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We derive exact expressions for luminosities of massive vector-boson pairs which can be used to des
the cross sections for processes in hadron collisions ore1e2 annihilation which proceed via two-vector-boson
scattering. Our approach correctly takes into account the mutual influence of the emission of one vector b
on the emission of a second one. We show that only approximately the exact luminosities can be factorized
convolutions of single-vector-boson distributions. Numerical results are given and compared to simplifi
approaches.@S0556-2821~96!02011-5#

PACS number~s!: 12.38.Bx, 12.15.Ji, 13.85.Qk
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I. INTRODUCTION

Hadron colliders will produce the electroweak vecto
bosonsW6 and Z with a high rate at large energies, an
many processes, like, e.g., Higgs-boson production or hea
quark production, can proceed via vector-boson vector-bo
scattering. The experimental study of these and similar p
cesses is expected to lead to an understanding of the H
sector of the electroweak standard model and eventually
the electroweak symmetry breaking mechanism. In additio
vector-boson pair production at hadron colliders will provid
information on the self-couplings of theW6 andZ bosons
and possibly play an important role in the search for ne
physics.

In lowest order, vector bosons can be produced by qua
antiquark annihilation in hadron collisions. However, at hig
energies, higher-order processes where vector bosons e
ted from incoming quarks or antiquarks initiate a hard sc
tering process can be enhanced by logarithmic factors a
thus can compete with the lowest-order production mech
nism. These processes have successfully been described
the help of the effective vector-boson method~EVBM!
which applies the concept of partons in a hadron to the c
of vector bosons: Vector bosons are viewed as partons
quarks and electrons, as quarks and gluons are parton
hadrons. In analogy to the Weizsa¨cker-Williams approxima-
tion of QED @1# the cross section for a scattering proce
a1A→X at a center-of-mass energys is factorized into
probability densitiesPpol

V/a(z) for finding a vector bosonV
with polarization ‘‘pol’’ in the incoming fermiona and hard
vector-boson scattering cross sections at a reduced cente
mass energyxs:

ds~a1A→X,s!5E
xmin

1

dx(
V

(
pol

Ppol
V/a~x!ds

3~Vpol1A→X,xs!. ~1!

The basic assumptions in the effective vector-boson meth
are that the dominant contributions for producing the fin
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stateX are due to vector-boson-initiated processes and t
the cross section for the scattering of an off-shell vector b
son can be related to the corresponding on-shell cross s
tion.

In the application of the method to processes with tw
intermediate vector bosons~see Fig. 1! it was assumed that
convolutions of single-vector-boson probability densities a
sufficient to obtain luminosities for vector-boson pairs,

Lpol1pol2
V1V2 /ab~x!5E

zmin

1 dz

z
Ppol1

V1 /a~z!Ppol2

V2 /b~x/z!, ~2!

which can be used to express the cross section for tw
fermion scattering in terms of the vector-boson vector-bos
scattering cross section:

ds~a1b→X,s!5E
xmin

1

dx (
V1 ,V2

(
pol1 ,pol2

Lpol1pol2
V1V2 /ab~x!ds

3~V1
pol11V2

pol2→X,xs!. ~3!

The possibility to generalize the equivalent photon a
proximation to the case of massive vector bosons was fi
noted in @2# and explicitly formulated in@3–5#. Originally,

FIG. 1. The vector-boson scattering diagram.
6078 © 1996 The American Physical Society
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53 6079LUMINOSITIES FOR VECTOR-BOSON–VECTOR-BOSON . . .
the concept was invented for the description of processe
very high energies and thus included a number of appro
mations valid at high energies only. These approximatio
were partly of kinematic origin and concerned the neglect
mass terms or of the transverse momentum of the interme
ate vector bosons. According to the details of the approxim
tion, a variety of versions for vector-boson distributions wi
differing numerical results can be found in the literature. T
most simple of these approximations—the leading logari
mic approximation~LLA !—amounts to taking a zero-mas
limit. In addition, since it was observed that for the produ
tion of a heavy Higgs particle in vector-boson scattering t
cross section is dominated by longitudinal polarization@6#,
first applications of the method neglected contributions fro
transversely polarized vector bosons and the interference
tween amplitudes for different polarizations.

Comparisons with exact calculations have shown that
method is indeed helpful and leads to reliable results, in p
ticular for Higgs-boson production@7# and for heavy-fermion
production@8#. The application to vector-boson vector-boso
scattering off the Higgs resonance@9# was less successful;
the effective vector-boson method overestimated the ex
result @10#. Adding the ~positive! contribution from trans-
versely polarized vector bosons@11# could, of course, not
lead to an improved agreement between the EVBM and
act calculations for vector-boson pair production.

In @12# it was shown that approximations of kinemati
origin can be avoided and a set of exact vector-boson dis
butions was derived. There it was also shown that interf
ence terms~i.e., nondiagonal contributions! do not appear in
the case of single-vector-boson processes~see also@5#!. The
only remaining necessary assumption in using the EVBM f
single-vector-boson processes concerned the off-shell beh
ior of the hard scattering cross section.

We will show that the improvement obtained with th
results of@12# is not sufficient to accurately describe two
vector-boson processes. The simple convolution of tw
single-vector-boson probabilities1 as in Eq.~2! ignores the
mutual influence of the emission of one boson on the pro
ability for the emission of another. In addition, interferenc
contributions need not vanish, as has been noticed in
specific example of Higgs boson production in@15#. This is
in analogy to two-photon processes@16# where it was shown
already in @17# that the extension of the Weizsa¨cker-
Williams method from one photon to the case of two photo
is not straightforward.

The main purpose of the present work is the extension
the effective vector-boson method to the case of proces
with two vector bosons, as needed in the study of vect
boson vector-boson scattering. It thus combines the ex
treatment of the two-boson kinematics, presented for phot
in @17#, with the exact definition of vector-boson distribu
tions, presented for single vector bosons in@12#. Our deriva-
tion ~Sec. II! will not use any kinematic approximation. I
turns out that nondiagonal terms are indeed needed. In S

1Explicit expressions for the luminosity functions derived from
convolutions of single-boson distributions in the leading logarit
mic approximation have been given in@13,14# and the last but one
reference of@9#.
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III, we will present exact luminosity functions for vector-
boson pairs in quark or electron initiated processes. One c
then identify the additional approximation needed to redu
these luminosities to convolutions of the exact single-vecto
boson densities of@12# ~Sec. IV! and in the high-energy limit
we also recover the leading logarithmic versions of vecto
boson distributions as used in the literature~Sec. V!. Finally,
in Sec. VI we will also present numerical results for thes
exact luminosities and compare them with the ones of si
plified approaches.

Despite the fact that both single-vector-boson distrib
tions and two-vector-boson luminosities can be obtained e
actly without any approximation, there remains the questi
whether the set of Feynman diagrams that can be descri
with the help of the EVBM is indeed the dominating one
The answer to this problem depends on the process and
to be found in a case-by-case study. Of particular concern
this respect is the question whether the considered subse
diagrams is gauge invariant. In@18# it was observed that for
off-shell vector-boson scattering there may occur stro
gauge cancellations between those contributions taken i
account in the EVBM and bremsstrahlung diagrams whi
are ignored. Motivated by this, Kunszt and Soper@19# argued
that the extrapolation to off-shell masses is not always gu
anteed, but for heavy Higgs-boson production they show
an axial gauge the validity of the basic assumption that t
extrapolation to off-shell masses is indeed a smooth one.

Our final explicit expressions for the two-vector-boso
luminosities are obtained with specific simple assumptio
for the off-shell behavior of the vector-boson scattering cro
sections. However, we keep a clean separation of exac
calculable parts and model assumptions and our express
are written in a form which allows for an easy accommod
tion of an improved off-shell dependence, as soon as t
corresponding information would be available. Apart from
these caveats, our luminosities are exact results of a calcu
tion of a subset of Feynman diagrams. In particular, the
range of validity is not restricted to large energies. Therefo
we will also present some of the results for an energy
As5500 GeV, relevant for a next-generatione1e2 collider.
The alternative approach of using convolutions of the LL
single-vector-boson distributions is not applicable at the
small energies.

II. GENERAL FORMALISM OF THE EFFECTIVE
VECTOR BOSON METHOD

We consider the production of an arbitrary stateW in the
two-fermion scattering process~see Fig. 1!

1~ l 1!12~ l 2!→18~p1!128~p2!1W~pW!. ~4!

The four-momenta of the incoming and outgoing fermion
are denoted byl 1 , l 2 andp1 , p2 , respectively, and the total
center-of-mass energy squared is given bys5( l 11 l 2)

2. The
final stateW, which may contain any number of particles
has four-momentumpW and its invariant mass squared wil
be denoted byW 25pW

2 . The cross section for the proces
~4! is given by

h-
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s f f5
1

2s

1

~2p!2
E d3p1

2p1
0 E d3p2

2p2
0 E drWuMf f u2d~4!~ l 11 l 22p12p22pW!. ~5!

In ~5!, uMf f u2 is the squared amplitude for the two-fermion-initiated process, averaged and summed over helicitie
drW is the phase space element for the stateW.

For high energies one can neglect the fermion masses. With the help of the momentum transfersqj5 l j2pj , j51,2, and
using the dimensionless variables

x5
W 2

s
, z5

MX
2

s
with MX

25~pW1p2!
2, ~6!

as well as

Q2
25

1

12q1
2/MX

2 q2
2 , ~7!

one can parametrize the phase space by

s f f5
1

32sEx0
1

dxE
x

1dz

z E2s~12z!

0

dq1
2E

2sz~12x/z!

0

dQ2
2E

0

2pdw1

2p E
0

2pdw2

2p E drWuMf f u2d~4!~ l 11 l 22p12p22pW!. ~8!
rs

er
e

-

Here,x05Wmin
2 /s is the minimal value of the invariant mas

squared of the final stateW normalized to the total center-
of-mass energy. In case of ann-particle final state,Wmin is
equal to the sum of the masses of these particles.w1 and
w2 are azimuthal angles for the momentap1 andp2 , respec-
tively, defined in Breit systemsB1 andB2 in which either
q1 or q2 has only a nonvanishingz component~see Appen-
dix A 1!.

If the process~4! proceeds via the vector-boson fusio
mechanism as shown in Fig. 1, the expression for the am
tudeMf f is given by2

Mf f5e2 (
m,n521

1

~21!m1n
j 1~ l 1 ,p1!•e1* ~m!

q1
22M1

2

3
j 2~ l 2 ,p2!•e2* ~n!

q2
22M2

2 M~m,n!, ~9!

where thee j (m) are polarization vectors for the vector boso
Vj with massM j and helicitym50,61 in the center-of-
mass systemC of q11q2 . Explicit expressions for them are
given in Appendix A 2. Thej j ( l j ,pj ) are fermionic current
four-vectors,e is the positron charge, andM(m,n) is the
amplitude for the production of the final stateW from vector
bosonsV1 andV2 with helicitiesm andn, respectively. The
amplitudesM(m,n) must be evaluated at off-shell values o
q1
2 andq2

2 . The polarization vectors are normalized accor
ing to

e j~m!•e j* ~m8!5dm,m8~21!m, j51,2, ~10!

2A sum must be taken over all vector-boson pairsV1 ,V2 which
can couple to the fermions and produce the final stateW. We do not
treat the interference terms here, but the extension of our formal
to take them into account is straightforward.
s

n
pli-

n

f
d-

and satisfy the completeness relation

(
m521

1

e j
m~m!e j*

n~m!52gmn1
qj

mqj
n

M j
2 ~no sum onj !,

~11!

which corresponds to writing the vector-boson propagato
in the unitary gauge.

The expression for the squared amplitude, averaged ov
the spin states of the initial fermions and summed over th
spins of the final state fermions, is

uMf f u254 e4 (
m,m8521

1

(
n,n8521

1

3~21!m1m81n1n8
T̃1~m,m8!

~q1
22M1

2!2
T̃2~n,n8!

~q2
22M2

2!2

3M~m,n!M* ~m8,n8!, ~12!

with the fermionic tensors

T̃j~m,m8!5
1

4(pol j j~ l j ,pj !•e j* ~m! j j* ~ l j ,pj !•e j~m8!.

~13!

The tensorT̃j (m,m8) can be decomposed into two parts with
different combinations of the vector and axial-vector cou
pling constantsv j and aj of the vector bosonsVj by the
relation

T̃j~m,m8!5~v j
21aj

2!C̃j~m,m8!12v jaj S̃j~m,m8!.
~14!

The tensorsC̃j (m,m8) andS̃j (m,m8) ~i.e., tensors in helicity
space! are given by

ism
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_C̃j~m,m8!5pj•e j* ~m!l j•e j~m8!1pj•e j~m8!l j•e j* ~m!

2pj• l je j* ~m!•e j~m8! ~15!

and

_S̃j~m,m8!5 i eabgdpj
ae j

b* ~m!l j
ge j

d~m8!, ~16!

with e012351.
The w2 dependence of the tensor componen

of C̃j (m,m8) and S̃j (m,m8) appears in terms of simple ex
ponential functions. Factorizing them, we defin
w2-independent tensorsCj (m,m8) andSj (m,m8),

C̃1~m,m8!5C1~m,m8!ei ~m2m8!w2,

S̃1~m,m8!5S1~m,m8!ei ~m2m8!w2,

C̃2~n,n8!5C2~n,n8!e2 i ~n2n8!w2,

S̃2~n,n8!5S2~n,n8!e2 i ~n2n8!w2, ~17!
ts
-
e

for which the following relations hold:

Cj~m8,m!5Cj* ~m,m8!,

Sj~m8,m!5Sj* ~m,m8!,

Cj~2m8,2m!5~21!m1m8Cj~m,m8!,

Sj~2m8,2m!52~21!m1m8Sj~m,m8!. ~18!

The last relation in~18! implies

Sj~12 !50,

Sj~00!50. ~19!

Consequently,Cj (11), Cj (00), Cj (12), andCj (10) can
be chosen as the 234 independent components o
Cj (m,m8) and theSj (m,m8) have the 232 independent
componentsSj (11) andSj (10). We illustrate this situa-
tion by writing down C̃1(m,m8) and S̃1(m,m8) in matrix
form:
_C̃1~m,m8!5S C1~11 ! C1* ~10!e2 iw2 C1* ~12 !e22iw2

C1~10!eiw2 C1~00! 2C1* ~10!e2 iw2

C1~12 !e2iw2 2C1~10!eiw2 C1~11 !
D ~20!

and

_S̃1~m,m8!5S S1~11 ! S1* ~10!e2 iw2 0

S1~10!eiw2 0 S1* ~10!e2 iw2

0 S1~10!eiw2 2S1~11 !
D , ~21!

where the columns from left to right correspond tom51,0,2 and the rows from top to bottom tom851,0,2. Expressions
for the independent components in terms of the integration variables in~8! are given in Appendix B. Similar decompositions
can be given forC̃2(m,m8) and S̃2(m,m8). The quantitiesC2(m,m8) andS2(m,m8) turn out to be real.

Carrying out the integration overw2 , there remain altogether 19 terms in them, m8, n, n8 helicity space, out of which nine
haveh5m2m85n2n850 ~they are diagonal in the helicities ofV1 andV2), four haveh51, four haveh521, and the other
two haveh52 andh522, respectively. For the case of two-photon interactions this classification has been given in@17#.
Using this decomposition, one can write the expression in Eq.~12! in the following way:

1

2pE0
2p

dw2 (
m,m8,n,n8521

1

~21!m1m81n1n8T̃1~m,m8!T̃2~n,n8!M~m,n!M* ~m8,n8!

5~v1
21a1

2!~v2
21a2

2!~KTTMTT1KTLMTL1KLTMLT1KLLMLL1KTLTLMTLTL

1KTTTTMTTTT2KTTTT
Im MTTTT

Im 2KTLTL
Im MTLTL

Im ! ~22!

1~2v1a1!~2v2a2!~KTTMTT1KT̄L T̄LM T̄L T̄L2K
T̄L T̄L

Im
M

T̄LT̄L

Im
!1~v1

21a1
2!~2v2a2!~KTT̄MTT̄

1KLT̄MLT̄1KTLT̄LMTLT̄L2K
TLT̄L

Im
M

TLT̄L

Im
!1~2v1a1!~v2

21a2
2!~KT̄TM T̄T1KT̄LM T̄L

1KT̄LTLM T̄LTL2K
T̄LTL

Im
M

T̄LTL

Im
!5(

pol
cf ,polKpolMpol , ~23!
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where the last line defines the notation to be used below
with ‘‘pol’’ being labels for the polarizations, pol5 TT,
TT, etc.cf ,pol contain the fermionic coupling constants and
depending on the index ‘‘pol,’’ can take the values
cf ,pol5(v1

21a1
2)(v2

21a2
2), (2v1a1)(2v2a2), (v1

21a1
2)

3(2v2a2), and (2v1a1)(v2
21a2

2). The quantitiesKpol ,
which are fivefold differential luminosities—they depend on
W 2, q1

2 , q2
2 , MX

2 , andw1—are defined by

KTT54C1~11 !C2~11 !,

KTT54S1~11 !S2~11 !,

KTL52C1~11 !C2~00!,

KLT52C1~00!C2~11 !,

KLL5C1~00!C2~00!,

KTLTL58Re@C1~10!#C2~10!,

KT̄L T̄L58Re@S1~10!#S2~10!,

KTTTT52Re@C1~12 !#C2~12 !,

KTT̄54C1~11 !S2~11 !,

KT̄T54S1~11 !C2~11 !,

KT̄L52S1~11 !C2~00!,

KLT̄52C1~00!S2~11 !,

KTLT̄L58Re@C1~10!#S2~10!,

KT̄LTL58Re@S1~10!#C2~10!,

K
TLT̄L

Im
58Im@C1~10!#S2~10!,

K
T̄LTL

Im
58Im@S1~10!#C2~10!,

KTLTL
Im 58Im@C1~10!#C2~10!,

K
T̄L T̄L

Im
58Im@S1~10!#S2~10!,

KTTTT
Im 52Im@C1~12 !#C2~12 !, ~24!

with Cj (m,m8) andSj (m,m8) from ~B1! and ~B2! ~see Ap-
pendix B!. The averaged sums of products of amplitudes fo
the vector-boson scattering processes,Mpol , to be simply
called squared amplitudes in what follows, are define
through

MTT5
1

4
~ uM~11 !u21uM~22 !u21uM~12 !u2 ~25!

1uM~21 !u2),

MTT5
1

4
~ uM~11 !u21uM~22 !u22uM~12 !u2

2uM~21 !u2!,
,

,

r

d

MTL5
1

2
~ uM~10!u21uM~20!u2!,

MLT5
1

2
~ uM~01 !u21uM~02 !u2!,

MLL5uM~00!u2,

MTLTL5
1

4
Re@M~11 !M* ~00!1M~22 !M* ~00!

2M~10!M* ~02 !2M~20!M* ~01 !#,

MT̄LT̄L5
1

4
Re@M~11 !M* ~00!1M~22 !M* ~00!

1M~10!M* ~02 !1M~20!M* ~01 !#,

MTTTT5Re@M~11 !M* ~22 !#,

MTT̄5
1

4
~ uM~11 !u22uM~22 !u22uM~12 !u2

1uM~21 !u2!,

MT̄T5
1

4
~ uM~11 !u22uM~22 !u21uM~12 !u2

2uM~21 !u2!,

MT̄L5
1

2
~ uM~10!u22uM~20!u2!,

MLT̄5
1

2
~ uM~01 !u22uM~02 !u2!,

MTLT̄L5
1

4
Re@M~11 !M* ~00!2M~22 !M* ~00!

1M~10!M* ~02 !2M~20!M* ~01 !#,

MT̄LTL5
1

4
Re@M~11 !M* ~00!2M~22 !M* ~00!

2M~10!M* ~02 !1M~20!M* ~01 !#,

M
TLT̄L

Im
5
1

4
Im@M~11 !M* ~00!1M~22 !M* ~00!

1M~10!M* ~02 !1M~20!M* ~01 !#,

M
T̄LTL

Im
5
1

4
Im@M~11 !M* ~00!1M~22 !M* ~00!

2M~10!M* ~02 !2M~20!M* ~01 !#,

MTLTL
Im 5

1

4
Im@M~11 !M* ~00!2M~22 !M* ~00!

2M~10!M* ~02 !1M~20!M* ~01 !#,
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M
T̄LT̄L

Im
5
1

4
Im@M~11 !M* ~00!2M~22 !M* ~00!

1M~10!M* ~02 !2M~20!M* ~01 !#,

MTTTT
Im 5Im@M~11 !M* ~22 !#.

The squared amplitudes

MTT̄ ,MT̄T ,MT̄L ,MLT̄ ,MTLT̄L ,MT̄LTL ,MT̄LT̄L

Im
,MTLTL

Im

~26!

vanish if both the interaction responsible for the transitio
V1V2→W is parity conserving, i.e., if M(m,n)
5M(2m,2n), and a summation over the polarization o
the final stateW is performed. The luminositiesKpol

Im vanish
after integrating over the azimuthal anglew1 . We also note
that the squared amplitudesMpol

Im are zero if all amplitudes
M(m,n) can be chosen real. Therefore we restrict the fo
lowing discussion to the remaining eight luminosities
n

f

l-

KTT ,KTT ,KTL ,KLT ,KLL ,KTLTL ,KT̄L T̄L ,KTTTT. ~27!

Expression~23! shows explicitly the trivial factorization
of the cross section into parts describing the vector-bos
emission from the incoming fermions and parts pertaining
the vector-boson vector-boson scattering. These latter piec
combined with the phase space integral for the final sta
W, can be interpreted as cross sections and correlations
virtual vector-boson scattering processes:

spol~W 2;q1
2 ,q2

2!5~2p!4
1

2kE drWMpold
~4!~q11q22pW!.

~28!

In Eq. ~28! we included a ‘‘flux factor’’ 1/2k. Its presence
ensures that for on-shell vector-boson scattering,spol in Eq.
~28! is indeed a cross section. In this case one has
k5k05AW 41M1
41M2

422W 2M1
222W 2M2

222M1
2M2

2, ~29!

with W 4[(W 2)2. The specific form ofk for off-shell bosons is irrelevant since we will need only the combinationkspol in
the following.

In terms of the cross sections~28! for virtual vector-boson scattering, the cross section~8! for the two-fermion initiated
process is given by

s f f5S a

2p D 2E
x0

1

dxE
x

1dz

z E2s~12z!

0

dq1
2E

2zs~12x/z!

0

dQ2
2 1

~q1
22M1

2!2
1

~q2
22M2

2!2
E
0

2pdw1

2p
k(

pol
cf ,polKpolspol~W 2;q1

2 ,q2
2!,

~30!
rgy

-

wherea is the fine structure constant.
Up to this point, the calculation has been exact witho

any approximation. The basic assumption of the equival
vector-boson method concerns the dependence of the
shell cross sectionsspol(W 2;q1

2 ,q2
2) on the off-shell masses

qi
2 . For transverse polarization it is certainly a good appro
mation to identifysTT(W 2;q1

2 ,q2
2) with its on-shell value

sTT(W 2;M1
2 ,M2

2). However, for longitudinal polarizations,
spol(W 2;q1

2 ,q2
2) contains kinematic singularities atq1

250
and q2

250, as can be seen from the explicit form of th
polarization vectors@Eq. ~A5! in Appendix A 2#. Therefore,
for longitudinal polarization, the resulting factorsMi

2/qi
2

should be taken into account explicitly. Apart from this
there are good arguments from dispersion relation techniq
to believe that the extrapolation to off-shell masses is
smooth one.

We therefore make the assumption that the extrapolat
to off-shell masses can be described by simple proportion
ity factors f pol(W 2;q1

2 ,q2
2) with f pol(W 2;M1

2 ,M2
2) 51 and

write

kspol~W 2;q1
2 ,q2

2!5k0f pol~W 2;q1
2 ,q2

2!spol~W 2;M1
2 ,M2

2!,
~31!

wherespol(W 2;M1
2 ,M2

2) are the cross sections for on-she
ut
ent
off-

xi-

e

,
ues
a

ion
al-

ll

vector-boson scattering evaluated at the rescaled ene
squaredW 25(q11q2)

25xs of the vector-boson vector-
boson scattering process.

To describe theqj
2 dependence of the off-shell cross sec

tions, we will consider the following specific forms of the
proportionality factorsf pol which take into account theqj

2

dependence of the longitudinal polarization vectorse j (0):

f TT5 f TT5 f TTTT51, f TL5
M2

2

2q2
2 , f LT5

M1
2

2q1
2 ,

~32!

f LL5
M1

2

2q1
2

M2
2

2q2
2 , f TLTL5 f T̄L T̄L5

M1

A2q1
2

M2

A2q2
2
.

We now introduce the luminositiesLpol(x) which are dif-
ferential in the variablex, writing the differential cross sec-
tion in the form

ds f f

dx
5(

pol
Lpol~x!spol~xs;M1

2 ,M2
2!, ~33!

with the luminosities
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Lpol~x!5S a

2p D 2k0

s
cf ,polE

x

1dz

z E2s~12z!

0

dq1
2E

2sz~12x/z!

0

dQ2
2 1

~q1
22M1

2!2
1

~q2
22M2

2!2
E
0

2pdw1

2p
f polKpol . ~34!

The luminositiesLpol(x) depend onx and, since they are dimensionless, on the masses of the vector bosons via the
M1

2/s andM2
2/s. As well, we have included the coupling constants of the vector bosons in the definition.Lpol(x)dx can be

interpreted as the probability that the vector-boson pairV1 , V2 with the specified polarization and with center-of-mass energ
in the interval@xs,(x1dx)s# will be emitted from the fermion pair 1 and 2.

III. EXACT LUMINOSITIES

We evaluate the expressions~34! adopting the forms~32! for the behavior of the virtual cross sections. No other assum
tions are made. We rewrite the phase space integral in~34! in the following way:

E
x

1dz

z E2s~12z!

0

dq1
2E

2sz~12x/z!

0

dQ2
2E

0

2pdw1

2p
5E

2s1W 1
2

0

dq1
2E

2s1W 2
2

0

dq2
2E

x̂s

sdmX

mX
E
0

2pdw1

2p
, ~35!
e

e

ri-
s

on
a-
where we have introduced the variablesx̂5(n1KW)/s,
with n5q1•q25

1
2(W 22q1

22q2
2), W5AW 2, and

K5k/2W, K being the magnitude of the three-momentum
the vector bosonsV1 ,V2 in their center-of-mass frame, and
mX5MX

22q1
2 . The integration limits forq1

2 andq2
2 in ~35!,

following from (q1
21s)(q2

21s).W 2s ~with q1
2,0 and

q2
2,0), are written with the help ofW 1

25W 2 and
W 2

25W 2s/(s1q1
2). The luminosities vanish for

x,(M11M2)
2/s.

Using Eq.~35!, the expressions~34! for the luminosities
become

Lpol~x!5S a

2p D 2k0

s
cf ,pol

3E
2s1W 1

2

0

dq1
2E

2s1W 2
2

0

dq2
2

q1
2

~q1
22M1

2!2

3
q2
2

~q2
22M2

2!2
f polJpol , ~36!

with the triple-differential luminosities~they are functions of
x,q1

2 andq2
2)

Jpol5
1

q1
2q2

2E
x̂s

sdmX

mX
E
0

2pdw1

2p
Kpol , ~37!
of

andKpol were defined in~24!. The integrations overz and
w1 in ~37! can be performed analytically and the results ar
given in ~40!. We will discuss later which limiting cases will
lead to results already obtained in the literature.

The singularities of the integrands in Eq.~36! at
qj
25M j

2 lead, after integration, to mass singular terms. In th
high-energy limits@M j

2 they appear either as familiar loga-
rithms ln(s/Mj

2) or as a pole singularity 1/M j
2 . The latter

happens, e.g., in both masses for theLL term or in one of the
masses for theTL andLT luminosities. Since we will evalu-
ate the two-dimensional integration overq1

2 andq2
2 in ~36!

numerically, specific care has to be taken of these singula
ties. This is done by introducing new integration variable
xj , yj , andzj ( j51,2) depending on the type of the singu-
larity. The new variables are chosen such that the integrati
region becomes the unit cube in two dimensions. Their rel
tions toqj

2 are given by

qj
25M j

2F12SM j
21s2W j

2

M j
2 D xj G

5M j
2F12

M j
21s2W j

2

~s2W j
2!~12yj !1M j

2G
5~2s1W j

2!zj , j51,2, ~38!

and the luminosities~36! take the final form
LTT~x!5S a

2p D 2~v121a1
2!~v2

21a2
2!

k0

s
lnSM1

21s2W 1
2

M1
2 D E

0

1

dx1E
0

1

dx2 lnSM2
21s2W 2

2

M2
2 D q1

2

q1
22M1

2

q2
2

q2
22M2

2 JTT , ~39!

LTT~x!5S a

2p D 2~2v1a1!~2v2a2!k0

s
lnSM1

21s2W 1
2

M1
2 D E

0

1

dx1E
0

1

dx2 lnSM2
21s2W 2

2

M2
2 D q1

2

q1
22M1

2

q2
2

q2
22M2

2 JTT ,

LTL~x!5S a

2p D 2~v121a1
2!~v2

21a2
2!

k0

s
lnSM1

21s2W 1
2

M1
2 D E

0

1

dx1E
0

1

dy2S 12
M2

2

M2
21s2W 2

2D q1
2

q1
22M1

2 JTL ,

LLT~x!5S a

2p D 2~v121a1
2!~v2

21a2
2!

k0

s S 12
M1

2

M1
21s2W 1

2D E
0

1

dy1E
0

1

dx2 lnSM2
21s2W 2

2

M2
2 D q2

2

q2
22M2

2 JLT ,
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LLL~x!5S a

2p D 2~v121a1
2!~v2

21a2
2!

k0

s S 12
M1

2

M1
21s2W 1

2D E
0

1

dy1E
0

1

dy2S 12
M2

2

M2
21s2W 2

2D JLL ,
LTLTL~x!5S a

2p D 2~v121a1
2!~v2

21a2
2!

k0

s
M1M2 lnSM1

21s2W 1
2

M1
2 D

3E
0

1

dx1E
0

1

dx2 lnSM2
21s2W 2

2

M2
2 D q1

2

q1
22M1

2

q2
2

q2
22M2

2

JTLTL

A2q1
2A2q2

2
,

LT̄L T̄L~x!5S a

2p D 2~2v1a1!
3~2v2a2!

k0

s
M1M2lnSM1

21s2W 1
2

M1
2 D E

0

1

dx1E
0

1

dx2 lnSM2
21s2W 2

2

M2
2 D q1

2

q1
22M1

2

q2
2

q2
22M2

2

JT̄L T̄L

A2q1
2A2q2

2
,

LTTTT~x!5S a

2p D 2~v121a1
2!~v2

21a2
2!

k0

s
~s2W 1

2!E
0

1

dz1E
0

1

dz2~s2W 2
2!

q1
4

~q1
22M1

2!2
q2
4

~q2
22M2

2!2
JTTTT
q1
2q2

2 ,

and theJpol are given by

JTT5
8

k4 F @2n2~s1n!21q1
2q2

2~s218sn1q1
2q2

2!# lnS 1
x̂
D 26s2n224sn312n41q1

2q2
2~23s214sn16n21q1

2q2
2!

1KW@3s2n18sn212n31q1
2q2

2~4s1n!#G ,
~40!

JTT5
4

k2 F ~2sn1n21q1
2q2

2!lnS 1
x̂
D 24sn12n212q1

2q2
212KW~s1n!G ,

JTL5
4

k4 F @4s2n218sn312q1
2q2

2~s218sn13n2!# lnS 1
x̂
D 213s2n224sn312n41q1

2q2
2~25s214sn113n213q1

2q2
2!

12KW @3n218sn21n312q1
2q2

2~2s1n!#G ,
JLT5JTL ,

JLL5
8

k4 F @2s2n214sn31q1
2q2

2~s218sn12n21q1
2q2

2!# lnS 1
x̂
D 27s2n21q1

2q2
2~22s217n212q1

2q2
2!

1KW @3s2n18sn21q1
2q2

2~4s13n!#G ,
JTLTL5

32

k4A2q1
2A2q2

2F @3s2n19sn21n31q1
2q2

2~3s12n!# lnS 1
x̂
D 2

n2~s1n!

x̂
28s2n13n31q1

2q2
2~s16n!

1KW~2s2111sn12n21q1
2q2

2!G ,
JT̄L T̄L5

8

k2A2q1
2A2q2

2F ~s1n!lnS 1
x̂
D 2

n

x̂
12n2s1KWG ,

JTTTT5
4

k4q1
2q2

2F ~3s2112sn12n21q1
2q2

2!lnS 1
x̂
D 1

n2

x̂2
2
5sn14n2

x̂
25s214sn16n213q1

2q2
21KW~8s13n!G .
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For the case of two-photon processes initiated by electr
electron scattering, analogous expressions have been der
in @17#. Our results are related to the correspondingĴpol from
@17# by

Jpol5
1

x2
Ĵpol

for pol 5TT, TL, andLL,

JTTTT5
1

x2
ĴTT
ex ,

and

JTLTL5
2

x2
ĴLT
ex

~note that we have neglected the fermion masses!. We finally
remark that, forM15M2 , we haveLLT(x)5LTL(x).

The integrals in Eq.~39! are well suited for numerical
evaluation. Their integrands contain no singularities; inste
the poles of order one show up as logarithms of the fo
ln@(Mj

21s2W j
2)/M j

2#, while the poles of order two~which
would by themselves lead to a factorM j

22) have been can-
celed by corresponding factorsM j

2 included in our assump-
tions for the behavior of thef pol(W 2;q1

2 ,q2
2), Eq.~32!. Since

the expressions Eq.~39! involve two-dimensional numerical
integrations of the momentum transfersq1

2 andq2
2 , it would

be straightforward to replace the model assumptions Eq.~32!
by better ones if required. The contribution from the leadin
singularities would not change then; however, sublead
terms~nonlogarithmic contributions for transverse polariza
tion, logarithmic contributions for longitudinal polarization!
are model dependent. For the cases of Higgs production
heavy quark production, modifications of single-W boson
distributions following from the exact off-shell behavior o
the corresponding hard cross sections have been studie
@20#.

IV. CONVOLUTIONS OF SINGLE-VECTOR-BOSON
DISTRIBUTIONS

Since helicities of massive particles are not Lorentz i
variant, the polarization vectors have to be defined in a de
nite reference frame, which we chose to be the center-
mass system of the two vector bosons. Therefore, theCi and
Si depend on both momentum transfersq1

2 and q2
2 at the

same time. This means that the emission of a vector bo
V1 with definite helicity from fermion 1 is not independen
from the off-shell mass of the second vector bosonV2 , and
the two-boson luminosities do not factorize into single-bos
densities. However, since at high energies the process
dominated by small momentum transfers, it seems justifi
to neglect this mutual dependence onqi

2 . Then the expres-
sions ~34! for the two-vector-boson luminosities reduce t
convolutions of single-vector-boson densities. These sing
vector-boson distributions have been reported in@12#.

To be specific, we consider the following simplifications
~1! Setq2

250 in C1(m,m8) andS1(m,m8).
~2! Setq1

250 in C2(n,n8) andS2(n,n8).
on-
ived

ad,
rm

g
ing
-

and

f
d in

n-
fi-
of-

son
t

on
is

ed

o
le-

.

~3! Set Q2
25q2

2 in Eq. ~34!; i.e., omit the factor
(12q1

2/MX
2)21 in the definition Eq.~7! of Q2

2 .
In addition, we evaluate the flux factork̃0 at q1

250 and
q2
250; i.e., we choosek̃05W 2. Note that with the simplifi-
cations ~1! and ~2!, the luminosities for the nondiagona
squared amplitudes,LTLTL(x), LT̄L T̄L(x), and LTTTT(x),
vanish.

With these simplifications the integrals overq1
2 andQ2

2 in
~34! can be carried out independently and the luminositi
~34! take the factorized form

Lkl~x!5E
x

1dz

z
Pk
1~z,M1

2!Pl
2S xz ,M2

2

z D , ~41!

wherek,l5T, T̄, L and the functionsPT
i , P

T̄

i
, andPL

i are
the single-vector-boson distributions of@12#, explicit forms
of which are

PT
j ~z,M2!5

a

2p
~v j

21aj
2!
z

2E2s~12z!

0 d~q2!~2q2!~c0
211!

~q22M2!2
,

P
T̄

j
~z,M2!5

a

2p
~2v jaj !zE

2s~12z!

0 d~q2!~2q2!c0
~q22M2!2

,

PL
j ~z,M2!5

a

2p
~v j

21aj
2!M2

z

2E2s~12z!

0 d~q2!s0
2

~q22M2!2
,

~42!

with

c05
22z1q2/s

z2q2/s
and s052

A12z1q2/s

z2q2/s
. ~43!

The integrals in~42! can be performed analytically and the
results have been given in@12#.3 The quantitiesPk

j (z,M2)
are the probability densities for the emission of a vector b
son with massM from a fermion j with couplingsv j and
aj . The scaling variablez describes the invariant mass
squared remaining after the emission of the vector bos
V1 from fermion 1. Sinceq2

2 has been neglected in describ
ing the emission, the center-of-mass systemC of the two
vector bosons is related to the center-of-mass system of v
tor bosonV1 and fermion 2 by a boost in the direction of the
fermion 2. Therefore, the helicities of the vector bosonV1 ,
originally defined in the center-of-mass systemC, agree in
the two reference systems. The same line of thought app
to the emission of vector bosonV2 from fermion 2 with the
scaling variablez being replaced byx/z.

In summary, the luminosities~34! can be written as con-
volutions ~41! of single-vector-boson distributions~42! if
one neglects the mutual effects of the variation of the o
shellness of one of the vector bosons on the probability f
the emission of the other vector boson. The luminosities f
the off-diagonal squared amplitudes vanish in this case.

3Also the distributions of@5# are exact for processes with only one
internal vector boson which couples to the amplitude for the ha
scattering subprocess like a fermion. This specific assumption in@5#
is the only difference between the distributions of@5# and @12#.
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V. LEADING LOGARITHMIC APPROXIMATION

Further approximations in Eqs.~39! allow us to derive
simplified expressions which have often been used in
literature and are referred to as the leading logarithmic a
proximation ~LLA !. The approximation consists in neglec
ing the off-shell massesqi

2 in Jpol and performing a high-
energy limit s@M j

2 . To be precise, with the following
substitutions in~39!,
the
p-
t-

lnSM j
21s2W j

2

M j
2 D→ lnS s

M j
2D , S 12

M j
2

M j
21s2W j

2D→1,

qj
2

qj
22M j

2→1, k0→W 2, ~44!

one obtains
LTT~x!→S a

2p D 2~v121a1
2!~v2

21a2
2!
1

x F ~21x!2 lnS 1xD 22~12x!~31x!G lnS s

M1
2D lnS s

M2
2D ,

LTT~x!→S a

2p D 2~2v1a1!~2v2a2!F ~41x!lnS 1xD 24~12x!G lnS s

M1
2D lnS s

M2
2D ,

LTL~x!→S a

2p D 2~v121a1
2!~v2

21a2
2!
1

x F4~11x!lnS 1xD 2~12x!~71x!G lnS s

M1
2D ,

LLT~x!→S a

2p D 2~v121a1
2!~v2

21a2
2!
1

x F4~11x!lnS 1xD 2~12x!~71x!G lnS s

M2
2D ,

LLL~x!→S a

2p D 2~v121a1
2!~v2

21a2
2!
4

x F ~11x!lnS 1xD22~12x!G . ~45!
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s
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Expressions forLTT , LTL , andLLL have been given already
in @13# and the complete set of luminosities includingLT̄T ,
LT̄L , andLL T̄ can be found in@14#. In a similar way, LLA
expressions for single-vector-boson distributions can be
tained from the exact ones, Eq.~42!. Their convolutions lead
again to Eq.~45!.

These formulas are obtained from the exact ones by t
ing into account only the contributions from the singularitie
at qj

2→0 to theqj
2 integrals and neglecting the contributio

from other regions in theq1
2 ,q2

2 integration. The choice of
s in the arguments of the logarithms is arguable; many oth
choices are also acceptable in the leading logarithmic
proximation and have been used in the literature. For e
ample,xs as argument instead ofs has been advocated in
@5,13#, since the quantitys2W 2

2 varies in the whole interval
@0,s# asq1

2 varies within its limits. We have checked numer
cally that the LLA with this choice deviates less from th
exact calculation. The deviation forx→1 can be improved
by choosingx(12x)s instead ofxs in the argument of the
logarithms. This choice is motivated by interpreting the a
proximation as resulting from a zero-mass limit and notin
that s2W 25(12x)s. We will use the formx(12x)s in
our numerical examples.

Related to the different possible choices of the argume
of the logarithm is the interpretation of the scaling variab
x. In @3,4,14,21#, the scaling variablex was defined as the
ratio of the vector-boson energy and the energy of the fer
ion from which it is emitted. With this definition, the relation
ŝ5xs between the fermion scattering energy and the subp
cess energy holds strictly only if the vector boson is emitt
ob-

ak-
s
n

er
ap-
x-

i-
e

p-
g

nt
le

m-

ro-
ed

in the forward direction. These versions thus imply a sma
angle approximation. In addition, the mentioned distribution
differ by various additional approximations. The distribu
tions of @4# neglect terms of the orderO(Mi

2/s). In @3,21#,4

the calculation was performed using a longitudinal polariz
tion vector for on-shell vector bosons, whereas in@14#
em(0) was defined taking into account that the vector boso
have off-shell masses2qj

2 . This and a more sophisticated
assumption concerning the off-shell behavior of the ha
scattering cross section in@14# are the reason for the differ-
ence between the distribution functions for longitudinal po
larization in @3,21# and @14#. The distributions for trans-
versely polarized vector bosons in@3,21# and@14# agree with
each other~after correcting misprints in the latter reference!.
Of course, all distributions agree in the leading logarithm
approximation.

VI. NUMERICAL RESULTS

In presenting numerical results for luminosities of vecto
boson pairs, we restrict ourselves to the representative c
of e1e2 annihilation. In our examples for the numerica
evaluation we useda51/137, MW580.2 GeV,MZ591.2
GeV, and the fermion vector-boson couplings are determin
using the weak mixing angle as given by cosuW5MW/MZ . In
Figs. 2 and 3 we show the exact luminosities~39! for finding

4The distributions of@21# supplement those of@3# by the distribu-
tion functionPT̄ @see Eq.~42!#.
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FIG. 2. LuminositiesLTT(x), LTT(x), LLT(x), andLLL(x) for a
W1W2 pair in e1e2 collisions atAs52 TeV.

FIG. 3. LuminositiesLTLTL(x), LT̄L T̄L(x), andLTTTT(x) for a
W1W2 pair in e1e2 collisions atAs52 TeV.
aW1W2 pair in ane1e2 pair ofAs52 TeV. The luminos-
ity LTT for transversely polarizedW6 is the largest one,
followed by LTL andLLL . From Fig. 3 one concludes that
the nondiagonal luminositiesLTLTL andLTTTT are compa-
rable in size with the diagonal ones and thus cannot be n
glected. The parity-violating luminosityLTT varies compara-
tively little with x at not too highx, and at higherx it
becomes equal to theTT luminosity.

In order to estimate the improvement obtained by usin
the exact luminosities as compared to former simpler a
proaches, we show in the following series of figures ratios
the exact results and the convolutions of the exact singl
vector-boson distributions from@12# as well as their LLA
versions. The ratio of the convolutions~41! and the exact
luminosities are shown in Fig. 4 for aW1W2 pair in a 2
TeV e1e2 pair. The discrepancy grows with decreasingx.
For transverse polarizations it reaches a factor of 2.4
x50.01. We note that for theTL luminosity, which is not
shown, the discrepancy is even larger than for theTT lumi-
nosity. At higher energies the agreement between the tw
versions is better as seen in Fig. 5 where the same ratio
shown for a valueAs54 TeV, which is a typicalqq̄ subpro-
cess energy inpp collisions at 14 TeV. However, the ratio of
theTT luminosities forx50.01 is still 1.6~this corresponds
to the production of a final stateW of 400 GeV!.

Figure 6 shows the ratio of the LLA version of the lumi-
nosities, Eq.~45!, and the exact formulas forW1W2 in
e1e2 at 2 TeV. The LLA versions always overestimate the
exact results by far and only for theLL luminosity at not too
small values ofx might the LLA be useful. We note that the

FIG. 4. Ratios of the convolutions of single-vector-boson distr
butions, Eq.~41!, and the exact luminosities for pol5TT, TT,
LT, andLL for aW1W2 pair in e1e2 collisions atAs52 TeV.
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disagreement atx→1 would have been larger if we had use
xs instead ofx(12x)s in the argument of the logarithms.

We also present some results relevant for a 500 G
e1e2 collider. Figures 7 and 8 show the luminosities for
W1W2 pair as a function of theW1W2 pair invariant mass
W related tox by W 25xs. The luminosities reach thei
highest value not far from threshold. The behavior of t
different polarizations with varyingx is as described for the
2 TeV case. There is a resemblance between the pairsTT,
TT andTLTL, T̄LT̄L. In both cases, the luminosity propo
tional to the product of vector and axial-vector coupling
smaller than its partner at lowx but then joins it at highx.
Finally, Figs. 9 and 10 show the luminosities for aZZ pair.
The major changes as compared to theW1W2 case are due
to the change in the vector-boson couplings, while
changes due to the different vector-boson masses are s
The ZZ luminosities are more than an order of magnitu
smaller than theW1W2 luminosities. Owing to the smal
vector coupling of theZ, the luminosities which are propor
tional to the product of vector and axial-vector coupling a
negligible.

In summary, only the luminosities for longitudinally po
larized vector-boson pairs in regions of highAs andx might
be described by the convolutions or the LLA. For lumino
ties involving transverse polarizations, neither of these t
approximations reproduces the exact calculations with a
sonable accuracy. The disagreement becomes worse with
creasingx and decreasingAs.

To obtain luminosities relevant for deep-inelastic lept
nucleon scattering or for processes at hadron colliders,

FIG. 5. Ratios of the convolutions of single-vector-boson dis
butions Eq.~41! and the exact luminosities for pol5TT, TT, LT,
andLL for aW1W2 pair in e1e2 collisions atAs54 TeV.
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would have to adjust the factors in~39! containing the vector
and axial-vector coupling constants and, in addition, to fol
the luminosities with quark distribution functions. This
would result in luminosities for vector-boson pairs in an
ep, pp, or pp̄ initial state.

VII. CONCLUSION

We have derived exact distribution functions for a pair o
vector bosons inside a pair of fermions. In contrast to prev
ously used approximations, our distributions take into ac
count the mutual influence of the emission of one boson o
the emission of the other. The commonly used leading log
rithmic approximation and a convolution of exact distribu
tion functions for single vector bosons inside fermions ar
obtained if one neglects regions in phase space in which t
virtual vector bosons have four-momenta squared mu
larger than their squared masses. We have shown that
transverse polarizations of the vector bosons, these appro
mations do not reproduce the exact calculation with a re
sonable accuracy.

Our results are obtained from an exact calculation of
subset of Feynman diagrams without the need to introdu
any approximation except specific assumptions for the of
shell behavior of vector-boson scattering cross sections.
different off-shell behavior could be taken into account in
our formalism without additional complications. Of course
in order to obtain complete predictions for cross sections
vector-boson production ine1e2 or hadron colliders, one

tri- FIG. 6. Ratios of the leading logarithmic approximation for
vector-boson pair luminosities, Eq.~45!, and the exact luminosities
for pol5TT, TT, LT, andLL for aW1W2 pair ine1e2 collisions
at As52 TeV.
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would have to add contributions from Feynman diagram
which are not of the type as shown in Fig. 1, as, for examp
qq̄ annihilation or bremsstrahlung processes. These ad
tional contributions might become particularly important
smaller energies.

Finally one should note that we did not attempt to tak
into account any kind of experimental cuts on kinematic
variables for final state particles, such as transverse mome
or rapidities. These cuts would, first of all, enter in the e
pressions for the vector-boson scattering cross sections.
far as experimental cuts on final state momenta imply restr
tions also for the momentum transfersqi

2 , or the scale vari-
ablex, it would be straightforward to modify our expression
for the luminosities accordingly.

APPENDIX A: BREIT-SYSTEMS AND POLARIZATION
VECTORS

1. Definition of reference frames

The four-momenta in the center-of-mass systemC of V1
andV2 are

~q1
C!m5~k0 ;0,0,K !, ~q2

C!m5~q0 ;0,0,2K !, ~A1!

with k05(W 21q1
22q2

2)/2W andq05(W 22q1
21q2

2)/2W.
For simplicity, we assume that the final stateW produced via
the two-boson process allows us to specify thex andy axes
of a coordinate system. If the stateW decays inton particles
with momentaki , we choose this system such that they

FIG. 7. Luminosities LTT(W), LTT(W), LLT(W), and
LLL(W) for aW1W2 pair in e1e2 collisions atAs5500 GeV.
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component of one specific four-momentum, say,ks , of the
set ofki vanishes and itsx component is non-negative.

We define two Breit systems, a systemB1 in whichq1 has
only a nonvanishingz component andl 2W points in the nega-
tive z direction, and a systemB2 in which q2 has only a
nonzeroz component andq1W points in the negativez direc-
tion. The four-momenta inB1 are

~ l 1
B1!m5

A2q1
2

2
~ch ;2shcosw1 ,2shsinw1,1!,

~p1
B1!m5

A2q1
2

2
~ch ;2shcosw1 ,2shsinw1 ,21!,

~q1
B1!m5~0;0,0,A2q1

2!,

~ l 2
B1!m5

mX

2A2q1
2 ~1;0,0,21!,

p8m[pW
m 1p2

m5
1

2A2q1
2 ~mX ;0,0,2MX

22q1
2!, ~A2!

with ch52s/mX21, sh5Ach22152(As/mX)As2mX, and
mX5MX

22q1
2 . The overall azimuth of the system is defined

by choosing they component ofq2
B1 to be zero and itsx

component non-negative, so that

FIG. 8. LuminositiesLTLTL(W), LT̄L T̄L(W), andLTTTT(W) for
aW1W2 pair in e1e2 collisions atAs5500 GeV.
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FIG. 9. Luminosities LTT(W), LTT(W), LLT(W), and
LLL(W) for a ZZ pair in e1e2 collisions atAs5500 GeV.

FIG. 10. LuminositiesLTLTL(W), LT̄L T̄L(W), andLTTTT(W)
for a ZZ pair in e1e2 collisions atAs5500 GeV.
~q2
B1!m5S q08 ; A2q2

2b

mX
,0,2

n

A2q1
2D , ~A3!

with

q085
1

A2q1
2 S n2

q1
2q2

2

mX
D

andb5AmX
222nmX1q1

2q2
2.

The four-momenta inB2 are

~ l 2
B2!m5

A2q2
2

2
~ch8 ;2sh8cosw2 ,2sh8sinw2,1!,

~p2
B2!m5

A2q2
2

2
~ch8 ;2sh8cosw2 ,2sh8sinw2 ,21!,

~q2
B2!m5~0;0,0,A2q2

2!,

~q1
B2!m5

1

2A2q2
2 ~k;0,0,22n!,

~pW
B2!m5

1

2A2q2
2 ~k;0,0,22Wq0!, ~A4!

with ch85(2/k)(mX2n) and sh85A(ch8)22152b/k. The
overall azimuth of the systemB2 is defined by choosing the
y component of the same four-momentumks as employed in
defining the systemC equal to zero and itsx component
non-negative.

2. Polarization vectors

The polarization vectors for the helicity eigenstates of the
vector bosonsVj in the systemC using the Jacob and Wick
phase conventions are

~e1
C!m~6 !5

1

A2
~0;71,2 i ,0!,

~e1
C!m~0!5

1

A2q1
2 ~K;0,0,k0!,

~e2
C!m~6 !5

1

A2
~0;61,2 i ,0!,

~e2
C!m~0!5

1

A2q2
2 ~2K;0,0,q0!. ~A5!

By applying an appropriate coordinate transformation, the
polarization vectors forV1 in the systemB1 are found to be
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~e1
B1!m~6 !5

1

A2
e7 iw2S 7s̃sy ;7

A2q1
2q08

KW ,2 i ,0D ,

~e1
B1!m~0!5

A2q1
2

KW S q08 ; A2q2
2b

mX
,0,0D , ~A6!

with s̃sy5Aq12q22b/(mXKW). Likewise, the polarization
vectors forV2 in B2 are found to be
~e2
B2!m~6 !5

1

A2
~0;61,i ,0!,

~e2
B2!m~0!5~21;0,0,0!. ~A7!

APPENDIX B: FIVEFOLD DIFFERENTIAL
LUMINOSITIES

Here we give explicit expressions needed to determine t
fivefold differential luminositiesKpol of Eq. ~24!. The helic-
ity tensorsCj (m,m8) andSj (m,m8), defined in Eqs.~15! and
~16!, are evaluated most easily in their respective Breit sy
tems Bj using expressions~A2! and ~A4! for the four-
momenta and expressions~A6! and~A7! for the polarization
vectors. The results are
C1~11 !52
q1
2

4 Fch2111
4q1

2q2
2b2

mX
2k2 ~ch

21sh
2 cos2w1!1

8 chshA2q1
2A2q2

2b

mX
2k2 ~nmX2q1

2q2
2!cosw1G ,

C1~00!52
q1
2

2 Fsh21 4q1
2q2

2b2

mX
2k2 ~ch

21sh
2cos2w1!2

8 chshA2q1
2A2q2

2b

mX
2k2 ~nmX2q1

2q2
2!cosw1G ,

C1~12 !5
q1
2

2 F2q12q22b2

mX
2k2 ~ch

21sh
2 cos2w1!1sh

2S cos2w12
1

2D 1
4 chshA2q1

2A2q2
2b

mX
2k2 ~nmX2q1

2q2
2!cosw1

22 i
sh

mXk
~chA2q1

2A2q2
2b1sh~nmX2q1

2q2
2!cosw1!sinw1G ,

C1~10!5
q1
2

A2
F2A2q1

2A2q2
2b

mX
2k2 ~nmX2q1

2q2
2!~ch

21sh
2 cos2w1!1

2 chsh
mX
2k2 @~nmX2q1

2q2
2!21q1

2q2
2b2#cosw1

2 i
sh

mXk
@ch~nmX2q1

2q2
2!1shA2q1

2A2q2
2b cosw1#sinw1G ,

S1~11 !52
q1
2

2 F2 nmX2q1
2q2

2

mXk
ch12

shA2q1
2A2q2

2b

mXk
cosw1G ,

S1~10!5
q1
2

A2
FchA2q1

2Aq22b
mXk

1
sh

mxk
~nmX2q1

2q2
2!cosw12 i

sh
2
sinw1G , ~B1!

C2~11 !52
q2
2

4
@~ch8!211#, C2~00!52

q2
2

2
~sh8!2,

C2~12 !5
q2
2

4
~sh8!2,C2~10!5

q2
2

2A2
ch8sh8 ,

S2~11 !52
q2
2

2
ch8 , S2~10!5

q2
2

2A2
sh8 . ~B2!



.

6
ol-
of
ing
,

n

gs
ing

,

,

53 6093LUMINOSITIES FOR VECTOR-BOSON–VECTOR-BOSON . . .
@1# E. Fermi, Z. Phys.29, 315 ~1924!; C. Weizsa¨cker, ibid. 88,
612 ~1934!; E. Williams, Phys. Rev.45, 729 ~1934!.

@2# G. L. Kane, in Proceedings ‘‘Physics of the XXIst century,
Tucson, Arizona, 1983~unpublished!.

@3# S. Dawson, Nucl. Phys.B249, 42 ~1985!.
@4# G. L. Kane, W. W. Repko, and W. B. Rolnick, Phys. Let

148B, 367 ~1984!.
@5# J. Lindfors, Z. Phys. C28, 427 ~1985!.
@6# R. Cahn and S. Dawson, Phys. Lett.136B, 196 ~1984!; 138B,

464~E! ~1984!.
@7# R. Cahn, Nucl. Phys.B255, 341~1985!; B262, 744~E! ~1985!;

D. A. Dicus and S. Willenbrock, Phys. Rev. D32, 1642
~1985!; M. J. Duncan, G. L. Kane, and W. W. Repko, Nuc
Phys.B272, 517 ~1986!; G. Altarelli, B. Mele, and F. Pitalli,
ibid. B287, 205 ~1987!; M. C. Bento and C.-H. Llewellyn-
Smith, ibid. B289, 36 ~1987!; D. A. Dicus, K. J. Kallianpur,
and S. D. Willenbrock, Phys. Lett. B200, 187 ~1988!.

@8# S. Willenbrock and D. A. Dicus, Phys. Rev. D34, 155~1986!;
J. Lindfors, Z. Phys. C33, 385~1987!; S. Dawson, G. L. Kane,
C. P. Yuan, and S. Willenbrock, in proceedings of the 198
Summer Study on Physics of the Superconducting Super C
lider, Snowmass, CO, 1986~unpublished!, p. 235; S. Dawson
and S. Willenbrock, Nucl. Phys.B284, 449 ~1987!; R. P.
Kauffman, Phys. Rev. D41, 3343~1990!.

@9# M. Chanowitz and M. K. Gaillard, Phys. Lett.142B, 85
~1984!; Nucl. Phys.B261, 379 ~1985!; J. F. Gunion, J. Kali-
nowski, A. Tofighi-Niaki, A. Abbasabadi, and W. Repko, in
proceedings of the 1986 Summer Study on Physics of the
perconducting Super Collider@8#, p. 156; J. F. Gunion, J. Kali-
nowski, and A. Tofighi-Niaki, Phys. Rev. Lett.57, 2351
~1986!; B. Mele, in proceedings of La Thuile Workshop on
Physics at Future Accelerators, La Thuile, Italy, 1987~unpub-
’’

t.

l.

6
ol-

Su-

lished!; A. Abbasabadi, W. W. Repko, D. A. Dicus, and R
Vega, Phys. Rev. D38, 2770~1988!; D. A. Dicus, S. L. Wil-
son, and R. Vega, Phys. Lett. B192, 231 ~1987!; M. Kuroda,
F. M. Renard, and D. Schildknecht, Z. Phys. C40, 575~1988!;
G. J. Gounaris and F. M. Renard,ibid. 59, 143 ~1993!.

@10# D. A. Dicus and R. Vega, Phys. Rev. Lett.57, 1110~1986!.
@11# A. Abbasabadi and W. W. Repko, in proceedings of the 198

Summer Study on Physics of the Superconducting Super C
lider @8#, p. 154; J. P. Ralston and F. Olness, in proceedings
the 1986 Summer Study on Physics of the Superconduct
Super Collider@8#, p. 191; A. Abbasabadi and W. W. Repko
Phys. Rev. D36, 289 ~1987!; 50, 5704~1994!; W. W. Repko
and W.-K. Tung, in proceedings of the 1986 Summer Study o
Physics of the Superconducting Super Collider@8#, p. 159.

@12# P. W. Johnson, F. I. Olness, and Wu-Ki Tung, in proceedin
of the 1986 Summer Study on Physics of the Superconduct
Super Collider@8#, p. 164; Phys. Rev. D36, 291 ~1987!.

@13# J. Lindfors, Z. Phys. C35, 355 ~1987!.
@14# M. Capdequi Peyrane´re, J. Layssac, H. Leveque, G. Moultaka

and F. M. Renard, Z. Phys. C41, 99 ~1988!.
@15# A. Dobrovolskaia and V. Novikov, Report No. LPTHE 93/14

1993 ~unpublished!.
@16# V. M. Budnev, I. F. Ginzburg, G. V. Meledin, and V. G.

Serbo, Phys. Rep. C15, 183~1974!; N. S. Craigie, K. Hidaka,
M. Jacob, and F. M. Renard, Phys. Rep.99, 69 ~1983!.

@17# G. Bonneau, M. Gourdin, and F. Martin, Nucl. Phys.B54, 573
~1973!; G. Bonneau and F. Martin,ibid. B68, 367 ~1974!.

@18# R. Kleiss and J. W. Stirling, Phys. Lett. B182, 75 ~1986!.
@19# Z. Kunszt and D. E. Soper, Nucl. Phys.B296, 253 ~1988!.
@20# S. Cortese and R. Petronzio, Phys. Lett. B276, 203 ~1992!.
@21# R. M. Godbole and F. Olness, Int. J. Mod. Phys. A2, 1025

~1987!; R. M. Godbole and S. D. Rindani, Phys. Lett. B190,
192 ~1987!; Z. Phys. C36, 395 ~1987!.


