
i ' .

We turn now to a derivation of single-photon emission bywhere jsie(€—§) is the electron current, ang{~) and
a spinless electron traversing the target medium. At a latepp{") are, respectively, the findincoming and initial (out-
appropriate point, the extension to the case of Dirac electrongoing scattering eigenstates of the electron in the static field
will be made. The simplified model of the medium intro- of the target. The calculation will be carried out in the target
duced in Sec. lll, Eq(3.2), will be assumed. rest frame.

The general form of the matrix element of interest is For scalar electrons, the matrix element takes the form

vi=ie [ dz [ %, exi—iK-71(& Lo Vo - g Vo T I-iGIE A E -2V g o) 62

wherek is the momentume the polarization vector of the photon, and from gauge invariagges - lzlkO wherek,=E;—E;.
Gauge invariance is easily proven by replacidy k,,, replacingk by a derivative acting on the photon wave function, and
integrating by parts. The result is zero if the wave functions satisfy the Klein-Gordon equation. Using the eikon&2f8rms
and(2.11), the matrix element can be written as

M= —ef dzf d2b, & -P(z,b, JexdiP(z,b,)], (5.3

where the factoP(z,b, ) involves the sum of the initial and - I A
final local momentum at the poini, ) ®Yz,b,)=—q-r+b,-A, - ) x1(2),
.. k -
= i+®)— —[Ej+E;— .
P(2b,)=V(®i+®y) Ko [Ei+Ei=2V(zb,)] where only terms of relevant leading order irp Mere re-
(5.9 tained.

Thez component of the difference vectg¢=p'+k—p'
Using the earlier expressions given for the phase function§s z P I vecta(=p P)

the convection current is

VA®i+ @) =(1+x)p, me+(pD)? (k)2 m?
. - ) — 0= 20
Voo =pl A @Al ©2e21-xp 2p
2 2 L \2 >f 12
Combining the previous formulas, we find — [m(1—x)"+x(k,)"+ (1 =x)(p,) ]_

- 5.7
P.(25,)=0, AP

Now the matrix element can be simplified by noting that

- - 2 - - -
—_— —_ —_ 1 = J—
Pu(zb)= (1-x) [k~ (I=0A@)]+ A~ AL the currentP(z,b,) is actually independent ob in the
(5.6 model of Eq.(3.2) for the external field, and hence

M=—e(2m)258(4, —Al)f dze* - P(2,00exfi ®(2,0)]. (5.9
Defining A to be the frontal area of the target, the square of the matrix element summed over polarization is

> IM[2=4maA(2m)28(4, — A,
pol
with

= fj;dzzfj;d 2,50(22,21) exXp{i[ P10 22,0) — P o 21,0) 1},

© z5
|:2f_ dzzf_ dz;S0(25,2;)co§ AD(25,24) ],

50(22121)230(21122):% & - P(25,0)é- P(2,0). (5.9
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The phase difference is written as

22 dq)tOt( Z,O)

Aq’tot(zz,zl):JZl dz dz (5.10
where
dd (2,0 _ 1 dXtOt(Z)
dz % pTdz

Eliminating,&i in this expression in favor o&iL and,&i(:ﬁi) by (5.8), and using the explicit expressi@s.7) for q,, this
guantity simplifies to

dd (2,0

4~ B op (M0P Ik — (1= (AL 2D (5.11)

where the transverse momentum dependence of the photon is measured relative to the modulated path of the electron as it

moves through the medium.
Sincee is orthogonal tck, the polarization sum is straightforward:

So(22,21) =P, (25,0)- P, (21,00~ k- P, (25,0k- P, (21,0)
= ISL(Zzao)' ISJ_(ZlvO)

4 - . - .
= o0 (K= (L 0[AL )]} (K~ (10 [AL (2}, (5.12

where the relatioruilz,&L has been used and terms of ordip?) have been dropped.
Here we also introduce the explicit corrections to the polarization sum for Dirac electrons. Following the details as given
by Schroedef17], we substitutes(z,,z;) for Sy(z,,z;), where

1 2m?(1—x)?

zy)+ yR— (5.13

S0(22,21)—S(2,,21) =

where the two terms correspond, respectively, to no-helicity flip and to helicity flip by the radiating electron. We also introduce
the notationr (x) = (1+x2)/2x for later use.
The probability that an electron incident upon the target will emit a photon of ederdyt —x)p is

dP(x) 1do 1 d2k, d?q,
| S mp
dx  Adx 167Apx(1-x) )] 2m?) (2m)? &
~ 5 = f " d J 4 f 4z I 0(20) 5.1
=552 (1=%) an? ) . Z . 2,9(2,,2z1)co . z 4z . (5.19

Note that if there is no scattering in the target, tl$n,,z,) does not depend upon tkss andd®d,,(z,0)/dz=const. Thus the
integrals over the's are zero; they yieldS functions that cannot be satisfied. It proves convenient to reg(faid) by
subtracting this zero from the integrand. Later we will want to interchange the orders of integration to simplify the numerical
evaluation. This will require care due to the infinite limits. By introducing suitable convergence factors we will show that the
integrals smoothly approach their finite values as the convergence factors go to one. Thirgdheals will be regulated by
replacingdz by dzC(z) where the cutoff functiorC(z) is chosen to restrict integration to the physical region and to go
smoothly to one after all integrations have been performed. The simplest choice is

C(z)=exp — €[Z]) (5.15
with

dC(2) B

4z —C(2)e [0(2)— 6(—2)]=—C(2)€€(2).
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With the understanding thatwill be taken to zero at the end of the calculation, the emission probability can now be written
as

(1-x)2 dP(x) d’k, (= 2
: 20 dx (277;2 Lwdzzc(ZZ)ffidzlc(zl)AB(zz’zl)'
AB(23,21)=[B(23,21,K, )~ Bo(22,21,k.) ], (5.16

where

2m?+ r(X)E\i(Zz 1Z1)

- 1% d
B(zz,zl.kfr(x)(ﬁ—zz—a—zl)sir{Acbm(zz,zl)]—(l—x)Z x1oop  CIAPu(z 2] (51D

Bo(zz,zl,lzi) is the same expression in the limit of no interactié@,(z) =0. An integration by parts omr, andz, now leads
to

2m2+1(X)A2(25,21)
2x(1—x)p

B(221zlrlzi):?(x)[6(22)_E(Zl)]Sir[Aq)tot(ZZ121)]_(1_)()2 Co§AD(2,,27)].  (5.18

Our problem now is to evaluatés.16 with (5.18 in the  The last form follows from(5.15 and(5.17). The result is
physical situations of interest. First, however, we must con-

firm that the subtracted term, witB replaced byB, in P(1—x)? dPy(x) d%k, [ 2m?%(1-x)?
(5.17)_, sti_II vanishes ar_1d .that we ha_vg not introduqed a false 2u dx Ef (2m)2 €ly— m P
contribution to the radiation probability by the choice of the
convergence facto(s.15. with
To examine this point, perform the integrals owgrand
Z, in the zero-field limit for the term involving . e . PP )
Bo(Z 21K, ) = er (X)[ e(Z) ~ €(2,) ST ADo(22,20)] e e 520
2m?(1—x)?
T and
2X(1_X)p COE[ACDO(ZZIZI)]: (519)
where _mP(1-x)%+k?
 2x(1—-x)p
ADy(2p,2) = =222 m2(1—x)2+[K, 13
02 ox(1—X)p L We obtain
|
p(1—x)2 dPO(x)_J d’k,  4e? m?(1—x)? -
Za dx ) @m? et wd? " xd=xop) (5.2

The integration ovelzL is well convergent and therefore the probability of emission vanishesgags to zero, as it must.
The regulated probability of radiation can now be written in the form

p(1—x)? dP(x) d’k, (= 2 N
2a  dx :f (27)2 J'_deZC(Zz) f_xdzlc(zl)AB(ZZ!zlvkl)v (5.22
where the integrand has become
2m?(1—x)?

AB(25,21,K,) = €T (X)[ €(2) — e(20) SN AD1(2,20) ] = SIM AD (2, 21) |}~ 2X(1—x)p. {codAd4(25,21)]

(1=x)%r(x)A%(2,,21)
2x(1-x)p

—Co§Ady(z,,20) ]}~ Co§ AD1(22,21) ] (5.23

Equation(5.22 can be simplified further by defining
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2 P fzzd A 2 |1 ; 2
m 77(221211 )_H 2 Z[ L(Z!Zl)] - Z,-2 (Zazl) )

and
M2\ (22,21,1) =A2(2;,2,). (5.249

Now we interchange the order of the integrals tofatﬁlzL first, and then shift the integration variable frd;p to RL where

. N 1 (n -
Kl=kl—(1—x)(A'L(zl)+ fzdzAL(z,zl)). (5.29
25— 7y 77

The resulting expression is a function only of the magnitﬁ@eand we find for Eq(5.22

1-x)2dP(x) (= z
% d(xx =ledzzfiiqu(zz)C(zl)AB(zz,zl), (5.26
where
[ dK, [— , R _ R 2m?(1—x)?
B(Zz,zl)—f (2m)?2 GV(X)[E(Zz)_G(Zl)]{s'r[A(Zz:Zl,KL)]_SW[5(ZZ:21,KL)]}_m
A K s K r(x)mz(l_x)z)\(zzyzl)n A K 5
X[COS{ (221211 L)]_COS{ (221211 L)]]_ 2X(1_X)p \’Oi (221211 L)] ) ( 7)
and
- Z,— 27 5 5
A(z3,21,K))= 2x(1—x)[m (1=x)7[ 1+ 9(z5,2,1)]+ K],
(5.28
8(25,21,K, )= —sz(zl 3 [m2(1—x)2+K2].
Using the(regulated integrals
| “dy cosy)=0. [ “ayy cosy)--
0 0
(5.29

de sin(y)=1, fxdyy sin(y)=0,
0 0

which were also regulated by settidg=dyC(y) and then taking the limit as goes to zero, the integral over IZE can be
performed. The result for the probability of emission is

1— dP 2 o C C 1
w(ax X) d(XX) _ f dzzf dz, EZ) 212)1) +§r(x))\(zz,zl,l))sin(c)—sin(b)
)(2?1( ) [e(z,)— e(zl)][cos(c)—cos(b)]}, (5.30

where

c=b[1+7(z;,2,D)],

_ - (5.3)
M (1—-x)(z,—2y)
a 2xp '

Note that there is no singularity ag,(-z;) goes to zero. In all the examples that we shall discuss, the last term in the
integrand vanishes smoothly in the limit agjoes to zero; this term can be safely dropped.
For later use, note that to first order in the square of the net mp/ét%ethe probability of emission becomes
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7(1—X) (dP(x)
ax dx

2
) - X)f daz [ o 1C( 2)C(z 1){ [0 (22,22,)SI(b) + 27(22,21,1)b cogb)}.
! (5.32

This result holds for any fixed-field distribution in the target The first-order correction terms of interest depend upon
within our approximations. For a singl@mpulse scattering, only, and Eq.(3.6) can be written simply for this case
the probability of emission can be evaluated and compared to 1
the Bethe-Heitler and to known classical formulas. Further- )= = 26(2)[Q?
the-Heitler ¢ | xi(2)=35 26(2)[Q7],
more, if the fields in the target are averaged over, as is nec-
essary in the multiple-scattering case, simplifications are also

possible. These simplifications allow a direct comparison to m(2)=— 1 Q% -2p!-Q,1,
the LPM result for very thick targets as well as an extension 2
to the finite target-thickness case. These various limits are 1 6.3
discussed in the next sections. x(2)=x1(2) + - m(2).
VI. THIN TARGET: SINGLE SCATTERING Two integrals that we will need are

As a first application we apply the lowest-order result, Eq. 2 . R
(5.32, to scattering by a thin target consisting of a single f dzA (z,21)=Q,2,0(z,) 0( — 1),
electric field slab, described by the potential function 2

(6.4)
= — h . ® z > >
V(zb)=-b,-Q,6(2) f dZA, (2,21)12= Q7 2,0(22) 6(~ 2y).
z
and '
.. Thus we find
XE)Ot(b): _bL : QL ’ (61) Q"z
whereQ, is the total transverse momentum imparted by the M22,20,00= 7 0(22) 0(—21),
field slab and clearly=0. The phase integral$3.4), then (6.5

become —212,

>. > N N 77(22!21!0):)\(22121) (Z s )2

AL (2)=Q.6(2), Al(2)=Q.6(-2),
- - . (6.2 Using (5.32),_the probability of emission to lowest order in
A (25,,21)=Q,[0(z,)— 0(z1)]=Q, 6(Z5) 6(— 27). the impulseQ, and in the limite—0, can be written as

m(1—X) dP(x)
aX dx

Z,2:b
(—)2 COib) (6.6)

2
(1 X)f dzzf dzlc(zz)C(zl)w(r(x)sm(b)—

Now change variables tb;=z/l; with b=b,—b;. Recall b .
that the formation length is given by I(b)= JO dby[r(x)b sin(b) —2by(b,—b)cogb)]
1
__%xp =b2( r(x)sin(b)+ = b cos(b)). 6.8
|f—m. (67) 3

The result of the finab integral is[see Eq(5.29]
Interchange the orders of integration, use the explicit forms

for 7(2,,2,—2,0) and\(z,,z,—2,0), and the probability of (1-x) 2P dp(x) _di(o) _« QL ( F(0— E)
emission becomes do o
2 « Ql 3
m(1—X) dP(x) =32 X+Z(1_X)2>’ (6.9
— db T 1(b),

wherel (w) is the radiated energy per unit-frequency interval
at w=p(1—x). If the appropriate value for the momentum
where transfer is used, this agrees with Bethe and Heitler.
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In the x—1 limit this result can of course be simply ob- VII. FINITE-TARGET THICKNESS AND FIELD
tained by a classical calculation. It is instructive to do this AVERAGING
following the analysis of Landau and Pomeranchuk. Con- . . .
sider this thin-target example of a charged particle undergo- ©OUr next task is to manipulate E¢5.30 into a more
ing an instantaneous transverse impulse. Evaluate formufgPnvenient form in the case of a target of finite thickness.
(1) and then the approximate formul@) as given in their F|rst notg that the last term in the. mtegrgnq leads _to g_flmte
work [8]. As demonstrated in the Appendix, the result of theintegral; it can be safely dropped in the limit of vanishiag
latter calculation is one-half that of the former. This is im- In the remaining terms it is convenient to change variables as
portant for understanding the difference between their resulté the previous section from to b=z/l;, where the inverse
and those we find from the eikonal method in both the Betheformation length was defined earlier. The radiation lerigth
Heitler and in the LPM limits as shown in the following and the formation length; will play important roles in our
sections. The term omitted by LP gives rise to Cherenkovesult as will the scaled-target thickndss=1/1;. The result
radiation under the appropriate conditions, i.e., when the difor the probability of emission given if6.30 can now be
electric constant is greater theR/@)2 written as

1—x) dP(x o0 by C(b,)C(b r(x)N(b,,bq,b ] )
W(ax ) d(x):fmdbzfxdbl ( 2)b( 1) [<1+ ( )2((1_2)()12 |)>sm(c)—sm(b)}, .3

where £ b,
J_ dbzf_ db;=(——)+(0—)+(00)+(+—)+(+0)

b,,b,,b
% andb=b,—b,. (7.2 +H(++). (7.4
The notation emphasizes the possible coherence between
The target is assumed to extend from 8<I, or in terms  emission regions in the matrix element.
of the scaled variables<Ob<b,. The fact that the particles
see no fluctuating field outside these limits requires that the A. Statistical averages

integrals over thé'’s in Eq. (7.1) be divided as follows:

c=b|1+

The main formulas that we will need all arise from noting
that the transverse electric field is zero outside the region

o b, 0 b, by 0 0<z<I so that we may write
f dbzf dbl:f dsz' dbl‘i‘J’ dbzf dbl
—x —o0 — —o0 0 —x
> Z3 >
by by % 0 AL(ZZIZl):f dz'6(z")e(1-2z")E, (2"),
+f dbzf dbl+f dbzf db; 21
0 0 b —o0
© b| o b2 2 A 2 ! ! = ! !
+f dbzf db1+f dbzf dby . dzA (z,z;)=| dzZ'6(z')o(l-z2")E (2’ )(z,—Z").
by 0 by by ! 2 75
(7.3

The statistical averages for the six integration regions can be
In an obvious notation, these integration regions will be decomputed directly from the above. Using E§.3) one finds
noted by in all integration regions that

z R N Zy - H2 2
<J dZAJZ_(Zizl)>:<AJ_(ZZv21)‘J dZAL(2121)>:<T> f dz'0(z") o1 —2')(z,—2'),
41 Z

Z

(7.6

2z N 2 72 2z
<(J dzAL(z,zl)) >=<T>f dz' 60(z')o(1—2')(z,—2')?,

and
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(2,-2')(2' ~z)

(22_21)2

<n(22,zl,l)>=afzzzdz’0(2’)0(I—z’) , <)\(22,zl,l)>=af:2dz’0(2’)6(I—z’), 7.7

where or

(p?

“mL

by
<)\(b2,b1,b|)>=a|ffb db’6(b")6(b,—b").

In terms of scaled variables the other statistical average that After some algebra, the explicit results in the various re-

we need is gions in terms of the scaled variables are
|
Region (n(bz,by,by))6/(aly) (N(ba,by,by))/1(aly)
(=) 0 0
(0-) b3 b,
o2 [3b—2b,]
(+-) b, 5 b,
o2 [3(by+by)b,—2bf—6b,b,]
(00 b b
(+0) b,—b,)? b—b
(by - 1) [3b—2(b,—by)] (bj—b,)
(++) 0 0

The interested reader can check that these formulas join
smoothly at all common boundaries of the integration re- L(0—-)=5 f dbC(b)b sin(b)
gions. Furthermore, the symmetry betwder and(—), that

is (by—b,—b,), is also evident. L1 bZJ dbc(by ST n( )
VIII. EMISSION PROBABILITY:
BETHE-HEITLER REGIME |>\(+_):b|Jb dbC(b)[b—b,] sin(b ), 8.2
|

The probability of emission to lowest order, given in
(5.32, is written as

1,(00)= [ dbC(b)[by— b]sin(b),
7(1—X) 0
aX

dP(x)
dx

1
=al; r(x)lx+§l ) and

1

A(tot)=b|foxdbC(b)sin(b)zm .

The same regions contribute tol, and again,
l,(+0)=1,(0-), so that

where

M(by,by,by) sin(b)

3 b
|A:f dbzf ? db,C(b,)C(by)

1 (b
al b N 2
i 61 1,(0-)=73 fo dbC(b)b? cogb)
and —b3f db bZ [2b b,]cogb),
o cogb)
| —f dbzf db1C(b2)C(bl)M cogb). In(+—)=b|f dbC(b)[b>~2b{b+b7] —>—,
al " 8.3

All regions excepi{——) and(++) contribute tol, , and by
from symmetryl, (+0)=1,(0—). Changing variables from 1,(00)= fo dbC(b)b[b, —b]cogb),
db, to db, interchanging orders of integration, and perform-
ing theb, integral yields and
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% where
Iﬂ(tot):bJO dbC(b)b cogb)=—b,

27m?

(p2)= (8.6

The complete emission probability to linear orderdnis

therefore _ . .
In our model of multiple scattering, the average’) ac-

m(1—x) [ dP(x) 1 quired in each scattering event is smaller by a factor of 2
ax dx =aldby| r(x)— 3l (8.4 than the value given by Rossi for scattering in a screened
! Coulomb field. In their classical study of this same multiple-
Sincelb,=1, the final result is scattering model, Landau and Pomeranchuk were led to use

the Rossi value by an error in their approximations that was
discussed at the end of Sec. VI and is demonstrated explicitly
in the Appendix. If their error is corrected, it is necessary to

use Eq.(8.6) for this random-scattering model.

o[ 2] 22 G s

— _ 2
ax | 37 me L Xtz

(8.9

Note that(8.5) agrees with the thin-target result given earlier, IX. EMISSION PROBABILITY: LPM REGIME

Eﬂ' (6.9, if one makes the obvious identification Recall that the probability of emission to all orders, given

=(pI)I/L. in (5.30, which includes the LPM effect, can be written in
Our model of multiple scattering is normalized by choos-ine form

ing (p2) so that the emission probability agrees with the
value quoted by Ros$lL4] for incoherent multiple Coulomb 71 —x) dP(x)
scattering to leading order in a screened field:

—|(t0t)—J dbzf db¢l(bs,bq,b)),

aX dx
dP(x)\ 41 3 ) (9.9
el v B YR L S ) o
wnere
J
I(bz,bl,b|)=2w 1+%r(x))\(b2,b1,b|) sin(c)—sin(b)],
9.2

c=b[1+ ﬂ(bz,bl,bl)],

and, of courseb;=z/I; andb=b,—b;. The integrall (tot) must be divided into all the subregions as defined in ([Z®).
The regiong——) and(++) do not contribute sinck and » vanish. The first nonzero region[iecall that from symmetry,
[(0—)=1(+0)]

b 0 b b o b
|(0—)=J 'dbzf dbll(O—;bz,bl,b,)=“ 'de db2+J’ de 'dbz}l(o—;bz,bz—b,bl), 9.3
0 —o0 0 0 by 0
where the(0—) in the integrand indicates thatand 7, are evaluated appropriately. The central region yields

b b b b b
|(00)=f 'dbzf 2o||c>1|(oo;bz,bz—b,bl):f 'dbf 'dbzl(oo;bz,bz—b,b.)zf 'db(b,— b)1(00:b,,b,—b,by),
0 0 0 b 0
(9.4

since in this region neithex nor » depend upom,. The external region contributes:

|(+—):Jb deJ db1|(+—;b2,b1,b|)=Jb db bdb2I(+—;b2,b2—b,b,). (9.5
| -® | |

A. Thick target

Let us now look at th€00) contribution to this amplitude, E¢9.4) and take the limit of largé. Using the results given in
the quasitable in Sec. VIl fofA) and(7), we find

1(00)= jbldb@(b, b) b = alb?

1
1+ = r(x)al¢b|sin 6

2

—sin(b)], (9.6



53 LANDAU-POMERANCHUK-MIGDAL EFFECT FOR FINITE TARGETS 6277

where C(b) can be set to one. In the limit of lardethis (1-x) dPp(x) V2 [3a(l—x)m

result agrees with the form given by LP, however the forma- I ix 3 T (9.9
tion lengthl; is given correctly by Eq(6.7) and the electron

spin is properly accounted for by the facto(x). If

(1/6)al¢b;~1/(aL) is small compared to one, that is, if the which is smaller than our result, E¢9.7), by a factor of

target thickness is small compared to the mean free path, th£471 forx near one. The calculation by Migdal, the LPM
LPM coherence vanishes since the phase behavior is essestfect, yields the result

tially linear; this is the Bethe-Heitler regime. A direct expan-

sion to ordera of the above formula agrees with the result

quoted in the previous section. Aas$;b, becomes very large, (1—x) dP pm(X) /2 [3ax(1—x)m?

which is the extreme LPM limit, only one term 9.2 sur- | dx =2 37 4p—L r(x),
vives and it is of the order square root @f that is, (9.9

m1=x) dP) o Jbldb b—b)sin| b+ = al,b?
aX dx ~al 0 (by=b)sin| b+ 6 alib™jr(x), when his approximate formulas are normalized to the correct
9.7 result in the Bethe-Heitler limit. Equatiof®.9) is roughly
8% smaller than Eq9.7).
or
(1-x) dP(x) axb 3al; ) B. Finite target
~ r(x
| dx | Am All the regions of integration must be evaluated explicitly
Zax(1—x)m for the case of a target of finite thickness. The full expression
= QT r(x). is written in a form suitable for numerical integration:
p

[(tot)y=1(0—)+I(+0)+1(00)+I1(+—), (9.10
Note that the emission probability is proportional rt¢x),
indicating that the radiating electron does not flip helicity.
The classical LP result in the limit ¢fl/6)al:b;>1 is where

I(O—)=I(+0)=[jobldbfobdb2+J:deobldbz} Zcéb)
|

2

1
1+§ r(x)alib,

. 1 b3 .
sin| b+€ als b (3b—2b,) | —sinb]},
(9.1
= (b 2C(b) 1 , 1 b ,
I(+—=)=1| db]| db, 1+ = r(x)al¢b; |sin| b+ < al; — P(b,b,) | —sin b]¢,
by by b 2 6 b
where
P(b,bz)=b(3b—2b;) +6(b,—b)(b—by), (9.12
and|(00) is given in Eq.(9.6).
In the BH and the soft-photon limik—1, it has already been shown that
2 2

Therefore it is natural to introduce a form factérand two scaling variables that track the LPM effect by defining
[(tot)=1(BH)F(N,T,x), (9.19

where thex dependence arises only from the spin faatfx), N=(1/6)al; is essentially the number of formation lengths
contained in a mean free path, ands the thickness of the target in units of the mean free path, i.e.,

T . 1
T:Nb|:—a_ with N:—alf:—_. (913

The form factorF will be divided into separate contributing regions as was the intdgtakerting the scaling variables into
Egs.(9.12 and(9.6) and recalling the relatiob,=T/N then leads to
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o b2
F(O—):F(+O)=[jobldbfobdbfr fb de’Obldbz} %[[Hsr(xmbﬂsin b+N f(sb—zbz))—sir[b] ,
| (9.19
(7 [P, Cb) . 1 ) .
F(+—)—fbldbfbldb2ﬁ [1+3r(x)T]sin b+T5 P(b,b,) | —sinb]¢,
where
P(b,b,)=b;(3b—2b;)+6(b,—b))(b—b,), (9.17
and finally
b (b) . P
F(OO)=JO dbﬁ(b,—b){[1+3r(x)Nb]S|r[b+Nb 1—sin b]}. (9.18

These contributions to the form factor cannot be interpreted Large T: The target thickness is much greater than the
as radiation from the surfaces, from the exterior, and froommean free path. Thus the electron will definitely undergo
the interior of the target, respectively, because the contribumany multiple-scattering events in traversing the target. The

tions from each region is not positive definite. The total sumform-factor behavior and its physical interpretation depend
the form factorF, is positive definite.

strongly upon the value all. For N much smaller than 1,
Note that in the BH limit of smallT, F—1, the defined

that is forl;<al, the quadratic-phase oscillation is negli-
normalization. In the LPM limit off>N>-1, which ensures gible, the region(00) dominates, and=~1; the physics is

that b;=T/N is also much larger than one, the form factor that of the Bethe-Heitler process. For largéin the region
can be shown to be dominated B%00). One then finds

T>N>1, the quadratic-phase oscillation is important and it
F—(3/4)r(x) J@/2N. SinceN is proportional to(1—x) 2,

controls the value of (00). This is the LPM regime in which
the form factorF vanishes as the square root lofin the

the form factor asymptotically varies & Y2, the character-
soft-photon limit. This is the expected suppression from thdstic of LPM suppression of bremsstrahlung. For even larger
LPM effect.

N in the regionN>T>1, the formation length is larger than
the large target thickness. The LPM suppression is incom-

X. PHYSICAL INTERPRETATION AND NUMERICAL plete in that the multiple scattering only takes place over a

RESULTS

In this section we discuss and illustrate the physical phe- 10 ~ e
nomena that are reflected in the behavior of the form factor
F(N,T,x) as a function of the scaling variablds and N. 08
First, recall the definitions of the scaling variables: )

T T TTTTT T TTTTI LI

\
\ VAR | *-—o—— 4
Vs
v/ \
v ! :

Vo OAH0)H(+)] 7
(Ov 0) N

1
\
1
Vi
0.6 - :
3 al’ 3 al’ ‘1
1.

F(N, T)

v
i

I 2xp 2p;ps 04 i |
bl_Ey If_m2(1_x) - m2k . (101) .'|\

A T=0.1
The behavior of the form factor in certain limiting regimes is 0.2 |- F 4
quite easy to interpret physically. Keep in mind thatis AT
determined by the target geometry and composition, not ki- Do ~ ]
nematics. On the other hand, the valudNos determined by o i i Y i 1
kinematics and target composition, not target geometry; 0.01 0.1 1 10
increases as the photon enelggecreases.

N
Small T. In this regime, the target thickness is much less

than the mean free path. Thus there can be little multiple £ 1. A plot of the form factoF (N, T) at T=0.1, that is, the
scattering and the form factor must be close to 1, signifyingarget thickness is one-tenth of the radiation length, for a range of

the predominance of the Bethe-Heilter process. RefT,  yajues. The solid curve is the total form factor. The dashed curve
the value of the form factdf is controlled by the integration |abeled(00) is the contribution from inside the target. The dotted
region(00). Contributions from the exterior regions grow for curve is the contribution when at least one source coordinate is
largerN values. Eventually, the double exterior regioh—)  outside the target. The curves are computed only at the indicated
dominates. points and connected by straight lines.
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1.0
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FIG. 4. A plot of the form factoF (N, T) for a range ofT values

FIG. 2. A plot of the form factofF(N,T) at T=1.0, that is, the is plotted againsN. The important dependence on the target thick-
target thickness is equal to one radiation length. The various curvesess and the approach to the thick target limit of LPM is evident.
are described in the caption to Fig. 1.

interest. The computer data are not smoothed and the curves
fraction of the formation length. The integration regi@o) are composed of straight-line segments connecting the com-
contributes less to the form factér, and the mixed regions puted points. The dashed lines show the contribution of the
(0—), (+0), and(+—) eventually become the dominant con- purely internal region00). The dotted lines arise from the
tributors asN increases further into the regio>T2. remaining mixed and external regiof)—)+(+0)+(+—)].

The behavior discussed above can be directly seen in thEhe total form factor always has an overall smooth behavior,
numerical evaluation of the form factft8]. All calculations  but definite oscillatory contributions from the interior and
were done in the soft-photon limit(x) ~1. external integration regions arise from the sinusoidal inte-

It is found thatF (N, T=0.00)=1 for all N. As N varies grands. FOIN<T, the internal region dominates the form
from 0.001 up to 10, that is for I6b,>0.001, the form factor. For somewhat largé¥-values, the external regions
factor decreases very slightly, less than 1 percentN=efT, dominate.
the (00) region dominates, while for larger values the exte- In Fig. 1,F(N, T=0.1) is plotted forN ranging from 0.01
rior regions dominate.

In Figs. 1-3, the form factdf (N, T) is plotted as a func-

tion of N for selectedT values in the experimental range of
10 TTITY T TTTg T T 1T T TTTTTg ﬁ:
£
- - L
T=10 ]
08 |- T i
- ] ! I L I | )
T T T T T T
06 A | 08 [ T=1 7
z N = .
Y04l R - Z
: L 04 ]
L D
N\ 7 -
\\ B
02+ (0, 0) \\ — 0 | | | 1 | 1
L N 5 10 50 100 500
[O+FOHHA] Lo N k (MeV)
oL TRTTTY] D AR R R PET: kil W L 8 1 B BRI | s
0.1 1 10 100
N FIG. 5. Plots of the form factdf (N, T) vsk for T=10 and 1 are

given. The physical parameters were chosen to roughly correspond
FIG. 3. A plot of the form factoiF(N,T) at T=10, that is, the to the SLAC experiment for a gold target of thickness 6%nd
target thickness is ten times the radiation length. The various curve.7% L, respectively. Note the break atk0 MeV in the T=1
are described in the caption to Fig. 1. data.
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to 50, orb, ranging from 10 down to 0.002. In Fig.R(N,  one finds, in place of their Eq2), the result
T=1) is plotted for N ranging from 0.02 to 200

(500>b,>0.09. In Fig. 3 the form factor=(N, T=10) is di=dl;+dl,,

plotted for N, again ranging from 0.02 to 200. The small-

scale oscillations in the individual contributions are evidentwhere
The LPM regime is the regiondIN=<T where (asymptoti-

2 i —
cally) the form factor should fall as 0.9¢N. In all the g1 =& wdo J“ fdt at exfio(t;—ty)]
graphs the regimdl=T?, in which the form factor becomes : 1=
independent ofN but T dependent, is evident. ANl in-
creases, one eventually enters into the regime of low-photofihe integrands are
energies and the index of refraction of the medium becomes
important. These effects are not treated here.

In Fig. 4 the form factoiF (N, T) for differentT values is Ji=
plotted againsN. This plot shows the behavior as the target
thickness increases from a thin targét0.1, to the very
thick-target LPM limit, T>100. Finally, in Fig. 5 the form
factorF(N,T) for two T values is plotted against the photon
momentumk. We emphasize that this calculation assumed
single-photon emission only. The valuesTo£10 and 1 ap- J :[_2\7 RY, ]
proximately correspond to the SLAC experiment for a gold 2 12
target of 6%L and 0.7%L, respectively. The break in the
slope atk=50 MeV is an effect of finite-target thickness. The leading contributions to these integrals comes from the
This break is present in the data[&f for a beam energy of slowly oscillating terms with phase[(t;—t,)—rq,]. That
25 GeV(in which the radiation length is denoted byXy). is, whenw(1-V)(t;—t,)=<1, whereV is the velocity. In
For k values smaller than this value, the formation lengththis caseg~(1—V)~ 1>1
becomes larger than the target thickness. Detailed compari- This argument led Landau and Pomeranchuk to neglect all
sons of our results for finite target thickness and the experiterms of order Ig°. Although this approximation is valid for
mental data are in preparation by the SLAC E-146 Collabothe second term id,, it is invalid for J,, which has a coef-
ration. ficientV,-V,~1 in contrast to the coefficient idy that van-

Note addedAfter this work was submitted for publica- ishes in the limit of small scattering.
tion, we became aware of three earlier papers which ex- To be specific, consider a single scatter(ntassma] at
tended the classical treatment of the LPM effd@—21). In  t=0 so that we can write, to ord¢AV|?<1,
particular, the error in the treatment of Landau and Pomer- AV]?
anchuk discussed in the Appendix was first pointed out and-
corrected in20]. V()= V(O)[ 2 V(0)? o(t)

Ji. (A1)
l2

o <\71-F12><\72-F12>}

Vi- Vo

7
Mo

g cogg)— sm(g)}

S| +3—2—
in(g) g

g cogg)—sin(g)

9 (A2)

+AVA(t), V(0)-AV=0.
(A3)

ACKNOWLEDGMENTS Defining 6,= 6(t;), we find

|AV|?

We thank Spencer Klein and Ralph Becker-Szendy for 1
§ i é V1:V=V(0) { 3 vior 92>2} ,

interesting discussions of the LPM effect and of the data
taken by the SLAC E-146 collaboration. R.B. thanks Profes-
sor R. Sugar of the University of California at Santa Barbara
for his hospitality and support during the initial stages of this g=wV(0)(t;—t;)
work. S.D. thanks Professor N. Khuri and Professor T. D.
Lee at Rockefeller and Columbia Universities, respectively,

1]AV]® tit,
2 V(0)2 (tl t ) (01 02)2}1

1+

for their hospitality and support during the spring of 1995 VoV (Vl rlz)(Vz r1o) —|A V|2 (0,— 6,)?
while this work was being completed. This work was sup- * "2 rs, t (t,—ty)2 7 72
ported by U.S. Department of Energy Contract No. DE- (A4)

AC03-76SF00515.
The Landau-Pomeranchuk result g, which can be
readily evaluated as

APPENDIX g2 E2|AV|2 g2 |Ap|2

In this appendix we show the error in the Landau- dll:% m? 737 Tm? d, (A5)

Pomeranchuk classical derivation that led them to choose

<5f)=47rm2/a in order to get the correct Bethe-Heitler which is precisely 1/2 the correct classical answer. Next, one
limit instead of(8.6). Our starting point is Eq(1) in Sec. 76  readily finds that the integrdl, is also, to leading order,
entitled “Electron-Cascade Processes at Ultra-High Enerproportional to|Ap|?/m? with the contribution coming from
gies,” in the collected works di8]. If the higher-order terms  the term ing proportional toAVZ The result is that;=1,

in 1/g are not neglected, wherg= wr,, with r,=r;—r,,  which accounts for the missing contribution.
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