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Luminosities for vector-boson-vector-boson scattering at high energy colliders
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We derive exact expressions for luminosities of massive vector-boson pairs which can be used to describe
the cross sections for processes in hadron collisiores e annihilation which proceed via two-vector-boson
scattering. Our approach correctly takes into account the mutual influence of the emission of one vector boson
on the emission of a second one. We show that only approximately the exact luminosities can be factorized into
convolutions of single-vector-boson distributions. Numerical results are given and compared to simplified
approached.S0556-282(96)02011-5

PACS numbses): 12.38.Bx, 12.15.Ji, 13.85.Qk

[. INTRODUCTION stateX are due to vector-boson-initiated processes and that
the cross section for the scattering of an off-shell vector bo-
Hadron colliders will produce the electroweak vectorson can be related to the corresponding on-shell cross sec-
bosonsW* and Z with a high rate at large energies, and tion.
many processes, like, e.g., Higgs-boson production or heavy- In the application of the method to processes with two
quark production, can proceed via vector-boson vector-bosomtermediate vector bosorisee Fig. 1 it was assumed that
scattering. The experimental study of these and similar proeonvolutions of single-vector-boson probability densities are
cesses is expected to lead to an understanding of the Higgsifficient to obtain luminosities for vector-boson pairs,
sector of the electroweak standard model and eventually of
the electroweak symmetry breaking mechanism. In addition, VoVe Jab 1.dz_y . Vo lb
vector-boson pair production at hadron colliders will provide L ol pol, (X)=f ~ Pro, (DPpa, (X/2), ()
information on the self-couplings of th&/~ and Z bosons Zmin

and possibly play an important role in the search for new ]
physics. which can be used to express the cross section for two-

In lowest order, vector bosons can be produced by quarkf_ermior_1 scattering in terms of the vector-boson vector-boson
antiquark annihilation in hadron collisions. However, at highSCattering cross section:
energies, higher-order processes where vector bosons emit-
ted from incoming quarks or antiquarks initiate a hard scat-
tering process can be enhanced by logarithmic factors and
thus can compete with the lowest-order production mecha-
nism. These processes have successfully been described with X (V‘l’°'1+ VS°'2—>X,XS). 3
the help of the effective vector-boson meth¢BVBM)
which applies the concept of partons in a hadron to the case
of vector bosons: Vector bosons are viewed as partons i
guarks and electrons, as quarks and gluons are partons
hadrons. In analogy to the Weizdar-Williams approxima-
tion of QED [1] the cross section for a scattering process
a+A—X at a center-of-mass energy is factorized into
probability densitiesP;’(’)?(z) for finding a vector bosorv
with polarization “pol” in the incoming fermiora and hard
vector-boson scattering cross sections at a reduced center-of-
mass energxs:

1
do(a-l—bHX,S):f dx > > Y2l g

ol, pol.
Xmin  V1.Va pofppol, PO1PO2

The possibility to generalize the equivalent photon ap-
Broximation to the case of massive vector bosons was first
Hted in[2] and explicitly formulated if3-5]. Originally,

1
do(a+A—X,s)= J

Xmin

X (Vport A—X,XS). (1)

dx}v) % Proi(x)do

The basic assumptions in the effective vector-boson method
are that the dominant contributions for producing the final

“Electronic address: kuss@hrz.uni-bielefeld.de FIG. 1. The vector-boson scattering diagram.
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the concept was invented for the description of processes #i, we will present exact luminosity functions for vector-
very high energies and thus included a number of approxiboson pairs in quark or electron initiated processes. One can
mations valid at high energies only. These approximationghen identify the additional approximation needed to reduce
were partly of kinematic origin and concerned the neglect othese luminosities to convolutions of the exact single-vector-
mass terms or of the transverse momentum of the intermedposon densities dfL2] (Sec. IV) and in the high-energy limit

ate vector bosons. According to the details of the approximaWe also recover the leading logarithmic versions of vector-
tion, a variety of versions for vector-boson distributions with Poson distributions as used in the literat(Bec. V). Finally,
differing numerical results can be found in the literature. Then Sec. VI we will also present numerical results for these
most simple of these approximations—the leading Iogarith-exaCt luminosities and compare them with the ones of sim-

mic approximation(LLA )—amounts to taking a zero-mass plifli;:‘d appror?chfes. hat both sinal b distrib
limit. In addition, since it was observed that for the produc- espite the fact that both single-vector-boson distribu-

tion of a heavy Higgs particle in vector-boson scattering thd!0ns and two-vector-boson luminosities can be obtained ex-
cross section is dominated by longitudinal polarizatiéi actly without any approximation, there remains the question

first applications of the method neglected contributions fromW_thher the set of Feynman. di_agrams that can be. described
Pp g iith the help of the EVBM is indeed the dominating one.

transversely polarized vector bosons and the interference b .
y P he answer to this problem depends on the process and has

tween amplitudes for different polarizations. be found i b dv. Of icul ;
Comparisons with exact calculations have shown that th&® 2€ found in a case-by-case study. Of particular concern in

method is indeed helpful and leads to reliable results, in parf-jhis respect Is the questi_on wr&eé[h_er the cgnside(rjedhsu?set of
ticular for Higgs-boson productidiv] and for heavy-fermion didgrams is gauge invariant. |a8] it was observed that for

production[8]. The application to vector-boson vector-boson ©f-shell vector-poson scattering there may occur strong
scattering off the Higgs resonanf@] was less successful; gauge cancellations between those contributions taken into

the effective vector-boson method overestimated the exa&ccount in the EVBM and bremsstrahlung diagrams which

result [10]. Adding the (positive) contribution from trans- are ignored. Motwgted by this, Kunszt and_ Sofig] argued

versely polarized vector bosofig1] could, of course, not that the extrapolation to _off—shell masses is not always guar-

lead to an improved agreement between the EVBM and e)@nteeq, but for heavy H|ggs-boson prpducuon they show in

act calculations for vector-boson pair production. an axial gauge the validity of the'bgsu: assumption that the
In [12] it was shown that approximations of kinematic extrapolation to off-shell masses is indeed a smooth one.

origin can be avoided and a set of exact vector-boson distri- Our final explicit expressions for the two-vector-boson

butions was derived. There it was also shown that interferl/Minosities are obtained with specific simple assumptions

ence termgi.e., nondiagonal contributionslo not appear in for the off-shell behavior of the vector-boson scattering cross
the case of single-vector-boson processee alsd5]). The sections. However, we keep a clea}n separation of exa<_:t|y
only remaining necessary assumption in using the EVBM forcalculable parts and model assumptions and our expressions

single-vector-boson processes concerned the off-shell beha@t® wrf|tten Ina forn(; W?f'CT] allllo(;/vs fordan easy accommoda;]-
ior of the hard scattering cross section. tion of an Improved ofi-shell cependence, as soon as the

We will show that the improvement obtained with the corresponding information would be available. Apart from

results of[12] is not sufficient to accurately describe two- these caveats, our luminosities are exact results of a calcula-

vector-boson processes. The simple convolution of t\N&ion of a su.b'set' of Feynm.an diagrams. In pgrticular, their
single-vector-boson probabilititgs in Eq.(2) ignores the range of validity is not restricted to large energies. Therefore

mutual influence of the emission of one boson on the prop™e Will also present some of the results for an energy of
ability for the emission of another. In addition, interference Vs=500 GeV, relevant for a next-generatiene ™ collider.
contributions need not vanish, as has been noticed in th&he alternative approach of using convolutions of the LLA
specific example of Higgs boson production[it5]. This is single-vector-boson distributions is not applicable at these
in analogy to two-photon processgs] where it was shown Small energies.
already in [17] that the extension of the Weizseer-
Williams method from one photon to the case of two photons
is not straightforward. Il. GENERAL FORMALISM OF THE EFFECTIVE

The main purpose of the present work is the extension of VECTOR BOSON METHOD
the effective vector-boson method to the case of processes e consider the production of an arbitrary stetein the
with two vector bosons, as needed in the study of vectoryyo-fermion scattering processee Fig. 1
boson vector-boson scattering. It thus combines the exact
treatment of the two-boson kinematics, presented for photons
in [17], with the exact definition of vectqr—boson di§tribu— 1(1)+2(15)—1"(p1)+2'(py) + W(pw). (4)
tions, presented for single vector boson$l]. Our deriva-
tion (Sec. I) will not use any kinematic approximation. It

turns out that nondiagonal terms are indeed needed. In SeEhe four-momenta of the incoming and outgoing fermions
are denoted by, I, andpy, p,, respectively, and the total

center-of-mass energy squared is giversby(l,+1,)?. The
IExplicit expressions for the luminosity functions derived from final stateW, which may contain any number of particles,
convolutions of single-boson distributions in the leading logarith-has four-momentunp,y and its invariant mass squared will
mic approximation have been given|it3,14 and the last but one be denoted byV?= p\z}v. The cross section for the process
reference of9]. (4) is given by
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Off=

2s (2m)2 2p1 2p2 PW ff 27 P1—=P2—Pw)-
In (5), | My4|? is the squared amplitude for the two-fermion-initiated process, averaged and summed over helicities, and
dpyy is the phase space element for the state
For high energies one can neglect the fermion masses. With the help of the momentum teggrsfersp;, j=1,2, and
using the dimensionless variables

2
_ w? _ M : 2 _ 2
X= ?, = ? with MX_(pW+ pz) , (6)
as well as
2. 1 @)
Q2 1 q1/M2 q2’

one can parametrize the phase space by

1dz 2rde, (27de
o f f f 4o, 9Q j lj Zf dpu M *69 11+ 1= p1=p2=pw)-  (8)
32 X0 (1-2) —sz21—-x/z)

Here,xo,=W?2, /s is the minimal value of the invariant mass and satisfy the completeness relation
squared of the final stat&/ normalized to the total center-

of-mass energy. In case of amparticle final state)V, is ! u . ,oaf { .
equal to the sum of the masses of these partiatgsand m:E L€ (mef (M) =—g*"+ -7 (no sum ory),
¢» are azimuthal angles for the momemaandp,, respec- ! (11)

tively, defined in Breit systemB; and B, in which either
g, or gz has only a nonvanishing componen{see Appen- \hich corresponds to writing the vector-boson propagators
dix A 1). _ _in the unitary gauge.

If the process(4) proceeds via the vector-boson fusion  The expression for the squared amplitude, averaged over
mechanism as shown in Fig. 1, the expression for the ampline spin states of the initial fermions and summed over the

tude My is given by spins of the final state fermions, is
1 . *
ja(l1,p1)- €1 (m) ! !
M :eZ -1 m+n’ - """+ X 7 2_ 4
n=e? X (-1 -2 [M?=4e m,m%_l zl
j2(12,p2) - €5(n) T noT '
#M( n, (9) (= ) e’ T12(m,n12 )2 Tg(n,nz)z
CI2 (q1—MD* (93— M3)

where thee;(m) are polarization vectors for the vector boson XM(m,n)M*(m’,n"), (12)

V; with massM; and helicitym=0,+1 in the center-of-
mass systent of 01+ 09,. Explicit expressions for them are With the fermionic tensors
given in Appendix A 2. Thg(l;,p;) are fermionic current

four-vectors,e is the positron charge, andt(m,n) is the N E . * - ,
amplitude for the production of the final statefrom vector Tj(mm’)= 4p20| 3P - (M7, py)- g(m’).
bosonsV,; andV, with helicitiesm andn, respectively. The (13)

ampIitudeSM(m n) must be evaluated at off-shell values of

q7 andg3. The polarization vectors are normalized accord-The tensoff, ;(m,m") can be decomposed into two parts with
ing to different comblnatlons of the vector and axial-vector cou-
pling constantsy; and a; of the vector boson¥; by the
e(m)- € (M")=6pm(—1™, j=12, (100  relation

T,(mm’)=(v¥+a})C;(mm’)+2v;a;5;(mm’).
2A sum must be taken over all vector-boson paitsV, which (14
can couple to the fermions and produce the final atat&Ve do not
treat the interference terms here, but the extension of our formalisnihe tensor§ (m,m’) andS (m,m’) (i.e., tensors in helicity
to take them into account is straightforward. space are glven by
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Ej(m,m’)=pj~ef(m)l,-~e,-(m’)+pj~ej(m’)lj~e}*(m) for which the following relations hold:
—pj-ljef(m)- g(m’) (15) Cj(m’,m)=Cf (m,m’),
and Sj(m’,m)=87 (m,m’),
Sj(Mm’) =i €,py5p e’ (M) el(m (16) C(—m',—m)=(-1)™"¢;(mm’),
with €0123— 1. S -m.—-m=-(-1 m+m'8_ m.m’ 18
The ¢, dependence of the tensor components i mm=-(-1 j(m,m’). (18
of Cj(m,m") and S;(m,m’) appears in terms of simple ex- The last relation ir(18) implies
ponential functions. Factorizing them, we define _
¢p-independent tensog(m,m’) andS;(m,m’), Sj(+-)=0,
Cy(m,m’)=Cy(m,m’)el(m—m)ez 5i(00)=0. (19
_ _ , ConsequentlyC;(+ +), C;(00), Cj(+—), andC;(+0) can
Si(mm’)=8;(m,m’)e'Mm-m)ez be chosen as the >4 independent components of
Cj(m,m’) and the §;(m,m") have the 22 independent
Co(n,n")=Cy(n,n’)e" 1 ("=1")e2, componentsS(+ +) and Sj(+0). We illustrate this situa-
_ _ , tion by writing down Cl(m m’) and Sl(m m’) in matrix
S,(n,n")=8,(n,n")e ' (""Ne2, (17 form:
|
Ci(++)  C(+0)e ez CF(+—)e e
Ci(mm’)=| Cy(+0)e'¢2 C,(00) —C¥(+0)e ez (20)
Ci(+—)e?¥2 —Cy(+0)e'*2 Co(++)
and
Si(++)  Sf(+0)e e 0
Si(mm’)=| Si(+0)e'*2 0 Si(+0)e ¢ (21)
0 Si(+0)e'¥2  —Sy(++)

where the columns from left to right correspondnte= +,0,— and the rows from top to bottom ' = +,0,—. Expressions
for the independent components in terms of the integration variabl are given in Appendix B. Similar decompositions
can be given foC,(m,m’) andS,(m,m’). The quantitie€,(m,m’) andS,(m,m’) turn out to be real.

Carrying out the integration over,, there remain altogether 19 terms in them’, n, n’ helicity space, out of which nine
haveh=m—m’=n—n’=0 (they are diagonal in the helicities ¥f andV,), four haveh= 1, four haveh= —1, and the other
two haveh=2 andh=—2, respectively. For the case of two-photon interactions this classification has been gj\iét in
Using this decomposition, one can write the expression in(Eg.in the following way:

1

de, E (=

m,m’,n,n"=-1

1 2m

P 1)™Em T (m,m’) To(n,n") M(m,n) M* (m’,n’)
0

=(vi+ad) (v3+ad) (KriMyr+ Ko My + KM p+ K M+ Kppp Moprg

+KrrrMrrrr— KF M= KL MY 1) (22
+(2v;1a1)(2v8) (KM 7+ K7 7 M7 7 — KEEMEE) + (v§+ ai)(zuzaz)(KT;MT?
KM T+ K miMyr— KTLTL TLT,_) +(2vqa9)(v5+a3) (KirMTr+ K M7
+ KﬁTLMﬁTL KETL TLTL) 2 Ct p0|Kp0|M pol s (23)
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where the last line defines the notation to be used below, 1

with “pol” being labels for the polarizations, pok TT, MTL:§(|M(+O)|2+|M(_O)|2)y
TT, etc.cy po contain the fermionic coupling constants and,

depending on the index “pol,” can take the values 1

Crpo=(viTad)(v3+ad), (2v121)(2v287), (vi+ad) Myr=5 (IM(0+)]2+|M(0-)[?),
X(2vjap), and (,a;)(vi+ad). The quantitiesK g,
which are fivefold differential luminosities—they depend on

_ 2
W2, g2, g5, M%, and ¢,—are defined by Mu =] M(0O)f%,

B 1
Krr=4C,(++)Co(++), ML= ZREM(++) M*(00) + M(= =) M*(00)

Kip=48,(+ +)Sy(+ +), — M(+0)M*(0—)— M(—0)M*(0+)],

KrL=2C1(+ +)C,(00),

1
K 1= 2C4(00)Cy ++). MiT(TL=ZREM(++)M* (00)+ M(— =) M*(00)
KL =C;(00)C,(00), + M(+0)M*(0—)+ M(—0)M*(0+)],
KrLri=8RECy(+0)]C2(+0), Mrrrr=REM(++)M* (- —-)],

KT 7L=8RgS1(+0)]S5x(+0),

1
MT?:Z(M/[("' )P M= )P= M+ -)[?
Krrrr=2ReCy(+—)]Co(+—),

_ +HM(=+)]?),
Kyr=4Cy(++)S(+ +),
1
Krr=48(++)Co(+ +), MTr= 2 (IM(+ )2 = [ M(= =) P+ M+ )2
K7L =281(+ +)C,(00), —IM(=+)]?),

- =_ 2_ _ 2
KTLEZSRE[C]_(‘FO)]SZ(-FO), IvlTL 2(|M(+0)| |M( O)| ),

KTt =8RdS1(+0)]C(+0), M _—1(|M(0+)|2 M(O0—)[2)
LT=% - =),

K= =8Im[Cy(+0)]S,(+0),

1
KITmLTL: 8IM[S1(+0)]Cx(+0), Mrim=Z7REM(++ ) M* (00) — M(— — ) M* (00)

KM =8Im[Cy(+0)]C,(+0), + M(+0)M*(0—)— M(—0) M*(0+)],

KT = =8ImM[Sy(+0)]S,(+0),

1
MﬁTLzzRe[M(Jr +)M*(00) — M(——)M*(00)
K¥prr=2Im[Cy(+ —)1Co(+ —), (24) M(+O)M* (0= )+ M(— Q) M* (O],
with C;(m,m") andS;(m,m’) from (B1) and(B2) (see Ap-

pendix B. The averaged sums of products of amplitudes for Im

1
=—Im[ M(+ +)M*(00) + M(——)M*(00)

the vector-boson scattering processkk,,, to be simply MTLTL—4
called squared amplitudes in what follows, are defined
through + M(+0)M*(0—)+ M(=0)M*(0+)],
1 2 2 2 Im 1
Mar=Z (IM(+ )P+ M(= )P+ M(+ )7 (25) Miir =2 MIM(+ +) M* (00) + M(— =) M* (00)
+H M=), —M(+0)M*(0—) = M(=0)M*(0+)],
1 2 2 2 Im 1 * *
Mrr=7 (M )2+ M= =)= | M(+ )] M g =ZImLM(+ +)M*(00) = M(— =) M*(00)

—[M(=+)]?), ~M(+0)M*(0—)+ M(=0)M*(0+)],
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1 Ko, Ko, Ko K K K Kt K . (2
Mm__Z|m[M(++)M*(00)—M(——)M*(OO) 1. Ker K K K Ko Kol K (27)

TLTL
+ M(+0)M*(0—)—M(—0)M*(0+)], Expression(23) shows explicitly the trivial factorization
of the cross section into parts describing the vector-boson
M= ImLM(+ + ) M* (= —)]. emission from the incoming fermions and parts pertaining to
the vector-boson vector-boson scattering. These latter pieces,
The squared amplitudes combined with the phase space integral for the final state
S - o Im m W, can be interpreted as cross sections and correlations for
Mt M7 M7 M 7 M 70 M7 M3 7 M virtual vector-boson scattering processes:
(26)

vanish if both the interaction responsible for the transition 1

V,V,—W is parity conserving, i.e., if M(m,n) Upo|(W2;q§,q§)=(27T)42—f dpwM peid (a1 + 02— pw).
=M(—m,—n), and a summation over the polarization of “ (29)
the final stateW is performed. The Iuminositiels'pmOI vanish

after integrating over the azimuthal angte. We also note

that the squared amplitudehzi'p“(]I are zero if all amplitudes In Eq. (28) we included a “flux factor” 1/2. Its presence
M(m,n) can be chosen real. Therefore we restrict the fol-ensures that for on-shell vector-boson scattering, in Eq.

lowing discussion to the remaining eight luminosities (28) is indeed a cross section. In this case one has

k= Ko= \VW*+M5+M3—2WMI—2W?M5—2M2M3, (29)

with W4=(W?)2. The specific form of for off-shell bosons is irrelevant since we will need only the combinakiog in
the following.

In terms of the cross sectiori28) for virtual vector-boson scattering, the cross secti®nfor the two-fermion initiated
process is given by

a\? (1 1dz (o 0 1 1 27de,
ot (277) fxo x £ J—-s(1-2) % —z91-x/z) QZ(Qi_Mi)Z (qg—Mg)z o 2 K% f.pol polo'pol( A1 qz)
(30

where« is the fine structure constant. vector-boson scattering evaluated at the rescaled energy
Up to this point, the calculation has been exact withoutsquaredW?=(q;+q,)?>=xs of the vector-boson vector-
any approximation. The basic assumption of the equivalerniboson scattering process.
vector-boson method concerns the dependence of the off- To describe th«qj2 dependence of the off-shell cross sec-
shell cross sectionspm(Wz;qf,qg) on the off-shell masses tions, we will consider the following specific forms of the
qiz. For transverse polarization it is certainly a good approxi-proportionality factorsf,, which take into account thqu
mation to identify orr(W?2,q2,g3) with its on-shell value dependence of the longitudinal polarization vecte®):
or(W?,M2,M2). However, for longitudinal polarizations,

op(W?07,03) contains kinematic singularities ag =0 M3 M2

and g5=0, as can be seen from the explicit form of the frr=frr=frrrr=1, fTL:__qZ’ fLT:__qZ'
polarization vector$Eq. (A5) in Appendix A 2. Therefore, 2 !

for longitudinal polarization, the resulting factod?/q? (32
should be taken into account explicitly. Apart from this, MZ M3 My M,

there are good arguments from dispersion relation techniques 'L~ — 42 —42° frore="from= 2 [—q2
to believe that the extrapolation to off-shell masses is a hm G a2
smooth one. ) o ) )
We therefore make the assumption that the extrapolation W& now introduce the luminositieS,(x) which are dif-
to off-shell masses can be described by simple proportionaf?rer,‘“m in the variable, writing the differential cross sec-
ity factors f,o(W?02,03) with f,(W%MZ,M3) =1 and tion in the form
write
dO'ff 2 2
Koo W2 05 ,03) = Kof po( W 07,05) T po( WM T, M3), W:% Lpol(X) Tpoi( XS;MT,M3), (33
(31

Whereapm(WZ;Mf,Mg) are the cross sections for on-shell with the luminosities
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LX) ( a )ZKO fldzfo d Zfo 40 1 1 J’ZWd(plf K 34
X)=|=—| —c — — )

P! 2 s ), 7 ) 1m0 P it 2 (B MD? (@G- MB)2 o 2 Pl

The luminositiesC,(x) depend orx and, since they are dimensionless, on the masses of the vector bosons via the ratios

Mi/s and M%/s. As well, we have included the coupling constants of the vector bosons in the defidlifigix)dx can be

interpreted as the probability that the vector-boson YairV, with the specified polarization and with center-of-mass energy
in the intervall xs, (x+dx)s] will be emitted from the fermion pair 1 and 2.

IIl. EXACT LUMINOSITIES

We evaluate the expressiof®) adopting the form$32) for the behavior of the virtual cross sections. No other assump-
tions are made. We rewrite the phase space integrd@4hnin the following way:

1dz (o 0 27Td¢1 0 0 Sd/"LX 27Td(Pl
— dg? dzf —:f do? d2f— —, 35
fx Zfs(lz) G —sA1-x/2) Q2 o 2w —stw? o —s+ W2 a2 s Mx Jo 27 39

where we have introduced the variablgs: (v+KW)/s,
with  v=q;-q,=iW?-q?—q3), W=yW?  and

andK,, were defined in24). The integrations over and
¢4 in (37) can be performed analytically and the results are

K = k/2WV, K being the magnitude of the three-momentum ofgiven in(40). We will discuss later which limiting cases will
the vector boson¥, ,V, in their center-of-mass frame, and !€ad to results already obtained in the literature.

ux=M2—q3. The integration limits fogs andqg3 in (35),
following from (g3+s)(g3+s)>W?s (with g?<0 and
g5<0), are written with the help ofW2=W? and
W2=W?3s/(s+q3). The Iluminosities vanish for
Xx<(M;+M,)?/s.
Using Eq.(35), the expression§34) for the luminosities
become
(44 2KO
ﬁpol(x):(z) ?Cf,pol

X J’O dquo dqzq—i
—s+Wf ! —s+W§ Z(Qi_Mi)z
a2

X

(E=M2)2 fpordpol (36)

with the triple-differential luminositiegsthey are functions of
x,d; andq?)

1 [sduyx (27de;
o=z — | =Ko 3
pol q%qg 5s x Jo 2 pol (7)
|
2 2 2
o Ko |V|1+S— Wl
L (x)=(—) (vi+a?)(vi+ad)— In| ——u—>
TT 20 1 1 2 2 S Mi
2
o KO
[/T_T(X)Z(E> (20131)(20232)? In Mi
o 2 Ko
ﬁTL<x>=(ﬂ) (vi+ai)(vz+ag)— In
2 2
o KO Ml
cLT<x>=(E) <v%+a%><v§+a§>;(l

MI+s-Wi\ (1 1
SRR J dxlf dx, In
o o

1 1
a M§+S—Wf) fo dylfo dxz In

The singularities of the integrands in Ed36) at
q]-2= sz lead, after integration, to mass singular terms. In the
high-energy Iimits>Mj2 they appear either as familiar loga-
rithms In@M?) or as a pole singularity M?. The latter
happens, e.g., in both masses for ltheterm or in one of the
masses for th& L andL T luminosities. Since we will evalu-
ate the two-dimensional integration ovef and g3 in (36)
numerically, specific care has to be taken of these singulari-
ties. This is done by introducing new integration variables
Xj, ¥j, andz; (j=1,2) depending on the type of the singu-
larity. The new variables are chosen such that the integration
region becomes the unit cube in two dimensions. Their rela-
tions toq’ are given by

M2+s—W?\ %
ay=M{l1- —
M;
) M?+s—W?
=Mj| 1- 2 2
(S_Wj)(l_yj)+Mj
=(—stW)z, j=12, (38)
and the luminositie$36) take the final form
1o M§+S—W§) i 9
dx f dx, In Jrr, (39
oo {5 e o0

M§+S—W§) G %
M3 ) gi—Mfgs-M3TTT

M3

Mits— Wi fld fld 1 G,
—_— X — s
M2 0 o AT MIr s wE Mg

M3+s—W3\ g3
q LT

2 2 2
M2 2_M2
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2

1 1 M2
fo th; dy, 1—m JiL

M§+S—W'f)
M3

2

a 1

+ + —_

Ly (x)= ( ﬂ_) (Ul al)(UZ az) Mf-i-S—Wi

2
af

1 1
xf dxlf dx, In
0 0

Ly (x)=

M§+S—W§> a7 g2 JriTe

M3 95—M3i g5-M35 —qZ/—q2’

2
cmax):(%) (20,2,)

M§+5—W§) a9 a5 T
M3 q;—M3i a3-M3 (—g2J—g2’

Ko M3+s—W? 1
X (2v,8,)—MMsIn| ——5— j dxlf dx, In
S Ml 0 0

2 4 4

d: a JrrrT
L x() +a +a—stdzfdst ,
T771(X) (Ul 1)(02 2)—( 7 1 o( )(qi—Mi)z(qi— ) qiqg

and theJ,, are given by

1
[2v2(s+ v) 2+ q2q5(s?+ 8sv+qiq3) 1In| = | — 65?12 —4sv3+ 2v*+ q2q5(— 3%+ 4sv+ 612+ q%q5)  (40)
2 142 % 12 142

JTT—
+ KW 3s?v+ 8512+ 213+ q2qa(4s+v) ]|,
4 1 2 2.2
JT—=—2 (2sv+12+q q2)ln = | —4sv+2v°+2q1095+ 2KW(s+v) |,
X
3 2 1 2.2 3,054
JTL— [45?v%+8sp +2q1q2(s +8sv+3v9)]In § — 135y —4sv°+2v +q1q2( 5s?+ 4spy+ 1302 +3q1q2

+ 2KW[ 32+ 8sv?+ 13+ 20305(2s+ v) ]|,

Jir=Jdr0L,

== [28%2+ 4s1°+ q205(s?+ 8sv+ 212+ 4] qz)]ln( ) 2v?+505(— 287+ 717+ 20505)

+KW[3s?v+8sv2+q2qa(4s+3v)]|,

1 v3(s+v
[3s?v+9sv?+ 13+ q3q5(3s+ 2u)]|n(;) - %)—832;& 313+ 93g5(s+6v)
X X

32
‘]TLTL:F\/ - (ﬁ vV qg

+KW(28?+ 11sv+ 202+ q2q3) |,

1 v
(s+v)In| = | — =+ 2v—s+KW]|,
X X

8
JT—LT—LZFV_%V_%

1 >  5sy+41?
+;—f—53 +4SV+6V +3q1q2+ KW(8S+3V) .
X

Jrrrr= 4Q1Q2 (35”+ 125w+ 207+ qfg3)In| — X
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For the case of two-photon processes initiated by electron- (3) Set Q§:q§ in Eq. (34); i.e., omit the factor
electron scattering, analogous expressions have been derived— Cﬁ/Mi)_l in the definition Eq(7) of Qg,

in [17]. Our results are related to the correspondipgfrom In addition, we evaluate the flux factat, at Cﬁ=0 and
[17] by q5=0; i.e., we choos&,=W?2. Note that with the simplifi-
1 cations (1) and (2), the luminosities for the nondiagonal

squared amplitudesy 1. (X), L7 7.(X), and Lit11(X),
vanish.

With these simplifications the integrals ovag andQ3 in
(34) can be carried out independently and the luminosities
(34) take the factorized form

JpoI:F‘]poI

for pol =TT, TL, andLL,

Jrrrr=2 97T, ,
X idz 1 e o X M5
Liy(x)=| —Pr(z,M5Pf| =,—], (41)
and . Z P
Sex wherek,|=T, T, L and the function®};, P andP} are
I =2 the single-vector-boson distributions [df2], explicit forms
of which are

(note that we have neglected the fermion masd&'e finally
remark that, forM =M, we havel 1(X)= L1 (X).

The integrals in Eq(39) are well suited for numerical
evaluation. Their integrands contain no singularities; instead,
the poles of order one show up as logarithms of the form J ) a
In[(M?+s—W?)/M?], while the poles of order twéwhich Pr{z,M%)= g@v;ajﬁf_s(l_z)
would by themselves lead to a factmj_z) have been can-

d(9®)(—g?)(ci+1)
Cs1-z (P—MPHZ

o d(g®)(—g?c
(g?—M?)Z

’ a z
Pi(z,M?)= Z(UJZJF ajz)a

celed by corresponding factohd? included in our assump- _ a zZ (0 d(g?)s?

. . 5> o . j 2 2. 2\\2 (9950

tions for the behavior of thé,,(1V%;05.405), Eq.(32). Since PLZM%)=o—(vj+a))M*5 st (=MD’
the expressions E¢39) involve two-dimensional numerical (42)

integrations of the momentum transfefsandq3, it would

be straightforward to replace the model assumptiong®).  with

by better ones if required. The contribution from the leading

singularities would not change then; however, subleading _2-z+¢?ls _ N1-z+g’ls
. . . . . 0=——- 3 and 50—2—2

terms (nonlogarithmic contributions for transverse polariza- z—q‘/s z—q/s

tion, logarithmic contributions for longitudinal polarization

are model dependent. For the cases of Higgs production anthe integrals in(42) can be performed analytically and the

heavy quark production, modifications of singlé-boson  results have been given {i12].> The quantitiesP}(z,M?)

distributions following from the exact off-shell behavior of are the probability densities for the emission of a vector bo-

the corresponding hard cross sections have been studied $on with massM from a fermionj with couplingsv; and

(43)

[20]. a;. The scaling variablez describes the invariant mass
squared remaining after the emission of the vector boson
V. CONVOLUTIONS OF SINGLE-VECTOR-BOSON V, from fermion 1. Sinceq§ has been neglected in describ-
DISTRIBUTIONS ing the emission, the center-of-mass syst€nof the two

vector bosons is related to the center-of-mass system of vec-

Since helicities of massive particles are not Lorentz in-q, bosonV, and fermion 2 by a boost in the direction of the
variant, the polarization vectors have to be defined in a defitarmion 2. Therefore, the helicities of the vector bodon
nite reference frame, which we chose to be the Ce”ter'OfOriginally defined in the center-of-mass syst@n agree in
mass system of the two vector bosons. Thereforzecitlm\d the two reference systems. The same line of thought applies
S depend on both momentum transfers and g3 at the o the emission of vector bosor, from fermion 2 with the
same time. This means that the emission of a vector bosogba"ng variablez being replaced by/z.
Vl with definite heIICIty from fermion 1 is not independent In summary, the |uminositie@4) can be written as con-
from the off-shell mass of the second vector bostn and  volutions (41) of single-vector-boson distribution&t2) if
the two-boson luminosities do not factorize into Single-bosorbne neg|ect3 the mutual effects of the variation of the off
densities. However, since at high energies the process knhellness of one of the vector bosons on the probability for
dominated by small momentum transfers, it seems justifie¢he emission of the other vector boson. The luminosities for
to neglect this mutual dependence gfh. Then the expres- the off-diagonal squared amplitudes vanish in this case.
sions (34) for the two-vector-boson luminosities reduce to
convolutions of single-vector-boson densities. These single=———

vector-boson distributions have been reportefil®. ®Also the distributions of5] are exact for processes with only one
To be sp2e0|f|(?, we consider the following simplifications. internal vector boson which couples to the amplitude for the hard
(1) Setg=0 in Cy(m,m’) andS;(m,m’). scattering subprocess like a fermion. This specific assumptis] in

2 Setqizo in Co(n,n") andS,(n,n’). is the only difference between the distributions[6f and[12].
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V. LEADING LOGARITHMIC APPROXIMATION

Further approximations in Eq$39) allow us to derive
simplified expressions which have often been used in the
literature and are referred to as the leading logarithmic ap- 2
proximation(LLA). The approximation consists in neglect- 5 .
ing the off-shell masseq, in Jpo @and performing a high- ai — Mj
energy limit s>M2 To be precise, with the following
substitutions |r(39) one obtains

1
(2+x)? In(;) —2(1—-x)(3+x)

g

()

4(1+x)|n(;> —(1—=x)(7+x)|In

a\? 2 2,2, 21
Lrr(x)— > (Ul"'al)(l)z*'az);

(4+x)|n<§) —4(1-x)

o \?
‘CT_T(X)_’(E) (2v121)(2v22,)

a\? 2 2 2, .21
L1 (X)— > (Ul+al)(02+a2);

4(1+x)|n(;> —(1—=x)(7+x)|In

o \2
£LT(X)—’< ) (Ul+al)(vz+a2)

2
cLL(x)—>( a) (v3+ad)(v3+ad)~ (1+x)|n(%)—2(1—x) . (45)

Expressions folt, L1, and£, | have been given already in the forward direction. These versions thus imply a small
in [13] and the complete set of luminosities includidg, angle approximation. In addition, the mentioned distributions
L7, , and £, 7 can be found if14]. In a similar way, LLA  differ by various additional approximations. The distribu-
expressions for single-vector-boson distributions can be obfions of [4] neglect terms of the ord@®(M?/s). In [3,21],*
tained from the exact ones, E@2). Their convolutions lead the calculation was performed using a longitudinal polariza-
again to Eq.(45). tion vector for on-shell vector bosons, whereas inl4]
These formulas are obtained from the exact ones by take”(0) was defined takmg into account that the vector bosons
ing into account only the contributions from the singularitieshave off-shell masses q7. This and a more sophisticated
atq; 2_,0to thqu mtegrals and neglecting the contribution @ssumption concerning the off-shell behavior of the hard
from other regions in th«ql,qz integration. The choice of scattering cross section [A4] are the reason for the differ-

s in the arguments of the logarithms is arguable; many othe nce between the distribution functions for longitudinal po-

choices are also acceptable in the leading logarithmic a arization in [3,21] and [14]. The distributions for trans-
P g o9 Ry versely polarized vector bosons|[i,21] and[14] agree with
proximation and have been used in the literature. For ex:

| t instead f has b d ted each othe(after correcting misprints in the latter referepce
amplée, xs as argumen ins e% nas been advocate in Of course, all distributions agree in the leading logarithmic
[5,13], since the quantitg— W5 varies in the whole interval

P P TV . approximation.

[0,s] asq; varies within its limits. We have checked numeri-
cally that the LLA with this choice deviates less from the
exact calgulation. Thg deviation fo_<r—>1 can be improved VI. NUMERICAL RESULTS
by choosingx(1—x)s instead ofxs in the argument of the
logarithms. This choice is motivated by interpreting the ap- In presenting numerical results for luminosities of vector-
proximation as resulting from a zero-mass limit and notingboson pairs, we restrict ourselves to the representative case
that s—W?=(1—x)s. We will use the formx(1—x)s in of efe™ annihilation. In our examples for the numerical
our numerical examples. evaluation we usedv=1/137, M,=80.2 GeV,M,=91.2

Related to the different possible choices of the argumenGeV, and the fermion vector-boson couplings are determined
of the logarithm is the interpretation of the scaling variableusing the weak mixing angle as given by égsMy,/Mz. In
X. In [3,4,14,2], the scaling variable was defined as the Figs. 2 and 3 we show the exact luminosit{88) for finding
ratio of the vector-boson energy and the energy of the ferm-
ion from which it is emitted. With this definition, the relation
S=xs between the fermion scattering energy and the subpro-*The distributions of21] supplement those ¢8] by the distribu-
cess energy holds strictly only if the vector boson is emittedion function P [see Eq(42)].
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Luminosities of a W*W~ pair
in e*e~ collisions at V& = 2 TeV

xpol(x)
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FIG. 2. LuminositiesC+(X), L5(X), L£.7(X), andL, (x) for a

W*W™ pair ine*e™ collisions atys=2 TeV.

Luminosities of a W*W~ pair
in e*e~ collisions at Vs = 2 TeV
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FIG. 3. LuminositiesCt t.(X), L1 7.(X), and Lrrr(X) for a

W*W~ pair ine*e™ collisions atys=2 TeV.

Ratios of Luminosities
xconv /x \/S =2 TeV
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FIG. 4. Ratios of the convolutions of single-vector-boson distri-
butions, Eqg.(41), and the exact luminosities for petTT, TT,
LT, andLL for aW*W~ pair ine*e™ collisions at\s=2 TeV.

aW*W~ pair in ane*e~ pair of \/s=2 TeV. The luminos-

ity L7 for transversely polarizet™ is the largest one,
followed by £+, and £, . From Fig. 3 one concludes that
the nondiagonal luminositie§t 1, and Ly are compa-
rable in size with the diagonal ones and thus cannot be ne-
glected. The parity-violating luminositgss varies compara-
tively little with x at not too highx, and at higherx it
becomes equal to thET luminosity.

In order to estimate the improvement obtained by using
the exact luminosities as compared to former simpler ap-
proaches, we show in the following series of figures ratios of
the exact results and the convolutions of the exact single-
vector-boson distributions frorfil2] as well as their LLA
versions. The ratio of the convolutiorid1) and the exact
luminosities are shown in Fig. 4 for "W~ pair in a 2
TeV e*e™ pair. The discrepancy grows with decreasing
For transverse polarizations it reaches a factor of 2.4 at
x=0.01. We note that for th@L luminosity, which is not
shown, the discrepancy is even larger than forTielumi-
nosity. At higher energies the agreement between the two
versions is better as seen in Fig. 5 where the same ratio is
shown for a value/s=4 TeV, which is a typicat|q subpro-
cess energy ipp collisions at 14 TeV. However, the ratio of
the TT luminosities forx=0.01 is still 1.6(this corresponds
to the production of a final sta/ of 400 Ge).

Figure 6 shows the ratio of the LLA version of the lumi-
nosities, Eq.(45), and the exact formulas fow*" W~ in
e"e” at 2 TeV. The LLA versions always overestimate the
exact results by far and only for thd. luminosity at not too
small values ok might the LLA be useful. We note that the
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Ratios of Luminosities Ratios of Luminosities
DLgconv/:f \/S =4 TeV ,‘fLLA/f \/S =2 Tev
17 1 [ | 1 [ 5.0
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FIG. 5. Ratios of the convolutions of single-vector-boson distri- FIG. 6. Ratios of the leading logarithmic approximation for

butions Eq.(41) and the exact luminosities for pelT T, TT, LT, vector-boson pair luminosities, E¢#5), and the exact luminosities
andLL for aW*W~ pair ine*e~ collisions atys=4 TeV. for pol=TT, TT, LT, andLL foraW*"W~ pairine*e™ collisions
at \/s=2 TeV.

disagreement at— 1 would have been larger if we had used

xs instead ofx(1—x)s in the argument of the logarithms.  would have to adjust the factors (89) containing the vector
We also present some results relevant for a 500 Ge\and axial-vector coupling constants and, in addition, to fold

ee” collider. Figures 7 and 8 show the luminosities for athe luminosities with quark distribution functions. This

W*W~ pair as a function of th&V"W~ pair invariant mass would result in luminosities for vector-boson pairs in an

W related tox by W2=xs. The luminosities reach their ep, pp, or pp initial state.

highest value not far from threshold. The behavior of the

different polarizations with varying is as described for the

2 TeV case. There is a resemblance between the pdirs VIl. CONCLUSION

TTandTLTL, TLTL. In both cases, the luminosity propor- e have derived exact distribution functions for a pair of
tional to the product of vector and axial-vector coupling isyector bosons inside a pair of fermions. In contrast to previ-
smaller than its partner at low but then joins it at highk.  ously used approximations, our distributions take into ac-
Finally, Figs. 9 and 10 show the luminosities foZ& pair.  count the mutual influence of the emission of one boson on
The major changes as compared to WiéW™ case are due the emission of the other. The commonly used leading loga-
to the change in the vector-boson couplings, while th&ijthmic approximation and a convolution of exact distribu-
changes due to the different vector-boson masses are smalbn functions for single vector bosons inside fermions are
The ZZ luminosities are more than an order of magnitudegbtained if one neglects regions in phase space in which the
smaller than theV" W™ luminosities. Owing to the small virtual vector bosons have four-momenta squared much
vector coupling of theZ, the luminosities which are propor- |arger than their squared masses. We have shown that for
tional to the product of vector and axial-vector coupling aretransverse polarizations of the vector bosons, these approxi-

negligible. mations do not reproduce the exact calculation with a rea-
In summary, only the luminosities for longitudinally po- sonable accuracy.
larized vector-boson pairs in regions of hig{E andx might Our results are obtained from an exact calculation of a

be described by the convolutions or the LLA. For luminosi-subset of Feynman diagrams without the need to introduce
ties involving transverse polarizations, neither of these twaany approximation except specific assumptions for the off-
approximations reproduces the exact calculations with a reahell behavior of vector-boson scattering cross sections. A
sonable accuracy. The disagreement becomes worse with ddifferent off-shell behavior could be taken into account in
creasingx and decreasings. our formalism without additional complications. Of course,
To obtain luminosities relevant for deep-inelastic leptonin order to obtain complete predictions for cross sections of
nucleon scattering or for processes at hadron colliders, oneector-boson production ie" e~ or hadron colliders, one
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Luminosities of a W*W~ pair Luminosities of a W*W~ pair
in e*e~ collisions at V& = 500 GeV ¢ in e*e~ collisions at Vs = 500 GeV
fpol pol

10-5 4 | | | | | | i 10‘5 4 i ] I ] ) ] -
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1073 3 ; :
I i 107 = =
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FIG. 7. Luminosities Lt(W), L7=(W), L.+(W), and FIG. 8. LuminositiesCy r (W), L3 7. (W), andLrrr(W) for
L..(W) for aW"W~ pair ine*e™ collisions atys=500 GeV. aW*W~ pairine*e collisions atys=500 GeV.

would have to add contributions from Feynman diagramgcomponent of one specific four-momentum, sky, of the
which are not of the type as shown in Fig. 1, as, for exampleset ofk; vanishes and itg component is non-negative.

qq annihilation or bremsstrahlung processes. These addi- We define two Breit systems, a syst&nin whichq, has
tional contributions might become particularly important atonly a nonvanishing component andiz points in the nega-
smaller energies. tive z direction, and a systerB, in which g, has only a
~ Finally one should note that we did not attempt to takenonzeroz component andj; points in the negative direc-
into account any kind of experimental cuts on kinematicakion, The four-momenta iB, are

variables for final state particles, such as transverse momenta

or rapidities. These cuts would, first of all, enter in the ex- — 2
pressions for the vector-boson scattering cross sections. As (|f1)u: 9
far as experimental cuts on final state momenta imply restric- 2
tions also for the momentum transfegs, or the scale vari-

(Ch; —SnCOSpy, —SpSingy,1),

ablex, it would be straightforward to modify our expressions By V91, i
for the luminosities accordingly. (P )H= (Ch’—SnCOSpy, — SpSingy, — 1),
APPENDIX A: BREIT-SYSTEMS AND POLARIZATION (Q?l)“=(0;0,0,v—Qf),
VECTORS
1. Definition of reference frames (Isl)"= Hex (1;0,0~1),
The four-momenta in the center-of-mass systernf V, V=01
andV, are
1
(a9)“=(ko;0,0K), (05)*=(00;0,0,-K), (A1) p'#=pl+ ph=———(ux;0,0-M%—a?), (A2)
2y~ 1

with ko= (W?+q2—q3)/2W and qo=(W?—q5+q3)/2W. _ 5

For simplicity, we assume that the final stiteproduced via ~ With Cn = ZSZ/MX_ 1, sh=veR—1= 2(V'sl pux) 5= mx, and
the two-boson process allows us to specify thendy axes “x=Mx—qi. The overall ammutfg of the system is defined
of a coordinate system. If the staté¢ decays intm particles by choosing they component ofg,* to be zero and it
with momentak;, we choose this system such that fhe component non-negative, so that
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2
Luminosities of a ZZ pair Bl),uz . 92p 0.— v (A3)
, in e*e™ collisions at & = 500 GeV (G o V=72
pol
10—6 1 1 1 ] ] 1 i o with
] I ! ( qu%)
= vV— —
: - RN R
107 3
3 i and B= \u§—2vpux+0505.
] i The four-momenta i, are
107 4 = Boyu_ —% . ' =
E 2 (152) —T(Ch,_ShCOS‘Pz,_ShS|n€D2,1),
] i — 0
) (P32) =~ (Ch; — $}COSp;, — Spsing, — 1),
107 4 E
] - (032)#=(0;0,04/~03),
10_10 T T T T T T — Boyvu 1 .
150 200 250 300 350 400 450 500 (ql )H= (x;0,0,—2v),
W [GeV] 2\ =05
FIG. 9. Luminosities Lr+(W), L+=(W), L.+(W), and B 1
L., (W) for azz pairine*e™ collisions aty/'s=500 GeV. () =7 (x;0,0,—2Vqp), (A4)
2V—-0q;
S ‘ with ¢/ =(2/k)(ux—v) and s,=+(c})>—1=28/k. The
. +Lu_mm9s'1tles of i/zz par overall azimuth of the system, is defined by choosing the
£ in e”e” collisions at Vs =500 GeV y component of the same four-momentkgas employed in
P defining the systenC equal to zero and itx component
10° ' ' ' : : : : non-negative.
. - i 2. Polarization vectors
10 # _ The polarization vectors for the helicity eigenstates of the
] C vector bosond/; in the systenC using the Jacob and Wick
o ] i phase conventions are
107 3 E
: : (ec)#(t)zi(o-:l—m)
. i L 1 \/E L] 1] 1] L]
10" 4 3
] E (€9)4(0) =~ (K;0,0K)
1073 V-di
10‘“; ; (GC)#(i):i(oil_|0)
g E 2 \/E 1 ’ ’ 1
10" _ . _

150 200 250 800 350 400 450 500 (eg)“(0)=

1
W [GeV] V-a3

FIG. 10. LuminositiesCt 1. (W), L1 7t(W), and L1t W) By applying an appropriate coordinate transformation, the
for aZZ pair ine*e~ collisions aty's=500 GeV. polarization vectors foW, in the systenB; are found to be

(—K:0,000)- (A5)



6092 I. KUSS AND H. SPIESBERGER 53

(6?1)“(i)=ﬁe ‘”2(+0'Sy;+ : oy 0l (eZZ)M(i)=E(o;i1,|,0),
(e52)*(0)=(—1;0,0,0. (A7)
APPENDIX B: FIVEFOLD DIFFERENTIAL
B1y /() — V=ai[ Va8 LUMINOSITIES
(940 = Yy | @i, 00, (A8)

Here we give explicit expressions needed to determine the
fivefold differential luminositie y,, of Eg. (24). The helic-
ity tensorsCj(m,m’) andS;(m,m’), defined in Egs(15) and
(16), are evaluated most easily in their respective Breit sys-
tems B; using expressiongA2) and (A4) for the four-
with Esy:\/qzlqzz,B/(MXKW). Likewise, the polarization momenta and expressiofs6) and(A7) for the polarization

vectors forV, in B, are found to be vectors. The results are
27 2.2 02 2 2
01 491038 8ChshV—a1V—a38
C1(++):_Z Cit 1+ —5—5—(ch+sp coey) + 72 (vix—0303)cosp; |,
I HxK HxK

27 2422
a1 401028
Cl(OO)Z—? Sﬁ‘f’ 2—2(Cﬁ+SﬁCOS?¢>1)—
! HxK

8 cpsny—aiV— 038
2.7

(%“x‘ngg)cos‘m

27 52,2 02 J=a?/—a2
1| 291928 1) 4ckshy—a1Vv—0z8
Cl("‘_):_zl{—lz 7 (Cﬁ"‘sﬁ 0052€01)+Sﬁ COSZ(Pl_E + 2 2 (VMX_Q§Q§)C0&P1
HxK HxK

. Sh .
20 (e 95\ — a38+ Sh(vix— G303)COSp; ) Sing;

2

gi |2V —giVv—a38 2 CpSh
cl<+0>=—1{—2 o (vpux— G203) (C2+ S Cof1) + 3 [(vux— 503) 2+ q2a3B82]cosp,
V2 MxK MxK

)

. Sh .
—I m[ch( vy —0303) + Spy — g5\ — 58 Cosp;]sing,

2 _ ~242 Sir/— 2 [ 2
51("""):_% ZVMX Q1Q2Ch+2 hV— a1V — 028 cosp .
2 MxK MxK
2 2 [2
%{Ch\/_%v%ﬁ h P . Sh .
Si(+0)=—~—F—"+ — — Cco — 1 —= SIn . Bl
1(+0) 2 LK MxK(VMX 4103)COSp, 5> Sihey (B1)
2 2
az_ a
Co++)==Z L1, C(00=— 3 (s})?,
2 2
qz 9
CZ(+_):Z(sh)2162(+0):_2\/ichsha
2 2
az az
Sy(++)=——=c;, Sy(+0)=—=5s/. B2
A+ H)== 50 S+0= 5, (82
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