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Viscosity in hot scalar field theory
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The spectral representation for general two-point Green functions in thermo field dynamics is used to
compute the spectral density of thé-4? correlation function in hotp* theory. We give a compact derivation
of the one-loop contribution to the shear viscosity and show that it is dominated by low-momentum plasmons.
The weak-coupling behavior of the viscosity is strongly influenced by the momentum dependence of the
plasmon width][S0556-282(96)02710-5
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In the context of heavy-ion collisions at high energies, thetwo-loop order including infrared resummati$h,8,9. Our
transport properties of strongly interacting hot matter, in parapproach goes beyond the results reportefbjnn that we
ticular, of the quark-gluon plasm@GP), have become an include the full momentum dependence of the two-loop sca-
issue of intense theoretical interest. The calculation of thdar self-energy.

QGP transport coefficients from linear response functions Let us first summarize a few analytical relations for the
through the Kubo formalisril,2] has so far been hampered full propagators in the different finite temperature formal-
by infrared problems associated with the nonlinear selfisms for later use. For two arbitrary operatoks B, the
interactions among massless fields in hot QCD. A systematigetarded thermal Green functiois defined by

and economic field theoretical approach, including infrared

resummation techniqud$], to the calculation of linear re- D(ry—r,,t;—ty) = _ig(tl_tz)Tr(eﬁ(mm
sponse functions, is clearly asked for. AB
As an example, consider the Kubo formula for the shear X[A(r,t1),B(r,t)]), (@

viscosity[1,4,5: A
1 o . whereH is the Hamiltonian{) is the thermodynamic poten-
=— Ef d3x’ J, dtj, dtr<ﬂ_,u1/(o),,n.luv(xr'tr)>ret tial, and the plugminus sign applies for fermlom(:bosonu)_
% % operatorsA, B. In momentum space it has the following
spectral representation in terms of the spectral density

T .
=z lim [3pa(w,p)ldw]. 1) Pap(@:P):
5a),p—>0
+o pAB(w7p)
Ty 1S the traceless viscous-pressure tensor, which in the D'*(pg,p)=lim dw—,:[Dii"(pO,p)]*_
comoving frame has only spatial componem§ For a sca- N Po—w@+in
lar field, ;= (818 — 1/3 8 1) dxpd b p IS the spec- (€)

tral momentum space density for the retarded thermal Green
function of the composite fieldr, as defined below. The [he second equality defines thelvanced thermal Green

efficient computation of this quantity will be the subject of function The same spectral density also generatesniagi-
this paper. nary time (ITF) Green functiomhich is obtained from Eqg.
The analytical structure of the retarded Green(2) by settingit=r. In momentum space,
function (77’“’(0) (X, 1)) is similar to that of
(¢%(0),¢2(x’,t"))® [5]. The spectral density for the latter - J’ AB(‘" P)
object was recently calculated at one-loop order in the imagi- G pal@n:P |wn— 1)
nary time formalism(ITF) by Jeon[5]. We redo the calcu-
lation in the real-time formalism using the language ofwhere w, are the discrete Matsubara frequencies. The re-
thermo field dynamic$TFD) [6,7]. Using the analytic prop- tarded and ITF Green functions are related by analytical con-
erties of the two-point functions in ITF and TFD, we give a tinuation,iw,— po+i 7.
compact derivation of the one-loop contribution to the spec- The real time propagators in TFD have a more compli-
tral density of the composite field two-point functipr).. in cated 2< 2 matrix structure. As discussed in REf], there is
terms of the spectral density of the elementary field two-a continuous infinity of representations of thermo field dy-
point function, p,,. The latter was recently calculated at namics which are all equivalent in global thermal equilib-
rium. However, for fermionic fields a consistent dynamical
theory connecting different thermal equilibrium states and, a
*On leave of absence from Institute of Particle Physics, Huafortiori, a consistent kinetic theory can only be developgd
Zhong Normal University, Wuhan, China. on the basis of the “linear” ¢=1) representation rather
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than the original “symmetric” @=1/2) representatiof6]  where
of TFD. In this representation, the TFD propagator in mo-

mentum space takes for bosonic operators the fatin o 1+n(po) —n(po)

ret . -1 1 , ©
) DAB(pO’p) )
A20(pg,p)=75"1 S13, (5)  rz=diag(1—-1), andn(py)=[exp(Bpy)—1] ! is the Bose

d
De(Po.p) distribution. Explicitly, Eq.(5) reads

D3a(Po.p) = 2min(po)p,, (Po.P) —2min(po)p, (Po.P)

A%(Po.p)= . ) _ . (7)
—27@i[1+n(po)lp,,(Po.P)  —D3{Po.P)—27in(po)p, (Po.P)

Similar expressions for fermionic correlation functions are 1 d4k

given in Sec. 3.3.2 of Ref7]. IA¢2¢2(P0,D)=2f Wn(ko)PW(ko,k)n(Po_ko)
Equation(7) provides a particularly straightforward way

of extracting the spectral density X P gp(Po—Ko,P—K). (12

i Combining this with Eqs(8) and(11), we obtain
P re(P0:P) = 5—(ePP0—1)A % (po,p). ®

d*k
ﬂzlzcg)zr’Zzﬁf (ZT)sn(ko)[l"“n(ko)][P¢¢(ko,|k|)]2,
The 12-component of the two-point Green function can be

calculated directly using the TFD Feynman rules. Using the (13
Schwinger-Dyson equatidri0] for the full TFD propagator ,nere we useah(—ko) = —[1+n(ko)] as well as
(we now drop the indiceé,B for clarity),

Pys(®,p)=sgn w)p44(|w|,[p]), (14

(A= (p*~m?) 75°+22%(p,p), 9
which follows from spatial isotropy an@P T invariance of
it is straightforward to relate the components of the2  the thermal equilibrium statg]. The factorg results from
TFD self-energy matri®° to the self-energ®. of the ana-  liMp,.o(€°P0—1)/py. Equation(13) agrees, up to a factor
lytically continued ITF propagator. For example, the spectral 7 because of our different normalizatighO) of the spec-
density is related to the ITF self-energy by tral density, with the ITF calculation of Ref5].
To further evaluate Eq13), we need the spectral density

1 pye(Ko,K) for the full single-particle propagator. Since the
p(Po.P)=— 5= D"(po,p) —D®™(po.p)] calculation of 77(1{)'2005’ requires taking the zero-momentum
limit of the loop diagram, both internal lines in Fig. 1 can

1 ImX(po,p) become soft. To avoid infrared divergences in massless

~ 7 [p2-mZ+Re(po.p) P+ IMS(po.p) 12 N ¢* theory, we should thus use resummed effective propa-

gators[3,8]. The so-called resummation of “hard thermal

loops” [3] in this case generates a thermal mass for the sca-

lar field which acts as an infrared cutoff. Using such a re-
We will now use these results to give a three line deriva-summation scheme, we performed @] a two-loop calcula-

tion of the spectral function for the composite fiedd within  tion of pss- We found that for weak couplingh(24<1),

hot N ¢* theory. We concentrate on the same quantity ashe spectral function is sharply peaked around the plasmon

(10

studied in Ref[5], namely, frequency:
ng242=liM [pg242(Po.P)/Pol, (11 wp(k)= K2+ mg— 3mg/nT=k>+mj, (15
p.po—0

where my,=TA/24 is the “thermal mass” anan, is the
whose relation to the shear viscosi§) was mentioned plasmon mas§8]. p,, can then be well approximated by a
above. Equation(8) tells us that we must calculate relativistic Breit-Wigner function
A5 42(Po.P). The lowest order contribution is shown dia-
grammatically in Fig. 1. This is a skeleton diagram, i.e., the (k k)~£ 2koy(k)
full single-particle propagator must be used for the internal Pgsifor 7 [K§— wp(K) 12+ 4k5y*(k) '
lines[1,5]. For the one-loop diagram in Fig. 1 only its 12-
component is needed. We find with the on-shell damping rate for the scalar plasmon

(16)
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FIG. 1. One-loop skeleton diagram fA¢22¢2(pO,p). The heavy
lines denote full single-particle propagators.

I3 [wp(K) k]

2wp(k) (17

y(K)=

Substituting Eq(16) into Eq. (13) and integrating ovekg,

we obtain[1,5,12
B f d*k  n[wp(k) {1+ n[wp(k)1}
2m) (2m)3 wp(k) (k)
The leading(two-loop) contribution to(17) reads[9,11]
)\2T2

256 7T3a)p(k)

1 Ioop
77¢2¢2

(18)

(k)= A(x;a), (19

where

£-¢ )_L (s—z)
&1-¢) "A1-¢

1 rx
A@xﬂ=;kd{an+Lz

(£-01-¢0
_L4_?H?57—”’ (20
with
x=plKl, a=pm,, ¢=e VT, oo T,

(21)

and the Spence functidlilogarithm)

. z In(1-t)

Lﬂaz_kdt o (22

A plot of the functionA(x;a) can be found in Figs. 36 and

37 of Ref.[11]. For large momenta— e, it approaches the
constant valug¢l11]

for a—0,

lim A(x;a)= a1

X—

(23

7216
for

Ki(a)

while at zero momentum it takes the valufll]
A(0;a)=L,(e"?) which again goes tar?/6 in the weak-
coupling limita—0 (A—0).

We now evaluate the momentum integral(iB). It can
be studied analytically in the weak-coupling limitc1. Let

us begin by neglecting as |2,5] the momentum dependence

of the plasmon width, i.e., by replacing(k) in (18) by

212

TE3em [1+o (VNI .

¥(0)= (24

Partial integration then leads to

with a=m,/T. Fora<1, this integral can be evaluated fol-
lowing Ref.[13], and we obtaif14]

9 1 )
— F(l— \/Gﬁoo\)). (25)

With the explicit momentum dependen@®) of the plas-
mon decay width, this approximation can be avoided. Inte-
grating Eq.(18) by parts, we find

1 loo

7 221 y(0)~

1100 64 dx  A(x;a)—xA'(x;a)
g2zl 10 = \2T e\x2+a2_1 A?(x;a) ’

(26)

where the prime denoteddx. Unfortunately, for weak cou-
pling, the functionA(x;a) exhibits a very strong momentum
dependence in the regioa<x<1; for a=0, the limit
x—0 is nonanalytic. To get an idea of the structure of the
integral, let us first neglect the momentum dependence of
A (i.e., of the self-energg.). Then

64 6
2T 72

1 Ioop

7’¢2¢2 (27)

fy sy

In the limit a— 0, this integral diverges logarithmically in the
infrared. The singularity can be isolated by writing

o de
fo evx +a? ‘/Sf_a? e’—1
Je?—a? de

foc ds + og —
B 2 €e°—1 a 82_a2 ef—-1
—In(1—e™?)

se—+/e?—a? de N
o

1
=In 5)+In2+0(a)+0

a2

&

aZ
5
In the fourth line we cut off the second integral at the upper
end at a points with a< < 1. This allows the approxima-
tion of the Bose distribution as &/ The remaining integral

from & to « is finite and of ordem?/ 8%. We thus find, with
this approximatiorj14],

(28)

384 1 T m,
1I00p
7 42427 I ( +|n2 +O ):|
$26% 2T A2 T m, T
= 1921 | ! +1n(96) + O(/A 29
=2 xz/Inlx n(96)+0O(VyN)|. (29

The additional logarithmic divergence in the weak-
coupling limit of (29) compared tq25) is generic; its coef-
ficient and the next-to-leading constant term depend, how-



53 BRIEF REPORTS 5981

6 1100 9 1 ( T 0 }
=——5|In| —|+72+0| =
5
: 28 Ll L) i +2 V2+0(\
= = —s —
T 2T N2 n)\ n(24)+ 2 (VA |.
F 31
g3 ° _— . o
L As intuitively expected, the viscosity decreases as the
< coupling strength increases: In relaxation time approxima-
’ tion, all transport coefficients are proportional to the relax-
ation time, which again is inversely proportional to the scat-
e o1 52 0.3 oa tering rate which grows with the coupling strength. On the
m other hand, the rate at which ou,2,2 decreases with the
P coupling strengthn, is different from the behavior of the
T physical shear viscosity. As discussed in the introduction,

the latter involves four additional spatial derivatives acting
on the scalar field. This translatgl| into an additional fac-
tor k* in the integrand of Eq(18), which removes the infra-
red divergence of this integral in the limat—0 and thereby
also the leading logarithmic term in our final res(dt). This
observation provides a partial explanation for the qualita-
tively different behavior of the viscosity as a function of
ever, on the(so far neglectedmomentum dependence of m /T which was recently found by Jeon in a more complete
A(x;a). Because of the nonanalytic behaviorAffx;0) near  study of g¢3+\ ¢* theory[11]: his numerical results indi-
x=0, we did not succeed in extracting an analytical exprescate an increase of?z with increasing\.
sion similar to(29) for the full integral(26). The numerical ~ Still, as first pointed out by Jeon [i5] and then quantita-
result shown by the dots in Fig. 2 can, however, be excellively analyzed in(11], the fact that the shear viscosityis
lently fit by propo_rtlonal to 1K< raises a serious proble.m:. s_|mple power
counting argumentf5] show that then an infinite series of
planar ladder diagrams can also contribute to the leading
order result for the viscosity. Its summation is nontrivial and
has been recently performed by Jgdr] using the imagi-
nary time formalism. This work was a genuitoar de force
+1.41682 and the prospect of generalizing it to non-Abelian gauge
theories, such as QCD, seems frightening. We expect that
1 T efficient use of the analytici_ty properties of the full propaga-
~ —In(— +42, (30)  tors as demonstrated here in the framework of TFD will help
T \Mp to streamline the calculation and facilitate its generalization
to QCD.

We are grateful to P. Henning, Liu Lianshou, Li Jiarong,
and R. D. Pisarski for helpful discussions. This work was
which suggests the analytical behavior supported by DFG, BMBF, NSFC, and GSlI.

FIG. 2. The dots represent numerical results for the ratio be
tween nff)z'jfﬁ (k) and 7;(1#2';3‘1 »(0) as a function om, /T. The solid
line indicates a fit of the form () In(T/m,)+ V2.

7illoo
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