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Diffractive parton distribution functions give the probability to find a parton in a hadron if the hadron
diffractively scattered. We provide an operator definition of these functions and discuss their relation
diffractive deeply inelastic scattering and to photoproduction of jets at DESY HERA. We perform a calcula
in the style of ‘‘constituent counting rules’’ for the behavior of these functions when the detected parton car
almost all of the longitudinal momentum transferred from the scattered hadron.@S0556-2821~96!01111-3#

PACS number~s!: 13.87.Fh, 13.85.Dz
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I. INTRODUCTION

Recently, the ZEUS and H1 experiments at DESY HER
have reported the first evidence for diffractive deeply inela
tic electron scattering@1#,

e1A→e1A81X. ~1!

This is an example of a more general phenomenon, diffr
tive hard scattering, in which a high energy incident hadr
participates in a hard interaction, involving very large m
mentum transfers, but, nevertheless, the hadron itself is
fractively scattered, emerging with a small transverse m
mentum and the loss of a rather small fraction of i
longitudinal momentum. One may say that the hadron h
exchanged a pomeron with the rest of the particles involv
and that the pomeron has participated in the hard interact
The possibility of such interactions was proposed by Ing
man and Schlein@2# on the grounds that the entity exchange
in elastic scattering, called the pomeron, must be made
quarks and gluons, which, being pointlike, can participate
hard interactions. The theoretical ideas and formulas
volved are elaborated in some detail in Ref.@3#. The pre-
dicted phenomenon was seen in jet production in hadr
collisions by the UA8 Collaboration@4#.

As discussed in our previous work@5#, the Ingelman-
Schlein model can be thought of as involving a ‘‘diffractiv
parton distribution function,’’ which is the subject of this
paper. The idea is that this function

d fa/A
diff ~j,m;xP ,t !

dxPdt
~2!

represents, in a hadron of typeA, the probability per unit
dj to find a parton of typea carrying momentum fraction
j, while leaving hadronA intact except for the momentum
transfer characterized by parameters (xP ,t). Here, t is the
invariant momentum transfert5(PA2PA8)

2 while xP is the
fraction of its original longitudinal momentum lost by the
hadron. The parameterm is the factorization scale, roughly
the resolution of the parton probe. A function expressing t
same physics as the diffractive parton distribution~2! has
5321/96/53~11!/6162~18!/$10.00
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been proposed by Veneziano and Trentadue@6# under the
name of ‘‘fracture function.’’ The details are a little differ-
ent, as we will explain in Sec. II. The original paper of In-
gelman and Schlein did not mention the function~2! but
instead introduced a related function, the ‘‘distribution o
partons in the pomeron.’’

Our purpose in this paper is, first of all, to relate thes
various functions and the ideas behind them to one anoth
and to comment on the likely validity of the formulas tha
express cross sections in terms of these functions. We g
operator definitions for the diffractive parton distribution
functions and discuss the evolution equation that they obe
We briefly review the expected behavior of
d fa/A

diff (j,m;xP ,t)/dxPdt for small b, whereb5j/xP . Then
we use a perturbative calculation to explore how these fun
tions behave for small values of 12b. In the Ingelman-
Schlein language, our results favor a rather ‘‘hard’’ distribu
tion of partons in the pomeron. We conclude with som
observations on the experimental consequences of t
theory. We also present, in an appendix, a calculation
d fa/A

diff (j,m;xP ,t)/dxPdt in a simple model.

II. DIFFRACTIVE DEEPLY INELASTIC SCATTERING

In a deeply inelastic scattering reaction, a hadronA with
momentumPA

m is struck by a far off shell photon with mo-
mentumqm. It is convenient to use momentum component
km5(k1,k2,k), where k65221/2(k06k3), and where we
denote transverse components of vectors by boldface. W
work in the brick wall frame, in which
PA

m5(PA
1 ,MA

2/@2PA
1#,0) and qm5221/2(2Q,Q,0). One

measures the standard hard scattering variablesQ252q•q
and x5Q2/@2PA•q#. In some deeply inelastic scattering
events there will be, in the final state, a diffractively scattere
hadronA8 with momentum

PA85S @12xP#PA
1 ,

PA8
2

1MA
2

2@12xP#PA
1 ,PA8D ~3!

as in Fig. 1. The hadron has lost a fractionxP of its plus
6162 © 1996 The American Physical Society



-

e

ie

r-

o

ly

a
at
-
r,

of
n-

ic

53 6163BEHAVIOR OF DIFFRACTIVE PARTON DISTRIBUTION FUNCTIONS
momentum and has gained transverse momentumPA8. The
invariant momentum transfer from the proton
t5(PA2PA8)

2, is

t52
PA8
2

1xP
2MA

2

12xP
. ~4!

The events in which we are interested have smallt. One
expectsutu&1GeV2 to be typical. We also suppose thatxP is
rather small. One expects pomeron physics to be domin
for xP,0.1. Having found such events, one can construct
contribution toF2 from final states containing a diffractively
scattered hadron with variables t and xP :
dF2

diff(x,Q2;xP ,t)/dxPdt.
The model of Ingelman and Schlein@2#, as applied to

deeply inelastic scattering, is simple to state. We begin w
the usual factorization theorem for the structure functio
F2:

F2~x,Q
2!5(

a
E
x

1

dj f a/A~j,m!F̂2,a~x/j,Q
2;m!. ~5!

Here, f a/A(j,m) is the distribution of partons of kinda in
hadronA as a function of momentum fractionj, as deter-
mined at a factorization scalem, while F̂2,a is the structure
function for deeply inelastic scattering on partona. If, for
simplicity, we ignoreZ exchange, thenF̂2 is

F̂2,a~x/j,Q
2;m!5ea

2d~12x/j!1O~as!. ~6!

Thus,F2 is rather trivially related to the parton distribution
functions at the Born level; nevertheless, conceptually t
distinction betweenF2(x,Q

2) and f a/A(j,m) is quite impor-
tant. As in our previous paper@5#, we break the analysis into
two stages. In the first stage, we hypothesize that the diffr
tive structure functionF2

diff can be written in terms of a dif-
fractive parton distribution, Eq.~2!:

dF2
diff~x,Q2;xP ,t !

dxPdt
5(

a
E
x

xP
dj

d fa/A
diff ~j,m;xP ,t !

dxPdt

3F̂2,a~x/j,Q
2;m!. ~7!

In the second stage, we hypothesize th
d fa/A

diff (xa ,m)/dxPdt has a particular form:

FIG. 1. A graph fore1p→p1X.
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d fa/A
diff ~j,m;xP ,t !

dxPdt
5

1

8p2ubA~ t !u2xP
22a~ t ! f a/P~j/xP ,t,m!.

~8!

Here,bA(t) is the pomeron coupling to hadronA anda(t) is
the pomeron trajectory. We distinguish the ‘‘Regge factor
ization’’ of Eq. ~8! from the ‘‘diffractive factorization’’ of
Eq. ~7!.

In Eq. ~8! we adopt standard conventions such that th
proton-proton elastic scattering amplitude is

M52bp~ t !
2sa~ t !. ~9!

Then, the elastic scattering cross section is

ds

dt
5

1

16p
ubp~ t !u4s2@a~ t !21#, ~10!

while the total proton-proton cross section is

s tot~pp!5Re@bp~0!2#sa~0!21. ~11!

The normalization factor 1/(8p2) in Eq. ~8! is quite arbi-
trary. Here, we have adopted the convention of Donnach
and Landshoff@7#.

The functionf a/P(b,t,m) thus defined is the ‘‘distribution
of partons in the pomeron.’’ In writing Eq.~8!, one thinks of
the pomeron as a continuation in the angular momentum
plane of a set of hadron states. Since hadrons contain pa
tons, the pomeron should also. Thus, one has in Eq.~8! the
standard factors describing the coupling of the pomeron t
hadron A, together with a distribution of partons in the
pomeron@2,3#. Inserting Eq.~8! into ~7!, one obtains the
model of Ingelman and Schlein, applied to the case of deep
inelastic scattering:

dF2
diff~x,Q2;xP ,t !

dxPdt

5
ubA~ t !u2

8p2 xP
122a~ t !(

a
E

b

1

db̃ f a/P~ b̃,t,m!

3F̂2,a~b/b̃,Q2;m!, ~12!

whereb5x/xP . We offer here a word of caution. Both the
structure of Eq.~12! and the language ‘‘distribution of par-
tons in the pomeron’’ suggest that the hadron emits
pomeron some long time before the hard interaction and th
the pomeron then splits into partons, one of which partici
pates in the hard interaction. This interpretation is, howeve
not required by Eq.~12! and is surely quite misleading. In a
diagrammatic interpretation of pomeron exchange@8#, the
exchanged quanta have small plus and minus components
momentum. Thus, the exchange takes place over a long i
terval (Dx1,Dx2) in space-time. It begins long before the
hard interaction and ends long afterwards. Our diagrammat
analysis in Secs. VII and VIII will provide an illustration of
this picture.

We see that Eq.~7! can be regarded as a version of the
Ingelman-Schlein model~12! that is more parsimonious in
its assumptions. Equation~7! says only that factorization still
applies when hadronA is diffractively scattered. The
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6164 53ARJUN BERERA AND DAVISON E. SOPER
Ingelman-Schlein model~12! assumes that Regge phenom
enology is applicable and, with the aid of this assumptio
has more predictive power.

In this paper, we concentrate on the case in which had
A8 is the same kind of hadron as hadronA, so that vacuum
quantum numbers are exchanged, and we considerxP to be
small enough so that pomeron exchange dominates. O
should keep in mind, however, that Eq.~7! admits generali-
zations to cases whereA8ÞA and wherexP is not at all
small. One can also generalize Eq.~12! to A8ÞA, but then
xP should be fairly small in order that just one or two Regg
exchanges dominate.

The diffractive factorization equation~7!, or rather a very
closely related equation, has been introduced by Venezi
and Trentadue@6#. These authors call the analogue o
d fa/A

diff (j,m)/dxPdt a ‘‘fracture function.’’ Stated precisely, a
fracture function is

d fa/A
diff ~j,m;xP!

dxP
5E

xP
2MA

2 /~12xP!

`

dutu
d fa/A

diff ~j,m;xP ,t !

dxPdt
.

~13!

By integrating overt, Veneziano and Trentadue eliminate
variable that is perhaps of secondary importance. Howev
there is some advantage tonot integrating overt. We are
interested in the physics of diffraction, which occurs in th
small t region. If we integrate overt, then we are forced to
consider also the larget region, in which the hadronA8 is to
be thought of not as the original hadron appearing in a sc
tered form but as a random hadron in a highPT jet produced
in the hard interaction. Taking this possibility into accou
leads to certain complications in the formulas.

In the following sections, we analyze the diffractive pa
ton distributions. According to Eq.~7!, the measured quan-
tity dF2

diff /dxPdt is approximately the sum of diffractive
quark distributions weighted by the square of the qua
charges. There are higher order corrections to this relati
some involving the diffractive gluon distribution. Thus, thes
distributions are rather directly related to experiment. T
reader may wonder why we concentrate on the theoreti
diffractive parton distributions rather than on the physic
quantitydF2

diff /dxPdt. The reasons are the same as in ord
nary hard scattering:~1! the diffractive parton distributions
are process independent and~2! the factorization~7! allows
one to include perturbative corrections to the hard scatteri
The reader may also wonder why we do not frame the ana
sis in terms of the distribution of partons in the pomero
Our excuse is ignorance. We do not know how to relate t
Regge factorization in Eq.~8! to quantum field theory.

III. THE DIFFRACTIVE PARTON DISTRIBUTION

In this section we give an operator definition of the di
fractive parton distribution. We write the ordinary distribu
tion of a quark of typejP$u,ū,d,d̄, . . . % in a hadron of type
A in terms of field operatorsc̃(y1,y2,y) evaluated at
y150, y50 @9,10#:
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f j /A~j,m![
1

4p

1

2(sA E dy2e2 i jPA
1y2

3^PA ,sAu c̃̄ j~0,y
2,0!g1c̃ j~0!uPA,sA&

(14)

Similarly, the ordinary distribution of a gluon in a proton is
written as

f g/A~j,m![
1

2pjPA
1

1

2(sA E dy2e2 i jPA
1y2

3^PA ,sAuF̃ a
†~0,y2,0!1nF̃a~0!n

1uPA ,sA&.

~15!

The proton stateuPA ,sA& has spinsA and momentum
PA

m5(PA
1 ,MA

2/@2PA
1#,0). We average over the spin. Our

states are normalized to

^kup&5~2p!32p0d3~pW 2kW !

5~2p!32p1d~p12k1!d2~p2k!. ~16!

The field c̃ j (0,y
2,0) is the quark field operator modified by

multiplication by an exponential of a line integral of the
vector potential:

c̃ j~0,y
2,0!5FPexpS igE

y2

`

dx2Ac
1~0,x2,0!tcD G

3c j~0,y
2,0!. ~17!

Likewise, F̃a(0,y
2,0)1n is defined by

F̃a~0,y
2,0!mn5FPexpS igE

y2

`

dx2Ac
1~0,x2,0!tcD G

ab

3Fb~0,y
2,0!mn. ~18!

TheP denotes path ordering of the exponential. The matric
tc in Eq. ~17! are the generators of the3 representation of
SU~3!, while in Eq. ~18! they are the generators of the8
representation. These operator products are ultraviolet div
gent, and are renormalized at scalem using theMS prescrip-
tion, as described in@9#.

The motivation for these definitions is that in QCD ca
nonically quantized on null surfacesx15const using
A150 gauge, the operators measure the probability to find
quark and gluon, respectively, carrying plus component
momentum equal tojPA

1 . The line integrals of the color
potential restore gauge invariance. ThenMS renormalization
removes divergences.

The line integrals of the color potential have a physica
interpretation. Whenever a parton is measured by a sh
distance probe, the color carried by that parton has to
somewhere. For instance, in deeply inelastic scattering, t
color is carried away by the recoiling struck quark. In the
definition of the parton distribution function, the recoil color
flow is idealized as an infinitely narrow jet moving with the
speed of light along the pathxm5(0,x2,0) with
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53 6165BEHAVIOR OF DIFFRACTIVE PARTON DISTRIBUTION FUNCTIONS
y2,x2,`. Any gluon from the color field of the hadron
can couple to this idealized color source.

Consider now the diffractive distribution of a quark in
proton. The operator is the same as in Eq.~14!, but the pro-
ton is required to appear in the final state carrying mome
tum PA8 :

~2p!32EA8

d f j /A
diff~j,m!

d3PW A8

5Gj /A
diff~PA ,pA8,j,m!

[
1

4p

1

2(sA E dy2e2 i jPA
1y2

3 (
X,sA8

^PA ,sAu c̃̄ j~0,y
2,0!uPA8,sA8;X&

3g1^PA8,sA8;Xuc̃ j~0!uPA ,sA&. ~19!

We sum over the spinsA8 of the final state proton and ove
the statesX of any other particles that may accompany
Similarly, the diffractive distribution of gluons in a hadron i

~2p!32EA8

d fg/A
diff ~j,m!

d3PW A8

5Gg/A
diff ~PA ,PA8,j,m!

[
1

2pjPA
1

1

2(sA E dy2e2 i jPA
1y2

3 (
X,sA8

^PA ,sAuF̃a~0,y
2,0!1nuPA8,sA8;X&

3^PA8,sA8;XuF̃a~0!n
1uPA ,sA&. ~20!

The Green functionGa/A
diff for a parton of typea can, at least

in principle, be computed from Feynman diagrams togeth
with the Bethe-Salpeter wave functions for the bound stat

We will want to change variables toxP andt as defined in
the previous section. Using Eqs.~3! and ~4!, we obtain

d3PW A8
2EA8

5
dxP

2~12xP!
d2PA85

1

4
dxPdtdf. ~21!

Integrating over the azimuthal anglef, we have

d fa/A
diff ~j,m!

dxPdt
5

1

16p2Ga/A
diff ~PA ,PA8,j,m!, ~22!

whereGj /A
diff for quarks is given in Eq.~19! and Gg/A

diff for
gluons is given in Eq.~20!.

IV. EVOLUTION EQUATION

As mentioned in the previous section, the diffractive pa
ton distributions are ultraviolet divergent and require reno
malization. It is convenient to perform the renormalizatio
using theMS prescription, as discussed in@9,10#. This intro-
duces a renormalization scalem into the functions. In appli-
cations, one setsm to be of the same order of magnitude a
a

n-

r
it.
s

er
es.

r-
r-
n

s

the hard scale of the physical process.
The renormalization involves ultraviolet-divergent sub

graphs, such as that shown in Fig. 2~a!. Subgraphs with more
than two external parton legs carrying physical polarizatio
such as that shown in Fig. 2~b!, do not have an overall di-
vergence. Thus, the divergent subgraphs are the same
those for the ordinary parton distributions. We conclude th
the renormalization group equation for the diffractive parto
distributions is

m
d

dm

d fa/A
diff ~j,m;xP ,t !

dxPdt
5(

b
E

j

1dz

z
Pa/b„j/z,as~m!…

3
d fb/A

diff ~z,m;xP ,t !

dxPdt
~23!

with the same DGLAP kernel@11#, Pa/b„j/z,as(m)…, as one
uses for the evolution of ordinary parton distribution func
tions. Recent analyses of the diffractive parton distribution
or rather the distributions of partons in the pomeron, have,
fact, used the standard evolution equation for these functio
@12,13#.

If, following Veneziano and Trentadue, we integrate ove
t, then the larget integration region introduces new ultravio
let divergences and the renormalization group equation
modified @6,14#. In this paper, we choose to restrict integra
tions overt to the smallt region.

V. VALIDITY OF DIFFRACTIVE FACTORIZATION

In Sec. II, we presented the hypothesis of diffractive fa
torization for diffractive deeply inelastic scattering, as repr
sented by Eq.~7!:

dF2
diff~x,Q2;xP ,t !

dxPdt
;(

a
E
x

1

dj
d fa/A

diff ~j,m;xP ,t !

dxPdt

3F̂2,a~x/j,Q
2;m!. ~24!

FIG. 2. Renormalization of the diffractive quark distribution
The subgraph in~a! denoted by heavy lines is ultraviolet divergent
and thus contributes to the evolution kernel. The subgraph in~b! is
not ultraviolet divergent~with transverse polarizations for the in-
coming gluons!. The diagrammatic notation is that of Ref.@9#.



-
r
be
-
an

at

he
tic

ri-
e
he
al-

e
-

ns

o
.

to

,

o
ing
ss

k-
te
r-

e
-

-

lly

6166 53ARJUN BERERA AND DAVISON E. SOPER
This is an example of the more general hypothesis of fact
ization for other kinds of diffractive hard scattering. Anothe
example is diffractive jet production. Consider, for exampl
the inclusive cross section for the production of two jets in
high-energy collision of two hadrons,A andB. ~At DESY
HERA, this would bep1g→ jets where hadronB is the
hadronic or ‘‘resolved’’ part of the photon.! Let the initial
hadronA have momentum

PA
m5~PA

1 ,PA
2 ,PA!5S PA

1 ,
M2

2PA
1 ,0D , ~25!

while hadronB enters the scattering with momentum

PB
m5~PB

1 ,PB
2 ,PB!5S M2

2PB
2 ,PB

2 ,0D . ~26!

We specify the two jets by variablesET , XA , andXB , given
in terms of the four-momentaP1

m andP2
m of jets 1 and 2, by

ET5~ uP1u1uP2u!,

XA5~P1
11P2

1!/PA
1 ,

XB5~P1
21P2

2!/PB
2 . ~27!

If we add the requirement that hadronA emerge scattered
with scattering parameters (xP ,t), then we have diffractive
jet production. The corresponding hypothesis of diffractiv
factorization for this cross section is

dsdiff~A1B→A1 jets1X!

dETdXAdXBdxPdt
;(

a,b
E dxa

d fa/A
diff ~xa ,m;xP ,t !

dxPdt

3E dxbf b/B~xb ,m!

3
dŝ~a1b→ jets1X!

dETdXAdXB
. ~28!

Of course, Eqs.~24! and ~28! are approximations, as indi-
cated by the; signs. We understand the hypothesis of d
fractive factorization to mean that the corrections to the
relations are suppressed by a power ofm/Q orm/ET , where
m represents the momentum scale of soft hadronic inter
tions andQ or ET is the scale of the hard interaction.

This general diffractive factorization hypothesis was p
forward by Veneziano and Trentadue in their paper@6# on
fracture functions. The Ingelman-Schlein model@2# demands
diffractive factorization plus the Regge structure of the d
fractive parton distributions. Thus, in a strict interpretatio
the validity of the Ingelman-Schlein model logically implie
the validity of diffractive factorization. On the other hand
one might interpret the Ingelman-Schlein model as bei
valid if corrections to it, while not vanishing in the limit of
largeQ, were neverthelessnumericallysmall. Thus, for in-
stance, the authors of Ref.@3# speculated that the factoriza
tion inherent in the Ingelman-Schlein model was not likely
be exact up tom/Q corrections but might have the sam
status as Regge factorization, which has proven to be a u
ful approximation even if it is not exact.
or-
r
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Graudenz@14# has shown by explicit calculation that the
hypothesis of diffractive factorization is correct at the one
loop level in the case of deeply inelastic scattering. Fo
deeply inelastic scattering, this hypothesis appears to us to
correct at any number of loops. A detailed proof of this state
ment is beyond the scope of this paper. However, we c
briefly sketch how such a proof would go, following the
ideas of Refs.@15,16#. The singularities of the cut Feynman
graphs for diffractive deeply inelastic scattering are such th
the leading integration regions involve~1! a beam jet in the
direction of the initial hadronA ~which includes the final
state diffracted hadronA8), ~2! a hard interaction,~3! one or
more final state jets that arenot in the direction of hadron
A, and ~4! possible soft gluons~sometimes with soft quark
loops! that may communicate between the beam jet and t
final state jets. Factorization would be more or less kinema
were it not for the possibility of the soft gluons linking the
beam jet with the final state jets. One must use gauge inva
ance to show that the soft gluons do not really ‘‘see’’ th
details of the final state jets, so that the connections to t
final state jets can be replaced by connections to the ide
ized jet that is embodied in the line integral of the field
operatorAm in the definitions of the diffractive parton distri-
bution functions, Eqs.~14!, ~15!, ~17!, and~18!.

Just as in the case of ordinary inclusive factorization, on
expects that Eq.~24! is subject to corrections that are sup
pressed by a power ofQ2 asQ2→` with the momentum
fractions fixed. In order for the power-suppressed correctio
to inclusive factorization to be negligible, bothQ and the
invariant massW of the final state must be large compared t
the scalem'300 MeV of hadronic transverse momenta
SinceW25(qm1Pm)2'(12x)Q2/x, one requiresQ2@m2

and, forx near 1, (12x)Q2@m2. Similarly, in order for the
power-suppressed corrections to diffractive factorization
be negligible, bothQ and the invariant massMX of the had-
ronic final state, excluding the diffractively scattered hadron
must be large. SinceMX

2'(qm1xPP
m)2'(12b)Q2/b,

where b5x/xP , one requiresQ2@m2 and, for b near 1,
(12b)Q2@m2.

What of diffractive factorization for processes with two
hadrons in the initial state, such asp̄1p→ jets or
g1p→ jets? Here, the proof ofordinary factorization is
much more delicate. The problem is that low-momentum
gluons can communicate between the partons of the tw
beam jets. This can happen even before the hard scatter
takes place, as in Fig. 3. When one looks for the hard proce
inclusively, such effects cancel@15,16#. But the cancellation
requires a sum over final states. Collins, Frankfurt, and Stri
man @17# have argued that the demand that the final sta
include a diffractively scattered hadron destroys the facto
ization. In Ref.@5#, we looked at this problem in the context
of a simple perturbative model. We found that the diffractiv
factorization hypothesis is, indeed, not valid. New terms pro
portional tod(12XA /xP) appear in Eq.~28!. @Presumably,
in a more general model one will also have factorization
violating terms that are not proportional tod(12XA /xP) but
are singular as (12XA /xP)→0.# These new terms have an
interesting structure that can be investigated experimenta
at DESY HERA.
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VI. DIFFRACTIVE PARTON DISTRIBUTIONS FOR b˜0

The diffractive parton distributiond fa/A
diff (j,m;xP ,t)/

dxPdt is essentially a long distance object, which is not am
nable to calculation using perturbative methods. Howev
Regge phenomenology provides an expectation for the
havior ofd fa/A

diff (j,m;xP ,t)/dxPdt when the parameter

b5j/xP ~29!

is small compared to 1. In the case of the ordinary part
distributions, this expectation is

f a/A~x,m!;const3~1/x!ã~0!, ~30!

whereã(0) is the pomeron intercept. That is, one expecte

F2~x,Q
2!;const3~1/x!ã~0!21 ~31!

for small x. The simplest version of this expectation is th
ã(0) is the same as in soft pomeron physic
a(0)21'0.08 @18#. However, this expectation is hard to
reconcile with evolution: if it holds at some small value o
Q2 that is at least large enough for perturbation theory to
applied, thenF2 should be steeper at larger values ofQ2

@19#. A steeper dependence was also expected on the bas
the perturbative version of the pomeron analyzed at lead
log level @20#. Indeed, a steeper dependence, wi
ã(0)21'0.4, is found in experiments at DESY HERA
@21#.

The analogous expectation@3# for the b dependence of
diffractive parton distributions at fixedxP is

d fa/A
diff ~bxP ,m;xP ,t !

dxPdt
;const3S 1b D ã~0!

. ~32!

In this case, the constant is proportional to the triple pomer
coupling used in Regge physics. Presumably,ã(0) here
should not be the true pomeron intercept'1.08 but should
be the larger value,'1.4, found in the DESY HERA experi-
ments. Then, of course, it is debatable whether the tri
pomeron coupling used here should be the same as
found in soft Regge physics. Uncertainty over the prec
values, however, should not obscure the simple predict
that the diffractiveF2 should behave, at smallb, as

FIG. 3. A graph forg1p→p1 jets1X for which diffractive
factorization fails because of soft color interactions among the sp
tator partons.
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dF2
diff~bxP ,Q

2;xP ,t !

dxPdt
;const3S 1b D ã~0!21

, ~33!

with 0&ã(0)21&0.5. The smallb behavior ofF2
diff is ana-

lyzed in Ref.@13#.

VII. GLUON DISTRIBUTION FOR b˜1

The diffractive parton distributiond fa/A
diff (j,m;xP ,t)/

dxPdt, similar to the ordinary parton distribution, is essen
tially not calculable using perturbative methods. Recal
however, that it is possible to derive ‘‘constituent countin
rules’’ that give predictions for ordinary parton distributions
f a/A(x,m) in the limit x→1 for not too large values of the
scale parameterm @22#. In the same spirit, we consider in this
section and the next the diffractive parton distributions in th
limit b→1, whereb5j/xP . Our analysis is similar to that
of Ref. @3#. The authors of that paper concluded, with certai
caveats, that the diffractive gluon distribution should behav
as (12b)1 asb→1. Our reanalysis suggests a behavior be
tween (12b)1 and (12b)0, depending on how certain non-
perturbative issues are resolved. For the diffractive qua
distribution~not treated in Ref.@3#!, our analysis in Sec. VIII
suggests a behavior between (12b)2 and (12b)1.

Our analysis is based on a model that consists of a s
lected set of Feynman graphs with the internal loop momen
integrated over a selected integration region. The graphs c
be viewed as one-rung ladder graphs, with a single gluo
emitted into the final state. It would be simpler to use a ze
rung ladder, but a zero rung ladder does not produce t
pomeronlike growth asxP→0 that can be obtained with a
one rung ladder. Thus, we present a base model consisting
the lowest order graphs that can producea(0)51 power
behavior forxP→0. It remains for future work to explore the
effects of higher order graphs. In particular, one should in
vestigate the effects of collinear splittings of the on-she
partons in the model graphs, of soft gluons joining thes
partons, and of the hard partonic radiation that accounts f
evolution of the diffractive parton distributions. Eventually
one may hope to have a theory of thexP→0 and
(12b)→0 behavior instead of a model.

Since the model considered here does not include t
graphs that contribute to QCD evolution of the parton distr
butions, the analysis can apply only to the diffractive parto
distribution at a starting scalem0 that is not too large~say, 2
GeV!. Standard parton evolution starting at this scale wi
soften the distributions.

Define t512b512j/xP . Then, we examine
d fa/A

diff
„(12t)xP ,m;xP ,t…/dxPdt in the limit t→0, after first

taking xP!1 so as to separate out pomeron exchange fro
other Regge pole exchanges. We consider the diffracti
gluon distribution first~a 5 g!. Later, we supply the modi-
fications needed for the diffractive quark distribution
Throughout this section, except as specifically noted, w
consider Feynman graphs in null plane gaugeA150.

A. Decomposition into hard and soft subgraphs

According to Eq.~20!, the diffractive gluon distribution is
the square of the matrix element of an operator that destro

ec-
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6168 53ARJUN BERERA AND DAVISON E. SOPER
a gluon with longitudinal momentum fraction (12t)xP ,
where the matrix element is taken between the initial prot
state and a final state that includes the scattered hadron
anything else. Since a color octet gluon is destroyed, wh
the initial and final hadrons are color singlets, the final sta
must include at least one gluon orqq̄ pair. We consider here
the minimal model in which the final state includes precise
one gluon. Then, this gluon carries a very small momentu
fraction txP . Call the momentum of the final state gluo
qm, as depicted in Fig. 4. Since this gluon is on shell, w
have

qm5S txPPA
1 ,

q2

2txPPA
1 ,qD . ~34!

Before proceeding, we pause for a technical point. In ge
eral, in this section we use the null plane gaugeA150, but
for the final state gluon this is not convenient. The polariz
tion vectorsem(q, j ) for transverse polarization in thej di-
rection have minus components that grow as 1/t in the limit
t→0:

e2~q, j !5
qj

q1 5
qj

xPtPA
1 . ~35!

We avoid this singular behavior by changing the polarizati
vectors for this gluon toA250 gauge. The differenceDem

between the old polarization vector and the new is prop
tional to qm, so that changing polarization vectors has n
effect after we sum over a gauge-invariant set of graphs.
A250 gauge,e2(q, j )50, e i(q, j )5d i j , and

e1~q, j !5
qj

q2 5xPtPA
1
qj

q2
. ~36!

Thus,em(q, j ) is predominantly transverse, with a plus com
ponent that vanishes ast→0.

Some vocabulary will be helpful for discussing the phy
ics of time and momentum scales in this problem. There
three relevant longitudinal momentum scales. We call p
tons with p1;PA

1 fast partons. For instance, the valenc
quarks in a hadron are typically fast partons. We call parto
with p1;xPPA

1 slow partons. Finally, we call partons with
p1;txPPA

1 very slow partons. The final state gluon is suc
a parton.

FIG. 4. Structure of amplitude contributing to the diffractiv
gluon distribution. At least one gluon must be emitted into the fin
state.
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The gluon cloud surrounding any hadron contains gluon
at any momentum fraction. Consider a gluon with momen
tum fractionx and transverse momentum of orderm, where
m'0.3 GeV gives the scale of a typical hadronic mass o
transverse momentum. The contribution of such a gluon
the null plane energyP2 of an intermediate state is
p25p2/2p1, which is the minus momentum of a free gluon
with transverse momentump and plus momentump1. This
‘‘kinetic’’ minus momentum is of orderm2/(xPA

1). Thus, a
gluon of the type that we are calling a slow gluon has
kinetic null plane energyp2;m2/(xPPA

1) and survives for a
typical null plane timeDz1;xPPA

1/m2.
Notice that the final state gluon has a large minus mome

tum, q25q2/(2txPPA
1), at least as long as its transverse

momentumq is not too small. Now,q is not observed; we
are to square the matrix element and integrate overq. We
cannot say anything about the region of very smallq, but we
can analyze the contribution to the integral from the regio
R defined by

q2@tm2. ~37!

We will consider the contribution tod fdiff /dxPdt from the
region R with the hope that the contribution from the
complementary regionq2&tm2 is not large enough to
overwhelm—or, worse, to cancel—the contribution from re
gionR.

We will also evaluate the contribution from the smalle
integration region in which the transverse momentumq is
large:q2@m2. Since this region is described by rather stan
dard short distance dynamics, its contribution should provid
a lower bound on the true result.~Again, we assume that this
contribution is not canceled by some long distance contrib
tion.!

For qPR, the minus momentumq25q2/(2txPPA
1) of

the final state gluon is large compared to the kinetic minu
momentump2;m2/PA

1 of a typical fast parton and is also
large compared to the kinetic minus momentum
p2;m2/(xPPA

1) of a typical slow parton. This large minus
momentum flows through the graph and is carried out of th
graph by the detected gluon. Thus, the parton detection w
t→0 creates a hard process that happens on a null pla
time scaleDx1 that is short compared to the typical time
scale for interactions within the proton or its cloud of slow
gluons. We base our analysis on this observation, using lo
order perturbation theory for the nearly instantaneous inte
action that probes the parton distribution.

The three graphs that involve the lowest order hard inte
action are shown in Fig. 5.~Other graphs of this order vanish
when projected onto the color singlet configuration in th

e
al

FIG. 5. Graphs with an orderg2 hard subgraph.



m
e
d-
ly

ve

ks

t
e
n
e

p-
-
of
er
e
e

,

us

se
-

53 6169BEHAVIOR OF DIFFRACTIVE PARTON DISTRIBUTION FUNCTIONS
rm2sm channel.! In these graphs, the large minus mome
tum q2 flows through only one or two propagators, as ind
cated by the heavy lines. These propagators are far off sh
We refer to this part of the graph as the hard subgraph. T
rest of the graph is the soft subgraph.

In Fig. 5, we denote byrm andsm, respectively, the mo-
menta of the gluon leaving the soft subgraph and enterin
after the hard interaction. Let the momentum fraction of t
first gluon ber1/PA

15(11s)xP . Then momentum conser-
vation fixess1/P15sxP .

We integrate overs. It is convenient to distinguish be-
tween the two identical gluons by requiring thatr1.2s1.
That is,s.21/2. We will see in Sec. VII E that the impor-
tant integration region iss;1. That is, the gluons that
couple the hard subgraph to the soft subgraph are typ
‘‘slow’’ gluons.

We integrate over the transverse momentumr , setting
s5r1PA8. We also integrate over r2, setting
s25r22MA

2/(2PA
1)1@MA

21(PA8)
2#/@2(12xP)PA

1#. We
suppose that the hadron wave functions fixr andr2 to be no
larger than the ordinary size for slow gluons,r2;m2 and
r2&m2/(xPPA

1). ~Contributions in whichrm is part of a
hard virtual loop are more properly considered to be part o
higher order correction to the hard subgraph.!

Taking the limit t→0, we find that if we consider the
hard subgraph to be a function ofrm, sm, andqm, then it is
independent ofr2, s2, r and s and is also independent o
xP . In addition, the dominant polarizations for the gluon
entering the hard subgraph from the soft subgraph are tra
verse; in a shorthand notation,

(
m,n5$1,2,1,2%

@Hard#mn@Soft#mn' (
i , j5$1,2%

@Hard# i j @Soft# i j .

~38!

That the hard subgraph is independent ofr2 ands2 is not
surprising, sincer2!q2 ands2!q2. That it is independent
of xP follows simply from its invariance under boosts in th

FIG. 6. More graphs with an orderg2 hard subgraph. These
graphs involve quark exchange from the soft subgraph and are
considered in this paper.
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longitudinal direction. It is not, however, obvious that the
hard subgraph is independent ofr ands and that only trans-
verse polarizations are important. These results follow fro
an argument that we describe in Appendix B. The pictur
that emerges is one in which the soft gluon cloud surroun
ing the hadron is probed by an interaction that is effective
local in null plane time,x1, and in transverse positionx.

There are also two graphs of the same order that invol
connecting theqm and km gluons to a slow quark line, as
depicted in Fig. 6. It is possible to find slow quarks in the
cloud of slow partons enveloping a hadron. The slow quar
can arise simply fromg→qq̄ splitting. However, we expect
that the contribution from slow quarks is quantitatively no
as important as the contribution from slow gluons. Thus, w
omit the graphs of Fig. 6 from the model to be analyzed i
this paper. This omission is analogous to making th
‘‘quenched’’ approximation in lattice QCD.

Before continuing with our analysis of the model, let us
pause to note the possibility of an even simpler model, re
resented by Fig. 6 with the quark line signifying a fast va
lence quark in the hadron, carrying a momentum fraction
order 1. Then if Fig. 5 is considered as a one-rung ladd
graph, this simpler model is a zero rung ladder. Similarly, th
graphs of Fig. 5 would constitute a zero rung ladder if w
limited the integration to the nonleading regions;1/xP ,
where the gluons carrying momentar ands are fast gluons
with momentum fractions of order 1. The zero rung model is
unfortunately, too simple. It produces anxP

0 behavior for the
diffractive gluon distribution instead of thexP

22a(0)5xP
22 be-

havior that, we will see, arises from the one-rung ladder.

B. Structure of the diffractive gluon distribution

We take advantage of the results discussed in the previo
subsection by settingr25s250 and r5s50 in the hard
subgraph and restricting the polarization sum to transver
polarizations. Then the diffractive distribution function de
pends only on the integral overr2 and r of the soft sub-
graph. We write this structure, as depicted in Fig. 7,

not
FIG. 7. Factored structure of the diffractive gluon distribution

function for t→0.
d fg/A
diff

dxPdt
5

1

64p3t

1

2 (
sA ,sA8

(
i jkl

E
21/2

`

ds8Akl* ~s8,xP,t;sA,sA8!E
21/2

`

dsAi j ~s,xP ,t;sA ,sA8!

3 (
mnab

E
R

d2q

~2p!2
Mab

klmn~q,s8,t!*Mab
i jmn~q,s,t!

~k22 i e!~k21 i e!
. ~39!
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Here, the first line represents the soft subgraphs while
second line represents the integral of the hard subgraphs.
discuss these factors below. The explicit factor 1/t is simply
kinematic and comes from writingd(q2)5d(2q1q22q2)
as@1/(2q1)#d@q22q2/(2q1)# and using the delta function
to eliminate theq2 integral.

The functionAi j (s,xP ,t;sA ,sA8) is the amplitude for the
proton to emit a gluon with transverse polarizationi and
momentum fraction (11s)xP, then absorb a gluon with
transverse polarizationj and momentum fractionsxP

Ai j ~s,xP ,t;sA ,sA8!

5
xPPA

1

2p (
a
E dy2e2 isxPPA

1y2

3^PA8,sA8u T$Aa
j ~0,y2,0T!Aa

i ~0!%uPA ,sA&. ~40!

There is a summation over the colora of the gluon operators;
inM we average over these colors. The factorxPPA

1 arises
from changing the integration in Eq.~39! from *dr1 to
*ds.

We now turn to the hard interaction. We begin by consi
ering the probed gluon, which carries momentumkm. Using
km52qm1rm2sm and settingr25s250 and r5s50 in
the hard subgraph, we find

k252
1

t
q2. ~41!

Thus, the line carrying momentumkm is far off shell when
t→0, as long asq is in the integration regionR,
q2@tm2. The factors ofk2 from this propagator are dis-
played explicitly in Eq.~39!. The internal lines of the hard
subgraph are also far off shell.

According to Eqs.~22! and~20!, the operator that probes
the gluon distribution isF̃a

1m(y). @Only nP$1,2% contributes
in Eq. ~20!.# In A150 gauge, this is simply]1Aa

m(y). @We
have changed the polarization vectore(q,n) for the final
state gluon frome150, so this gluon could couple to the
A1Am operator inF̃a

1m(y). However, this graph is not al-
lowed when the two exchanged gluons are in a color sing
state.# The ]1 becomes ak15(12t)xPPA

1;xPPA
1 that we

absorb into the normalization. This leaves a propagator
the probed gluon,

2 iDmm~k!

k21 i e
5

2 i

k21 i e(j 8
em~k, j 8!em~k, j 8!

5
2 i

k21 i e
em~k,m!. ~42!

Thus, each probe operator gives a 1/k2 factor and leaves a
polarization vector for a gluon of momentumkm, polariza-
tionm, in A150 gauge, which is included in the amputate
hard interaction amplitudeM.

We call the amputated hard interaction grap
Mab

i jmn(q,s,t). The indicesm andn are the transverse po-
the
We

d-

let

for

d

h

larizations of the probed and final state gluons, respective
a and b are their colors. Recall that the final state gluo
polarization, represented by a polarization vectorem(q,n),
is, by our convention, inA250 gauge, as in Eq.~36!. In
M, the exchanged gluons are approximated as having z
transverse and minus momenta; one integrates over th
momenta in the definition ofA. The exchanged gluons have
transverse polarizationsi and j , respectively.

Next, we examine the soft subgraphs and then the ha
subgraphs in some detail.

C. The soft subgraph

What is thexP dependence ofAi j (s,xP ,t;sA ,sA8) in the
limit xP→0? Comparing the expected Regge form~8! of
d fg/A

diff /dxPdt with Eq. ~39!, we see that the expected Regg
form of Ai j is

Ai j ~s,xP ,t;sA ,sA8!}xP
2a~ t ! . ~43!

SinceAi j involves low-momentum physics, thexP depen-
dence ofAi j cannot be reliably determined by perturbatio
theory. Instead, we can take it from experiment:a(t)'1.

Even thoughAi j contains low transverse momentum
lines, it is instructive to examine this function in perturbatio
theory, with the two gluons connected directly to a fast qua
line. We do so in Appendix A. We find that this two-gluon
model gives Eq.~43! with a(0)51. This is close to the
phenomenological answer. A more realistic pomeron beha
ior could result from using a better model forAi j .

D. The hard subgraph

We now turn to the hard interaction functionM. It is a
simple matter to evaluate this function. We find

Mab
i jmn~q,s,t!5

3ig2

4~s1 i e!~11s!
dab@s~11s!d i jdmn

2sd ind jm1~11s!d imd jn#. ~44!

Thus,M}t0 ast→0. The i e prescription in the 1/s factor
arises from Eq.~C5!.

Inserting Eq.~44! andk2;2q2/t into Eq.~39!, we obtain

d fg/A
diff

dxPdt
5

1

64p3t

1

2 (
sA ,sA8

(
i jkl

E
21/2

`

ds8Akl* ~s8,xP ,t;sA ,sA8!

3E
21/2

`

dsAi j ~s,xP ,t;sA ,sA8!H
kli j ~s,s8!

3E d2q

~2p!2
u~q2.tM2!

~q2/t!2
. ~45!

Here,Hkli j (s,s8) is a rational function ofs ands8 that is
not of particular interest. Recall that we integrateq over the
regionR defined byq2@tm2 @Eq. ~37!#, wherem is a typi-
cal hadronic mass or transverse momentum. Here, we m
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the prescription more precise by integrating overq2.tM2

whereM is any fixed mass such thatM@m.

E. The s integration

Thes integration in Eq.~45! runs from21/2 to infinity.
Using Eqs.~A3!, ~A4!, and~44!, we see thatH approaches a
constant whileAi j is proportional to 1/s

2 for s→` ~at least
if we can trust perturbation theory forAi j ). Thus the inte-
grand in Eq.~45! is proportional to 1/s2, so thats@1 is not
important in the integration.

We also see from Eqs.~A3!, ~A4!, and ~44! that bothH
andAi j are proportional to 1/s for s→0. This is a potential
disaster, because it suggests that the model presented
contains an unregulated*ds/s2 infrared divergence. We in-
vestigate this problem in Appendix C. We find there th
both factors 1/s carry i e prescriptions 1/(s1 i e). Thus, the
contour for thes integration can be analytically continued
into the upper halfs plane, away from the singularity.

We conclude thats is of order 1 in the entire important
integration region. Similar remarks apply to thes8 integra-
tion.

F. Result

Performing the integration in Eq.~45! gives for the
t→0 limit of the diffractive gluon distribution

d fg/A
diff

dxPdt
;

1

256p4M2

3
1

2 (
sA ,sA8

(
i jkl

E
21/2

`

ds8Akl* ~s8,xP ,t;sA ,sA8!

3E
21/2

`

dsAi j ~s,xP ,t;sA ,sA8!H
kli j ~s,s8!. ~46!

Note thatd fg/A
diff /dxPdt is independent oft ast→0:

d fg/A
diff ~bxP ,m;xP ,t !

dxPdt
;~12b!0 as b→1 with xP5const.

~47!

This may seem surprising, since the distribution of gluons
a typical hadron behaves like f g/A(x;m0);const
3(12x)p with a rather high powerp'5.

The leading behavior comes from the lower end point
the integration in Eq.~45!. Thus it is sensitive to the cutoff
here

at

in

of

chosen. Recall that we tookq2.tM2 because as long as
q2/t@m2, the internal lines in the hard subdiagram are fa
off shell. This appears to be the natural cutoff. As soon as t
internal lines of the subdiagram through whichqm flows are
not far off shell, the gluon that goes into the final state an
the probed gluon can attach at different space-time points
the gluon cloud of the hadron. Then there is the opportuni
for cancellation, as both gluons sample the color charge
the hadron as a whole and find that the hadron as a whole
a color singlet. It is difficult to check this conjecture directly
in a realistic model of nonperturbative hadron structure
However, we have checked in a very simple model where a
the graphs can be included exactly. This model is too simp
to have the correct pomeron behavior, but we find that
does havet0 behavior in thet→0 limit. The model is de-
scribed in Appendix D.

One might reasonably conjecture that a larger cuto
would be imposed by nonperturbative physics in a more r
alistic model. For instance, if the gluon emitted into the fina
state effectively had a substantial massmg , thenq

2 would
be (q21mg

2)/(2xPtPA
1). This would induce an effective cut-

off q2.mg
2 in Eq. ~45!. Then we would have obtained

d fg/A
diff (bxP ,m;xP ,t)/dxPdt}(12b)p with p51. This corre-

sponds to the style of analysis of the constituent countin
rules and gives the result (12b)1 found in Ref.@3#. Presum-
ably, the contribution from q2@m2 must be present
and is not likely to be canceled, so that
d fg/A

diff (bxP ,m;xP ,t)/dxPdt should not be smaller than
(12b)1 at largeb. That is, the powerp should not be larger
than 1.

We conclude that if the diffractive gluon distribution is
parametrized as

d fg/A
diff ~bxP ,m;xP ,t !

dxPdt
}~12b!p ~48!

for b→1 at moderate values of the scalem, say, 2 GeV, then

0&p&1. ~49!

The choicep'0 corresponds to an effectively massless fina
state gluon, whilep'1 corresponds to an effective gluon
mass.

VIII. QUARK DISTRIBUTION FOR b˜1

In analogy with the gluon case, we write
d fq/A
diff

dxPdt
5

1

64p3t

1

2 (
sA ,sA8

E
21/2

`

dsE d2s

~2p!2
E

21/2

`

ds8E d2s8
~2p!2

Srs* ~s8,s8;xP ,t;sA ,sA8!Smn~s,s;xP ,t;sA ,sA8!

3(
sqsk

(
IJ

E d2q

~2p!2
MIJ

rs~q,k,s8,s,t;sq ,sk!*MIJ
mn~q,k,s,s,t;sq ,sk!

~k22 i e!~k21 i e!
. ~50!
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Here, the soft functionSmn(s,s;xP ,t;sA ,sA8) is the ampli-
tude for the proton to emit a gluon with polarizationm,
momentum fraction (11s)xP and transverse momentum
r5s2PA8, then absorb a gluon with transverse polarizatio
n, momentum fractionsxP , and transverse momentums:

Smn~s,s;xP ,t;sA ,sA8!5
xPPA

1

2p (
a
E dy2

3E dye2 i ~sxPPA
1y22s•y!

3^PA8,sA8uAa
n~0,y2,y!

3Aa
m~0!uPA ,sA&. ~51!

The functionS is simply related to the operator matrix ele
ment Ai j , Eq. ~40!, that appeared in our discussion of th
diffractive gluon distribution:

E ds

~2p!2
Si j ~s,s;xP ,t;sA ,sA8!5Ai j ~s,xP ,t;sA ,sA8!.

~52!

The function

MIJ
mn~q,k,s,s,t;sq ,sk! ~53!

represents the amputated hard interaction graph. Here,q is
the momentum of the antiquark that enters the final state a
k is the transverse momentum of the probed quark. We h
k52q2PA8 by momentum conservation. The variablessk
andsq are the helicities of the probed and final state quar
respectively;I andJ are their colors.

There is an important difference with the gluon case. T
quark has a massmq . Thus, the minus momentum of the
on-shell quark entering the final state is

q25
~q21mq

2!

2txPPA
1 . ~54!

Then

k2'2
~q21mq

2!

t
~55!

in the t→0 limit. What counts here is the mass of the fin
state quark as it emerges from the hard interaction and pro
gates into the final state. Presumably, the best model
mq in this role is the constituent quark mass (;0.3 GeV),
not the much smaller current quark mass. This is a subst
tial mass, so that the condition that defined whether the v
tual lines inM are far off shell,

~q21mq
2!

t
@m2, ~56!

is satisfied for anyq2 whent is small. Thus, we do not need
to restrict the integration region. On the other hand, the
gion q2!mq

2 is not important in the integration.
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We evaluateM in the t→0 limit using null plane spin
defined with the plus direction as special for the probe
quark and defined with the minus direction as special for th
final-state antiquark. We find

Mmn'
CF

8
g2d IJ

At

Aq21mq
2
w~sk!

†Gmnw~2sq!. ~57!

Thew(s) are two component spinorsw(1 1/2)5(1,0) and
w(2 1/2)5(0,1). The factorAt/(Aq21mq

2) arises from re-
lating four-component Dirac spinors to the two-componen
spinorsw. Then we can write the 232 matrixG using trans-
verse Pauli spin matricess1 ands2. For transverse indices
mn, we find

G i j5
1

s1 i e
s i~s•s!s j1

1

11s
s j~r•s!s i12d i j ~k•s!

1
2

s1 i e
s iqj2

2

11s
s jqi

1 i S 2
1

s1 i e
s is j1

1

11s
s js i12d i j Dmq. ~58!

@We hope that the Pauli spin matricess i will not be confused
with the momentum fractions that occurs in this equation in
the combinations 1/s and 1/(11s).# For one transverse in-
dex and one plus index, we find

1

k1 G1 j'2s j . ~59!

Also G i1'G1 i , while G11 does not give leading contribu-
tions ast→0. Finally, we note thatG2n andGm2 are not
needed because they multiply 0 inA150 gauge.

The spin functionGmn is rather complicated, but we are
concerned with only two of its properties. First, if we think
of G in coordinate space as a function of the separationym

between the points where the two exchanged gluons atta
thenG is proportional tod(y1) and to a linear combination
of d(yT) and]d(yT)/]yk . Thus, the interaction is hard in the
sense of being local iny1 andyT . Second, and more impor-
tant,G is independent oft.

We can now insert Eq.~55! and ~57! into Eqs. ~50! to
obtain thet dependence of the diffractive quark distribution

d fq/A
diff

dxPdt
5t2

1

64p3

3CF
2g4

16

3
1

2 (
sA ,sA8

E dsds8E d2s

~2p!2
E d2s8

~2p!2

3Srs* ~s8,s8;xP ,t;sA ,sA8!

3Smn~s,s;xP ,t;sA ,sA8!

3E d2q

~2p!2
Tr$Grs~s8,s8,q!†Gmn~s,s,q!%

~q21mq
2!3

.

~60!

The crucial feature here is the factor oft2.
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We conclude that the constituent counting result for t
diffractive distribution of quarks is

d fq/A
diff ~bxP ,m;xP ,t !

dxPdt
}~12b!2. ~61!

However, suppose that we interpret the calculation of t
previous section as saying that the diffractive distribution
gluons is proportional to (12b)0 for b near 1 when the
scalem is not too large. Then the evolution equation for th
diffractive parton distributions will give a quark distribution
that behaves as

d fq/A
diff ~bxP ,m;xP ,t !

dxPdt
}~12b!1, ~62!

when the scalem is large enough that some gluon to quar
evolution has occurred, but not so large that effective pow
p in (12b)p for the gluon distribution has evolved substan
tially from p50. A signature of this phenomenon is that th
diffractive quark distribution will be growing asm increases
at largeb, rather than shrinking. Perhaps, this is seen in t
data@1#.

IX. CONCLUSION

We close with some observations concerning the implic
tions for DESY HERA physics of the discussion present
here.

We have discussed two kinds of factorization relevant
diffractive hard scattering. Both are experimentally testab
We say thatdiffractive factorizationholds if the cross section
is a standard partonic hard scattering cross section con
luted with a diffractive parton distribution. The diffractive
parton distribution gives the distribution of partons in th
hadron under the condition that the hadron is diffractive
scattered.~If there is a second hadron in the initial state an
we do not demand that it be diffractively scattered, then t
cross section should also contain a convolution with the
dinary parton distribution within that hadron.! We say that
Regge factorizationholds if the diffractive parton distribu-
tion is a product ofxP

22a(t) times a pomeron-hadron coupling
times a functionf a/P(b,t,m) that is interpreted as the distri-
bution of partons ‘‘in’’ the pomeron. These properties to
gether constitute the Ingelman-Schlein model@2#.

Diffractive factorization is something that can be dis
proved for a given process by a counterexample at so
fixed order of perturbation theory~with wave functions for
the hadronic states!. Correspondingly, it could, in principle,
be proved to hold at any fixed order of perturbation theo
which one would take as a strong indication that it hold
beyond perturbation theory for that process. Diffractive fa
torization makes no statement about the Regge structure
the nonperturbative factors. Regge factorization does m
such a statement. It would be interesting to study Reg
factorization from the point of view of the BFKL pomeron
perhaps extracting a model for the distribution of partons
the pomeron.

Let us discuss first diffractive deeply inelastic scatterin
which is simpler than diffractive hard scattering process
with two hadrons in the initial state. For diffractive deepl
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inelastic scattering, we argue that diffractive factorization
a consequence of perturbative QCD, although a detail
proof is beyond the scope of this paper. From the point o
view of current theory, Regge factorization for the diffractive
parton distributions is a conjecture based on experience w
soft diffractive scattering.

The DESY HERA experiments@1# have now provided
evidence concerning these issues, although so far only w
rapidity gap events as a stand-in for diffractive events. It is
consequence of diffractive factorization that the diffractiv
structure functionF2

diff should exhibit approximate scaling as
Q2 is increased with fixedxP andb. This is suggested by the
data. The dependence onxP in the formxP

122a(t) predicted by
Regge factorization, Eq.~12!, is also suggested by the data.

For the future, it will be important to determine the dif-
fractive parton distributions in as complete a detail as po
sible, using charged and neutral current events,F2

diff and
F3
diff , and probes for heavy flavors in the final state@23#.

Especially crucial is the diffractive gluon distribution. This
can be determined using diffractive deeply inelastic scatte
ing with highPT jets detected in the final state, analogousl
to @24#. If we demand that we see two jets instead of th
usual single struck quark jet, and if these two jets have a hi
transverse momentum relative to the direction determined
the sum of their momenta, then the hard process is of ord
aas instead of justa. For such a process, gluons participat
as initial partons on the same footing as quarks. Since t
diffractive quark distributions are already known, it should
be possible to extract the diffractive gluon distributions.

Our analysis suggests that the diffractive gluon distribu
tion is quite hard, with a behavior between (12b)1 and
(12b)0 for largeb5j/xP at moderate values of the scaling
parameterm, say, 2 GeV. The corresponding behavior of th
diffractive quark distribution is between (12b)2 and
(12b)1. Here, the (12b)1 for quarks would arise if the
diffractive gluon distribution is large and behaves like
(12b)0, so that the quarks at largeb are produced by
g→q1q̄. The diffractive quark distribution is approxi-
mately proportional to the measured functionF2

diff , as long
as (12b)Q2@1GeV2.

This analysis is based on a model that consists of a s
lected set of Feynman graphs, with the internal loop mo
menta integrated down to an infrared cutoff. In the case
the diffractive gluon distribution, the model~Fig. 5! consists
of a one-rung gluon ladder with one gluon emitted into th
final state. At least one gluon must be emitted into the fin
state in order to allow the scattered hadron to be in a col
singlet state. The ladder must have at least one rung befor
is attached to fast parton lines in order to generatexP

22 be-
havior. Thus, the model uses the lowest order graphs th
make sense for an analysis of thexP→0 andb→1 limits.

This model is a beginning, not the end, of QCD analys
of the behavior of the diffractive parton distribution in the
xP→0 and b→1 limits. The gluon emitted into the final
state could split into partons moving in the same directio
and could be connected to other parts of the graph by s
gluons. The whole collection of outgoing partons must had
ronize. We expect that these effects are not important f
values of the transverse momentumqT of the outgoing gluon
that are large enough, but that they become important f
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smallerqT . Our estimate of where the higher order effec
become important is incorporated in the model as the inf
red cutoff onqT . In Secs. VII F and VIII, we suggest a rang
of possibilities for this cutoff, which leads to the range o
possibleb→1 behaviors.

Given a complete set of diffractive parton distributions,
will be interesting to test the evolution equation~23!.

Let us now turn to hard processes with two hadrons in t
initial state, as exemplified byg1p→ jets1p1X at DESY
HERA, where we look at the hadronic part of the photon.
this case, the factorization that holds ininclusivehard scat-
tering is expected to break down indiffractive hard scatter-
ing, as shown by counterexamples at a fixed order of pert
bation theory @17,5#. If one extracts diffractive parton
distribution functions from deeply inelastic scattering an
uses them to predict cross sections forg1p→ jets1p1X,
then the observed cross section should contain extra te
that do not match the prediction@5#. In particular, there
should be extra contributions that correspond to the jets c
rying almost all of the longitudinal momentum of the
pomeron. Perhaps, this corresponds to the ‘‘superhard’’ co
ponent seen in the UA8 experiment@4# in p̄1p→p
1 jets1X.

In summary, the DESY HERA results@1#, together with
the earlier UA8 results@4#, have confirmed the basic feature
of the Ingelman-Schlein picture of diffractive deeply inela
tic scattering. The experiments have shown that diffracti
scattering is related to exchanges of quanta that, when ex
ined with a hard probe, appear to be the pointlike quarks a
gluons of QCD. Much more remains to be done, but alrea
we are challenged to connect the theory of pointlike gluo
to the soft color dynamics that is presumably responsible
diffractive scattering.
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APPENDIX A: THE SOFT SUBGRAPH

In this appendix, we discuss thexP dependence of the soft
amplitudeAi j (s,xP ,t;sA ,sA8) in the limit xP→0. The ex-
pected Regge form ofAi j is

Ai j ~s,xP ,t;sA ,sA8!}xP
2a~ t ! . ~A1!

SinceAi j is determined by low momentum physics, thexP
dependence ofAi j cannot be reliably determined by pertur
bation theory. Instead, we can take it from experiment. Th
we impose Eq.~A1! with a(t)'1.

Although one is not really justified to use perturbatio
theory to investigateAi j , nevertheless, perturbation theory i
suggestive. Let us, therefore, examineAi j in a simple model
in which the two gluons emerging fromAi j are connected
directly to a fast quark line. We ask whether this simple
model can give Eq.~A1! with a(t)'1.

We begin with the definition ofAi j , Eq. ~40!. The opera-
tors in this equation are inA150 gauge, but the amplitude
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can be put in a gauge-invariant form by reexpressing it
terms of the gluon field operatorsF̃mn defined in Eq.~18!.
We simply replace

Aj→
s1Aj

s11 i e
→2 i

]1Aj

s11 i e
→2 i

F̃1 j

s11 i e
~A2!

and make a similar replacement forAi . The i e choice here is
of some significance. We will discuss it in Appendix C. The
resulting form forAi j is

Ai j ~s,xP ,t;sA ,sA8!

5
1

2pxP~s1 i e!~11s!PA
1

3(
a
E dy2e2 isxPPA

1y2

3^PA8,sA8uT$F̃a
1 j~0,y2,0T!F̃a

1 i~0!%uPA ,sA&. ~A3!

We now introduce a simple perturbative model to get a
indication of the likely behavior ofAi j . Consider Eq.~A3!
using Feynman gauge. Suppose that the gluon annihilated
the operatorF̃a

1 i connects to an on-shell quark carrying no
transverse momentum and plus momentump15lPA

1 , with
l of order 1. That is, the gluon couples to a ‘‘fast’’ quark.
The relevant factor is

2r i

r 21 i e
Ū~l8PA

m ,s!igtcg
1U~lPA

m ,s!, ~A4!

wherel85l2xP(11s). In the limit xP→0, this is indepen-
dent ofxP . Similarly, the coupling of the operatorF̃a

1 j to a
fast quark gives noxP dependence. Thus, in the simple
model, the operator matrix element in Eq.~A3! is indepen-
dent ofxP for small xP .

Considering that there is a factor 1/xP in Eq. ~A3!, we find
that the pomeron trajectory appearing in Eq.~43! is
a(t)51 in this simple model. This is close to the pomeron
trajectory observed in nature, but of course we expect th
soft interactions among the gluons modify the result. Wha
we see here is that the picture of the pomeron as two-glu
exchange, which often gives results that are surprising
good considering the simplicity of the picture@25#, works
rather well also in this context.

APPENDIX B: STRUCTURE OF THE HARD SUBGRAPH

In this appendix we investigate the structure of the har
subgraph for the diffractive distribution of gluons in hadron
in the limit j/xP→1. Recall that the hard subgraph is a func
tion of momentarm, sm, andqm, whererm andsm are the
momenta of the gluons exchanged with the soft subgraph a
qm is the momentum of the gluon that goes into the fina
state. Sinceqmqm50, we will consider the hard subgraph to
be a function ofq andq2, replacingq1 by q2/(2q2). The
momentum of the detected gluon iskm5rm2sm2qm.

In Sec. VIII, we studied the hard subgraph in the limit tha
applies whenj/xP→1. This limit is really a dual limit. We
take r1;s1;xPPA

1 but
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q1

s1 [
q2

2s1q2 !1. ~B1!

We also recall the definition~37! of the integration region
considered forq,

q2

t
@m2. ~B2!

That is, q2@m2/(2xPPA
1). We combine this with the as-

sumption that, in the effective integration region forr , s,
r2, and s2, these variables have values typical for slo
gluons:

r2;s2;
m2

2xPPA
1 . r2;s2;m2. ~B3!

Then

r2

q2 !1,
s2

q2 !1,
r2

2s1q2 !1,
s2

2s1q2 !1. ~B4!

We claimed in Sec. VII A that in this limit, the hard sub
graph is independent of the variablesr , s, r2, ands2. We
also claimed that the transverse components of the hard s
graph dominate over other components in the limit cons
ered, as in Eq.~38!. In this appendix, we substantiate thes
claims.

We consider first the question of the independence on
variablesr , s, r2, ands2, taking, for the moment, only the
transverse components of the hard scattering subgraph.
is the same as multiplying the hard subgraph by purely tra
verse polarization vectors for the two gluons exchanged w
the soft subgraph.

We consider the hard amplitudeM, defined as in Sec.
VII D. Thus,M does not include the propagator for the de
tected gluon with momentumkm, but does include an
e150 gauge polarization vector for this gluon. It also in
cludes ane250 gauge polarization vector for the gluon with
momentumqm that enters the final state.

As a matter of convenience, we will analyze the fir
graph in Fig. 5. Essentially the same argument covers
second graph, while the third graph, with a four-gluon inte
action, is quite trivial.

The Feynman rules giveM as a rational function of the
components ofrm, sm, andqm. We are interested, in par-
ticular, in the behavior ofM for small values ofr2, s2,
r , s, andq as specified in Eqs.~B1! and ~B4!. For this rea-
son, we need to know if there are any factors of the sm
variables in the denominator ofM.

The gluon propagator in Fig. 5 is

iDmn~q1s!

~q1s!2
5 i

2gmn~s11q1!1~s1q!md2
n 1d2

m ~s1q!n

~s11q1!@2~s11q1!~q21s2!2~s1q!2#
.

~B5!

Settingq15q2/(2q2), the denominator becomes
w
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2~s1!2q2S 11
q2

2s1q2D
3H S 11

q2

2s1q2D S 11
s2

q2D2
~s1q!2

2s1q2 J . ~B6!

Then using Eqs.~B1! and~B4! ~in either order!, the denomi-
nator becomes

2~s1!2q2. ~B7!

That is, the denominator does not contain factors of the sm
variables, so that it has a finite limit as the small variable
tend to zero.

We can writeM as a product

Mi jmn5e~s,i !ae~r , j !be~k,m!ge~q,n!dM
abgd. ~B8!

The transverse components of the polarization vectors ha
the form

e~p,i ! I5d i I ~B9!

for pm stands for any of the momentarm, sm, qm, or km. For
pm5rm or sm, we are ~temporarily! defining
e(p,i )15e(p,i )250. The polarization vector for the de-
tected gluon hase(k,m)150 but has a nonzero minus com-
ponent

e~k,m!25
km

k1 5
rm2sm2qm

r12s12q1 . ~B10!

The polarization vector for the final-state gluon, which we
take to be ine250 gauge according to Eq.~36!, has a non-
zero plus component

e~q,n!15
qn

q2 . ~B11!

Thus, neither the gluon propagator nor any of the polariz
tion vectors contains a factor of a small variable in the de
nominator.

We now consider the transverse tensorMi jmn as a func-
tion of the variables

$r1,s1,r2,s2,q2,r ,s,q%. ~B12!

M is a rational function of these arguments and has dime
sion D50 and boost dimensionB50, whereB gives the
scaling under boosts in thez direction. That is, for any four-
vectorpm,

p1 has D51, B51,

upu has D51, B50,

p2 has D51, B521. ~B13!

SinceM hasB50 andD50, it can be written as a function
of a reduced number of arguments, each of which ha
B5D50:
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Mi jmnS r1

s1 ,
r2

q2 ,
s2

q2 ,
r

As1q2
,

s

As1q2
,

q

As1q2D .
~B14!

We are interested in the limit in which the last five argu
ments are small, and we know that none of these argume
occurs as a factor in the denominators. Thus when Eqs.~B1!
and ~B4! hold,M approaches the limiting value

Mi jmnS r1

s1,0,0,0,0,0D . ~B15!

We thus confirm the claim made in Sec. VII A that w
can neglectr , s, r2, ands2 in M. Furthermore, since the
limiting function is covariant under rotations about thez
axis, it must be a linear combination of the tensorsd i jdmn,
d imd jn, andd ind jm. Each of these tensors multiplies a ratio
nal function of r1/s15(11s)/s. That is, the coefficient
functions are rational functions ofs. This is, of course, just
the structure given in Eq.~44!. The argument given above
does not establish that the limiting function is nonzero, b
this is what we found by calculation.

We now return to the issue of whether the transverse co
ponents of the hard subgraph dominate over other com
nents, as claimed in Sec. VII A. We consider

M̃abmn5e~k,m!ge~q,n!dM
abgd ~B16!

and choose values other than$1,2% for a or b or both. Now
a52 or b52 are not possible:M̃abmn multiplies the soft
subgraph with corresponding indices, call itSab , which van-
ishes fora52 or b52 because of the gauge conditio
A1(x)50 @that is, A2(x)50#. Thus, we should consider
a51 or b51. Let us considera51 with b5 jP$1,2% as
an example that illustrates the general argument. Thus,
wish to investigate whetherM̃1 jmnS1 j is dominated by
M̃i jmnSi j in the limit specified by Eqs.~B1! and ~B4!. We
need an order of magnitude estimate for the ratio ofS1 j to
Si j . An analysis of lowest order graphs indicates that this
the same as the ratio of the corresponding components of
polarization vectors for a typical slow gluon
e2(sm,i )/e j (sm,i );m/(xPPA

1). We write this as

S1 j

Si j
;

usu
s1 ~B17!

and compare

usu
s1M̃1 jmn ~B18!

to M̃i jmn. The analysis is simple.M̃1 jmn has dimension
D50 and boost dimensionB51. Thus, it can be written as
As1/q2 times a functionNjmn that has dimensionD50 and
boost dimensionB50 and, likeMi jmn, has no factor of the
small variables in its denominator. As our previous analy
shows,Njmn has a finite limit as the small variables tend t
zero. ~Actually, Njmn vanishes in this limit because of its
spin structure, but we will not need to use this fact.! We note
that the factor that multipliesNjmn
-
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usu
s1As1

q25
usu

As1q2
~B19!

vanishes in the limit specified by Eq.~B4!. This establishes
the claim.

APPENDIX C: SMALL s SINGULARITY

Thes integration in Eq.~45! runs from21/2 to infinity.
We see from Eq.~44! that H is proportional to 1/s for
s→0. In Appendix A we found that, at least in a simple
model,Ai j is also proportional to 1/s for s→0. @See Eqs.
~A3! and ~A4!.# This is a potential disaster, because it sug
gests that the model presented here contains an unregula
*ds/s2 infrared divergence. We investigate this problem in
this appendix.

If we stick toA150 gauge, one factor of 1/s arises from
the 1/s1 singularity in the gluon propagator,

i

s21 i e F2gmn1
gm1sn1smgn1

s1 G . ~C1!

This singularity, which is a part of the soft amplitudeAi j , is
usually interpreted with a principal value prescription, bu
there is no compelling reason for this choice. In fac
A150 gauge is not an effective tool for examining the na
ture of the 1/s singularity, since in this gauge the singularity
is a gauge artifact. Thus we choose to examine the singula
ties in Feynman gauge, in the style of Ref.@15#. ~Arguably, it
would be better to do the whole problem in Feynman gaug
but this leads to its own complications.!

We consider the graph shown in Fig. 8. The top half o
this graph, after some manipulation, will contribute toH,
while the bottom half will contribute toAi j . We consider this
graph in Feynman gauge but with a transverse polarizati
chosen for the gluon carrying momentumrm. It is helpful to
choose a frame in whichxPPA

1;m. Then

PA8
1

5~12xP!PA
1@m, PA8

2
5PA8

2 /@2~12xP!PA
1#!m,

q15txPPA
1!m, q25q2/@2txPPA

1#@m. ~C2!

We want to consider the singularity structure as a function
s15sxPPA

1 nears50 whens2;m2/PA
1!m ands2;m2.

The graph contains the structure

Jm
2 igmn

s21 i e

Nn

~q1s!21 i e
, ~C3!

FIG. 8. Graph with a singularity nears150.
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whereJm is associated with the bottom half of the graph an
Nn with the top half of the graph. The denominato
s252s1s22s2 is harmless. Sinces2 is small, it can be ap-
proximated bys2'2s2. The denominator (q1s)2 is not
harmless. It has the form

~q1s!21 i e52q•s1s21 i e52~q21s2!s1

2q•s12q1s22s21 i e. ~C4!

Now, q2 is large and positive whiles2 is small in the domi-
nant integration region. Thus, the factor 1/(q1s)2 has the
approximate form

1

2q2@s11•••1 i e#
, ~C5!

where the dots indicate small terms. This denominator co
tains the only important dependence ons1 as long as
usu&1 in s15sxPPA

1 . Notice that there is a singularity
very near tos150, but that, since there are no other sing
larities nearby, we can deform the integration contour aw
from this singularity. Thus, we deform thes1 contour into
the upper half complexs1 plane. On the deformed contour
we haves1;m or s;1.

Now, we examine the numerators. The largest compon
of the quark currentJm is J1, while the largest component o
the current Nn of the final state gluon isN2. Thus,
JmN

m;J1N2. Thus, the dominant term inJmN
m is obtained

by replacing

JmN
m→

J1

s1 smN
m. ~C6!

The factorsmN
m is approximatelys1N2 as long ass1 is not

small, and we know thats1 is not small since we have de-
formed the integration contour so that it does not approa
s150.

The next step is to restore thes1 integration contour to
the real axis, taking care not to cross any singularities. T
means that we should move the 1/s1 singularity in Eq.~C6!
infinitesimally into the lower halfs1 plane, so that our re-
placement becomes

JmN
m→

J1

s11 i e
smN

m. ~C7!

This is in keeping with the usual notation in which integra
tion contours are along the real axis, with poles infinites
mally displaced from the integration contour.

The replacement~C7! gives the dominant contribution to
our graph. However, if we attach the gluon carrying mome
tum sm everywhere in the hard subgraph and sum the lead
terms obtained with this replacement, we will get zero b
cause of the Ward identities obeyed by the hard graph a
because the two gluons carrying momentarm andsm together
form a color singlet.~The relevant identities are discussed
the appendix of Ref.@15#.!

We have thus encountered thebête noir of Feynman
gauge: the leading contributions graph by graph come fro
d
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unphysical polarizations that cancel out when one sums o
graphs. What we need is the subleading contribution. Tha
easy. We replace

JmN
m5

J1

s11 i e
smN

m1 J̃mN
m, ~C8!

where

J̃m5
s1Jm2J1sm

s11 i e
. ~C9!

Now, we throw away the first term in~C8!, since it will
cancel, and keep the remainder.

Thus, our net replacement is

Jm
2 igmn

s21 i e

Nn

~q1s!21 i e
→S 2 i

s21 i e

s1Jm2J1sm

s11 i e D
3S Nm

2q2s11 i e D . ~C10!

The first factor contributes toAi j and gives the structure in
Eq. ~A2!, but now with a 1/(s1 i e) prescription for the sin-
gularity determined on physical grounds. The second fac
contributes toH and contains the 1/(s1 i e) factor exhibited
in Eq. ~44!. In the product, there is indeed a 1/s2 singularity,
but it is a 1/(s1 i e)2 singularity. It does not signal an infra-
red divergence in thes integration since it can be avoided by
deforming the integration contour.

APPENDIX D: A MODEL

In this appendix we compute the diffractive gluon distr
bution d fg/A

diff /dxPdt in a simple model. As we will see, this
model does not exhibit the pomeron behaviorxP

22a(t) with
a(t)'1. Nevertheless, the model provides a check th
d fg/A

diff (bxP ;xP ,t)/dxPdt can have a finite limit asb→1 in
an exact numerical evaluation of the graphs to a given ord
of perturbation theory.

The model we will use is scalar-quark QCD, given by th
Lagrangian,

L5Dmq̄D
mq2m2q̄q2

1

4
Gmn
a Ga

mn2
1

4
g4~ q̄q!2

2
1

2j
~]•Aa!

21$Faddeev-Popov terms%

1
1

2
~]f!22

1

2
M2f22Gfq̄q

5LQCD1Lf . ~D1!

This model has soft and collinear singularities just as
QCD. As one further simplification, we model the diffrac
tively scattered particle by the scalarf field with a fq̄q
interaction to the quarks. Then the perturbativefq̄q interac-
tion plays the role of the nonperturbative Bethe-Salpet
wave function of a real QCD meson. The probability fo
finding aqq̄ pair inside the meson in this model falls of a
1/k4 in the ultraviolet, wherek is the transverse momentum
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of the quark. This good behavior in the ultraviolet is becau
of the fact thatG carries the dimension of mass. Thus, th
model allows for a simple treatment that approximate
simulates properties of bound quarks inside a hadron.

Using this model, we compute the diffractive gluon dis
tribution function within a meson,d fg/A

diff (bxP ;xP ,t)/dxPdt,
as given in Eq.~22!, to the lowest nontrivial order ing, order
g4. One of the orderg4 diagrams for the function
Gg/A
diff (P,q,k) in Eq. ~22! is shown in Fig. 9. One gluon is

detected, and a single gluon is exchanged between the
quark loops on opposite sides of the final-state cut. T
gluon carries that portion of the momentum transfer from t
meson that is lost to the detected gluon~and in a physical
process would be lost to the hard interaction!. The heavy bar
ending with gluon lines represents the gluon density opera
in Eq. ~20!. In addition to the graph shown, at each loop th
gluons can also attach to the lower quark line. Also, in bo
cases there is a graph where the gluon lines are crossed
addition, one gluon can attach on each of the quark lin
Finally, there are the two-gluon two-quark contact intera
tion graphs. In total, this implies 82564 combinations. After
symmetry considerations, there are four types of amplitud
that must be explicitly evaluated. The four amplitudes a
shown in Fig. 10.

The final form forGg/A
diff that we obtain is

FIG. 9. Diagram contributing to the diffractive gluon distribu
tion in a meson in the model of this appendix.

FIG. 10. Four graphs for the amplitude in Fig. 9.
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Gg/A
diff ~P,q,k!5

1

2~2p!3b~12b!xP
2E d2q

3
Gma~P,q,k!*Gnb~P,q,k!gabcmn~k!

~k21 i e!~k22 i e!
,

~D2!

wherek15bxPP
1,

cmn~k!5
1

~P1!2
~k12gmn1k2gm

1gn
12kmk

1gn
12knk

1gm
1!,

~D3!

andGmn(P,q,k) is a second rank tensor containing the sum
of quark loops with all possible combinations of attachmen
by two gluons.

We have evaluated the loop integrals in Eq.~D2! in terms
of their explicit Spence function expressions. For this w
have used the computer code of van Oldenborgh and Verm
seren@26#. Their method is an independently formulated ex
tension of the Form algorithm of ’t Hooft and Veltman@27#.
The authors of@26# claim that their algorithms provide easier
isolation of both asymptotic behavior and potential numer
cal instabilities. In one of the most sensitive regions, that o
low t, their algorithms have proved to be more accurate.

In our calculation,t was small, one external line was
massless, and one had to integrate over a large region in
transverse space of the variableq. Because of gauge invari-
ance,Gmn obeys several constraints, which we have checke
numerically.

In Fig. 11 we show the diffractive gluon distribution func-
tion multiplied bybxP , at utu51 GeV2, and for a selected
choice ofxP values. The masses of the quarks and meso

-

FIG. 11. Diffractive gluon distributionbxPd fg/A
diff (bxP ;xP ,t)/

dxPdt in the model of this appendix as a function ofb for ~from top
to bottom! xP50.01, 0.02, 0.05, 0.1with 1 GeV2. In this
model, there is no dependence on a renormalization scalem. The
parameter choices areM25m250.1 GeV2, G50.3 GeV, and
g50.1.
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were M25m250.1 GeV2, while the couplings were
G50.3 GeV andg50.1. We see that the model doesnot
exhibit the behavior

d fg/A
diff ~bxP ;xP ,t !

dxPdt
}xP

22 ~D4!

for xP→1 at fixedb that would be characteristic of pomero
exchange. One needs at least one rung of a gluon ladde
obtain this behavior. The model exhibits the behavior

d fg/A
diff ~bxP ;xP ,t !

dxPdt
}~12b!0 ~D5!

asb→1 at fixedxP , as in Eq.~47!.
One can understand theb and xP behavior seen in this

numerical study from an analytic viewpoint. In Sec. VII, th
detected and emitted gluons coupled to a slow gluon. In
present simple model, they couple directly to a fast qua
This means that the virtual quark line in Fig. 9 is far off she
when q2/@(12b)xP#@m2. For example, it is off shell for
q2;m2 for anyb as long as we takexP!1. This gives quite
n
r to

e
the
rk.
ll

a different behavior from that found in Sec. VII. In the
model, the loop serves as a built-in low momentum cutof
However, the meson can be replaced by a single fast qua
line if we substitute an artificial low momentum cutoff

q2.~12b!xPm
2. ~D6!

Then a simple power counting analysis gives

d fg/A
diff ~bxP ;xP ,t !

dxPdt
;

const

~12b!xP
2E

0

`

dqT
2

u„qT
2.~12b!xPm

2
…

$qT
2/@~12b!xP#%2

~D7!

for xP!1 and (12b)!1. Performing the integral gives

d fg/A
diff ~bxP ;xP ,t !

dxPdt
;~12b!0xP

21 . ~D8!

This agrees with our numerical findings. We find it reassu
ing that a fully consistent field theoretic calculation of the
diffractive gluon distribution gives results that agree with
expectations similar to our analytic arguments in Sec. VII.
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