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Diffractive parton distribution functions give the probability to find a parton in a hadron if the hadron is
diffractively scattered. We provide an operator definition of these functions and discuss their relation to
diffractive deeply inelastic scattering and to photoproduction of jets at DESY HERA. We perform a calculation
in the style of “constituent counting rules” for the behavior of these functions when the detected parton carries
almost all of the longitudinal momentum transferred from the scattered hd@®05856-282(96)01111-3

PACS numbd(s): 13.87.Fh, 13.85.Dz

[. INTRODUCTION been proposed by Veneziano and Trentaftleunder the

name of “fracture function.” The details are a little differ-

Recently, the ZEUS and H1 experiments at DESY HERAent, as we will explain in Sec. Il. The original paper of In-
have reported the first evidence for diffractive deeply inelasgelman and Schlein did not mention the functit®) but

tic electron scatteringl], instead introduced a related function, the “distribution of
partons in the pomeron.”
etA—et+A'+X. (1) Our purpose in this paper is, first of all, to relate these

various functions and the ideas behind them to one another
This is an example of a more general phenomenon, diffracand to comment on the likely validity of the formulas that
tive hard scattering, in which a high energy incident hadrorexpress cross sections in terms of these functions. We give
participates in a hard interaction, involving very large mo-operator definitions for the diffractive parton distribution
mentum transfers, but, nevertheless, the hadron itself is difunctions and discuss the evolution equation that they obey.
fractively scattered, emerging with a small transverse mowe briefly review the expected behavior of
mentum and the loss of a rather small fraction of itsdfdf (¢ u:xp,t)/dxpdt for small 8, whereB=¢/xp. Then
longitudinal momentum. One may say that the hadron h<’31$ve use a perturbative calculation to explore how these func-
EXChanged a pomeron with the rest of the partiCles inVOlve(ﬂionS behave for small values of_]_'B_ In the |nge|man-
and that the pomeron has participated in the hard interactiorschlein language, our results favor a rather “hard” distribu-
The possibility of such interactions was proposed by Ingeltijon of partons in the pomeron. We conclude with some
man and Schleifi2] on the grounds that the entity exchangedobservations on the experimental consequences of the
in elastic scattering, called the pomeron, must be made aheory. We also present, in an appendix, a calculation of

quarks and gluons, which, being pointlike, can participate ing¢diff (£ ,,:x,,t)/dx,dt in a simple model.
hard interactions. The theoretical ideas and formulas in-

volved are elaborated in some detail in RES]. The pre-
dicted phenomenon was seen in jet production in hadron Il. DIFFRACTIVE DEEPLY INELASTIC SCATTERING
collisions by the UA8 Collaboratiof4].

As discussed in our previous woffl6], the Ingelman-
Schlein model can be thought of as involving a “diffractive
parton distribution function,” which is the subject of this
paper. The idea is that this function

In a deeply inelastic scattering reaction, a hadfowith
momentumP4 is struck by a far off shell photon with mo-
mentumg*. It is convenient to use momentum components
k= (k",k,k), wherek®™=2"Y2k%+k3), and where we
denote transverse components of vectors by boldface. We
dlff(g wiXpt) work in the brick wall frame, in  which

Tt (20  Pi=(PL,M3/[2P;],0) and g“=2"Y(-Q,Q,0). One

F measures the standard hard scattering varia®fes —q- q
and x=Q%/[2P,-q]. In some deeply inelastic scattering
events there will be, in the final state, a diffractively scattered
hadronA’ with momentum

represents, in a hadron of tyge the probability per unit
d¢ to find a parton of typea carrying momentum fraction
¢, while leaving hadrorA intact except for the momentum
transfer characterized by parametexs ,t). Here,t is the
invariant momentum transfer= (P,— P,/)? while x; is the Pi, + Mi

fraction of its original longitudinal momentum lost by the Pa=|[1-xp]Pa -W:PA’ ()
hadron. The parametex is the factorization scale, roughly, P

the resolution of the parton probe. A function expressing the

same physics as the diffractive parton distributi@ has as in Fig. 1. The hadron has lost a fractiep of its plus
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dfS(Emixp,t) 1 i
- dxpdt - 8772I’8A(t)|2X]PZa(t)fa/P(flx]P,t,M)-
8

Here,BA(t) is the pomeron coupling to hadrénand a(t) is
the pomeron trajectory. We distinguish the “Regge factor-
ization” of Eqg. (8) from the “diffractive factorization” of

( )_‘N

Eq. (7).
\

In Eqg. (8) we adopt standard conventions such that the
proton-proton elastic scattering amplitude is

FIG. 1. A graph fore+p—p+X. «
grap p—p M: _Bp(t)zs (t). (9)

momentum and has gained transverse momerRym The  Then, the elastic scattering cross section is
invariant momentum transfer from the proton,

=(P,—P.)2 i do 1
t=(Pa=Pw )" Is It = 1e71 Be(DIfs e, (10)
P2, +x3M2 _ o
t=— T (4)  while the total proton-proton cross section is
—Xp
Tt PP) = Re[ By(0)?]s* 0. (12)

The events in which we are interested have sralDne

expectdt| =1Ge\2 to be typical. We also suppose thatis ~ The normalization factor 1/(8%) in Eq. (8) is quite arbi-

rather small. One expects pomeron physics to be dominarifary. Here, we have adopted the convention of Donnachie

for x,<0.1. Having found such events, one can construct th@nd Landshoff7].

contribution toF, from final states containing a diffractively ~ The functionf,,p(8,t, 1) thus defined is the “distribution

scattered  hadron  with variablest and  Xp: of partons in the pomeron.” In writing Eq8), one thinks of

dFJM(x,Q%xp , t)/dxpdt. the pomeron as a continuation in the angular momentum
The model of Ingelman and Schie[2], as applied to plane of a set of hadron states. Since hadrons contain par-

deeply inelastic scattering, is simple to state. We begin witfons, the pomeron should also. Thus, one has in(&cthe
the usual factorization theorem for the structure functionStandard factors describing the coupling of the pomeron to
Fo: hadron A, together with a distribution of partons in the

pomeron[2,3]. Inserting Eqg.(8) into (7), one obtains the
model of Ingelman and Schlein, applied to the case of deeply

Fz(x,Q2>=§ leffa/A(f,M)'EZ,a(X/f,QZQM)- (5)  inelastic scattering:
dFS™(x,Q%xp 1)

Here, fya(&, 1) is the distribution of partons of kind in dxpdt
hadronA as a function of momentum fractiofy as deter- A2 L
. A . . A o ~ ~
mmeq at a factonzapon sqaka, wh|I§ F,, is the structure — TZ_X]%’ 2a()y J dBf (Bt 1)
function for deeply inelastic scattering on partan If, for ™ a Jp
simplicity, we ignoreZ exchange, thek, is N (B/E Q% 1) (12
2a ’ M)y
Foa(X/€,Q% u)=e28(1—x/£)+O(as). (6)  whereB=x/x;. We offer here a word of caution. Both the

structure of Eq(12) and the language “distribution of par-

Thus, F, is rather trivially related to the parton distribution tons in the pomeron” suggest that the hadron emits a
functions at the Born level; nevertheless, conceptually th@omeron some long time before the hard interaction and that
distinction betweerf 5(x,Q?) andf (&, 1) is quite impor- the pomeron then splits into partons, one of which partici-

tant. As in our previous papéﬁ], we break the ana|ysis into pates in the hard interaction. This interpretation is, however,
two stages. In the first stage, we hypothesize that the diffrad20t required by Eq(12) and is surely quite misleading. In a

tive structure functiorr3™ can be written in terms of a dif- diagrammatic interpretation of pomeron excharngg the
fractive parton distribution, Eq2): exchanged quanta have small plus and minus components of

momentum. Thus, the exchange takes place over a long in-
terval (Ax*,Ax7) in space-time. It begins long before the

diff /2 diff .
dFz (X,Q%xp,t) => jx“’dgw hard interaction and ends long afterwards. Our diagrammatic
dxpdt a Jx dxpdt analysis in Secs. VII and VIII will provide an illustration of
-~ , this picture.
XF2a(X/€,Q% ). () We see that Eq(7) can be regarded as a version of the

Ingelman-Schlein mode(12) that is more parsimonious in
In the second stage, we hypothesize thatits assumptions. Equatidid) says only that factorization still
dfg'f,&(xa,ﬂ)/dxpdt has a particular form: applies when hadronA is diffractively scattered. The
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Ingelman-Schlein modg|12) assumes that Regge phenom- 11 e
enology is applicable and, with the aid of this assumption,  fja(é,1)=7— 52 j dy-e™'¢PaY
has more predictive power. A
In this paper, we concentrate on the case in which hadron X (Pa ,SAIEJ-_(O,yTO)y*At/;,-(O)I Pa.Sa)
A’ is the same kind of hadron as hadran so that vacuum (14)
guantum numbers are exchanged, and we considéo be
small enough so that pomeron exchange dominates. Or&imilarly, the ordinary distribution of a gluon in a proton is
should keep in mind, however, that EJ) admits generali- written as
zations to cases wher&’' #A and wherexp is not at all

small. One can also generalize Ef2) to A’ #A, but then _ 1 L igpty
Xp should be fairly small in order that just one or two Regge Faa(€,1)= 2méEP, ESEA f dy”e"ay
exchanges dominate. _ _
The diffractive factorization equatiof?), or rather a very X(Pa,SalF 10y 7,0)""F4(0)}|Pa.Sp).
closely related equation, has been introduced by Veneziano (15)

and Trentadue[6]. These authors call the analogue of

dfgi,f,&(g,ﬂ)/dg]pdt_a “fracture function.” Stated precisely, a  The proton statdP,,s,) has spins, and momentum
fracture function is Pi=(Px ,Ma/[2P4],0). We average over the spin. Our
states are normalized to

dfom (&, uixp) _ f” it dfo (&, uwixp,0) (K|p)=(2m)32p°53(p—K)

d 20201 - dxpdt '
. KMA . 13 —(2m®2p*a(pT—k")&(p—k). (16
The field%(O,y‘,O) is the quark field operator modified by
multiplication by an exponential of a line integral of the

By integrating ovett, Veneziano and Trentadue eliminate a .
vector potential:

variable that is perhaps of secondary importance. Howeve
there is some advantage tmt integrating overt. We are
interested in the physics of diffraction, which occurs in the Ej(o,y‘,0)=
smallt region. If we integrate ovet, then we are forced to
consider also the largeregion, in which the hadroA’ is to
be thought of not as the original hadron appearing in a scat-
tered form but as a random hadron in a highjet produced . L= _ Vo .
in the hard interaction. Taking this possibility into account -KeWise, Fa(Oy ,0)"" is defined by
leads to certain complications in the formulas.
In the following sections, we analyze the diffractive par- Ea(O,y’,O)’”:
ton distributions. According to Ed7), the measured quan-
tity dF3™/dx,dt is approximately the sum of diffractive -
quark distributions weighted by the square of the quark XFp(0y~, 0% (18)
charges. There are higher order corrections to this relation ] ) )
some involving the diffractive gluon distribution. Thus, these 1€ denotes path ordering of the exponential. The matrices
distributions are rather directly related to experiment. Thee in Ed. (17) are the generators of tirepresentation of
reader may wonder why we concentrate on the theoreticabU(3), while in Eq. (18) they are the generators of tige
diffractive parton distributions rather than on the physicalf€Presentation. These operator products are ultraviolet diver-
quantity dF3"/dx,dt. The reasons are the same as in ordi-gent, and are renormalized at scaleising theMS prescrip-
nary hard scattering(l) the diffractive parton distributions tion, as described if@]. - .
are process independent affl the factorization(7) allows The motivation for these definitions is that in QCD ca-
one to include perturbative corrections to the hard scatteringionically quantized on null surfaces™ =const using
The reader may also wonder why we do not frame the analy®" =0 gauge, the operators measure the probability to find a
sis in terms of the distribution of partons in the pomeron.duark and gluon, respectively, carrying plus component of
Our excuse is ignorance. We do not know how to relate thénomentum equal t&P, . The line integrals of the color
Regge factorization in E8) to quantum field theory. potential restore gauge invariance. THd8 renormalization
removes divergences.
The line integrals of the color potential have a physical
Il. THE DIEFRACTIVE PARTON DISTRIBUTION interpretation. Whenever a parton is measured by a short
distance probe, the color carried by that parton has to go
In this section we give an operator definition of the dif- somewhere. For instance, in deeply inelastic scattering, the
fractive parton distribution. We write the ordinary distribu- color is carried away by the recoiling struck quark. In the
tion of a quark of typg e {u,u,d,d, ...} in a hadron of type  definition of the parton distribution function, the recoil color
A in terms of field operatorsy(y*,y~,y) evaluated at flow is idealized as an infinitely narrow jet moving with the
y"=0,y=0 [9,10]: speed of light along the pathx*=(0x",0) with

’Pex% igjde_Ag(O,X_,o)tc”
y

X ;(0y~,0). 17)

Pexp( ig foc_dx*Ag(O,Xf ,0)tc> }
y

ab
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y~ <X~ <. Any gluon from the color field of the hadron

can couple to this idealized color source. }=-———<
Consider now the diffractive distribution of a quark in a

proton. The operator is the same as in Bdl), but the pro- (a)

ton is required to appear in the final state carrying momen-
tum P, :

(277)32EA,M J

d3p

A’

A

=G (Pa,Pan & 10) s
11 R ()

=— = A

47TZSA y €

xxz (Pa,Sal#;(0y~,0)|Par,Sai X)
S’

X y"(Par,sar; X[1;(0)|Pa,Sp). (19 FIG. 2. Renormalization of the diffractive quark distribution.
The subgraph irfa) denoted by heavy lines is ultraviolet divergent,
We sum over the spis,: of the final state proton and over and thus contributes to the evolution kernel. The subgragh)iis
the statesX of any other particles that may accompany it. not ultraviolet divergen{with transverse polarizations for the in-
Similarly, the diffractive distribution of gluons in a hadron is coming gluong The diagrammatic notation is that of R€8].

(2m)32E dfgia(£,m) the hard scale of the physical process. _
43P, The renormalization qulve; uItraV|oIet—d|vergent sub-
graphs, such as that shown in Figa2 Subgraphs with more
—Gd A(Pa,Par, &, 1) than two external parton legs carrying physical polarization,
such as that shown in Fig(ld, do not have an overall di-

_ 1 EE fd e iRy vergence. Thus, the divergent subgraphs are the same as
2méEP, 2 A y those for the ordinary parton distributions. We conclude that
the renormalization group equation for the diffractive parton

~ _ Y ) distributions is
X 2 <PA13A|Fa(01y 10)+ |PA’15A’7X>
Xsn/ diff
- d dfa/A(g miXp,t)
X (Par,SariX[Fa(0)51Pa.Sa). (20 Pan T dodt —Pafb(f’z as(1)
The Green functioiG2" for a parton of typea can, at least g',f,i(z wixp )

in principle, be computed from Feynman diagrams together (23

with the Bethe-Salpeter wave functions for the bound states.
We will want to change variables tq. andt as defined in  ith the same DGLAP kerndlL1], P, (&/z, as(1)), as one

the previous section. Using EqS) and(4), we obtain uses for the evolution of ordinary parton distribution func-
32 tions. Recent analyses of the diffractive parton distributions,
d°Pa — dxp d2P., = de dtde 21) or rather the distributions of partons in the pomeron, have, in
2En  2(1—xp) N P fact, used the standard evolution equation for these functions
[12,13.
Integrating over the azimuthal angde we have If, following Veneziano and Trentadue, we integrate over
diff t, then the large integration region introduces new ultravio-
dfaa(é 1) 1 GUMt (P, Paré ) (22) let divergences and the renormalization group equation is
dxpdt T 1672 CaAlT AT AN S modified[6,14]. In this paper, we choose to restrict integra-
i tions overt to the smallt region.
where G],A for quarks is given in Eq(19) and G ,A for
gluons is given in Eq(20). V. VALIDITY OF DIFFRACTIVE FACTORIZATION
IV. EVOLUTION EQUATION In Sec. Il, we presented the hypothesis of diffractive fac-

torization for diffractive deeply inelastic scattering, as repre-
As mentioned in the previous section, the diffractive par-sented by Eq(7):

ton distributions are ultraviolet divergent and require renor- )

malization. It is convenient to perform the renormalization ng'“(x,Qz;xP ,A(g L Xp,t)
using theMS prescription, as discussed[i,10]. This intro- dxpdt Nz J dx dt

duces a renormalization scaleinto the functions. In appli- R

cations, one setg to be of the same order of magnitude as X Fzya(xlg,Qz;,u). (24
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This is an example of the more general hypothesis of factor- GraudenZ 14] has shown by explicit calculation that the
ization for other kinds of diffractive hard scattering. Another hypothesis of diffractive factorization is correct at the one-
example is diffractive jet production. Consider, for example,loop level in the case of deeply inelastic scattering. For
the inclusive cross section for the production of two jets in adeeply inelastic scattering, this hypothesis appears to us to be
high-energy collision of two hadron#g, andB. (At DESY  correct at any humber of loops. A detailed proof of this state-
HERA, this would bep+ y— jets where hadrorB is the  ment is beyond the scope of this paper. However, we can
hadronic or “resolved” part of the photonlLet the initial briefly sketch how such a proof would go, following the

hadronA have momentum ideas of Refs[15,16]. The singularities of the cut Feynman
M2 graphs for diffractive deeply inelastic scattering are such that
PL=(P P ,PA)=( P _+0) (25)  the leading integration regions involv&) a beam jet in the
2P, direction of the initial hadrom (which includes the final

state diffracted hadroA’), (2) a hard interaction(3) one or
more final state jets that amot in the direction of hadron

A, and(4) possible soft gluongsometimes with soft quark
(26) loops that may communicate between the beam jet and the
final state jets. Factorization would be more or less kinematic
were it not for the possibility of the soft gluons linking the
beam jet with the final state jets. One must use gauge invari-
ance to show that the soft gluons do not really “see” the

while hadronB enters the scattering with momentum

2

P’B‘:(Pg,PB,PB)z(ﬁ,PB,O :

We specify the two jets by variablés;, X,, andXg, given
in terms of the four-momentR4" andP% of jets 1 and 2, by

Er=(|Py|+|P,)), details of the final state jets, so that the connections to the
final state jets can be replaced by connections to the ideal-
Xa=(Pi+P;)IPL, ized jet thqt is embgdjgd in the Iine intggral of the- figld
operatorA , in the definitions of the diffractive parton distri-
Xg=(P; +P;)IP5. 27) bution functions, Eqs(14), (15), (17), and(18).

Just as in the case of ordinary inclusive factorization, one

If we add the requirement that hadrénemerge scattered €xpects that Eq(24) is subject to corrections that are sup-
with scattering parameters(,t), then we have diffractive Pressed by a power d®? as Q*—o with the momentum
jet production. The corresponding hypothesis of diffractivefractions fixed. In order for the power-suppressed corrections
factorization for this cross section is to inclusive factorization to be negligible, botd and the
. ) invariant mas$V of the final state must be large compared to
do®(A+B—A+jetst X) dfGA(Xa, i Xp 1) the scalem~300 MeV of hadronic transverse momenta.
dE;dX,d Xgdxpdt ;, f a dxpdt SinceW?=(g*+ P*)2~(1—x)Q?%/x, one requiresQ?>m?
and, forx near 1, (+x)Q?>m?. Similarly, in order for the
power-suppressed corrections to diffractive factorization to
be negligible, botlQ and the invariant madd i of the had-
ronic final state, excluding the diffractively scattered hadron,
(28) must be large. SinceMi~(g*+xpP*)2~(1—pB)Q? B,
where B=x/x;, one requiresQ?>m? and, for 8 near 1,

Of course, Eqs(24) and (28) are approximations, as indi- (1—,6’)Q2>m_2. . o )
cated by the~ signs. We understand the hypothesis of dif- /What of diffractive factorization for processes with two
fractive factorization to mean that the corrections to thesdiadrons in the initial state, such as+p—jets or
relations are suppressed by a powemsf) or m/E;, where ¥+ P—jets? Here, the proof obrdinary factorization is
m represents the momentum scale of soft hadronic interadl'ch more delicate. The problem is that low-momentum
tions andQ or E is the scale of the hard interaction. gluons can communicate between the partons of the two
This general diffractive factorization hypothesis was putbeam jets. This can happen even before the hard scattering
forward by Veneziano and Trentadue in their paf@ron  takes place, as in Fig. 3. When one looks for the hard process
fracture functions. The Ingelman-Schlein mofldemands  inclusively, such effects cancfl5,16. But the cancellation
diffractive factorization plus the Regge structure of the dif-requires a sum over final states. Collins, Frankfurt, and Strik-
fractive parton distributions. Thus, in a strict interpretation,man [17] have argued that the demand that the final state
the validity of the Ingelman-Schlein model logically implies include a diffractively scattered hadron destroys the factor-
the validity of diffractive factorization. On the other hand, ization. In Ref.[5], we looked at this problem in the context
one might interpret the Ingelman-Schlein model as beingf a simple perturbative model. We found that the diffractive
valid if corrections to it, while not vanishing in the limit of factorization hypothesis is, indeed, not valid. New terms pro-
large Q, were neverthelessumericallysmall. Thus, for in-  portional to 8(1—Xa/Xp) appear in Eq(28). [Presumably,
stance, the authors of Rgf3] speculated that the factoriza- in a more general model one will also have factorization-
tion inherent in the Ingelman-Schlein model was not likely toviolating terms that are not proportional 1 — X, /xp) but
be exact up tan/Q corrections but might have the same are singular as (% X, /xp)—0.] These new terms have an
status as Regge factorization, which has proven to be a usaweresting structure that can be investigated experimentally
ful approximation even if it is not exact. at DESY HERA.

X f dXpfpe(Xp,at)

do(a+b—jets+ X)
dEdX,dXg
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dF(Zjiﬁ(l[gX]P !QZ;X]P vt)
dxpdt

1 a(0)—1
) . (33

~constX (—

B

with 0=a(0)—1=<0.5. The smal3 behavior ofF§" is ana-
lyzed in Ref.[13].

VIl. GLUON DISTRIBUTION FOR pB—1

O_ The diffractive parton distributiond fo (&, u;xp,t)/
A dxpdt, similar to the ordinary parton distribution, is essen-
tially not calculable using perturbative methods. Recall,
FIG. 3. A graph fory+p— p+jets+ X for which diffractive ~ however, that it is possible to derive “constituent counting
factorization fails because of soft color interactions among the spedules” that give predictions for ordinary parton distributions
tator partons. faa(X,) in the limit x—1 for not too large values of the
scale parametet [22]. In the same spirit, we consider in this
VI. DIFFRACTIVE PARTON DISTRIBUTIONS FOR B—0 section and the next the diffractive parton distributions in the
) . o diff limit B— 1, whereB=&/xp. Our analysis is similar to that
The diffractive parton distributiondfya(&,u;xp,1)/  of Ref.[3]. The authors of that paper concluded, with certain
dxpdt is essentially a long distance object, which is not amegyeats, that the diffractive gluon distribution should behave
nable to calculation using perturbative methods. Howevergg (1- B) asB— 1. Our reanalysis suggests a behavior be-
Regge phenomenology provides an expectation for the bgyeen (1- B)* and (1— B)°, depending on how certain non-

-

havior of dfg/a(&,u;xp,t)/dxpdt when the parameter perturbative issues are resolved. For the diffractive quark
distribution(not treated in Ref.3]), our analysis in Sec. VIl
B=¢&lxp (290 suggests a behavior between{B)2 and (1- 8)*.

, , Our analysis is based on a model that consists of a se-
is small compared to 1. In the case of the ordinary partofjgcteq set of Feynman graphs with the internal loop momenta
distributions, this expectation is integrated over a selected integration region. The graphs can
be viewed as one-rung ladder graphs, with a single gluon
emitted into the final state. It would be simpler to use a zero
rung ladder, but a zero rung ladder does not produce the
pomeronlike growth ax,—0 that can be obtained with a
one rung ladder. Thus, we present a base model consisting of
the lowest order graphs that can produe@)=1 power

. . . L behavior forxp— 0. It remains for future work to explore the
E)r small x. The simplest version of this expectation is thateffects of higher order graphs. In particular, one should in-
«(0) is the same as in soft pomeron physics, egtigate the effects of collinear splittings of the on-shell
«(0)—1~0.08[18]. However, this expectation is hard t0 nartons in the model graphs, of soft gluons joining these
re;:oncn_e with evolution: if it holds at some small value of 4rtons, and of the hard partonic radiation that accounts for
Q that is at least large enough for perturbation theory o beyo|ution of the diffractive parton distributions. Eventually,
applied, thenF, should be steeper at larger values @f one may hope to have a theory of the—0 and

[19]. A steeper dependence was also expected on the basis Gf _ B)—0 behavior instead of a model.

the perturbative version of the pomeron analyzed at leading gjnce the model considered here does not include the

log level [20]. Indeed, a steeper dependence, Withgraphs that contribute to QCD evolution of the parton distri-
a(0)—1~0.4, is found in experiments at DESY HERA putions, the analysis can apply only to the diffractive parton

f o a(X, ) ~constx (1/x) 40, (30)
wherea(0) is the pomeron intercept. That is, one expected

F,(x,Q2)~constx (1/x)*©~1 (31

[21]. distribution at a starting scale, that is not too largésay, 2
The analogous expectatid8] for the 8 dependence of Ge\). Standard parton evolution starting at this scale will
diffractive parton distributions at fixex is soften the distributions.
dife _ %0) Define 7=1-8=1-¢/xp. Then, we examine
dfa/A(,BXuH,U«,Xp,t)Nconstx 3) 32 dfIM ((1— 7)xp,u;xp,t)/dxpdt in the limit 7— 0, after first
dxpdt ' taking xp<<1 so as to separate out pomeron exchange from

other Regge pole exchanges. We consider the diffractive
In this case, the constant is proportional to the triple pomeromgluon distribution first(a = g). Later, we supply the modi-
coupling used in Regge physics. Presumably(0) here fications needed for the diffractive quark distribution.
should not be the true pomeron intercepl.08 but should Throughout this section, except as specifically noted, we
be the larger values 1.4, found in the DESY HERA experi- consider Feynman graphs in null plane gadge=0.
ments. Then, of course, it is debatable whether the triple
pomeron coupling used here should be the same as that
found in soft Regge physics. Uncertainty over the precise
values, however, should not obscure the simple prediction According to Eq.(20), the diffractive gluon distribution is
that the diffractiveF, should behave, at small, as the square of the matrix element of an operator that destroys

A. Decomposition into hard and soft subgraphs
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Bxﬁ B;’ -

FIG. 5. Graphs with an ordey® hard subgraph.

FIG. 4. Structure of amplitude contributing to the diffractive

gluon distribution. At least one gluon must be emitted into the final ) )
state. The gluon cloud surrounding any hadron contains gluons

at any momentum fraction. Consider a gluon with momen-
tum fractionx and transverse momentum of ordey where
a gluon with longitudinal momentum fraction {1r)xy, m~0.3 GeV gives the scale of a typ.|cal hadronic mass or
where the matrix element is taken between the initial protorff@nsverse momentum. The contribution of such a gluon to
state and a final state that includes the scattered hadron plff€ n'i'” pJane _energyP~ of an intermediate state is
anything else. Since a color octet gluon is destroyed, whild® =P7/2p", which is the minus momentum of airee gluon
the initial and final hadrons are color singlets, the final stateVith transverse momentum and plus momentfrp - This
must include at least one gluon g pair. We consider here kinetic” minus momentum is of ordem?/(xPy). Thus, a
the minimal model in which the final state includes preciselygluon of the type that we are calling a slow gluon has a
one gluon. Then, this gluon carries a very small momentunkinetic null plane energp ™ ~m?/(x;P,) and survives for a
fraction 7x;. Call the momentum of the final state gluon typical null plane timeAz* ~xpPA/m?.
g“, as depicted in Fig. 4. Since this gluon is on shell, we Notice that the final state gluon has a large minus momen-
have tum, g~ =q%(27xpP5), at least as long as its transverse
momentumq is not too small. Nowgq is not observed; we
92 are to square the matrix element and integrate avewe
L, ——,q]. (39 cannot say anything about the region of very smalbut we
2 can analyze the contribution to the integral from the region

Before proceeding, we pause for a technical point. In genzz defined by

eral, in this section we use the null plane gadge=0, but 5 5
for the final state gluon this is not convenient. The polariza- q~>Tm-. (37
tion vectorse®(q,j) for transverse polarization in thedi-

rection have minus components that grow asif/the limit ~ We will consider the contribution ta f*/dx,dt from the
r—0: region R with the hope that the contribution from the

complementary regiom?<7m? is not large enough to
J_ i overwhelm—or, worse, to cancel—the contribution from re-
€ (@)= = @5 GONR.
gt XprPRr We will also evaluate the contribution from the smaller
integration region in which the transverse momentgrs
We avoid this singular behavior by changing the polarizatioarge:qs>m?. Since this region is described by rather stan-
vectors for this gluon teA~ =0 gauge. The differenca * dard short distance dynamics, its contribution should provide
between the old polarization vector and the new is propora lower bound on the true resulAgain, we assume that this
tional to g“, so that changing polarization vectors has nocontribution is not canceled by some long distance contribu-
effect after we sum over a gauge-invariant set of graphs. I#0n.)
A~ =0 gaugee (9,j)=0, €'(q,j)=4", and For ge R, the minus momentung ™ =q%(27x,P,) of
the final state gluon is large compared to the kinetic minus
o o momentump ™~ ~m?/P, of a typical fast parton and is also
€"(q,j)= —= =Xp7P} —5. (36) Ia[ge compared to .the kinetic minus momentum
q p~~m?/(x,P5) of a typical slow parton. This large minus
o ) . momentum flows through the graph and is carried out of the
Thus, e#(q,]) is predominantly transverse, with a plus com- graph by the detected gluon. Thus, the parton detection with
ponent that vanishes as-0. 7—0 creates a hard process that happens on a null plane
~ Some vocabulary will be helpful for discussing the phys-time scaleAx™ that is short compared to the typical time
ics of time and momentum scales in this problem. There argcgje for interactions within the proton or its cloud of slow
three relevant longitudinal momentum scales. We call Paryluons. We base our analysis on this observation, using low-
tons with p*~P, fast partons. For instance, the valenceorder perturbation theory for the nearly instantaneous inter-
quarks in a hadron are typically fast partons. We call partongction that probes the parton distribution.
with p* ~xpP4 slow partons. Finally, we call partons with  The three graphs that involve the lowest order hard inter-
p*~mxpPA very slow partons. The final state gluon is suchaction are shown in Fig. Other graphs of this order vanish
a parton. when projected onto the color singlet configuration in the
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FIG. 6. More graphs with an ordeg® hard subgraph. These
graphs involve quark exchange from the soft subgraph and are not

considered in this paper. FIG. 7. Factored structure of the diffractive gluon distribution

function for 7—0.

r#—s* channel. In these graphs, the large minus momen-jongitudinal direction. It is not, however, obvious that the
tumq" flows through only one or two propagators, as indi- hard subgraph is independentroéinds and that only trans-
cated by the heavy lines. These propagators are far off shellerse polarizations are important. These results follow from
We refer to this part of the graph as the hard subgraph. Thgn argument that we describe in Appendix B. The picture
rest of the graph is the soft subgraph. that emerges is one in which the soft gluon cloud surround-
In Fig. 5, we denote by* ands”, respectively, the mo- ing the hadron is probed by an interaction that is effectively
menta of the gluon leaving the soft subgraph and entering igcal in null plane timex™, and in transverse position
after the hard interaction. Let the momentum fraction of the There are also two graphs of the same order that involve
first gluon ber /P, =(1+¢)x,. Then momentum conser- connecting theq” and k* gluons to a slow quark line, as
vation fixess™/P" =oxp. depicted in Fig. 6. It is possible to find slow quarks in the
We integrate ovew. It is convenient to distinguish be- cloud of slow partons enveloping a hadron. The slow quarks
tween the two identical gluons by requiring that>—s*.  can arise simply frong— qq splitting. However, we expect
That is,oc>—1/2. We will see in Sec. VIl E that the impor- that the contribution from slow quarks is quantitatively not
tant integration region isr~1. That is, the gluons that as important as the contribution from slow gluons. Thus, we
couple the hard subgraph to the soft subgraph are typicaimit the graphs of Fig. 6 from the model to be analyzed in

“slow” gluons.

We integrate over the transverse momentumsetting
s=r+P,,. We also integrate overr—, setting
sT=r" —M32/(2P;)+[Ma+(Px)?1[2(1—xp)PA]. We
suppose that the hadron wave functionsrfendr ~ to be no
larger than the ordinary size for slow gluong~m? and
r-=m?(xpPx). (Contributions in whichr# is part of a

this paper. This omission is analogous to making the
“quenched” approximation in lattice QCD.

Before continuing with our analysis of the model, let us
pause to note the possibility of an even simpler model, rep-
resented by Fig. 6 with the quark line signifying a fast va-
lence quark in the hadron, carrying a momentum fraction of
order 1. Then if Fig. 5 is considered as a one-rung ladder

hard virtual loop are more properly considered to be part of &raph, this simpler model is a zero rung ladder. Similarly, the

higher order correction to the hard subgraph.

graphs of Fig. 5 would constitute a zero rung ladder if we

Taking the limit —0, we find that if we consider the limited the integration to the nonleading regien- 1/x,

hard subgraph to be a function of, s#, andg*, then it is

where the gluons carrying momentaands are fast gluons

independent of ~, s, r ands and is also independent of With momentum fractions of order 1. The zero rung model is,

Xp. In addition, the dominant polarizations for the gluonsunfortunately, too simple. It produces af behavior for the
entering the hard subgraph from the soft subgraph are tranghiffractive gluon distribution instead of tthz‘*(O)=x§2 be-

verse; in a shorthand notation,

>

wov={+,- 1,

[Hard]*"[Sof],,~ 2,
2 i<

] [Hard]"'[ Soft];; .
2 38

That the hard subgraph is independent ofands™ is not
surprising, sinceé ~<<q~ ands™ <q~. That it is independent

havior that, we will see, arises from the one-rung ladder.

B. Structure of the diffractive gluon distribution

We take advantage of the results discussed in the previous
subsection by setting=s =0 andr=s=0 in the hard
subgraph and restricting the polarization sum to transverse
polarizations. Then the diffractive distribution function de-
pends only on the integral over andr of the soft sub-

of xp follows simply from its invariance under boosts in the graph. We write this structure, as depicted in Fig. 7,

dx,dt 6477 25p 5 TR J 112

da’A’k](o’,xP,t;sA,sA,)f doAjj(o,Xp,t;S4,Sar)
~12

d%q MEM(g,0" 7)* Mg, 7)

X2 Lazw)z

(K>—ie)(k®+ie)

(39
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Here, the first line represents the soft subgraphs while th&arizations of the probed and final state gluons, respectively;
second line represents the integral of the hard subgraphs. Weand b are their colors. Recall that the final state gluon
discuss these factors below. The explicit factar i/simply  polarization, represented by a polarization vecatti(q,n),
kinematic and comes from writing(q%) = 8(297q~ —g?) is, by our convention, iPA™ =0 gauge, as in Eq36). In
as[1/(2q97)]18[a”—g?/(2q™)] and using the delta function M, the exchanged gluons are approximated as having zero
to eliminate theg™ integral. transverse and minus momenta; one integrates over these
The functionA;;(a,Xp,t;Sa,Sa) is the amplitude for the momenta in the definition oA. The exchanged gluons have
proton to emit a gluon with transverse polarizatiorand transverse polarizatiorisand |, respectively.
momentum fraction (% o)xp, then absorb a gluon with Next, we examine the soft subgraphs and then the hard
transverse polarizationand momentum fractioarxp subgraphs in some detail.

Aij(()' Xp 1 Sa 1 Sar) C. The soft subgraph

1 AP Ly OA sOA7 ..

. What is thex; dependence oA" (o ,Xp,t;S,Sa/) in the

_ XPPAE Jd ~e xRy limit x,—0? Comparing the expected Regge fo(@ of
C2n 4 y dfg',f,f_\/dxpm with Eq. (39), we see that the expected Regge

) . form of A" is
X(Par,sar| T{AL(0y ~,0r)AL(0)}[ P ,Sa). (40)

There is a summation over the cobof the gluon operators; Al(o,xp,t;sp ,Sar) < Xp a(t) (43
in M we average over these colors. The factpP, arises
from changing the integration in Ed39) from [dr” t0  Since Al involves low-momentum physics, the. depen-

Jdo. dence ofA!l cannot be reliably determined by perturbation
We now turn to the hard interaction. We begin by consid-theory_ Instead, we can take it from experimem(t)~ 1.

ering the probed gluon, which carries momentktn Using Even thoughAl contains low transverse momentum

k=—g#+r#—st and settingr"=s" =0 andr=s=01in |ines, it is instructive to examine this function in perturbation

the hard subgraph, we find theory, with the two gluons connected directly to a fast quark

line. We do so in Appendix A. We find that this two-gluon
model gives Eq.(43) with «(0)=1. This is close to the
K2= — qu_ (41) phenomenological answer. A more realistic pomeron behav-
T ior could result from using a better model fat .

Thus, the line carrying momentukt* is far off shell when
7—0, as long asq is in the integration regionR,
g®>rm?. The factors ofk? from this propagator are dis- We now turn to the hard interaction functiowt. It is a
played explicitly in Eq.(39). The internal lines of the hard simple matter to evaluate this function. We find
subgraph are also far off shell.

According to Egs(22) and(20), the operator that probes -
the gluon distribution i} ™(y). [Only v {1,2 contributes Mijmn(q o 7)= 3ig
in Eq. (20).] In A*=0 gauge, this is simply™Al(y). [We ab BT 4o +ie)(1+0)
have changed the polarization vectefq,n) for the final
state gluon frome:= 0, so this gluon could couple to the
A*AM operator inF_ ™(y). However, this graph is not al-
lowed when the two exchanged gluons are in a color singl
state] The 9% becomes & =(1—7)xpP, ~xpP4 that we
absorb into the normalization. This leaves a propagator for
the probed gluon,

D. The hard subgraph

Saplo(1+0) 81 6™
— 8" M+ (1+0) 8™, (44)

'{hus,Mocro as7—0. Theie prescription in the X factor
el .

arises from Eq(C5).

Inserting Eq(44) andk®~ — g2/ 7 into Eq.(39), we obtain

dfdiff 1 1 o
oA _ > f do' Ag(a’ Xp,t;Sa,Sar)
-12

—iD™(k) i dxpdt  647°T ESA,SA, fxl

kK2+ie  KkP+ie

> €M(k,j")er(k,j")

i’ o =
Xf daAij(O',X]p,t;SA,SA,)Hk'”(O',(T’)
e*(k,m). (42) i

= ——
kc+ie d2q 6(q2>TM2)
Thus, each probe operator gives &%1factor and leaves a (2m)*  (q°I7)°
polarization vector for a gluon of momentukf, polariza-
tion m, in A*=0 gauge, which is included in the amputated Here, " (o-,¢") is a rational function obr ando’ that is
hard interaction amplituda. not of particular interest. Recall that we integrgtever the
We call the amputated hard interaction graphregionR defined byg*>rm? [Eq. (37)], wherem is a typi-
MI"(q,0,7). The indicesm andn are the transverse po- cal hadronic mass or transverse momentum. Here, we make

(45
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the prescription more precise by integrating ogér-7M?  chosen. Recall that we toof>>rM? because as long as

whereM is any fixed mass such thit>m. g%/ 7=m?, the internal lines in the hard subdiagram are far
off shell. This appears to be the natural cutoff. As soon as the
E. The o integration internal lines of the subdiagram through whigt flows are

not far off shell, the gluon that goes into the final state and
the probed gluon can attach at different space-time points in
the gluon cloud of the hadron. Then there is the opportunity
for cancellation, as both gluons sample the color charge of
the hadron as a whole and find that the hadron as a whole is
a color singlet. It is difficult to check this conjecture directly
in a realistic model of nonperturbative hadron structure.
However, we have checked in a very simple model where all
the graphs can be included exactly. This model is too simple
%€have the correct pomeron behavior, but we find that it
does haver® behavior in ther—0 limit. The model is de-

The o integration in Eq(45) runs from— 1/2 to infinity.
Using Egs.(A3), (A4), and(44), we see that{ approaches a
constant whileA;; is proportional to 162 for o— (at least
if we can trust perturbation theory fak;;). Thus the inte-
grand in Eq(45) is proportional to 142, so thato>1 is not
important in the integration.

We also see from EqsA3), (A4), and(44) that bothH
andA;; are proportional to f for o— 0. This is a potential
disaster, because it suggests that the model presented h
contains an unregulatefitio/ o infrared divergence. We in-
vestigate this problem in Appendix C. We find there thatgqiiped in Appendix D.
both factors 14 carryie prescriptions 1/g+ie€). Thus, the One might reasonably conjecture that a larger cutoff
pontour for theo integration can be analytipally cgntinued would be imposed by nonperturbative physics in a more re-
into the upper haltr plane, away from the singularity. alistic model. For instance, if the gluon emitted into the final

We conclude thatr is of order 1 in the entire important gi54e effectively had a substantial masg, thenq~ would
integration region. Similar remarks apply to the integra-  pq (q2+m5)/(2xpTP,J§). This would induce an effective cut-

tion.
on off‘q2>m§ in Eqg. (45. Then we would have obtained
df§/A(BXp ., s Xp 1)/ dxpdtec (1— B)P with p= 1. This corre-
_ . o . sponds to the style of analysis of the constituent counting
Performing the integration in Eq(45) gives for the ryles and gives the result (18)* found in Ref[3]. Presum-
7—0 limit of the diffractive gluon distribution ab|y1 the contribution from q2>m2 must be present
and is not likely to be canceled, so that
dfg/A(BXp, miXp t)/dxpdt should not be smaller than
g g 1 (1—pB)* at largeB. That is, the powep should not be larger
glA than 1.
dxpdt  256m*M? We conclude that if the diffractive gluon distribution is
parametrized as

F. Result

l ©
Xz > > f do’Ag(o' Xp,t;Sa,Sar)
25,5, TR J -1

d 9T (Bxp, wXp,t)

* . g/A P Rp s _

Xf doAj(,%p,t;8a,50 ) H M (0,07). (46) dxpdt *(1-p)° (48)
2

Note thatdfgi,f,f\/dxuudt is independent of as 7—0: for B—1 at moderate values of the scalesay, 2 GeV, then

diff X O<p=1. 49
dfg/A(i))((“ ;:’X] 't)~(1—,8)0 as B—1 with xp=const. P “9
v (47) The choicep~0 corresponds to an effectively massless final
state gluon, whilep~1 corresponds to an effective gluon
This may seem surprising, since the distribution of gluons inmass.
a typical hadron behaves like fga(X; ug) ~const

X (1-x)P with a rather high powep~5. , VIIl. QUARK DISTRIBUTION FOR B—1
The leading behavior comes from the lower end point of
the integration in Eq(45). Thus it is sensitive to the cutoff In analogy with the gluon case, we write
dfgia d’s (= d%s’

1 1 o
— - ’ ok ! o . , . . ,
s 52,5, | 7] ] 00 St isnism St i

d2q Mﬁ]”’(q;klsl !UyT;Sq ysk)* Mfljv(q,k,S,O', T,Sq ,Sk)

XSQESk 2 (2m)?2 KZ—ie)(Kotie) (50
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Here, the soft functior§,, (o, Xp,t;Sa,Sa/) is the ampli- We evaluateM in the r—0 limit using null plane spin
tude for the proton to emit a gluon with polarizatiqn, defined with the plus direction as special for the probed
momentum fraction (¥ o)xp and transverse momentum quark and defined with the minus direction as special for the
r=s—P,/, then absorb a gluon with transverse polarizationfinal-state antiquark. We find
v, momentum fractionrxp, and transverse momentusn

Ce VT

MHPV~ — 25
g 9o f—2q2+mq

Thew(s) are two component spinorg(+ 1/2)=(1,0) and
Xf dye~ (oXPAy =5 w(— 1/2)=(0,1). The factor//(\/g?+mj) arises from re-

lating four-component Dirac spinors to the two-component
spinorsw. Then we can write the’:2 2 matrixI" using trans-
verse Pauli spin matrices® and o2. For transverse indices

- %P i w(s) T*W(—sy). (57
SMV(U,S,XP,t,SA,SA/)—?g dy

X<PA"SA’|A;(O!y71y)

XAL(0)|Pa,Sp)- (51  mv, we find
The functionS is simply related to the operator matrix ele-  1ii—_—__;i(s. g)gi+ 1 S Vo4 280 (k. o)
mentAl, Eg. (40), that appeared in our discussion of the otie 1t o
diffractive gluon distribution: ,
igi— — gig
ds i +a'+itso-q 1%—0'0-q
f (ZW)ZSIJ(O',S;XJJ,USAySA/)IA”(o',X‘IJ,t;SA,SA/)- | g . 5 ij
(52) +1 _0_+i60'0'+—1+0_0'g-+25 mq. (58)

The function [We hope that the Pauli spin matriceSwill not be confused

with the momentum fractionr that occurs in this equation in
the combinations I and 1/(1+ o).] For one transverse in-
dex and one plus index, we find

MY (a,k,s,0,7;84,S¢) (53

represents the amputated hard interaction graph. Heig,

the momentum of the antiquark that enters the final state and 1 _ _

k is the transverse momentum of the probed quark. We have k—+F+J%20’- (59

k=—q—Pa by momentum conservation. The variablgs

andsy are the helicities of t_he probed and final state quarksp|gq I+~I*, while T** does not give leading contribu-

respectively]l andJ are their colors. tions asT—0. Finally, we note thal’~” andI'*~ are not
There is an important difference with the gluon case. Th&,aeded because they multiply OAT =0 gauge.

quark has a mass),. Thus, the minus momentum of the  The spin function™*” is rather complicated, but we are

on-shell quark entering the final state is concerned with only two of its properties. First, if we think

of ' in coordinate space as a function of the separayion

__(q2+ mf]) (54) between the points where the two exchanged gluons attach,
a = 2mpP, thenT is proportional tos(y™) and to a linear combination
of 8(yt) anddé(yt)/dyi . Thus, the interaction is hard in the
Then sense of being local iy andy;. Second, and more impor-
tant,I" is independent of-.
(o?+ mﬁ) We can now insert Eq(55) and (57) into Egs.(50) to
kP~ — — (55  obtain ther dependence of the diffractive quark distribution:
diff 2.4
in the 7—0 limit. What counts here is the mass of the final dfain _ 1 3Ckg

state quark as it emerges from the hard interaction and propa- dxpdt ~ 647° 16

gates into the final state. Presumably, the best model for 1 d2s d2s’
mq in this role is the constituent quark mass @.3 GeV), X= > f do-da’f —| 53
not the much smaller current quark mass. This is a substan- 255 500 (2m)*) (2m)
tial mass, so that the condition that defined whether the vir- x 0 1 o )
tual lines inM are far off shell, X Sho( 07185 Xp LiSn S

X8,(0,8Xp,t;Sp,Sar)

(6%+mg)
q_7q>m2, (56) f d’g Tr{I*?(0’,s',9)'T*"(0,59)}
(2m)? (q°+mg)3 '
is satisfied for anyg? when  is small. Thus, we do not need (60)

to restrict the integration region. On the other hand, the re-
gion g°< mé is not important in the integration. The crucial feature here is the factor of.
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We conclude that the constituent counting result for theinelastic scattering, we argue that diffractive factorization is
diffractive distribution of quarks is a consequence of perturbative QCD, although a detailed
proof is beyond the scope of this paper. From the point of
view of current theory, Regge factorization for the diffractive
parton distributions is a conjecture based on experience with
soft diffractive scattering.

However, suppose that we interpret the calculation of the The DESY HERA experiment§l] have now provided
previous section as saying that the diffractive distribution ofevidence concerning these issues, although so far only with
gluons is proportional to (+B)° for B near 1 when the rapidity gap events as a stand-in for diffractive events. It is a
scaleu is not too large. Then the evolution equation for the consequence of diffractive factorization that the diffractive
diffractive parton distributions will give a quark distribution ¢4 ,cture function:;“ﬁ should exhibit approximate scaling as

that behaves as Q?is increased with fixea;, and 3. This is suggested by the
A9 (B 1) data. The dependence Bpin the formx: 2" predicted by

A «(1—pB)%, (62 Regge factorization, Eq12), is also suggested by the data.

dxpdt For the future, it will be important to determine the dif-

when the scale. is large enough that some gluon to quarkfractive parton distributions in as complete a detail as pos-
sible, using charged and neutral current eveﬁl%iff and

evolution has occurred, but not so large that effective power . i
p in (1— B)P for the gluon distribution has evolved substan-F3 » a@nd probes for heavy flavors in the final sthfg].
tially from p=0. A signature of this phenomenon is that the Especially crucial is the diffractive gluon distribution. This
diffractive quark distribution will be growing ag increases ©@n be determined using diffractive deeply inelastic scatter-

at large, rather than shrinking. Perhaps, this is seen in thé"9 With high Py jets detected in the final state, analogously
data[1]. to [24]. If we demand that we see two jets instead of the

usual single struck quark jet, and if these two jets have a high
transverse momentum relative to the direction determined by
the sum of their momenta, then the hard process is of order

We close with some observations concerning the implica® s instead of just. For such a process, gluons participate
tions for DESY HERA physics of the discussion presentec®S initial partons on the same footing as quarks. Since the
here. diffractive quark distributions are already known, it should

We have discussed two kinds of factorization relevant to®€ possible to extract the diffractive gluon distributions.
diffractive hard scattering. Both are experimentally testable. Our analysis suggests that the diffractive gluon distribu-
We say thatliffractive factorizatiorholds if the cross section tion is quite hard, with a behavior between+{B)* and
is a standard partonic hard scattering cross section convél—p)° for large 8= &/x; at moderate values of the scaling
luted with a diffractive parton distribution. The diffractive parameteg, say, 2 GeV. The corresponding behavior of the
parton distribution gives the distribution of partons in thediffractive quark distribution is between ¢18)* and
hadron under the condition that the hadron is diffractively(1—8)". Here, the (& B)* for quarks would arise if the
scattered(If there is a second hadron in the initial state anddiffractive gluon distribution is large and behaves like
we do not demand that it be diffractively scattered, then thd1—83)°, so that the quarks at largé are produced by
cross section should also contain a convolution with the org—q+d. The diffractive quark distribution is approxi-
dinary parton distribution within that hadrorWe say that mately proportional to the measured functiBf", as long
Regge factorizatiotholds if the diffractive parton distribu- as (1— 8)Q?>1Ge\~.
tion is a product ok;, 2*) times a pomeron-hadron coupling ~ This analysis is based on a model that consists of a se-
times a functionf ,,(3,t,x) that is interpreted as the distri- lected set of Feynman graphs, with the internal loop mo-
bution of partons “in” the pomeron. These properties to- menta integrated down to an infrared cutoff. In the case of
gether constitute the Ingelman-Schlein mofd| the diffractive gluon distribution, the modéFig. 5 consists

Diffractive factorization is something that can be dis- Of @ one-rung gluon ladder with one gluon emitted into the
proved for a given process by a counterexample at sombnal state. At least one gluon must be emitted into the final
fixed order of perturbation theorfwith wave functions for ~state in order to allow the scattered hadron to be in a color
the hadronic statésCorrespondingly, it could, in principle, Singlet state. The ladder must have at least one rung before it
be proved to hold at any fixed order of perturbation theoryjs attached to fast parton lines in order to genergté be-
which one would take as a strong indication that it holdshavior. Thus, the model uses the lowest order graphs that
beyond perturbation theory for that process. Diffractive fac-make sense for an analysis of the—0 andB—1 limits.
torization makes no statement about the Regge structure of This model is a beginning, not the end, of QCD analysis
the nonperturbative factors. Regge factorization does makef the behavior of the diffractive parton distribution in the
such a statement. It would be interesting to study Reggep—0 and B—1 limits. The gluon emitted into the final
factorization from the point of view of the BFKL pomeron, state could split into partons moving in the same direction
perhaps extracting a model for the distribution of partons inand could be connected to other parts of the graph by soft
the pomeron. gluons. The whole collection of outgoing partons must had-

Let us discuss first diffractive deeply inelastic scattering,ronize. We expect that these effects are not important for
which is simpler than diffractive hard scattering processewalues of the transverse momentagmof the outgoing gluon
with two hadrons in the initial state. For diffractive deeply that are large enough, but that they become important for

dfGA(BXp, i Xp 1)

*(1-B)> (61)

IX. CONCLUSION
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smallerg;. Our estimate of where the higher order effectscan be put in a gauge-invariant form by reexpressing it in
become important is incorporated in the model as the infraterms of the gluon field operatoi%/” defined in Eq.(18).
red cutoff ongr. In Secs. VII F and VIII, we suggest a range We simply replace
of possibilities for this cutoff, which leads to the range of _
possibleB— 1 behaviors. - stAl C9TA _FY
Given a complete set of diffractive parton distributions, it A— sTtie  's'qie  'STtie (A2)
will be interesting to test the evolution equati(®8).
Let us now turn to hard processes with two hadrons in theynd make a similar replacement . Thei e choice here is

initial state, as exemplified by+p— jets+p+X at DESY  of some significance. We will discuss it in Appendix C. The
HERA, where we look at the hadronic part of the photon. Inresylting form forA'l is

this case, the factorization that holdsintlusivehard scat-

tering is expected to break down diffractive hard scatter-  A'l(o,xp,t;Sa,Sa/)

ing, as shown by counterexamples at a fixed order of pertur-

bation theory[17,5. If one extracts diffractive parton _ 1
distribution functions from deeply inelastic scattering and 2axp(o+ie)(1+0)Px
uses them to predict cross sections for p— jets+p+ X,

then the observed cross section should contain extra terms > J dy‘e“UXrPZy’
that do not match the predictiofb]. In particular, there a

should be extra contributions that correspond to the jets car-

rying almost all of the longitudinal momentum of the X(Par,sar|TIF(0y ™ ,0DF;'(0)}[Pa,Sa).  (A3)
pomeron. Perhaps, this corresponds to the “superhard” com- . ] .

ponent seen in the UA8 experimefi$] in p+p—p We now introduce a simple perturbative model to get an
+jets+X. indication of the likely behavior oA\'!. Consider Eq(A3)

In summary, the DESY HERA resulfd], together with ~ using Feynman gauge. Suppose that the gluon annihilated by
the earlier UA8 resultf4], have confirmed the basic features the operator=,' connects to an on-shell quark carrying no
of the Ingelman-Schlein picture of diffractive deeply inelas-transverse momentum and plus momenfui=\P, , with
tic scattering. The experiments have shown that diffractive\ of order 1. That is, the gluon couples to a “fast” quark.
scattering is related to exchanges of quanta that, when exarithe relevant factor is

ined with a hard probe, appear to be the pointlike quarks and _
I

luons of QCD. Much more remains to be done, but alread - —, .
\g/]ve are challenged to connect the theory of pointlike gluonZ r2+ieu()\ PR.S)igtey UNPL.9), (A4)
to the soft color dynamics that is presumably responsible for
diffractive scattering. whereN’ =\ —xp(1+ ). Inthe limitx;— 0, this is indepen-
dent ofx;. Similarly, the coupling of the operatdi, ' to a
ACKNOWLEDGMENTS fast quark gives naxp dependence. Thus, in the simple

We thank G. J. van Oldenborgh for explicitly rechecking Lneono:eé};he]co?pser;jﬁ; matrix element in H&3) is indepen-
P P

his algorithms in some of the sensitive ldwegions inves- S . ,
tigated in Appendix D. We thank J. C. Collins, G. Ingelman, Considering that ther_e IS a faCtO'XMn. EQ. (.A3)’ we f|r_1d
that the pomeron trajectory appearing in E@3) is

J. Bartels, and many members of the H1 and ZEUS Collabo- ., ", ~. " . . S
rations for helpful conversations. a(t)=1 in this simple model. This is close to the pomeron

trajectory observed in nature, but of course we expect that
soft interactions among the gluons modify the result. What
we see here is that the picture of the pomeron as two-gluon

amplitude Al (o,%;,t;Sp,Sa/) in the limit x,—0. The ex- good considering the simplicity of the pictuf@5], works

APPENDIX A: THE SOFT SUBGRAPH

pected Regge form oAll is rather well also in this context.
Al(a,xp ,t;sp,Sar) o xp V. (A1) APPENDIX B: STRUCTURE OF THE HARD SUBGRAPH
SinceAll is determined by low momentum physics, the In this appendix we investigate the structure of the hard

dependence ofl cannot be reliably determined by pertur- subgraph for the diffractive distribution of gluons in hadron
bation theory. Instead, we can take it from experiment. Theiin the limit £&/x,— 1. Recall that the hard subgraph is a func-
we impose Eq(Al) with a(t)~1. tion of momentar#, s*, andqg*, wherer® ands* are the
Although one is not really justified to use perturbation momenta of the gluons exchanged with the soft subgraph and
theory to investigaté'', nevertheless, perturbation theory is g* is the momentum of the gluon that goes into the final
suggestive. Let us, therefore, examié in a simple model  state. Sincey“q, =0, we will consider the hard subgraph to
in which the two gluons emerging from!l are connected be a function ofg andq ™, replacingg™ by g%(2q~). The
directly to a fast quark line. We ask whether this simplestmomentum of the detected gluonk§=r#—s*—qg*.
model can give Eq(Al) with a(t)~1. In Sec. VIII, we studied the hard subgraph in the limit that
We begin with the definition oA'l, Eq. (40). The opera- applies wheng/x— 1. This limit is really a dual limit. We
tors in this equation are iA* =0 gauge, but the amplitude taker™~s*~x,P, but
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q* B G o RG
S—+—23+q,<1. (Bl) 2(3 ) q 1+W
q° s7| (s+q)’
We also recall the definitioi37) of the integration region Xil1+ +—> 1+ —) - +—] (B6)
considered fon, 2s'q q 2s'q
) Then using Egs(B1) and(B4) (in either ordey, the denomi-
q7>m2. (B2  hator becomes

2(s")%q". (B7)
That is, q~>m?%(2x;P,). We combine this with the as-

sumption that, in the effective integration region fars,
r—, ands™, these variables have values typical for slow

That is, the denominator does not contain factors of the small
variables, so that it has a finite limit as the small variables
tend to zero.

gluons: We can writeM as a product
m?2 ijmn_ ; ; aBys
r_NS_NZX - 122, (B3) M €(s,i),€(r,]) ge(k,m) ,e(q,n) sM . (B8)
A The transverse components of the polarization vectors have
the form
Then
, e(p.i)'= 4y (B9)
r- s r
qT<1' <L 2s7q” <1, 2s7q” <l (B4 o p* stands for any of the moment#, s*, g, or k*. For

p*=r* or s* ~we are (temporarily defining
e(p,i)*=€(p,i)”=0. The polarization vector for the de-

We claimed in Sec. VII A that in this limit, the hard sub- tected gluon has(k,m)* =0 but has a nonzero minus com-

graph is independent of the variabless, r~, ands™. We

also claimed that the transverse components of the hard Squnent

graph dominate over other components in the limit consid- KM pm_gm_gm

ere_d, as in Eq(38). In this appendix, we substantiate these e(k,m) " =5 =—— +_q+ . (B10)
claims. k* r7=s"—q

We consider first the question of the independence on the L i _
variablesr, s, r~, ands~, taking, for the moment, only the The polarlz-atlf)n vector for the fl_nal-state gluon, which we
transverse components of the hard scattering subgraph. THRKe to be ine”=0 gauge according to E¢36), has a non-
is the same as multiplying the hard subgraph by purely transZ€r0 Plus component
verse polarization vectors for the two gluons exchanged with
the soft subgraph.

We consider the hard amplitud®?, defined as in Sec.
VII D. Thus, M does not include the propagator for the de-
tected gluon with momentunk”, but does include an Thus, neither the gluon propagator nor any of the polariza-
et =0 gauge polarization vector for this gluon. It also in- tion vectors contains a factor of a small variable in the de-

cludes are~ =0 gauge polarization vector for the gluon with nominator. _ N
momentumg* that enters the final state. We now consider the transverse tenga!™" as a func-

As a matter of convenience, we will analyze the firsttion of the variables
graph in Fig. 5. Essentially the same argument covers the o
second graph, while the third graph, with a four-gluon inter- {r,s"rm.s7,q7r.sq) (B12)
action, is quite trivial.

The Feynman rules giva1 as a rational function of the
components of#, s*, andg*. We are interested, in par- . . S .
ticular, in the behavior ofM for small values off ~, s~ scaling under boosts in ttedirection. That is, for any four-
r, s, andq as specified in EqgB1) and (B4). For this rea- vectorp”,
son, we need to know if there are any factors of the small n
variables in the denominator ¢¥1. P

The gluon propagator in Fig. 5 is

giion propag g Ip| hasD=1, B=0,

n

e(q,n)+=3—_. (B11)

M is a rational function of these arguments and has dimen-
sion D=0 and boost dimensioB=0, whereB gives the

has D=1, B=1,

iD*(q+s) . —g""(s"+q")+(s+q)*8" + 5 (s+q)”
(@+s)? (s +a2(sT+q)(@ +5 )~ (s+ Q7
(B5) SinceM hasB=0 andD =0, it can be written as a function
of a reduced number of arguments, each of which has
Settingq™=q%/(2q7), the denominator becomes B=D=0:

p- hasD=1, B=-1. (B13)
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r-r- s r s q )
T'aTa T sTqT Vst st
(B14)

Mijmn(

n
_Q|<.n
I

We are interested in the limit in which the last five argu-
ments are small, and we know that none of these arguments
occurs as a factor in the denominators. Thus when 6Bis.
and(B4) hold, M approaches the limiting value

T
Miumn ST'O’O’O'O’O)' (B19) FIG. 8. Graph with a singularity nea =0.
We thus confirm the claim made in Sec. VII A that we ERG Ei
can neglecr, s, r—, ands™ in M. Furthermore, since the sV~ == (B19)
limiting function is covariant under rotations about the 9 Vs'q
H i H 1 1 mn
axis, it must be a linear combination of the tenséfs™, vanishes in the limit specified by E¢B4). This establishes

5™Ms", and 8" &M, Each of these tensors multiplies a ratio-
nal function ofr*/s*=(1+0)/o. That is, the coefficient
functions are rational functions @f. This is, of course, just
the structure given in Eq44). The argument given above APPENDIX C: SMALL & SINGULARITY

does not establish that the limiting function is nonzero, but  The ¢ integration in Eq(45) runs from—1/2 to infinity.

this is what we found by calculation. We see from Eq(44) that H is proportional to ¢ for
We now return to the issue of whether the transverse coms;_, g | Appendix A we found that, at least in a simple

ponents of the hard subgraph dominate_over other Comp‘?ﬁodel,Aij is also proportional to ¥ for o—0. [See Egs.
nents, as claimed in Sec. VIl A. We consider (A3) and (A4).] This is a potential disaster, because it sug-
~ wBmn_ By gests that the model presented here contains an unregulated
M= e(k,m),e(q,n) ;M (B16)  do/o? infrared divergence. We investigate this problem in
this appendix.
If we stick toA* =0 gauge, one factor of &/arises from
the 16" singularity in the gluon propagator,

the claim.

and choose values other thih 2 for « or 8 or both. Now
a=— or B=— are not possibleM**™" multiplies the soft
subgraph with corresponding indices, calbj;, which van-
ishes fora=— or B=— because of the gauge condition i gt s +skgrt
AT(x)=0 [that is, A_(x)=0]. Thus, we should consider Zrie Y| (C))
a=+ or B=+. Let us consider=+ with B=j{1,2 as
an example that illustrates the general argument. Thus, Wehjs singularity, which is a part of the soft amplituad, is
wish to investigate whethep™™"S,; is dominated by ysually interpreted with a principal value prescription, but
MIMNS; i the limit specified by Eqs(B1) and (B4). We  there is no compelling reason for this choice. In fact,
need an order of magnitude estimate for the ratidof to  A*=0 gauge is not an effective tool for examining the na-
Sij . An analysis of lowest order graphs indicates that this isure of the 14 singularity, since in this gauge the singularity
the same as the ratio of the corresponding components of thi¢ a gauge artifact. Thus we choose to examine the singulari-
polarization vectors for a typical slow gluon, tiesin Feynman gauge, in the style of Rgf5]. (Arguably, it
e (sHi)el(s*,i)~mI(x,Px). We write this as would be better to do the whole problem in Feynman gauge,
but this leads to its own complications.

Sij _ s B1 We consider the graph shown in Fig. 8. The top half of
S_i' st (B17) this graph, after some manipulation, will contribute %
while the bottom half will contribute t&". We consider this
and compare graph in Feynman gauge but with a transverse polarization
chosen for the gluon carrying momenturh It is helpful to
Ljﬂ\ﬂ;ﬁjmn (B18) choose a frame in whickpP 5 ~m. Then

B B Pr=(1—-xp)Pi>m, P, =P /[2(1-xp)Px]<m,
to MM The analysis is simpleM ™1™ has dimension
D=0 and boost dimensioB=1. Thus, it can be written as qt=mpPa<m, q =g¥[27xPA]>m. (C2)
JsT/q~ times a functio’\M™" that has dimensio® =0 and
boost dimensioB=0 and, likeM'™", has no factor of the We want to consider the singularity structure as a function of
small variables in its denominator. As our previous analysis’ =oXpPA nearc=0 whens ~m?/P, <m ands’~m?.
shows,M™" has a finite limit as the small variables tend to The graph contains the structure
zero. (Actually, M'™" vanishes in this limit because of its ) ,
spin structure, but we will not need to use this fat¥e note JH “19uy N (C3)
that the factor that multiplies/™m" s°+ie (q+s)’+ie’
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whereJ* is associated with the bottom half of the graph andunphysical polarizations that cancel out when one sums over
N” with the top half of the graph. The denominator graphs. What we need is the subleading contribution. That is

s?=2s"s™ —¢ is harmless. Since™ is small, it can be ap-
proximated bys?’~—s. The denominator +s)? is not
harmless. It has the form

(q+s)’+ie=2q-s+s°+ie=2(q" +s7)s*

—q-st2qts —S+ie. (C

Now, g~ is large and positive while™ is small in the domi-
nant integration region. Thus, the factor d4s)? has the
approximate form

1
2q [sT+---+ie]’

(CH

where the dots indicate small terms. This denominator con-

tains the only important dependence sh as long as

|o|<1 in s"=0xpP, . Notice that there is a singularity
very near tos™ =0, but that, since there are no other singu-

easy. We replace

J* _
JMNMZmSMNM‘l‘J#N’u’, (C8)
where
~ sTIx—JFsH
Y= —iie €9

Now, we throw away the first term ifC8), since it will
cancel, and keep the remainder.
Thus, our net replacement is

—ig, N”

"
S>+ie (Q+s)2+ie

—i sty#—JtsH
s°+ie sT+ie

( N, C10
“l2qstrie) (10

larities nearby, we can deform the integration contour awayrne first factor contributes t8i! and gives the structure in

from this singularity. Thus, we deform trs contour into

Eq. (A2), but now with a 1/¢+i¢€) prescription for the sin-

the upper half comples™ plane. On the deformed contour, gyjarity determined on physical grounds. The second factor

we haves™ ~m or o~ 1.

contributes tgH and contains the 1&+i¢€) factor exhibited

Now, we examine the numerators. The largest componen, gq (44). In the product, there is indeed as#/singularity,
of the quark currend is J*, while the largest component of ¢ it is a 1/ +i €)? singularity. It does not signal an infra-

the current N” of the final state gluon isN™. Thus,
JMN“~J+N‘. Thus, the dominant term i, N* is obtained
by replacing

.
B M
3N s, N-.

(C6)

. . e 4
The factors,N* is approximatelys™ N~ as long as™ is not

red divergence in the integration since it can be avoided by
deforming the integration contour.

APPENDIX D: A MODEL

In this appendix we compute the diffractive gluon distri-

bution dfgf/dxdt in a simple model. As we will see, this

model does not exhibit the pomeron behawigr“® with

small, and we know thas™ is not small since we have de- a((tj_)fl- Nevertheless, the model provides a check that
formed the integration contour so that it does not approach! fga(8xp;Xp,t)/dxpdt can have a finite limit ag—1 in

s =0.
The next step is to restore ti$ integration contour to

an exact numerical evaluation of the graphs to a given order
of perturbation theory.

the real axis, taking care not to cross any singularities. This The model we will use is scalar-quark QCD, given by the

means that we should move thes™/singularity in Eq.(C6)

infinitesimally into the lower hals™ plane, so that our re-

placement becomes

+

J N# —s N*,
KT ST ek

(C7)

This is in keeping with the usual notation in which integra-
tion contours are along the real axis, with poles infinitesi-

mally displaced from the integration contour.

The replacementC7) gives the dominant contribution to

Lagrangian,

1 1

£:D#@Mq_mzq_(] 4G,;a,wG;a“}_ Zg4(®)2

1

- 2—5((9- A,)%+{Faddeev-Popov terrhs

1 2_1 242~ e
+5(06)2 = 5 M4~ Geqq

our graph. However, if we attach the gluon carrying momen-

tum s* everywhere in the hard subgraph and sum the leadinghis model has soft and collinear singularities just as in
terms obtained with this replacement, we will get zero be-QCD. As one further simplification, we model the diffrac-
cause of the Ward identities obeyed by the hard graph antively scattered particle by the scaldr field with a ¢qq

because the two gluons carrying momertaands* together

interaction to the quarks. Then the perturbatit@q interac-

form a color singlet(The relevant identities are discussed intion plays the role of the nonperturbative Bethe-Salpeter

the appendix of Refl15].)
We have thus encountered thete noir of Feynman

wave function of a real QCD meson. The probability for
finding aqq pair inside the meson in this model falls of as

gauge: the leading contributions graph by graph come fromi/k* in the ultraviolet, where is the transverse momentum
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FIG. 9. Diagram contributing to the diffractive gluon distribu- ~3 .
tion in a meson in the model of this appendix. < i
of the quark. This good behavior in the ultraviolet is because = 0-3[ ]
of the fact thatG carries the dimension of mass. Thus, the <
model allows for a simple treatment that approximately o . .
simulates properties of bound quarks inside a hadron. 02 0.4 06 0.3
Using this model, we compute the diffractive gluon dis-
tribution function within a mesord f3/4(8xp Xy, t)/dxdt, B

as given in Eq(22), to the lowest nontrivial order ig, order
g*. One of the orderg* diagrams for the function FIG. 11. Diffractive gluon distribution@x“>dfgﬂ\(ﬁxux;Xu>,t)/
Ggi,fg(P,q,k) in Eq. (22) is shown in Fig. 9. One gluon is dxpdtin the model of this appendix as afupction[d)for (from top
detected, and a single gluon is exchanged between the tw Pottom x;=0.01, 0.02, 0.05, 0.Wwith 1 GeV:. In this
quark loops on opposite sides of the final-state cut. Thién;gi:’e :zrerir:zi:gsdzfgﬁie;ignlaGr:&O”galzoagOg:f/am;ned
gluon carries that portion of the momentum transfer from the’ _ ' ' ' ‘
meson that is lost to the detected glu@md in a physical

process would be lost to the hard interactiofhe heavy bar

ending with gluon lines represents the gluon density operator gdiff (P,q,k)= J d?q

in Eq. (20). In addition to the graph shown, at each loop the oA 2(2m)°B(1- B)x

gluons can also attach to the lower quark line. Also, in both G#(P,q,K)* G*B(P,Q,K)gpCn(K)
1 ) 1 ) (23 ILV

cases there is a graph where the gluon lines are crossed. In — — ,

addition, one gluon can attach on each of the quark lines. (k*+ie)(k"~ie)

Finally, there are the two-gluon two-quark contact interac- (D2)

tion graphs. In total, this implies®8=64 combinations. After

symmetry considerations, there are four types of amplitudewherew=,3X\|>P+,

that must be explicitly evaluated. The four amplitudes are

shown in Fig. 10. 1 2 - - -
The final form forGgs that we obtain is Crun(K)= (P*)Z(k 9. +K°0,0, —kukTg, —kk7g,,),

(D3)

andG*#”(P,q,k) is a second rank tensor containing the sum
of quark loops with all possible combinations of attachments

C:- C: (0 g by two gluons.

S S < We have evaluated the loop integrals in Hg2) in terms

S S R of their explicit Spence function expressions. For this we
= & é 5 have used the computer code of van Oldenborgh and Verma-

seren[26]. Their method is an independently formulated ex-
tension of the Form algorithm of 't Hooft and Veltm&a7].
The authors of26] claim that their algorithms provide easier

isolation of both asymptotic behavior and potential numeri-
cal instabilities. In one of the most sensitive regions, that of

Q) C: b g low t, their algorithms have proved to be more accurate.
(= S %) Q In our calculation,t was small, one external line was
(S (S \o é massless, and one had to integrate over a large region in the
=) (S transverse space of the varialgjeBecause of gauge invari-
%:@?( ance,G*” obeys several constraints, which we have checked
numerically.

In Fig. 11 we show the diffractive gluon distribution func-
tion multiplied by Bx;, at|t|=1 Ge\?, and for a selected
FIG. 10. Four graphs for the amplitude in Fig. 9. choice ofxp values. The masses of the quarks and mesons
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were M2=m?=0.1 Ge\?, while the couplings were a different behavior from that found in Sec. VII. In the
G=0.3 GeV andg=0.1. We see that the model doret = model, the loop serves as a built-in low momentum cutoff.
exhibit the behavior However, the meson can be replaced by a single fast quark

i line if we substitute an artificial low momentum cutoff

dfSA(BXp Xp,t)
g/A PsAP _2
dxpdt X (D4) 9°> (1= B)xpm?. (D6)

for x,— 1 at fixed3 that would be characteristic of pomeron Then & simple power counting analysis gives
exchange. One needs at least one rung of a gluon ladder t
obtain this behavior. The model exhibits the behavior

%fgi,fg(ﬁxp;xp,t) ~_const fw @ 6(g3>(1— B)xpm?)
dxpdt (1=p)xiJo T {aF(1-B)xpl}

x(1-p)° (D5) (D7)
for xp<<1 and (1- B)<1. Performing the integral gives

dfgi/f,&(ﬁxwv Xp,t)
dX][)dt

asB—1 at fixedxp, as in Eq.(47). i

One can understand the and x, behavior seen in this dfga(Bxp;xp,t)
numerical study from an analytic viewpoint. In Sec. VII, the dxpdt
detected and emitted gluons coupled to a slow gluon. In the
present simple model, they couple directly to a fast quarkThis agrees with our numerical findings. We find it reassur-
This means that the virtual quark line in Fig. 9 is far off shelling that a fully consistent field theoretic calculation of the
when g?/[(1— B)xp]>m?. For example, it is off shell for diffractive gluon distribution gives results that agree with
q’>~m? for any 8 as long as we take,<1. This gives quite expectations similar to our analytic arguments in Sec. VII.

~(1-8)%; . (D8)
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