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Nuclear dependence in direct photon production
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We calculate the nuclear dependence of direct photon production in hadron-nucleus collisions. In term
multiple scattering picture, we factorize the cross section for direct photon production into calculable s
distance partonic parts times multiparton correlation functions in nuclei. We present the hadron-nucleus
section asAa times the hadron-nucleon cross section. Using information on the multiparton correlation fu
tions extracted from photon-nucleus experiments, we compute the value ofa as a function of transverse
momentum of the direct photon. We also compare our results with recent data from Fermilab experiment E
@S0556-2821~96!05211-3#

PACS number~s!: 13.85.Qk, 11.80.La, 12.38Bx, 24.80.1y
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I. INTRODUCTION

As early as in 1970s, it was observed@1# that inclusive
cross sections for single high-transverse-momentum partic
produced in hadron-nucleus scattering show an ‘‘anom
lous’’ nuclear dependence, in which the cross section at fix
transverse momentum grows approximately asAa, with A
the atomic number of the nuclear target. The value ofa is a
function of the transverse momentum, and can be as larg
4/3. This phenomenon has been known as the Cronin eff
The typical energy exchange in a high-transverse-momen
scattering process is so large that any single hard scatte
should be very localized within a single nucleon. Cons
quently, a linearA dependence is expected for single scatte
ing processes. Therefore, the Cronin effect is often descri
as due to multiple scattering of partons in nuclear mat
@2–5#. The A4/3 behavior signals a dependence on nucle
size, and multiple scattering is dominated by double scatt
ing.

In some of the previous work on this topic, an indepe
dent scattering picture was adopted@2#. In this picture, each
scattering was treated independently. For example, the cr
section for double scattering was proportional to a product
two Born cross sections. The double scattering cross sec
in this picture is not infrared safe, however. This is becau
the kinematics of single particle inclusive cross sections c
only provide a constraint on the total momentum from th
target, which leaves the possibility that one of the Born cro
section diverges when the momentum transfer of this Bo
cross section approaches zero. Therefore, theoretical pre
tions from the independent scattering picture are sensitive
the infrared cutoffs which must be introduced in the calcul
tions.

Recently, Luo, Qiu, and Sterman~LQS! have shown that
the anomalous nuclear enhancement can be described n
rally in perturbative QCD, in terms of a nonleading power
‘‘higher-twist’’ formalism @5#. In this treatment, the contri-
bution from double scattering can be factorized into sho
distance hard parts convoluted with corresponding multip
ton matrix elements or multiparton correlation functions
nuclei. The short-distance partonic parts are calculable
perturbative QCD, and all infrared divergences associa
with soft rescatterings in perturbation theory can systema
531/96/53~11!/6144~12!/$10.00
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cally be absorbed into multiparton correlation functions. Th
multiparton correlation functions are nonperturbative, ju
like the parton distributions in the single scattering pro
cesses. These correlation functions in nuclei provide info
mation about nuclear matter and its interaction with hig
energy probes. They can reveal information different fro
what normal parton distributions in nuclei can provide, an
in principle, they are as fundamental as the parton distrib
tions. In order to test the theory, we need to find differe
processes which depend on the same multiparton correla
functions. Information on these new correlation functions e
tracted from one set of processes may be applied in ot
processes.

Our aim in this paper is to show that the consistent pe
turbative QCD treatment of double scattering developed
LQS can be naturally applied to high-transverse-momentu
direct photon production in hadron-nucleus scattering. W
factorize the cross section of direct photon production in
calculable short-distance partonic parts times multipart
correlation functions, which are the same as those derived
Ref. @5#. We calculated the short-distance partonic ha
parts. We evaluate the nuclear dependence by using the
formation on multiparton correlation functions, extracte
from experiments on the momentum imbalance of two-j
photoproduction on nuclear targets@5#. Our numerical results
are consistent with recent measurements of the nuclear
pendence in direct photon production from Fermilab E70
experiments@6#.

A double scattering with high momentum transfer mu
have at least one hard scattering to produce the hig
transverse-momentum observables. In addition, there may
a soft scattering either before or after the hard scatteri
~referred to below as a soft-hard process! or another hard
scattering~called a double hard process!. We shall show that
only the soft-hard processes contribute to the nuclear dep
dence of direct photon production to the order we consid
The fact that the photon does not interact strongly once p
duced at the hard collisions eliminates final-state multip
scattering in direct photon cross sections. Therefore, dir
photon production in hadron-nucleus scattering provides
excellent test of initial-state multiple scatterings, while jet o
single particle production in photon-nucleus scattering pr
vides independent tests of final-state multiple scatterings.
6144 © 1996 The American Physical Society
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53 6145NUCLEAR DEPENDENCE IN DIRECT PHOTON PRODUCTION
and single particle production in hadron-nucleus collision
on the other hand, receive contributions from both initia
and final-state multiple scatterings. Final-state multiple sc
tering in photoproduction has been discussed in Ref.@5#. Our
work will provide the complementary information on th
initial-state multiple scattering.

We begin in Sec. II with an outline of the formalism use
in our calculation. Complete analytical results of our calc
lation are also presented in Sec. II. The detailed derivation
our results and the calculation of the partonic hard parts
presented in Sec. III. In Sec. IV, we present our numeric
results. We also compare our numerical results with rec
experimental data. We conclude with a brief summary a
suggestions for further work.

II. FORMALISM AND ANALYTICAL RESULTS

An energetic photon can be directly produced at sh
distance in high-energy collisions, and does not intera
strongly once produced. Therefore, it has been recogni
for a long time that direct photon production is a clean pro
for short-distance dynamics in high-energy collisions@7#.
Data from hadronic prompt photon production play a ve
important role in QCD global analysis, and provide co
straints on gluon distributions in hadrons@8–10#. In this sec-
tion, we outline the general formulas for cross sections
direct photon production, and present our analytical resu
for the contribution from double scattering processes.

A. Formalism

In the following discussion, we study direct photon pro
duction in hadron-nucleus collisions:

h~p8!1A~p!→g~ l !1X, ~1!

wherep is defined as the averaged momentum per nucle
In general, the total cross section for the above process
be expressed as a sum of contributions from single scat
ing, double scattering, and even higher multiple scatterin

dshA→g~ l !5dshA→g
~S! ~ l !1dshA→g

~D ! ~ l !1•••, ~2!

where the superscripts (S) and (D) represent the single and
double scattering, respectively, and the ellipsis represe
other possible multiple scatterings. In this paper, we consi
only double scattering, and its contribution to the nucle
dependence.

As a result of perturbative factorization@11#, the single
scattering cross section can be expressed as

dshA→g
~S! ~ l !5AdshN→g

~S! ~ l !

5A(
a,b

E dx8 f a/h~x8!

3E dx fb/N~x!dŝab→g~x8,x,l !. ~3!

In Eq. ~3!, f a/h(x8) is a normal parton distribution in the
beam hadronh and f b/N(x) is an effective nucleon parton
distribution inside a nucleus, which should include the we
known European Muon Collaboration~EMC! effect. In prin-
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ciple, the parton-parton scattering cross sectiondŝab→g
should include both direct and fragmentation contribution
That is, an energetic photon can be produced directly at sh
distances or produced from the fragmentation of an energe
parton which was produced at short distances@7,12#. For
example, partonic scattering may produce an energe
quark, which radiates a photon. Since we are most interes
in fixed target experiments here, the fragmentation contrib
tion is much smaller than the direct contribution in most o
phase space@12#. Therefore, in the rest of our discussion, we
will consider only direct production of photons. For ex-
ample, at the lowest order, we have contributions from
qq̄→gg ‘‘annihilation’’ diagrams, sketched in Fig. 1~a!, and
gq(or q̄)→gq(or q̄) ‘‘Compton’’ diagrams, sketched in Fig.
1~b!.

In terms of the generalized factorization theorem@13#, the
double scattering cross section can be written as

dshA→g
~D ! ~ l !5(

a
E dx8 f a/h~x8!dsaA→g

~D ! ~x8,p,l !, ~4!

wheredsaA→g
(D) (x8,p,l ) can be thought as the double scatter

ing cross section between a parton and the nucleus. At t
lowest order, it can be factorized as

dsaA→g
~D ! ~x8,p,l !5E dxdxkdxk8(

$ i %
T$ i %~x,xk ,xk8!

3H $ i %~x8,x,xk ,xk8,l !. ~5!

In Eq. ~5!, T$ i %(x,xk ,xk8) are the matrix elements of four-
parton operators, characterized by the set of fields operat
$ i %, andH $ i % are the corresponding partonic hard scatterin
functions. Thex, xk , andxk8 are independent collinear mo-
mentum fractions carried by the partons from the nucleu
The graphical representation of Eq.~5! is shown in Fig. 2. At
the lowest order, there are three types of partonic subpr
cesses that contribute to the double scatterings. Feynman d
grams of these partonic subprocesses are sketched in Fig

FIG. 1. Lowest-order Feynman diagrams contribute to sing
scattering:~a! ‘‘annihilation’’ and ~b! ‘‘Compton.’’
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We define the invariant direct photon cross section
hadron-nucleus collisions in terms of cross sections
hadron-nucleon collisions:

El

dshA→g~ l !

d3l
[Aa~ l !El

dshN→g
~S! ~ l !

d3l

'El

dshA→g
~S! ~ l !

d3l
1El

dshA→g
~D ! ~ l !

d3l
, ~6!

where Eq.~2! was used. Substituting Eq.~3! into Eq.~6!, we
obtain the definition for the nuclear dependence parame
a( l ):

FIG. 2. A graphical representation of double scattering cont
butions from the parton-nucleus collisions.

FIG. 3. Three types of leading order Feynman diagrams contr
ute to the double scattering.~a! Type I, ‘‘annihilation’’ diagrams
corresponding to the two-quark–two-gluon matrix element;~b!
Type-II, ‘‘Compton’’ diagrams corresponding to the four-gluon ma
trix element;~c! Type-III, ‘‘Compton’’ diagrams corresponding to
the two-quark–two-gluon matrix element.
in
in

ter

a~ l !511
1

ln~A!
lnS 11

1

A

EldshA→g
~D ! ~ l !/d3l

EldshN→g
~S! ~ l !/d3l D . ~7!

From Eq.~7!, a( l ).1 if dshA→g
(D) /d3l is positive, which will

turn out to be the case for the kinematic regime in which w
are interested here. However, in general, the double scat
ing contributions (D) may be negative, anda( l ),1 in a
certain part of phase space. The positivity of a cross sect
requires the sum of all possible multiple scattering contrib
tions to be positive. The separation between single a
double scatterings is not unique. For example, two scatt
ings can be very close to each other and localized in o
nucleon, and such a double scattering will not provide th
anomalous nuclear dependence and may be classified a
single scattering.

We will argue later that the leading double scattering co
tribution dshA→g

(D) /d3l is proportional toA4/3. Consequently,
the value ofa( l ) will be between 1 and 4/3, depending on
the relative sizes of contributions from the single and doub
scatterings. If the double scattering contribution is larg
than the single scattering contribution in a certain part of t
phase space, the value ofa( l ) in that region will approach
4/3.

B. Analytic results

In this subsection, we present the analytic results whi
are used to calculate the nuclear dependence param
a( l ) defined in Eq.~7!.

Following Eq.~3!, the lowest-order invariant cross sectio
for single scattering direct photon production is given by@7#

El

dshN→g
~S! ~ l !

d3l
5(

a,b
E dx8 f a/h~x8!

3E dx fb/N~x!dS x2
2x8t

x8s1uD
3aemasS 1

ŝ
D S 1

x8s1uD uM̄ab→gu2, ~8!

where(a,b run over all gluon, quark, and antiquark flavors
and the matrix elements for the ‘‘annihilation’’ and ‘‘Comp-
ton’’ subprocesses, sketched in Fig. 1, are given by

uM̄q q̄→ggu25eq
2S 49D 2S ût̂ 1

t̂

û
D , ~9a!

uM̄qg→gqu25eq
2S 16D 2S 2 t̂

ŝ
1

ŝ

2 t̂
D , ~9b!

whereeq is the fractional charge carried by a quark of typ
‘‘ q. ’’ The invariants ŝ, t̂, and û are the usual Mandelstam
invariants for the parton-parton subprocess. They are rela
to those at the hadron-nucleon interaction by

ŝ5x8xs, t̂5x8t, û5xu, ~10a!

s5~p81p!2, t5~p82 l !2, u5~p2 l !2. ~10b!

ri-

ib-
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In the case of double scattering, there are four physi
partons linking the matrix elementsT and the partonic hard
partsH, as shown in Eq.~5!. After taking into account mo-
mentum conservation, there are stillthree independent mo-
mentum fraction integrations (x, xk , andxk8 defined in Fig.
2! between the matrix elements and the partonic parts,
contrast toone independent momentum fraction integratio
cal

in
n

for the case of single scattering. As explained in next sectio
we take the leading pole approximation to integrate over tw
of the three momentum fractions~e.g.,xk andxk8). Then, the
invariant double scattering cross sectionEldshA→g

(D) /d3l can
be reduced into a form very similar to the single scatterin
cross section defined in Eq.~8!. Following our derivation in
next section, we obtain
El

dshA→g
~D ! ~ l !

d3l
5aem~4pas!

2E dx8dxdS x2
2x8t

x8s1uD S 1

x8sD S 1

x8s1uD(q eq
2@ f q̄ /h~x8!Fq~x,x8,A!Hq q̄

1 f q/h~x8!Fg~x,x8,A!Hg1 f g/h~x8!Fq~x,x8,A!Hq#, ~11!

where(q runs over all quark and antiquark flavors. In Eq.~11!, the functionsF i with i5q,g represent the effective parton
flux from the nucleus. They are given by

F i5F ]2

]x2 S Ti~x,A!

x D G S l T
2

~x8s1u!2
D 1F ]

]x S Ti~x,A!

x D G S 2u

x8s~x8s1u!
D . ~12!

TheTi(x,A) with i5q,g in Eq. ~12! are the twist-4 matrix elements in nuclei. They were originally introduced in Ref.@5#, and
are given by

Tq~x,A!5E dy1
2

2p
eixp

1y1
2E dy2dy2

2

2p
u~y1

22y2!u~2y2
2!
1

2
^pAuFa

1~y2
2!c̄q~0!g1cq~y1

2!F1a~y2!upA& ~13a!

and

Tg~x,A!5E dy1
2

2p
eixp

1y1
2E dy2dy2

2

2p
u~y1

22y2
2!u~2y2!

1

xp1 ^pAuFs1~y2
2!Fa

1~0!F1a~y1
2!Fs

1~y2!upA&. ~13b!
e
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In Eq. ~13!, Fmn andcq are the field strength and quark field
operators, respectively. We have suppressed three p
ordered exponentials of the gauge field in each of the fo
parton matrix elements in Eq.~13!. These path-ordered ex
ponentials sandwiched between field operators are neces
to make these matrix elements manifestly gauge invari
@13#.

In Eq. ~11!, theHi are the partonic hard parts, and

Hq q̄5S 227D S 2u

x8s1u
1
x8s1u

2u D , ~14a!

Hg5S 136D S x8s

x8s1u
1
x8s1u

x8s D , ~14b!

Hq5S 116D S x8s2u
1

2u

x8sD , ~14c!

which we will derive in next section.
Equations~11!, ~12!, and ~14! are our complete analytic

results at leading nonvanishing order inas . As usual, the
next-to-leading order~NLO! contribution might be important
for single and/or double scatterings. However, since t
nuclear dependence parametera( l ), defined in Eq.~7!, de-
pends on the ratio of the double and single scattering con
butions, we expect that the values ofa( l ) presented in this
paper are not very sensitive to the NLO contributions.
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III. DERIVATION OF THE DOUBLE SCATTERING
CONTRIBUTIONS

In this section we provide the derivation that leads to th
analytic results presented in the last section. The method t
we used here was first introduced in Ref.@5#. It can be sum-
marized in the following technical steps:~a! Factorize the
double scattering contribution into a convolution between t
partonic hard parts and the corresponding multiparton mat
elements@e.g., see Eq.~5!#; ~b! in the leading pole approxi-
mation, integrate over two of the three independent mome
tum fractions by contour integrations, and reexpress the m
tiparton matrix elements in terms of theTq(x,A) and
Tg(x,A) defined in Eq.~13!; ~c! calculate the corresponding
partonic hard parts.

At lowest order, onlythree types of partonic subpro-
cesses, as sketched in Fig. 3, contribute to the double s
tering cross sectiondsaA→g

(D) introduced in Eq.~5!. These
three subprocesses correspond to adding two gluons to
lowest-order ‘‘annihilation’’ and ‘‘Compton’’ subprocesses
shown in Fig. 1. In the following subsections, we present th
detailed derivation for one subprocess, and provide the
sults for other subprocesses.

A. Perturbative factorization

Consider the subprocess shown in Fig. 3~a!, in which
there arethree independentfour-momentumlinking the par-
tonic part and a corresponding two-quark–two-gluon matr
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element. In the center-of-mass frame of high-energy co
sion, all partons inside the nucleus are moving almost pa
lel to each other, along the direction of the nucleu
Therefore, allthree parton momenta can be approximate
lli-
ral-
s.
ly

replaced by components collinear to the hadron momentu
After such a collinear expansion, the double scattering co
tribution from the generalized ‘‘annihilation’’ subproces
shown in Fig. 3~a! can be written as@5#
sical
hes after
El

dsqA→g
~D !

d3l
5

1

2x8sE dxdxkdxk8E d2kTT̄~x,xk ,xk8,kT ,p!H̄~x8p8,x,xk ,xk8,kT ,p,l !, ~15!

where 2x8s is the flux factor between the incoming beam quark and the nucleus, andx8p8 is the momentum carried by the
beam quark. In Eq.~15!, the two-quark–two-gluon matrix elementT̄ is defined as

T̄~x,xk ,xk8,kT ,p!5E dy1
2

2p

dy2
2

2p

dy2

2p

d2yT
~2p!2

eixp
1y1

2

eixkp
1y2

e2 i ~xk2xk8!p1y2
2

e2 ikT•yT

3
1

2
^pAuA1~y2

2,0T!c̄q~0!g1cq~y1
2!A1~y2,yT!upA&. ~16!

The corresponding partonic partH̄ is given by the diagrams shown in Fig. 4, with gluon lines contracted withprps, quark
lines from the target traced with (g•p)/2, and quark lines from the beam traced with@g•(x8p8)#/2. Here, we work in the
Feynman gauge, in which the leading contribution from the gluon field operators isAr'A1(pr/p1). We also kept thekT for
the gluons in order to extract a double scattering contribution beyond the leading twist.

By expanding the partonic partH̄ introduced in Eq.~15! at kT50, we have

H̄~x8p8,x,xk ,xk8,kT ,p,l !5H̄~x8p8,x,xk ,xk8,kT50,p,l !1
]H̄

]kT
a U

kT50
kT

a1
1

2

]2H̄

]kT
a]kT

b U
kT50

kT
akT

b1•••. ~17!

In the right-hand side of Eq.~17!, the first term is the leading twist eikonal contribution, which does not correspond to phy
double scattering, but simply makes the single scattering matrix element gauge invariant. The second term vanis
integrating overkT . The third term will give a finite contribution to the multiple scattering process. Substituting Eq.~17! into
Eq. ~15!, and integrating overd2kT , we obtain

El

dsqA→g
~D !

d3l
5

1

2x8sE dxdxkdxk8T~x,xk ,xk8,A!S 2
1

2
gabD F12 ]2

]kT
a]kT

b H̄~x8p8,x,xk ,xk8,kT50,p,l !G , ~18!

where the modified matrix elementT is given by

T~x,xk ,xk8,A!5E dy1
2

2p

dy2

2p

dy2
2

2p
eixp

1y1
2

eixkp
1y2

e2 i ~xk2xk8!p1y2
2 1

2
^pAuFa

1~y2
2!c̄q~0!g1cq~y1

2!F1a~y2!upA&. ~19!
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In Eq. ~19!, F1a5Fbanb , F
ba is the field strength, and the

vectornb5db1 .
In following sections, we show how to perform integra

tions over parton momentum fractions, and evaluate the p
tonic parts (]2/]kT

a]kT
b)H̄ for different subprocesses.

B. Leading pole approximation

The double scattering contribution defined in Eq.~18! de-
pends on integrations over three partonic momentum fr
tions x, xk , xk8. If all partons in Fig. 4 carry some finite
momentum fractions, the oscillations of the exponentials
the matrix elementT defined in Eq.~19! will destroy any
nuclear size enhancement that could come from they inte-
grations. However, even at the lowest order, we find th
there are some Feynman diagrams which have two po
-
ar-

ac-

in

at
les

corresponding to zero momentum fraction partons, and th
poles are not pinched. Therefore, two of the three par
momentum fractions can be integrated explicitly by conto
integration. These integrations will eliminate two expone
tials, and thus the correspondingy integration could provide
the nuclear size enhancement up toA2/3. But in terms of the
double scattering picture, if we require two soft field oper
tors to come from the same nucleon, we will get the famil
A1/3 enhancement.

Of course, there are double scattering diagrams with
such poles, but we expect anAa (a.1) dependence only
when the poles are present. In this paper, we evaluate o
diagrams that have such poles, and we call our results at
leading pole approximation.

In order to perform the integration of momentum fra
tions, it is convenient to rewrite the double scattering con
bution defined in Eq.~18! as
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El

dsqA→g
~D !

d3l
5

1

2x8sE dy1
2

2p

dy2

2p

dy2
2

2p

1

2
^pAuFa

1~y2
2!c̄q~0!g1cq~y1

2!F1a~y2!upA&S 2
1

2
gabD

3F12 ]2

]kT
a]kT

b H~y1
2 ,y2,y2

2 ,kT50,p,l !G . ~20!

In Eq. ~20!, the modified partonic partH is defined as

H~y1
2 ,y2,y2

2 ,kT ,p,l !5E dxdxkdxk8e
ixp1y1

2

eixkp
1y2

e2 i ~xk2xk8!p1y2
2

H̄~x8p8,x,xk ,xk8,kT ,p,l !, ~21!

where the partonic partH̄ is given by diagrams shown in Fig. 4. It is clear from Eq.~21! that all integrals of momentum
fractions can now be done explicitly without knowing the details of the multiparton matrix elements.

Consider the diagram shown in Fig. 4~a!. The final-state photon-gluon two-particle phase space can be written as

G5
1

8p2

1

x8s1u
dS x1xk1

x8t

x8s1u
1

2kT
222kT• l

x8s1u D . ~22!

In deriving Eq.~22!, we have omitted the factord3l /El , due to the definition of the invariant cross section@e.g., see Eq.~20!#.
Using Eq.~22!, the contribution toH̄ from the diagram shown in Fig. 4~a! can be expressed as

H̄ I~a!5
as

2p
CI

1

x8s1u
Ĥ I~a!~x,xk ,xk8!

1

xk2xk82kT
2/x8s2 i e

1

xk2kT
2/x8s1 i e

dS x1xk1
x8t

x8s1u
1

2kT
222kT• l

x8s1u D , ~23!

where the subscript I~a! has the following convention: ‘‘I’’ stands for the type-I subprocess, shown in Fig. 3~a!; ‘‘a’’ for the
real contribution, corresponding to diagrams in Fig. 4~a!. In Eq. ~23!, the factorCI is an overall color factor for the type-I
subprocess. The functionĤ I(a) in Eq. ~23! is given by

Ĥ I~a!5
1

4

1

x8s
Tr@g•~x8p81kT!g•pg•~x8p81kT!RI~a!

bn g•pLI~a!
am #~2gab!~2gmn!, ~24!

whereRI~a!
bn andL I~a!

am are the right and left blobs, respectively, as shown in Fig. 4~a!. These blobs include all possible tree
Feynman diagrams with the external partons shown in the figure. Substituting Eq.~23! into Eq. ~21!, we obtain

H I~a!5
as

2p
CI

1

x8s1uE dxke
ixkp

1~y22y2
2

!
1

xk2kT
2/x8s1 i e

E dxk8e
ixk8p

1y2
2 1

xk2xk82kT
2/x8s2 i e

3E dxeixp
1y1

2

dS x1xk1
x8t

x8s1u
1

2kT
222kT• l

x8s1u D Ĥ I~a!~x,xk ,xk8!. ~25!

After performingdxk anddxk8 by contour integration, anddx by thed function, we derive

H I~a!5~2pas!CI

1

x8s1u
ei x̄ p

1y1
2

ei ~kT
2/x8s!p1~y22y2

2
!u~2y2

2!u~y1
22y2!Ĥ I~a!~ x̄,xk ,xk8!, ~26!

where theu functions result from the contour integrations, and the momentum fractions for the functionĤ I(a) are defined as

x̄52
1

x8s1u Fx8t1 u

x8s
kT
222kT• l G , ~27a!

xk5
kT
2

x8s
, ~27b!

xk850, ~27c!

x52
x8t

x8s1u
. ~27d!

Similarly, we derive contribution from the diagram shown in Fig. 4~b! as
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H I~b!5~2pas!CI

1

x8s1u
eixp

1y1
2

ei ~kT
2/x8s!p1~y22y2

2
!u~y2

22y2!u~y1
22y2

2!Ĥ I~b!~x,xk ,xk8!, ~28!

wherex, xk , andxk8 are also defined in Eq.~27!. Similarly to Eq.~24!, the partonic partĤ I(b) is given by

Ĥ I~b!5
1

4
Tr@g•~x8p8!RI~b!

bn g•pLI~b!
am #~2gab!~2gmn!. ~29!

The diagram shown in Fig. 4~c! has the contribution

H I~c!5~2pas!CI

1

x8s1u
eixp

1y1
2

ei ~kT
2/x8s!p1~y22y2

2
!u~y22y2

2!u~2y2!Ĥ I~b!~x,xk ,xk8!. ~30!

In deriving Eq.~30!, we used the fact that the partonic partĤ I(c)5Ĥ I(b) whenxk andxk8 are evaluated at the same values a
listed in Eq.~27!.

CombiningH I(a) , H I(b), andH I(c) @given in Eqs.~26!, ~28!, and~30!, respectively# together, we obtain the total contribution
to H, defined in Eq.~21!, from the type-I diagrams shown in Fig. 3~a!:

H I5H I~a!1H I~b!1H I~c!

5~2pas!CI

1

x8s1u
ei ~kT

2/x8s!p1~y22y2
2

!u~2y2
2!u~y1

22y2!@ei x̄ p
1y1

2

Ĥ I~a!~ x̄,xk ,xk8!2eixp
1y1

2

Ĥ I~a!~x,xk ,xk8!#. ~31!

All momentum fractions in Eq.~31! are evaluated at the values defined in Eq.~27!. In deriving Eq.~31!, we have dropped a
term proportional to

@u~2y2
2!u~y1

22y2!2u~y2
22y2!u~y1

22y2
2!2u~y22y2

2!u~2y2!#→0.

This is because of the phase exp@ ixp1y2# which effectively restrictsy1
2;1/(xp1)→0. Physically, it means that ally

integrations in such term are localized and therefore will not give any large nuclear size enhancement.
By substituting Eq.~31! into Eq. ~20!, we can obtain the lowest-order double scattering contribution from the typ

diagrams shown in Fig. 3~a!. One important step in getting the final result is taking the derivative with respect tokT as defined
in Eq. ~20!. Comparing Eq.~31! with Eq. ~20!, and observing that

@ei x̄ p
1y1

2

Ĥ I~a!~ x̄,xk ,xk8!2eixp
1y1

2

Ĥ I~a!~x,xk ,xk8!#kT5050, ~32!

we found that the derivatives on the exponential exp@ i (kT
2/x8s)p1(y22y2

2)# do not contribute, and that we can therefore se
exp@ i (kT

2/x8s)p1(y22y2
2)#51 in Eq. ~31!. Substituting Eq.~31! into Eq. ~20!, and use Eq.~13a!, we obtain

El

ds I
~D !

d3l
5aem~4pas!

2eq
2CI

1

2x8s

1

x8s1u S 2
1

2
gabD12 ]2

]kT
a]kT

b @Tq~ x̄,A!Ĥ I~a!~ x̄,xk ,xk8!2Tq~x,A!Ĥ I~b!~x,xk ,xk8!#,

~33!

wheres I
(D) stands for the double scattering contribution from the type-I subprocess shown in Fig. 3~a!. It is important to note

that although the interference diagrams shown in Fig. 4~b! and Fig. 4~c! are important in driving Eq.~33!, the final result
depends only on the real diagram shown in Fig. 4~a!. That is, the double scattering picture is preserved. The role of interf
ence diagrams is to take care of the infrared sensitivities of the short-distance hard parts.

C. Final factorized form

The derivatives with respect tokT in Eq. ~33! are straightforward. It is most convenient to reexpress derivatives with resp
to kT in terms of derivatives with respect tox̄ or x. After working out the derivatives, we obtain@5#

El

ds I
~D !

d3l
5aem~4pas!

2eq
2 1

2x8s

1

x8s1u
Hq q̄2 H F ]2

]x2 S Tq~x,A!

x D G S l T
2

~x8s1u!2
D 1F ]

]x S Tq~x,A!

x D G S 2u

x8s~x8s1u!
D J , ~34!

wherex is given in Eq.~27d!, and where the partonic hard partHq q̄ is defined as

Hq q̄5CIxĤI~a!~x,xk50,xk850!. ~35!

Following the same derivation, we obtain contributions from the type-II and type-III diagrams shown in Fig. 3. Fo
type-II diagrams, as sketched in Fig. 3~b!, we have
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El

ds II
~D !

d3l
5aem~4pas!

2eq
2 1

2x8s

1

x8s1u
Hg2 H F ]2

]x2 S Tg~x,A!

x D G S l T
2

~x8s1u!2
D 1F ]

]x S Tg~x,A!

x D G S 2u

x8s~x8s1u!
D J . ~36!

In Eq. ~36!, the partonic hard partHg is defined as

Hg5CIIĤ II ~a!~x,xk50,xk850!, ~37!

whereCII is the overall color factor for the type-II diagrams, andĤ II(a) is given by the real diagrams shown in Fig. 5, an
defined as

Ĥ II ~a!5
1

4
Tr@g•~x8p81xkp1kT!RII ~a!

bn g• l 8L II ~a!
am #~2gab!~2gmn!, ~38!

wherel 85x8p81(x1xk)p2 l is the momentum carried by the quark going to final state. Similarly, for the type-III diagra
as sketched in Fig. 3~c!, we obtain

El

ds III
~D !

d3l
5aem~4pas!

2eq
2 1

2x8s

1

x8s1u
Hq2 H F ]2

]x2 S Tq~x,A!

x D G S l T
2

~x8s1u!2
D 1F ]

]x S Tq~x,A!

x D G S 2u

x8s~x8s1u!
D J . ~39!
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The partonic hard partHq in Eq. ~39! is defined as

Hq5CIIIxĤIII ~a!~x,xk50,xk850!, ~40!

whereCIII is the overall color factor for the type-III dia-
grams, andĤ III(a) is given by the real diagrams shown in Fig
6, and defined as

Ĥ III ~a!5
1

4
Tr@g•pRIII ~a!

bn g• l 8L III ~a!
am #~2gab!~2gmn!,

~41!

wherel 8 is the same as that defined after Eq.~38!.
The partonic short-distance hard parts, defined in E

~35!, ~37!, and ~40!, can be easily evaluated by calculatin
the corresponding Feynman diagrams. Our results were p
sented in Eq.~14! in Sec. II B.

After convoluting Eqs.~34!, ~36!, and ~39! with the cor-
responding parton distributions from the beam, we obtain
complete analytical expressions for the double scatter
contribution in hadron-nucleus collisions, which was pr
sented in Eq.~11! of Sec. I B.

IV. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we present our numerical results for t
Cronin effect in direct photon production. We numerical
evaluate the nuclear dependence parametera( l ) defined in
Eq. ~7! by using our analytical results presented in Eqs.~8!
and ~11!, and we also compare our numerical results wi
recent data from Fermilab experiment E706@6#.

The nuclear dependence parametera( l ) defined in Eq.~7!
depends on contributions from both single scattering a
double scattering. All these contributions depend on nonp
turbative parton distributions or multiparton correlation fun
tions. In deriving the following numerical results, the set
pion distributions of Ref.@14# are used for pion beams, an
the CTEQ3L parton distributions of Ref.@9# are used for free
nucleons. The twist-4 multiparton correlation functions d
fined in Eq.~13! have not been well measured yet. By com
.
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the
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e-
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th

nd
er-
c-
1
d

e-
-

paring the definition of these twist-4 correlation function
with the normal twist-2 parton distributions@15#, the authors
of Ref. @5# proposed the following approximate expression
for the twist-4 correlation functions:

Ti~x,A!5l2A1/3f i /A~x,A!, ~42!

where i5q, q̄, and g. The f i /A are the effective twist-2
parton distributions in nuclei, and the factorA1/3 is propor-
tional to the size of nucleus. The constantl2 has dimensions
of @energy# 2 due to the difference between twist-4 and
twist-2 matrix elements. The value ofl2 was estimated in
Ref. @16# by using themeasurednuclear enhancement of the
momentum imbalance of two jets in photon-nucleus coll
sions@17,18#, and was found to be

l2;0.0520.1 GeV2. ~43!

This value is not too far away from the naive expectatio
from the dimensional analysis,l2;LQCD

2 . In our calculation
below, we usel250.1 GeV2. Therefore, our numerical re-
sults can be thought as the upper limit of the theoretic
predictions.

The A1/3 dependence of the twist-4 multiparton correla
tion functions, introduced in Eq.~42!, is not unique. From
the definition of the correlation functions in Eq.~13!, the
lack of oscillation factors for bothy2 andy2

2 integrals can in
principle give nuclear enhancement proportional toA2/3. The
A1/3 dependence is a result of the assumption that the po
tions of two field strengths~at y2 andy2

2 , respectively! are
confined within one nucleon.

In Eq. ~42!, the effective nuclear parton distributions
f i /A should have the same operator definitions of the norm
parton distributions with free nucleon states replaced by th
nuclear states. For a nucleus withZ protons and atomic num-
berA, we define

f i /A~x,A!5ASNA f i /N~x!1
Z

A
f i /P~x! DRi

EMC~x,A!, ~44!
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where f i /N(x) and f i /P(x) with i5q,q̄,g are normal parton
distributions in a free neutron and proton, respectively, a
N5A2Z. The factorRi

EMC takes care of the EMC effect in
these effective nuclear parton distributions. We adopted
REMC from Ref. @19#, which fits the data well. However, a
fixed target energies, thex values covered by direct photon
experiments are large and out of the nuclear shadowing
gion. The integration overdx8 in Eqs.~8! and~11! averages
out the EMC effect from the largex region. Actually, one
can neglect theRi

EMC in Eq. ~44!.
Using the parton distributions and correlation functio

introduced above, and our analytic results presented in E
~8! and ~11!, we can derive the nuclear dependence para
etera( l ), defined in Eq.~7!, withoutany further free param-
eter.

FIG. 4. Feynman diagrams for the ‘‘annihilation’’ diagrams co
responding to the two-quark–two-gluon matrix element:~a! real
diagrams, and~b! and ~c! interference diagrams.

FIG. 5. The real ‘‘Compton’’ diagrams corresponding to th
four-gluon matrix element.
nd

the
t

re-

ns
qs.
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In Fig. 7, we compare our numerical predictions for the
nuclear dependence parameter with recent experimental da
from the Fermilab experiment E706@6#. The aE706( l ) pre-
sented in Fig. 7 is slightly different from that defined in Eq.
~7!. E706 measured the direct photon cross sections with th
p2 beam on two different targets Cu(A563.55) and
Be(A59.01), and theaE706( l ) was extracted according to
the definition

sCu~ l !

sBe~ l !
[SACu

ABe
D aE706~ l !

. ~45!

The beam energy isp85515 GeV. It is clear that the theo-
retical calculation presented in this work is consistent with
the data.

It is evident from Fig. 7 that the nuclear dependence pa
rameteraE706( l ) is very close to unity or, equivalently, the
Cronin effect for direct photon production is very small, and
much smaller than that observed in the single particle inclu
sive cross sections@1#. One clear difference between the di-
rect photon and the single particle inclusive cross sections
that direct photon production has only initial-state multiple
scattering, while the single particle inclusive has both initial-

r-

e

FIG. 6. The real ‘‘Compton’’ diagrams corresponding to the
two-quark–two-gluon matrix element.

FIG. 7. Cronin effect in direct photon production with 515 GeV
p2 beam on Cu and Be targets. The theory curve is from Eq.~45!,
and the data are from Fermilab experiment E706@6#.
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and final-state multiple scattering. In addition, the single p
ticle inclusive cross sections depend on the parton-to-had
fragmentation functions.

As pointed out in Ref.@5#, the multiple scattering contri-
bution is most important when the momentum fractionx
from the nuclear correlation functions is large because of
derivatives with respective to thex, which were introduced
in Eq. ~12!. However, for direct photon production, the kine
matics do not fix all parton momentum fractions, and lea
one momentum fraction to be integrated, for example,x8 in
Eqs.~8! and~11!. Because of the steeply falling nature of th

FIG. 8. Theoretical predictions ofa( l ) of Eq. ~7!: ~a! as a func-
tion of the photon’s transverse momentum atxF50.0; ~b! as a func-
tion of xF at l T54.0, 6.0, and 8.0 GeV, respectively. A 515 Ge
p2 beam and copper target were used.
ar-
ron

the

-
ve

e

distributions and correlation functions, the cross sections
the central region (xF;0) for a given value ofl T are domi-
nated by the distributions with momentum fractions
x8;x;xT52l T /As, which are less than 0.6 even for the
largest value ofl T shown in Fig. 7. Therefore, the double
scattering contribution is relatively small because the deriva
tive terms are not significantly enhanced, and consequent
aE706( l ) is close to one.

In contrast, for inclusive single hadron production, the
parton-to-hadron fragmentation functions effectively shif
the contribution at a givenl T to the largex region because all
fragmentation functions vanish whenz goes to 1. Kinemati-
cally, direct photon production corresponds to single partic
production atz51. We therefore expect that single hadron

V

FIG. 9. Theoretical predictions ofa( l ) of Eq. ~7!, as in Fig. 8,
but with a proton beam.



l

er

he
o-
on
s
ll-
d

.
r-
f.
ted
ct
in
e
d to
n-
o-

ar
of

d
e
rt
-

6154 53XIAOFENG GUO AND JIANWEI QIU
production has a larger Cronin effect than direct photon pr
duction at the exact same kinematics, even before includ
contributions of final-state multiple scattering.

In the case of a pion beam, the quark-antiquark ‘‘annih
lation’’ subprocess, sketched in Fig. 1~a!, dominates the pro-
duction of direct photons at the fixed target energy, due
valence antiquarks in the beam. However, for a proton bea
the quark-gluon ‘‘Compton’’ subprocess, as sketched in F
1~b!, is more important for the production of direct photon
Therefore, direct photon production with a proton beam
more sensitive to proton gluon distributions. In Figs. 8, an
9, we present our predictions of the nuclear dependence
rametera( l ), defined in Eq.~7!, for ap2 and proton beam,
respectively.

In Figs. 8~a! and 9~a!, the nuclear dependence paramet
a( l ), defined in Eq.~7!, is plotted as a function of the photon
transverse momentuml T at xF50. In plotting these figures, a
515 GeV beam energy and a copper target were assum
using the same parton distributions and correlation functio
as in Fig. 7. As expected, and as found in Fig. 7, the value
a( l ) is very close to one for both pion and proton beam
Changing a pion beam by a proton beam does not affect
kinematics of the collisions. The effective values of parto
momentum fractions from the nuclear target are the same
both cases. Therefore, as explained above, the values
a( l ) are close to one due to the fact that the effective part
momentum fractions from the nuclear target are not large

In order to enhance the contribution from the double sc
tering, we need to look for events at large negativexF ,
where the effective values of parton momentum fractio
from the target are larger. In Figs. 8~b! and 9~b!, we plot the
nuclear dependence parametera( l ), defined in Eq.~7!, as a
function of xF at l T54.0, 6.0, and 8.0 GeV, respectively
The same beam, target, and beam energy were used.
clear that whenxF becomes large and negative,a( l ) in-
creases. This is consistent with the fact that the larger
negative values ofxF , the larger the effective values of par
ton momentum fractions from the nuclear target and, con
quently, the larger the derivatives, defined in Eq.~12!.

The nuclear dependence calculated in this paper is kno
as a power correction~or a ‘‘high-twist’’ effect! to the nor-
mal single scattering. As one would expect, the ratio
double scattering over the single scattering is proportional
1/l T

2 , which vanishes asl T
2 increases. However, because o

the derivatives with respect tox in Eq. ~12!, the ratio effec-
tively has three types of terms proportional to 1/l T

2 ,
1/@(12x) l T

2#, and 1/@(12x)2l T
2#, respectively. For fixed val-
o-
ing
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ues of x, all three terms vanish as 1/l T
2 . However, in our

case, the values ofx and l T
2 are not independent. When the

effective values ofx from the target partons are small, al
three types of terms should show 1/l T

2 behavior. This is
clearly evident in Figs. 8~b! and 9~b!: For a fixed value of
xF;0, a( l T) decreases asl T increases. However, asxF de-
creases, the effective values ofx increase much faster for the
situation with a larger value ofl T due to the phase space
limit. As a result, the term proportional to 1/(12x)2l T

2 be-
comes more important than the 1/l T

2 term. Therefore, it is
possible that the nuclear dependence is larger for a larg
l T , when the effective values ofx are near 1. Such a feature
is evident in Figs. 8~b! and 9~b! whenxF is very negative. Of
course, whenas /(12x)2l T

2 is of order of one, we will have
to take into account all higher-power terms@20#.

Comparing Figs. 8~b! and 9~b!, one finds that asxF de-
creases, the values ofa( l ) with a proton beam increase
much faster than that with a pion beam. This is because t
Compton subprocess dominates the production of direct ph
tons in the case of a proton beam, and the gluon distributi
in a proton falls much faster than valence quark distribution
as the momentum fraction increases. The more rapidly fa
ing gluon distribution produces larger derivative terms, an
therefore, larger values ofa( l ). Future data from Fermilab
experiment E706 with a proton beam can test this feature

In summary, using generalized factorization in QCD pe
turbation theory, and using the method, developed in Re
@5#, for calculating nuclear enhancements, we demonstra
in this paper that the observed small Cronin effect in dire
photon production is consistent with the much larger Cron
effect observed in single jet and single particle inclusiv
cross sections. We hope that the same method can be use
explain the puzzle for the nuclear dependence in the mome
tum imbalance. Data on dijet momentum imbalance in ph
toproduction @17# and hadroproduction@18# have shown
strong nuclear dependence, while a much smaller nucle
dependence has been seen in the momentum imbalance
Drell-Yan pairs@21#.
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