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We find constraints on the generation of super-causal-horizon energy perturbations from a smooth 
initial state, under a simple physical scheme. We quantify these constraints by placing the upper 
limit X, N 3.0dH on the wavelength at which the power spectrum turns over to k4 behavior. This 
means that subhorizon processes can generate significant power on scales further outside the horizon 
than one might naively expect. The existence of this limit may have important implications for the 
interpretation of the small scale power spectrum of the cosmic microwave background. 

PACS number(s): 98.7O.Vc, 98.80.Bp 
I. INTRODUCTION 

The two best candidate theories explaining the origin 
of structure in the Universe are “defects” such as strings 
and textures [1,2] and “inflation” [3]. There are many un- 
certainties in each theory, and the overlap between their 
predictions is considerable. In spite of this, the predic- 
tions of each theory are constrained, because any model 
must satisfy the laws of physics. In particular, any model 
is constrained by causality, which plays a ‘fundamentally 
different role in either scenario. 

This difference can be understood in terms of the evo- 
lution of two scales, the Hubble distance (H-l) and the 
causal horizon (dc). The former is the crucial scale for 
the evolution of density perturbations [cf. Eq. (82.9) in 
[4]]. The latter is the largest scale on which causal inter- 
actions can seed density perturbations. We note that the 
word “horizon” has many uses in cosmology; the causal 
horizon we refer to here is the absolute limit for causal 
interactions. In other contexts, H-’ can also be consid- 
ered as a horizon, since it is the maximum distance over 
which causal interactions can occur during one expansion 
time. 

Defects belong to a class of theories for which H-’ 
is of order dH at all times. We shall refer to these as 

“causal” theories. Making the usual assumption of a 
smooth initial state, super-horizon-distance, and conse- 
quently super-Hobble-distance, curvature perturbations 
must be suppressed. During a period of inflation on the 

other hand, dc grows to some large value, while H-’ re- 
mains constant. This means that dx > H-’ for the sub- 
sequent history of the Universe, and therefore that super- 
Hubble curvature perturbations can exist. (Cf. Fig. 8.4 
in 151.) 

Since the Hubble distance is the crucial scale for the 
evolution of density perturbations, the presence or ab- 
sence of super-Hubble curvature perturbations may have 
profound observable consequences. If so, it will be possi- 
ble to distinguish between “causal” theories and inflation 
in spite of the lack of preferred models. One way to do 
this has been proposed by Albrecht et al. [6]: It is well 
known that inflation gives rise to oscillations in the small 
scale power spectrum of the cosmic microwave back- 
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ground [3]. They predict that these oscillations will not 
be present for defect theories, provided energy fluctua- 
tions are sufficiently suppressed on super-Hubble sc&x1 
It is the issue of quantifying this suppression which we 
address in this paper. 

For generality, we phrase our discussion in terms of the 
horizon distance da. It should therefore apply to any 
theory satisfying the laws of physics which starts from a 
smooth initial state. The key quantity is the “energy” 
~,,a, where ,r,,v is the stress energy pseudotensor used in 

181 and PI. ~pv is particularly useful, because it describes 
the flow of energy and momentum in the Universe in an 
intuitive way (cf. Sec. II) and because 700 is the coeffi- 
cient of the growing mode of matter perturbations. The 
power spectrum P(k) is defined via 

(ioo(k)i~&‘)) = (Zn)3 P(k) Lqk - k’) , (1) 

where 6t3) denotes the Dirac delta in three dimensions. 
We use the convention 

(2) 

The nature of the constraint on P(k) for scales far outside 
the causal horizon is well known. Several authors [9-131 
showed that P(k) must fall as k4 in this limit. However, 
knowing this large scale limiting behavior is not enough. 
In addition, we need to know where the k4 behavior sets 
in. We can quantify this in terms of a turnover wave 

number k, = ?. For any power spectrum with white 

noise behavior on small scales and k4 behavior on large 

scales we can define this turnover by writing the limits 
as2 

‘This is an active area of research. Numerical simulations 
described in (71 suggest that in some defect models the sup- 
pression of curvature perturbations may alter rather than an- 
nihilate these oscillations. 

‘k, defined here corresponds directly to that used by Al- 
brecht and Stebbins in [14], since their “compensation” factor 

(&) * has exactly the same limits. 
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P(k) = (3) 

More general perturbations need not have white noise 
behavior on small scales, but k, can still be defined in a 

similar way. 
Given a specific “causal” model, we should be able 

to work out a value for k,. In the absence of specific 
models, we may still be able to place a lower limit on 
it. In this paper, we work out a lower limit given one 

simple scenario for causal perturbations, where matter 
undergoes random displacements at each point in space. 
Although we do not consider a general case, we expect 
that all other methods of perturbing matter will produce 
power spectra with the same or higher values of k,. 

The paper is set out as follows. In Sec. II we set up 
a formalism for generating perturbations in a fluid, sub- 
ject to the laws of causality and energy and momentum 
continuity. In Sec. III we use this formalism to derive a 
minimum for k> in our simple scenario, and consider the 
relevance of this limit to more general perturbations. In 
Sec. IV we draw our conclusions. 

II. GENERAL FORMALISM AND K4 BEHAVIOR 

We begin with a prescription for generating “causal” 
fluctuations in the energy. We note that the stress-energy 
pseudotensor satisfies an ordinary (noncovariant) conser- 
vation law. That is 

&,T,, = 0 (4) 

The zeroth component is the energy continuity equation. 
This implies that changes in energy from a smooth ini- 
tial state can only arise as a result of displacing energy 

elements. Initially, consider a homogeneous field with 
energy Q,,(X) = 0 V I. It follows that any energy per- 
turbation satisfying Eq. 4 can be generated by moving 
1~ energy elements with weight rn; from each point z to 
the new positions s + Ai giving 

vJO(~) = 
J [ 

d3r’ &z~~(~)(z -I’ - Ai( 
i=l 

-Ms@)(r - z’) , 1 (5) 

where M = Cm;. It is then easy to ensure that these 
perturbations also satisfy other physical laws. At the 
very least, physics requires the following. 

(1) Momentum continuity. We can generate any I,, 
arising via a process satisfying momentum continuity by 
choosing a set of displacement fields A;(z) satisfying 

&A;(r) = 0 (‘3) 
i=l 

(2) Causality. Causality implies constraints on energy 
perturbations which can be most simply stated by saying 

that no energy element can move further than the causal 
horizon. That is, 

IAi(=)l 5 dx (7) 

Substituting from Eq. (5) into Eq. (2) we obtain 
For completeness, we demonstrate the well-known result 

[9-131 that k4 behavior follows from these assumptions. 
For modes well outside the horizon we have k Ai < 1. 
Taylor expanding the second exponential we find 

T&(k) = + 
J ( 

n 

d3x e--i”* -izmik. A+) 

-~~mi[k.4(2)]‘+O(k3)) . (9) 

Momentum conservation [Eq. (S)] engures that first term 
in this expansion vanishes. The leading term is therefore 
the on&proportional to k2, implying that the potier spec- 
trum plust go like k4. 

Next, we use the formalism developed here to work out 
a minimum for the turnoverin the power spectrum under 
a simple scheme for perturbing matter. 

III. TURNOVER OF POWER SPECTRUM 

In this section, we consider the simplest scheme for 
perturbing matter which satisfies the laws of,,physics as 
stated in Sec. II. In this scheme, two energy elements 
with the same weight are displaced equally but in op- 
posite directions corn each point in space. Further, the 
displacement vectors of energy elements at each point in 
space are independent. The index i then runs ftom 1 to 
2, with A1 = -AZ = A. Equation (8) reduces to 

T&(k) = - 
(2$ J 

d% e@‘= [cask A(s) - l] , (10) 

where A is some constant. We want to work out the 
power spectrum, defined in Eq. (1). We have 

G(k)Kio’(k’) = & 
J 

pr pX e--i(k.2-k’.2’) 

x [cask. A(z)-11 [cos’k’ A@‘)-1] 

(11) 

To obtain the expectation value of this quantity, we must 
perform the functional integration 

(W+&*(k’)) = J, [dA] P[A] G,(k) G,*(k’), (12) 

where P [A] is the probability functional of obtaining a 
displacement field A. In the case where the displacement 
at each point in space is independent, we can separate 
P [A] into a product of probability distributions for the 
displacement at each point in space. That is 

PPI =n ~(4) > (13) 
i 

where we have discretized space so that the index i takes 
r; through all points and A; is th~:valne of the field at 
the point i~i. Using this discretization, and taking dV to 
be the volume of each spatial element, we get 



620 JAMES ROBINSON AND BENJAMIN D. WANDELT 53 
(G++;o*(k’)) = T2n)3 ~J~[d3A~p(Ai)]~(dV)a,-i(k’z~-k”.k) (cosk.Aj-l][cosk’.Ak-1] (14) t 

For the j, kth element in the sum, all but the jth and kth integrals can be carried out trivially, giving the value 1. 
Hence we obtain 

(6oW~o‘(k’)) = & ,, z(U)’ 1 d3Ajp (Aj) J d3AkP (Ak) em i(k.rj-k’-k) [cosk. Aj - 11 [cosk’. Ak - l] 

(15) 

Separating the sum into parts with j # k and j = k, and taking the continuum limit, we get 

(6oWGo*(k’)) = & 
IS J 

d3z d3A p (A) e-ik’= rcosk, A’- I]/2 + & /&&‘~(~)(z .i +-+=--k’~=‘) 

x 
J 

d3~Ad3A’6@)(A - A’)p (A)p (A’) [cos k A - l] [cask’. A’ - l] (1’3) 

The first term vanishes, leaving 

(+k)T&*(k’)) = A2 @(k-k’) 
J 

d3Ap2(A) [cask. A - 11’ (17) 
The power spectrum is then just 

P(k) = & 
J 

d3A p2 (A) [cask. A - 11’ (18) 

We can simplify this expression by assuming that the 
probability distribution is isotropic, which implies that 
P(k) = P(lkl). Choosing k = (O,O, k) we find 

P(k) = & 
I 

dz P(z) [l - cos kz]’ , (19) 

where 

P(A,) = J dA, dA, p’(A) 

= iz, d& [ 4 p’(A) (2’3) 

and A,,A,, and A+ are the components of A in cylin- 
drical polar coordinates. If no energy element can move 

further than some horizon distance dx, then p(A) must 
vanish for IA) > dH, and P(z) must vanish for t > d.~. 
We then see that the limiting behavior for P(k) is 

k >> dx-’ , 

k<dH-I. 
(21) 

Comparing the limiting behavior with the form described 
in Eq: (3), we see that the turnover of the power spec- 
trum occurs at 

4 
(22) 

Since the integrand in Eq. 20 is positive definite, we see 
that P(z) must be a constant or monotonically decreasing 
function of t. By inspection of Eq. 22 we see that k, 
is minimized if we take P(z) to be a constant for 0 5 
t 5 dB. This corresponds to the following choice for the 
probability distribution p(A): 

p’(A) cc ,+)(A, - dH) (23) 

This is the extreme case where the energy elements al- 
ways move as far as they are allowed. Substituting P(z) 
into Eq. (19) and carrying out the integration, we find 
I 
the explicit solution 

By examining the limiting behavior, we find that the 
value of k, is 20adx-’ N 2.ldH-‘. The corresponding 
wavelength is X, N 3.0dx. 

In Fig. 1 we compare this power spectrum to the re- 
sults of a computer simulation where we perturb matter 
on a 128 x 128 x 128 lattice by moving pairs of energy 
elements randomly from each point through a distance 
dH. We note that there is a very good agreement be- 
tween the theoretical and the simulated power spectra, 
up to deviations for large k which are finite grid effects. 
This agreement represents a solid check on our calcula- 
tion. Further, it is interesting to compare the contin- 
uum calculation described in this paper with the discrete 
case represented by the computer simulation. The dis- 
crete case does not involve the unphysical assumption 
that matter at infinitesimally close points in space un- 
dergoes displacements in arbitrarily different directions. 

Figure 1 illustrates that this only affects the small scale 
region of the power spectrum, and not its turnover. 

In this section, we have worked out limits on the gen- 
eration of energy perturbations, given minimal assump- 
tions about causality and energy and motientum conti- 
nuity. Although we have only considered special pertur- 
bations, we believe that the value of k, we have found is 
a general minimum. To show why, we consider the two 
ways in which we could make our perturbations more 
general. 

First, we could allow more than two energy elements, 
or energy elements of different weight, to be displaced 
from each point in space. Computer simulations suggest 
that this leaves k, unchanged or slightly increased. 

Second, we could introduce correlations bettieen the 

displacements of energy elements at different points in 
space. Without performing any detailed calculations, 
we make the following observation. To introduce cor- 
relations, we must transport information between points 
which are separated in space. This transport of informa- 
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FIG. 1. Theoretical (solid line) and sim- 
ulated (data points) extremal power spec- 
trum. Power is measured in arbitrary units 
and k in units of dH1. The vertical line cor- 
,responds to a mode which exactly fills the 
horizon (kdx = 2~). The logarithm is to 
base 10. 
tion takes time, which must be subtracted tiam the time 

available for energy elements to move. We expect’ that 
the net effect will be to increase k,. 

IV. CONCLUSIONS 

We have found constraints on super-horizon energy 
perturbations which can be generated from a smooth ini- 
tial state, under a simple physical scheme. We have quan- 
tified these constraints in terms of an extremal power 
spectrum [Eq. (24), Fig. 11. Its turnover to k4 behav- 
ior occurs at a wavelength X, ,N 3.0dH or equivalently, 
at a wavenumber kc: N 2.ld;;‘. Hence we find that sub- 
horizon processes can generate significant power on scales 

further outside the horizon than one might naively ex- 
pec& Although we have only considered special pertur- 
batiops, we have ,&ted reasons for believing that this 
limit is general. 

For ?ny theory, constraints on super-Hubble perturba- 
tions can be inferred from constraints on super-horizon 
perturbations, provided we know how H-’ and dx 
evolve. Essentially, super-Hubble energy perturbations 
are suppressed for “causal” theories such as defects, and 
not ,for inflation, but the details will be model depen- 
dent. Since the Hubble distance is the crucial scale for 
the evolution of density perturbations, any difference in 
this super-Hubble behavior may have profound observ- 
able consequences, for instance in the small scale power 
spectrum of the cosmic microwave background 161. The 
limit we have found in this paper makes it possible to 
quantify this without referring to specific models. There- 

fore, it may be possible to discover whether structure in 
the Universe was seeded by “causal” processes or in&- 
tion, in spite of considerable uncertainties in both pic- 
tures. 
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