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Nuclear dependence in direct photon production

Xiaofeng Guo and Jianwei Qiu
Department of Physics and Astronomy, lowa State University, Ames, lowa 50011
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We calculate the nuclear dependence of direct photon production in hadron-nucleus collisions. In terms of a
multiple scattering picture, we factorize the cross section for direct photon production into calculable short-
distance partonic parts times multiparton correlation functions in nuclei. We present the hadron-nucleus cross
section asA“ times the hadron-nucleon cross section. Using information on the multiparton correlation func-
tions extracted from photon-nucleus experiments, we compute the valueasf a function of transverse
momentum of the direct photon. We also compare our results with recent data from Fermilab experiment E706.
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I. INTRODUCTION cally be absorbed into multiparton correlation functions. The
multiparton correlation functions are nonperturbative, just
As early as in 1970s, it was observgl that inclusive like the parton distributions in the single scattering pro-
cross sections for single high-transverse-momentum particlesesses. These correlation functions in nuclei provide infor-
produced in hadron-nucleus scattering show an “anomamation about nuclear matter and its interaction with high-
lous” nuclear dependence, in which the cross section at fixeénergy probes. They can reveal information different from
transverse momentum grows approximatelyAgs with A what normal parton distributions in nuclei can provide, and
the atomic number of the nuclear target. The valuee@$ a  in principle, they are as fundamental as the parton distribu-
function of the transverse momentum, and can be as large @i®ns. In order to test the theory, we need to find different
4/3. This phenomenon has been known as the Cronin effegbrocesses which depend on the same multiparton correlation
The typical energy exchange in a high-transverse-momenturiunctions. Information on these new correlation functions ex-
scattering process is so large that any single hard scatteriripgacted from one set of processes may be applied in other
should be very localized within a single nucleon. Conse{processes.
quently, a lineaA dependence is expected for single scatter- Our aim in this paper is to show that the consistent per-
ing processes. Therefore, the Cronin effect is often describeirbative QCD treatment of double scattering developed by
as due to multiple scattering of partons in nuclear mattet QS can be naturally applied to high-transverse-momentum
[2-5]. The A*3 behavior signals a dependence on nucleadirect photon production in hadron-nucleus scattering. We
size, and multiple scattering is dominated by double scatterfactorize the cross section of direct photon production into
ing. calculable short-distance partonic parts times multiparton
In some of the previous work on this topic, an indepen-correlation functions, which are the same as those derived in
dent scattering picture was adop{é. In this picture, each Ref. [5]. We calculated the short-distance partonic hard
scattering was treated independently. For example, the crogmrts. We evaluate the nuclear dependence by using the in-
section for double scattering was proportional to a product oformation on multiparton correlation functions, extracted
two Born cross sections. The double scattering cross sectidnom experiments on the momentum imbalance of two-jet
in this picture is not infrared safe, however. This is becausg@hotoproduction on nuclear targé¢s. Our numerical results
the kinematics of single particle inclusive cross sections ca@re consistent with recent measurements of the nuclear de-
only provide a constraint on the total momentum from thependence in direct photon production from Fermilab E706
target, which leaves the possibility that one of the Born crosexperimentg6].
section diverges when the momentum transfer of this Born A double scattering with high momentum transfer must
cross section approaches zero. Therefore, theoretical predibave at least one hard scattering to produce the high-
tions from the independent scattering picture are sensitive transverse-momentum observables. In addition, there may be
the infrared cutoffs which must be introduced in the calcula-a soft scattering either before or after the hard scattering
tions. (referred to below as a soft-hard process another hard
Recently, Luo, Qiu, and StermahQS) have shown that scattering(called a double hard procgs$Ve shall show that
the anomalous nuclear enhancement can be described natnly the soft-hard processes contribute to the nuclear depen-
rally in perturbative QCD, in terms of a nonleading power ordence of direct photon production to the order we consider.
“higher-twist” formalism [5]. In this treatment, the contri- The fact that the photon does not interact strongly once pro-
bution from double scattering can be factorized into shortduced at the hard collisions eliminates final-state multiple
distance hard parts convoluted with corresponding multiparscattering in direct photon cross sections. Therefore, direct
ton matrix elements or multiparton correlation functions inphoton production in hadron-nucleus scattering provides an
nuclei. The short-distance partonic parts are calculable imxcellent test of initial-state multiple scatterings, while jet or
perturbative QCD, and all infrared divergences associatedingle particle production in photon-nucleus scattering pro-
with soft rescatterings in perturbation theory can systemativides independent tests of final-state multiple scatterings. Jet
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and single particle production in hadron-nucleus collisions,
on the other hand, receive contributions from both initial-
and final-state multiple scatterings. Final-state multiple scat-
tering in photoproduction has been discussed in F@fOur "

work will provide the complementary information on the
initial-state multiple scattering.
We begin in Sec. Il with an outline of the formalism used
in our calculation. Complete analytical results of our calcu-
lation are also presented in Sec. Il. The detailed derivation of (a)
our results and the calculation of the partonic hard parts are
presented in Sec. lll. In Sec. IV, we present our numerical

results. We also compare our numerical results with recent
experimental data. We conclude with a brief summary and
suggestions for further work. +
II. FORMALISM AND ANALYTICAL RESULTS
(b)

An energetic photon can be directly produced at short
distance in high-energy collisions, and does not interact
fstroniqu otr_1ce E)f:OSg_Cedi Thhetrefore,dit f;_as beenlrecognizbed FIG. 1. Lowest-order Feynman diagrams contribute to single
or a long time that direct photon production is a clean pro Y “ "
for shor?—distance dynamri)cs in Eigh—energy collisic{ﬁ; Scattering{(@ “anninilation” and (5) “Compton.

Data from hadronic prompt photon production play a Veryciple, the parton-parton scattering cross sectibi

H H H H ab—y
important role in QCD global analysis, and provide con-gq,i4 include both direct and fragmentation contributions.
straints on gluon distributions in hadrof&-10|. In this sec-

! i h | f las f i That is, an energetic photon can be produced directly at short
tion, we outline the general formulas for cross sections Ofyigiances or produced from the fragmentation of an energetic

direct photon production, and present our analytical res““f)arton which was produced at short distanfg<2]. For
for the contribution from double scattering processes. example, partonic scattering may produce an energetic
quark, which radiates a photon. Since we are most interested

A. Formalism in fixed target experiments here, the fragmentation contribu-

duction in hadron-nucleus collisions: phase spackl2]. Therefore, in the rest of our discussion, we
will consider only direct production of photons. For ex-

h(p’)+A(p)— y(I)+ X, 1 ample, at the lowest order, we have contributions from

gg— g “annihilation” diagrams, sketched in Fig.(4), and
wherep is defined as the averaged momentum per nucleoryg(or q)— yq(or q) “Compton” diagrams, sketched in Fig.
In general, the total cross section for the above process cafjp).
be expressed as a sum of contributions from single scatter- |n terms of the generalized factorization theoril], the
ing, double scattering, and even higher multiple scattering: double scattering cross section can be written as

dopa.(D=dof3 (H+dofD) (H+---, 2
OhA }/( ) O'hAHy( ) O'hAHy( ) ( ) da'E]DA)*W/(I):E JdX,fa/h(X’)dU(al,DALy(X,!p1|)1 (4)

where the superscript$S) and D) represent the single and a

double scattering, respectively, and the ellipsis represents (D) ,

other possible multiple scatterings. In this paper, we considefheredoga’.,(x",p,l) can be thought as the double scatter-

only double scattering, and its contribution to the nucleardNd Cross section between a parton and the nucleus. At the

dependence. lowest order, it can be factorized as
As a result of perturbative factorizatiddl], the single
scattering cross section can be expressed as do;%Ly(x’,p,IFf dxd&dxk,% Ty (X Xir)
|
dof3_ () =AdofJ_ (I
warl) i) X Hp (XXX X ). )
:A;) J dx’ fan(x’) In Eq. (5), Tyiy(X,X¢,X) are the matrix elements of four-

parton operators, characterized by the set of fields operators
R , {i}, andHy;, are the corresponding partonic hard scattering
XJ dxfon(X)doap—, (X", X,1). (3 functions. Thex, x,, andx, are independent collinear mo-
mentum fractions carried by the partons from the nucleus.
In Eq. (3), fyn(x") is a normal parton distribution in the The graphical representation of H§) is shown in Fig. 2. At
beam hadrorh and f;\(X) is an effective nucleon parton the lowest order, there are three types of partonic subpro-
distribution inside a nucleus, which should include the well-cesses that contribute to the double scatterings. Feynman dia-
known European Muon CollaboratidBMC) effect. In prin-  grams of these partonic subprocesses are sketched in Fig. 3.
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ol 1s L Eidaia (1)/d*l
In(A) A Edai_,(H/dl

a(l)=1+ (7)

Xptkr ' (xic)p-+ke From Eq.(7), a(1)>1 if dofR,./d® is positive, which will
[ turn out to be the case for the kinematic regime in which we
are interested here. However, in general, the double scatter-
ing contribution o® may be negative, and(1)<1 in a
x'p’ ~ x'p’ certain part of phase space. The positivity of a cross section
L requires the sum of all possible multiple scattering contribu-
FIG. 2. A graphical representation of double scattering contri-gonil fo be ppsmv.e. The §eparat|0n betwelen single and
butions from the parton-nucleus collisions. double scatterings is not unique. For example, t.WO spatter-
ings can be very close to each other and localized in one

We define the invariant direct photon cross section infucleon, and such a double scattering will not provide the
hadron-nucleus collisions in terms of cross sections irf';momalous nuclear dependence and may be classified as a

hadron-nucleon collisions: single scattering. _ _
We will argue later that the leading double scattering con-

FSAL«/(” tribution do{X) . ,/d®l is proportional toA*?. Consequently,
the value ofa(l) will be between 1 and 4/3, depending on
the relative sizes of contributions from the single and double

dotd_ (1) _ dofa (1) scatterings. If the double scattering contribution is larger
& +E, FE| , (6 than the single scattering contribution in a certain part of the
phase space, the value afl) in that region will approach

where Eq.(2) was used. Substituting E() into Eq.(6), we 413.

obtain the definition for the nuclear dependence parameter
a(l): B. Analytic results

do—hAﬂy(l)

= 01(')
A

In this subsection, we present the analytic results which
are used to calculate the nuclear dependence parameter
a(l) defined in Eq(7).

Following Eqg.(3), the lowest-order invariant cross section
for single scattering direct photon production is given[By

(x+x)p

/ (%% )p+Kr

doiii !
E|d—3|y f dx fam(x")
(a) dxt 5 —x't
Xf XFforn(X) 6| x— st U
r ! ! Map_..|% (8
y Xaemtts| || st IMap_,1% (8
T
l whereX, , run over all gluon, quark, and antiquark flavors,
and the matrix elements for the “annihilation” and “Comp-
(b) ton” subprocesses, sketched in Fig. 1, are given by
4\ [0 1
— a2
0L: o j2mg? 1 ) —f+ s (©b)
—yql €4l = — T =
a9— 14 al s -

whereeq is the fractional charge carried by a quark of type

“g.” The invariantss, t, andl are the usual Mandelstam
FIG. 3. Three types of leading order Feynman diagrams contribinvariants for the parton-parton subprocess. They are related

ute to the double scatteringa) Type I, “annihilation” diagrams ~ tO those at the hadron-nucleon interaction by

corresponding to the two-quark—two-gluon matrix eleme(i;

Type-Il, “Compton” diagrams corresponding to the four-gluon ma-

trix element;(c) Type-Ill, “Compton” diagrams corresponding to

the two-quark—two-gluon matrix element. s=(p'+p)% t=(p'—1? u=(p—1)>2 (10b

S=x'xs, t=x't, U=xu, (109
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In the case of double scattering, there are four physicalor the case of single scattering. As explained in next section,
partons linking the matrix elemen®s and the partonic hard we take the leading pole approximation to integrate over two
partsH, as shown in Eq(5). After taking into account mo- of the three momentum fractiorie.g.,x, andx,). Then, the
mentum conservation, there are stiiree independent mo- invariant double scattering cross sectErdaﬂi’\LyldSI can
mentum fraction integrationsx( x,, andx,. defined in Fig. be reduced into a form very similar to the single scattering
2) between the matrix elements and the partonic parts, iross section defined in E¢). Following our derivation in
contrast toone independent momentum fraction integration next section, we obtain

daf2l (1) -x't\[ 1 1
;: 2 ! - . - 2re_ ’ ’ _
i Aenf AT ary) de dxé(x VT X,S) v ; e fam(x )P g(x,x",A)Hqg
F (X )P g(X,X",A)Hg+ fon(X ) Pg(X,X",A)Hq], (11

whereZ, runs over all quark and antiquark flavors. In Efj1), the functionsd; with i=q,g represent the effective parton
flux from the nucleus. They are given by

Ti(x,A))
X

(92
ax2

: (12)

i(Ti(x,A))

ax X

st s
(x's+u)? x's(x’s+u)

TheT;(x,A) with i=q,qg in Eq. (12) are the twist-4 matrix elements in nuclei. They were originally introduced in[Bgfand
are given by

dy; . . _(dydy, 1 _— _
TOGA) = | 5= eV [ 222 0(y7 —y ) 0(— Y5 )5 (PalF o (V2) Ug(0) ¥ gy )FT4(y )lpa) (133
2w 2T 2

and
dyr ory- (dY Ay 1 _ - -
To(xA) = [ e [ 22 0yt oy )ty e (A (02 P OF R lpa). (43D
|
In Eq.(13), F,, andy, are the field strength and quark field lll. DERIVATION OF THE DOUBLE SCATTERING
operators, respectively. We have suppressed three path- CONTRIBUTIONS

ordered exp_onentials of _the gauge field in each of the four- In this section we provide the derivation that leads to the

parton matrix elements in EG13). These path-ordered ex- ,navtic results presented in the last section. The method that

ponentials sandwiched between field operators are necessai \;sed here was first introduced in R, It can be sum-

to make these matrix elements manifestly gauge invariantarized in the following technical step&) Factorize the

[13]. _ double scattering contribution into a convolution between the
In Eq. (11), the H; are the partonic hard parts, and partonic hard parts and the corresponding multiparton matrix

elementde.g., see Eq5)]; (b) in the leading pole approxi-

H t(i) —u X st+u (149  mation, integrate over two of the three independent momen-
9 127/ x's+u -u /)’ tum fractions by contour integrations, and reexpress the mul-
tiparton matrix elements in terms of th&,(x,A) and
1 x's x's+u T4(x,A) defined in Eq(13); (c) calculate the corresponding
Ho=136/ | xstu ™ x's | (14D partonic hard parts.
At lowest order, onlythree types of partonic subpro-
1\(x's —u cesses, as sketched in Fig. 3, contribute to the double scat-
Hf(ﬁ — E) (149 tering cross sectiomlol}), introduced in Eq.(5). These
three subprocesses correspond to adding two gluons to the
which we will derive in next section. lowest-order “annihilation” and “Compton” subprocesses,

Equations(11), (12), and (14) are our complete analytic Shown in Fig. 1. In the following subsections, we present the
results at leading nonvanishing order dan. As usual, the detailed derivation for one subprocess, and provide the re-
next-to-leading ordefNLO) contribution might be important ~sults for other subprocesses.
for single and/or double scatterings. However, since the
nuclear dependence parameidt), defined in Eq.(7), de-
pends on the ratio of the double and single scattering contri- Consider the subprocess shown in Figa)3in which
butions, we expect that the values ®fl) presented in this there arethreeindependenfour-momentuntinking the par-
paper are not very sensitive to the NLO contributions. tonic part and a corresponding two-quark—two-gluon matrix

A. Perturbative factorization
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element. In the center-of-mass frame of high-energy colli+eplaced by components collinear to the hadron momentum.
sion, all partons inside the nucleus are moving almost paralAfter such a collinear expansion, the double scattering con-
lel to each other, along the direction of the nucleus.tribution from the generalized "“annihilation” subprocess
Therefore, allthree parton momenta can be approximately shown in Fig. 8a) can be written a5]

dO-E]DALV 1 2L T/ v/ !
K] :Zx’sf dxd&ka/f dokr T(X, X Xier s K, PYH(X P X, X X K, P, 1) (19

where X’s is the flux factor between the incoming beam quark and the nucleuss’g@rids the momentum carried by the
beam quark. In Eg(15), the two-quark—two-gluon matrix elemeftis defined as

_ dy; dy, dy™ d?yr . . - . - -
T(vakvxk’!kTup):f 2; 2712- 2y7T (2:)TzeIXp+y1 eIka+y e—l(xk—xk/)p+y2 e—IkT~y-|—

1 _
X§<pA|A+(YE:OT) P(0)y gy AT (Y, y1)|Pa)- (16)

The corresponding partonic pdtt is given by the diagrams shown in Fig. 4, with gluon lines contracted pAfit, quark
lines from the target traced withy( p)/2, and quark lines from the beam traced wiith- (x'p’)]/2. Here, we work in the
Feynman gauge, in which the leading contribution from the gluon field operatérs<§ig™ (p”/p™). We also kept thé for
the gluons in order to extract a double scattering contribution beyond the leading twist.

By expanding the partonic pakt introduced in Eq(15) at k=0, we have

1 H
ka

. QB .. ..
T2 okSokE ke 7

kr=0

— — oH
HX'p" X, X, X K, P, 1) =HX' P’ , X, X , Xgr, Kr=0,p,1) + K
a

kr=0

In the right-hand side of Eq17), the first term is the leading twist eikonal contribution, which does not correspond to physical
double scattering, but simply makes the single scattering matrix element gauge invariant. The second term vanishes after
integrating ovek+ . The third term will give a finite contribution to the multiple scattering process. SubstitutinglBgnto

Eq. (15), and integrating oved?k;, we obtain

az

1 _
E ak_?_z&kgH(X p ,X,Xk,xkr,kT:O,p,l):|, (18)

do'D) 1 1
qAﬁy: - ) . _ - aﬁ’
El d3| 2X/Sf dXd)q(ka T(Xlxklxk 1A)( Zg )

where the modified matrix elemeffitis given by

dy, dy"dy, . . . L. _ . -1 e _ B
T4 X A) = f S o 5 € LMY e MR S F T (y;) (0) Y (Y )F (Y ) pa). (19

In Eq. (19), F"*= FB“nB, FA« is the field strength, and the corresponding to zero momentum fraction partons, and these

vectorng=2dg, . poles are not pinched. Therefore, two of the three parton
In following sections, we show how to perform integra- momentum fractions can be integrated explicitly by contour

tions over parton momentum fractions, and evaluate the paiitegration. These integrations will eliminate two exponen-

tonic parts ¢2/9k&akE)H for different subprocesses. tials, and thus the correspondiygntegratior) could provide
the nuclear size enhancement upAé>. But in terms of the

double scattering picture, if we require two soft field opera-

B. Leading pole approximation tors to come from the same nucleon, we will get the familiar
. Lo — A2 enhancement.
The double scattering contribution defined in E1) de- Of course, there are double scattering diagrams without

pends on integrations over three partonic momentum fracg;ch poles, but we expect &t (a>1) dependence only
tions x, Xy, Xy If all partons in Fig. 4 carry some finite \when the poles are present. In this paper, we evaluate only
momentum fractions, the oscillations of the exponentials indiagrams that have such poles, and we call our results at the
the matrix element defined in Eq.(19) will destroy any leading pole approximation.

nuclear size enhancement that could come fromytliete- In order to perform the integration of momentum frac-
grations. However, even at the lowest order, we find thations, it is convenient to rewrite the double scattering contri-
there are some Feynman diagrams which have two poldsution defined in Eq(18) as
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dogd., 1 fdyl dy dy; 1

B~ ~2x's 5(PalFat (y2)¥g(0)y " trgly1 F "y )Im)(——g“ﬁ)

2w 2w 2w
1 &
2 ﬁkaﬁkﬁ (yl 1y 1y2 lkT op l) (20)

In Eqg. (20), the modified partonic paid is defined as
H(yl‘,y‘,yg,kT,p,I)=f dxdx dx, &P Y1 eXkP Y e 104 XIP Y2 H(X' p’ X, Xy Xt K75 P) 1), (21)

where the partonic palrt-l_is given by diagrams shown in Fig. 4. It is clear from Eg1) that all integrals of momentum
fractions can now be done explicitly without knowing the details of the multiparton matrix elements.
Consider the diagram shown in Figiat The final-state photon-gluon two-particle phase space can be written as

1 1

-5
872 x's+u

X+ Xk+

X't — k2= 2k
T T ) (22)

X/ + !
s+u x's+u

In deriving Eq.(22), we have omitted the facta®l/E, , due to the definition of the invariant cross secfiery., see Eq20)].
Using EQq.(22), the contribution taH from the diagram shown in Fig.(4) can be expressed as

X't —ki—2kql

as 1 - 1 1
! + !
X's+u X's+u

chmHl(a)(X’Xk’Xk,) o

Hia= . (23

X+ Xk+

X— X —K§/x' s—ie x—k3Ix's+ie

where the subscrip{d) has the following convention: “I” stands for the type-l subprocess, shown in Ka; 3a” for the
real contribution, corresponding to diagrams in Figg)4In Eq. (23), the factorC, is an overall color factor for the type-I
subprocess. The functidd,,) in Eq. (23) is given by

1
=Ty (X'’ +kp) y-py- (X' P’ +kn)RG Y- PLIAGI(— Gup) (— ), (24)

Hia= 4x's

where R,(a) andL {4 are the right and left blobs, respectively, as shown in Fig).4These blobs include all possible tree
Feynman diagrams with the external partons shown in the figure. Substitutin@3anto Eq. (21), we obtain

1 I 1
H —C dx, e™KP 2 ’yz)—.f dxy kP Y2 -
@~ 27 'x’s+uf —k2/x's+ie k X— X —kEIX's—i€
oty x't kT 2k
X | dxe*P Y1 8| x+x, + Y + Y Hl(a)(x Xk 2 Xk ) - (25
After performingdx, anddx,, by contour integration, andx by the § function, we derive
1 K2/
=(27ag)Ci— e/ ¥P Y1 gilk/x' 9" (" vz ) o — y2)0(y; —y )Hl(a)(x Xi s Xkt ) s (26)

X's+u

where the# functions result from the contour integrations, and the momentum fractions for the fuﬁt;gg@rare defined as

X= ! Mt — k2= 2K | 27
X= " sru M s ekl 273
k$ 270

X= g (27b)

X =0, (270

= X't 27

= Ystu (279

Similarly, we derive contribution from the diagram shown in Figh)das
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Hyp=(2mas)C, &P Y1 @ik ST Y2 gy —y ) (YT — Y5 )Pl (XX Xie ) (28)

x's+u

wherex, X, andx,, are also defined in Eq27). Similarly to Eq.(24), the partonic part:i,(b) is given by

1
H, =71y (X' P IR v PLIGI(— Gap) (— G- (29)

The diagram shown in Fig.(d) has the contribution

Ho=(27as)C &P YL @l (KX 9P Y2 gy —y ) B~y )y (X Xee X (30)

x's+u

In deriving Eq.(30), we used the fact that the partonic phift,=H,, whenx, andx,. are evaluated at the same values as
listed in Eq.(27).

CombiningH, ), Hyx), andH ., [given in Eqs(26), (28), and(30), respectively together, we obtain the total contribution
to H, defined in Eq(21), from the type-l diagrams shown in Fig(a3:

Hi=Ha+Hu+H/q

1 S e -
=(2ma )C'x’s+u el (T 9p™(y Y2 9(—y5)0(y; —y BICA y1H|(a)(X Xi Xier) — €XP" y1H|(a>(X X, X)) ] (31)

All momentum fractions in Eq(31) are evaluated at the values defined in Ey). In deriving Eq.(31), we have dropped a
term proportional to

[0(—Yy,)0(y, =y )—0(y, =y )o(y; —y,)—0(y —y,)0(—y )]—0.

This is because of the phase Exp*y ] which effectively restrictsy; ~1/(xp™)—0. Physically, it means that aif
integrations in such term are localized and therefore will not give any large nuclear size enhancement.

By substituting Eq.(31) into Eq. (20), we can obtain the lowest-order double scattering contribution from the type-I
diagrams shown in Fig.(8). One important step in getting the final result is taking the derivative with respé&gtas defined
in Eq. (20). Comparing Eq(31) with Eq. (20), and observing that

[€XP" Y1 FH g (3, Xic Xk ) = €%P Y1 H ) (X, Xy Xie) Tk, —0 =0, (32
we found that the derivatives on the exponential[daédfﬁ/x’s)p*(y* —Y, )] do not contribute, and that we can therefore set
exi(k3/x's)pT(y~—y,)]=1 in Eq.(31). Substituting Eq(31) into Eq.(20), and use Eq(133, we obtain

l 1 2 “
59° )2 K2 kﬁ[T (X, A)H| ) O X4, X)) = TG A H 5y (X, X, Xicr) T,
(33

do® 1 1
E dgl = denf4mas)’e C' 2x’s x's+u

wherea,(D) stands for the double scattering contribution from the type-I subprocess shown indidt & important to note
that although the interference diagrams shown in Fi§) 4nd Fig. 4c) are important in driving Eq(33), the final result
depends only on the real diagram shown in Fi@)4That is, the double scattering picture is preserved. The role of interfer-
ence diagrams is to take care of the infrared sensitivities of the short-distance hard parts.

C. Final factorized form

The derivatives with respect ta- in Eq. (33) are straightforward. It is most convenient to reexpress derivatives with respect
to ky in terms of derivatives with respect toor x. After working out the derivatives, we obtajf]

- do(® . 1 1 [ 2 Te(xA) 12 9 [ Te(x,A) - a4
g3~ Yend mas)® eq2x sx's+u 9 a2\ x xstu?) Tlax| T x x's(x’s+u)/ |’ (34)

wherex is given in Eq.(27d), and where the partonic hard paitqis defined as
Hqg=CiXHy((X,X,=0X, =0). (35)

Following the same derivation, we obtain contributions from the type-Il and type-Ill diagrams shown in Fig. 3. For the
type-ll diagrams, as sketched in Figh3 we have
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Edaﬂ”_ 22 1 1 y 7 [ Ty(x,A) 12 J [ Ty(x,A) - a6
@~ XenlAmad) o s e || el T x (x's+u)?2] "ax| x x's(x's+u) /| (36)

In Eq. (36), the partonic hard paHy is defined as
Hg:C“ﬁ”(a)(X,Xk:O,Xk/:O), (37)

whereC, is the overall color factor for the type-Il diagrams, alﬁq(a) is given by the real diagrams shown in Fig. 5, and
defined as

~ 1
Hll(a):ZTr[ y-(X'p +xp+ kT)Rﬁ:a)Y' FLita](—9ap) (—9u0)s (38

wherel'=x"p’+ (x+x)p—1I is the momentum carried by the quark going to final state. Similarly, for the type-Ill diagrams,
as sketched in Fig.(8), we obtain

do(> 1 1 {

7 (Tq(x,A))
a2\ x

9 (Tq(x,A))

x| x

1 -
_ 2.2 T
B Conf A ats) ®i2x’s X's+u @ ((x’s+ u)? (X’s(x’s+u)

] . (39

The partonic hard patl in Eq. (39) is defined as paring the definition of these twist-4 correlation functions
R with the normal twist-2 parton distributio45], the authors
Hq=CiiXHyj (a(X,X= 0, =0), (400  of Ref. [5] proposed the following approximate expressions
for the twist-4 correlation functions:
where Cy; is the overall color factor for the type-Ill dia-
grams, andH (5 is given by the real diagrams shown in Fig. Ti(%,A)=N2AY3, A (X,A), (42)
6, and defined as
wherei=q, q, andg. The f;;5 are the effﬁgtive twist-2
~ 1 ” VD a parton distributions in nuclei, and the factar™ is propor-
Hin@ =711 PRIl 1 Lif{a](~ Gap)(~ Gyu), tional to the size of nucleus. The constadthas dimensions
(41)  of [energy? due to the difference between twist-4 and
twist-2 matrix elements. The value af was estimated in
wherel’ is the same as that defined after E8g). Ref.[16] by using themeasurechuclear enhancement of the
The partonic short-distance hard parts, defined in Eqsmomentum imbalance of two jets in photon-nucleus colli-
(35), (37), and (40), can be easily evaluated by calculating sions[17,1§], and was found to be
the corresponding Feynman diagrams. Our results were pre-
sented in Eq(14) in Sec. II B. N2~0.05-0.1 Ge\~. (43)
After convoluting Egs(34), (36), and(39) with the cor-
responding parton distributions from the beam, we obtain therhis value is not too far away from the naive expectation
complete analytical expressions for the double scatteringom the dimensional analysis,z~AéCD. In our calculation
contribution in hadron-nucleus collisions, which was Pre-pelow, we use\2=0.1 Ge\2. Therefore, our numerical re-
sented in Eq(11) of Sec. | B. sults can be thought as the upper limit of the theoretical
predictions.

IV. NUMERICAL RESULTS AND DISCUSSIONS The A2 dependence of the twist-4 multiparton correla-
tion functions, introduced in Eq42), is not unique. From
€he definition of the correlation functions in EqL3), the
Y lack of oscillation factors for both™ andy, integrals can in
principle give nuclear enhancement proportionahte. The
A% dependence is a result of the assumption that the posi-
tions of two field strengthgéaty™ andy, , respectively are
confined within one nucleon.

In this section, we present our numerical results for th
Cronin effect in direct photon production. We numericall
evaluate the nuclear dependence paramefé)y defined in
Eq. (7) by using our analytical results presented in E@s.
and (11), and we also compare our numerical results with
recent data from Fermilab experiment E7@3.

The nuclear dependence paramei€r) defined in Eq(7) ; T
depends on contributions from both single scattering anq In Eq. (42), the effective nuclear parton distributions

double scattering. All these contributions depend on nonper-i/A Shocljj_ld _hba":e the s_arznfe opera’ior definitions Olf thednt?rmhal
turbative parton distributions or multiparton correlation func-Parton distributions with free nucleon states replaced by the

tions. In deriving the following numerical results, the set 1 huclear states. For a nucleus wattprotons and atomic num-
pion distributions of Ref[14] are used for pion beams, and berA, we define

the CTEQ3L parton distributions of R¢B] are used for free N .

nucleons. The twist-4 multiparton correlation functions de- f _ EMC

e ia(GA)=Al + —f R! A), (44
fined in Eq.(13) have not been well measured yet. By com- AGA) A NGO+ 2 Hip() [REFGA), - (44)
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-~
b's X+Xy
X p+Ky P ( x)P (x—Xpe) Ptk

FIG. 4. Feynman diagrams for the “annihilation” diagrams cor-
responding to the two-quark—two-gluon matrix elemea: real
diagrams, andb) and(c) interference diagrams.

where f;;y(x) and f;;p(x) with i=q,q,g are normal parton

distributions in a free neutron and proton, respectively, an

N=A-Z. The factorR™" takes care of the EMC effect in

these effective nuclear parton distributions. We adopted the 14 FT "~ "~~~ T~~~ "T1T ' 4

REMC from Ref.[19], which fits the data well. However, at
fixed target energies, the values covered by direct photon

experiments are large and out of the nuclear shadowing re-

gion. The integration ovedx’ in Egs.(8) and(11) averages
out the EMC effect from the large region. Actually, one
can neglect th&®MC in Eq. (44).

Using the parton distributions and correlation functions
introduced above, and our analytic results presented in Eqs.
(8) and(11), we can derive the nuclear dependence param-

etera(l), defined in Eq(7), withoutany further free param-
eter.

FIG. 5. The real “Compton” diagrams corresponding to the
four-gluon matrix element.

FIG. 6. The real “Compton” diagrams corresponding to the
two-quark—two-gluon matrix element.

In Fig. 7, we compare our numerical predictions for the
nuclear dependence parameter with recent experimental data
from the Fermilab experiment E7(6]. The agsofl) pre-
sented in Fig. 7 is slightly different from that defined in Eq.
(7). E706 measured the direct photon cross sections with the
7~ beam on two different targets CAE63.55) and
Be(A=9.01), and theng;odl) was extracted according to
the definition

ag70d!)

acdl) (ACu (45)

The beam energy ip’ =515 GeV. It is clear that the theo-
retical calculation presented in this work is consistent with
the data.

It is evident from Fig. 7 that the nuclear dependence pa-
rameterag,od|) is very close to unity or, equivalently, the
Cronin effect for direct photon production is very small, and
much smaller than that observed in the single particle inclu-
sive cross sectiond]. One clear difference between the di-
rect photon and the single particle inclusive cross sections is
that direct photon production has only initial-state multiple

&cattering, while the single particle inclusive has both initial-

$ E706 Preliminary
——— Theory

XEv08

Wb e H _'

0.6 [~ Beam: 515 GeV ©~ —
| Target: Cu, Be

N R
4 6 8
1; (GeV)

FIG. 7. Cronin effect in direct photon production with 515 GeV
7~ beam on Cu and Be targets. The theory curve is from(&5),
and the data are from Fermilab experiment EY6p
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@ Iy (GeV) @) 1; (GeV)
1.4 T I: T T T T T T T T T T T T 7T LA 1.4 [T+ "‘ T ' L | T Tr T T
a(l) I : ] a(l) ‘
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FIG. 9. Theoretical predictions ai(l) of Eq. (7), as in Fig. 8,

FIG. 8. Theoretical predictions af(l) of Eq.(7): (a) as a func- but with a proton beam.

tion of the photon’s transverse momentunxat 0.0; (b) as a func-
tion of xg atl+=4.0, 6.0, and 8.0 GeV, respectively. A 515 GeV
= beam and copper target were used. distributions and correlation functions, the cross sections in
the central regionXz~0) for a given value of; are domi-
nated by the distributions with momentum fractions
and final-state multiple scattering. In addition, the single parx’~x~xT=2IT/\/§, which are less than 0.6 even for the
ticle inclusive cross sections depend on the parton-to-hadroiargest value of + shown in Fig. 7. Therefore, the double
fragmentation functions. scattering contribution is relatively small because the deriva-
As pointed out in Ref[5], the multiple scattering contri- tive terms are not significantly enhanced, and consequently,
bution is most important when the momentum fraction ag,odl) is close to one.
from the nuclear correlation functions is large because of the In contrast, for inclusive single hadron production, the
derivatives with respective to the which were introduced parton-to-hadron fragmentation functions effectively shift
in Eqg. (12). However, for direct photon production, the kine- the contribution at a giveh; to the largex region because all
matics do not fix all parton momentum fractions, and leavefragmentation functions vanish whengoes to 1. Kinemati-
one momentum fraction to be integrated, for examgplein cally, direct photon production corresponds to single particle
Egs.(8) and(11). Because of the steeply falling nature of the production atz=1. We therefore expect that single hadron
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production has a larger Cronin effect than direct photon proues ofx, all three terms vanish aslil However, in our
duction at the exact same kinematics, even before includingase, the values of andl% are not independent. When the
contributions of final-state multiple scattering. _effective values o from the target partons are small, all
In the case of a pion beam, the quark-antiquark “annihi-three types of terms should showlZ/behavior. This is
lation” subprocess, sketched in Figial, dominates the pro- clearly evident in Figs. @) and 9b): For a fixed value of
duction of direct photons at the fixed target energy, due t9<F~0, a(l7) decreases ds increases. However, ag de-
valence antiquarks in the beam. However, for a proton beéanyeases, the effective valuessoincrease much faster for the
the quark-gluon “Compton” subprocess, as sketched in Figgitation with a larger value of; due to the phase space
1(b), is more important for the production of direct photons.“mit. As a result, the term proportional to 1/@()2@ be-
Therefore, direct photon production with a proton beam is omes more important than theI%L/term Therefore. it is

more sensitive to proton gluon distributions. In Figs. 8, andcossible that the nuclear dependence is larger for a larger

9, we present our predictions of the nuclear dependence pa- .
rametepra(l) defingd in Eq(7), for a« and prot%n beam P T, When the effective values of are near 1. Such a feature

respectively. is evident in Figs. &) and 9b) whenxg is very negative. Of

_v\212 ; :
In Figs. §a) and 9a), the nuclear dependence parametercourse’ whers/(1-x)*l7 is of order of one, we will have

a(l), defined in Eq(7), is plotted as a function of the photon to té‘ke intq accl::(_)unt all hig(?ert—)power :fr:gmt]ﬁ " d
transverse momentutg atx=0. In plotting these figures, a omparrl]ng llgs. &;faln qr)] one fin Sb at axg de-
515 GeV beam energy and a copper target were assumegases, the values (1) with a proton beam increase

using the same parton distributions and correlation function uch faster than that W'th.a pion beam. Th|§ IS bec;ause the
as in Fig. 7. As expected, and as found in Fig. 7, the value ofr °MPton subprocess dominates the production of direct pho-

a(l) is very close to one for both pion and proton beams.ons in the case of a proton beam, and the gluon distribution

Changing a pion beam by a proton beam does not affect thlQ @ proton falls much faster than valence quark distributions

kinematics of the collisions. The effective values of partonf'is the mO”_‘e”F“m. fraction increases. The_ more rapidly fall-
g gluon distribution produces larger derivative terms, and

momentum fractions from the nuclear target are the same fd X
g erefore, larger values af(l). Future data from Fermilab

both cases. Therefore, as explained above, the values . t E706 with ton b test this feat
«(l) are close to one due to the fact that the effective partor?x?e”men with a pro ?.n de?mtce}n t(?s nis gaDure.
momentum fractions from the nuclear target are not large. i bn tsummary, usmg generat;]ze atzogjlz?j lon Im Qd . psr'f
In order to enhance the contribution from the double scat;2rP2Hon theory, and using the method, developed in Ret.
tering, we need to look for events at large negative, [5], for calculating nuclear enhancements, we demonstrated
wheré the effective values of parton momentum fractiond” this paper th_at the obse_:rved Sf.“a” Cronin effect in dlrept
from the target are larger. In Figs(t8 and 9b), we plot the photon production is consistent with the much larger Cronin
nuclear dependence parallmediqt) defined in' Eq(7), as a effect observed in single jet and single particle inclusive
function of xe at l-=4.0 6.0 ar,ld 8.0 GeV respéctively cross sections. We hope that the same method can be used to
The same bFeam Ttarg'et’ aﬁd beam 'energy, were used it "?%‘p"?"” the puzzle for the n__uclear depende_nce in the momen-
clear that Whenx;: becor,nes large and negative(l) in- ©otum |mba!ance. Data on dijet momentum imbalance in pho-
creases. This is consistent with the fact that the larger th%OprOdUCtlon [17) and hadroproquctlor{18] have shown
Strong nuclear dependence, while a much smaller nuclear

negative values o ' the larger the effective values of par- dependence has been seen in the momentum imbalance of
ton momentum fractions from the nuclear target and, CONSES il-yan pairs[21]

quently, the larger the derivatives, defined in EtR).
The nuclear dependence calculated in this paper is known
as a power correctiofor a “high-twist” effect) to the nor-
mal single scattering. As one would expect, the ratio of
double Scattering over the Single Scattering is proportional to We thank George Sterman for he|pfu| discussions, and
1/%, which vanishes ak? increases. However, because of Marek Zielirski for discussions and correspondence on the
the derivatives with respect toin Eq. (12), the ratio effec- E706 data shown in Fig. 7. This work was supported in part
tively has three types of terms proportional tol%l/ by the U.S. Department of Energy under Grants Nos. DE-
1[(1-x)12], and 1f(1—x)?2I2], respectively. For fixed val- FG02-87ER40731 and DE-FG02-92ER40730.
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