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Viscosity in hot scalar field theory
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The spectral representation for general two-point Green functions in thermo field dynamics is use
compute the spectral density of thef2-f2 correlation function in hotf4 theory. We give a compact derivation
of the one-loop contribution to the shear viscosity and show that it is dominated by low-momentum plasm
The weak-coupling behavior of the viscosity is strongly influenced by the momentum dependence of
plasmon width.@S0556-2821~96!02710-5#
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In the context of heavy-ion collisions at high energies, t
transport properties of strongly interacting hot matter, in pa
ticular, of the quark-gluon plasma~QGP!, have become an
issue of intense theoretical interest. The calculation of t
QGP transport coefficients from linear response functio
through the Kubo formalism@1,2# has so far been hampere
by infrared problems associated with the nonlinear se
interactions among massless fields in hot QCD. A systema
and economic field theoretical approach, including infrar
resummation techniques@3#, to the calculation of linear re-
sponse functions, is clearly asked for.

As an example, consider the Kubo formula for the she
viscosity @1,4,5#:
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lim

v,p→0
@]rpp~v,p!/]v# . ~1!

pmn is the traceless viscous-pressure tensor, which in
comoving frame has only spatial componentsp i j . For a sca-
lar field,p i j5(d ikd j l2 1/3d i jdkl)]kf] lf. rpp is the spec-
tral momentum space density for the retarded thermal Gre
function of the composite fieldp, as defined below. The
efficient computation of this quantity will be the subject o
this paper.

The analytical structure of the retarded Gree
function ^pmn(0),pmn(x8,t8)&

ret is similar to that of
^f2(0),f2(x8,t8)& ret @5#. The spectral density for the latte
object was recently calculated at one-loop order in the ima
nary time formalism~ITF! by Jeon@5#. We redo the calcu-
lation in the real-time formalism using the language
thermo field dynamics~TFD! @6,7#. Using the analytic prop-
erties of the two-point functions in ITF and TFD, we give
compact derivation of the one-loop contribution to the spe
tral density of the composite field two-point functionrpp in
terms of the spectral density of the elementary field tw
point function, rff . The latter was recently calculated a
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two-loop order including infrared resummation@5,8,9#. Our
approach goes beyond the results reported in@5# in that we
include the full momentum dependence of the two-loop sc
lar self-energy.

Let us first summarize a few analytical relations for th
full propagators in the different finite temperature forma
isms for later use. For two arbitrary operatorsÂ, B̂, the
retarded thermal Green functionis defined by

D
AB

ret~r12r2 ,t12t2!52 iu~ t12t2!Tr~e
b~V2Ĥ !

3@Â~r1 ,t1!,B̂~r2 ,t2!#6!, ~2!

whereĤ is the Hamiltonian,V is the thermodynamic poten-
tial, and the plus~minus! sign applies for fermionic~bosonic!
operatorsÂ, B̂. In momentum space it has the following
spectral representation in terms of the spectral dens
r
AB
(v,p):

D
AB

ret~p0 ,p!5 lim
h→01

E
2`

1`

dv
r
AB

~v,p!

p02v1 ih
5@D

AB

adv~p0 ,p!#* .

~3!

The second equality defines theadvanced thermal Green
function. The same spectral density also generates theimagi-
nary time (ITF) Green functionwhich is obtained from Eq.
~2! by settingi t5t. In momentum space,

G
AB

~vn ,p!5E
2`

1`

dv
r
AB

~v,p!

ivn2v
, ~4!

wherevn are the discrete Matsubara frequencies. The r
tarded and ITF Green functions are related by analytical co
tinuation, ivn→p01 ih.

The real time propagators in TFD have a more comp
cated 232 matrix structure. As discussed in Ref.@7#, there is
a continuous infinity of representations of thermo field dy
namics which are all equivalent in global thermal equilib
rium. However, for fermionic fields a consistent dynamica
theory connecting different thermal equilibrium states and
fortiori, a consistent kinetic theory can only be developed@7#
on the basis of the ‘‘linear’’ (a51) representation rather

a-
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53 5979BRIEF REPORTS
than the original ‘‘symmetric’’ (a51/2) representation@6#
of TFD. In this representation, the TFD propagator in m
mentum space takes for bosonic operators the form@7#

D
AB

ab~p0 ,p!5B21S DAB

ret~p0 ,p!

D
AB

adv~p0 ,p!DBt3 , ~5!
o-
where

B5S 11n~p0! 2n~p0!

21 1 D , ~6!

t35diag(1,21), andn(p0)5@exp(bp0)21#21 is the Bose
distribution. Explicitly, Eq.~5! reads
D
AB

ab~p0 ,p!5S DAB

ret~p0 ,p!22p in~p0!rAB
~p0 ,p! 22p in~p0!rAB

~p0 ,p!

22p i @11n~p0!#rAB
~p0 ,p! 2D

AB

adv~p0 ,p!22p in~p0!rAB
~p0 ,p!

D . ~7!
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Similar expressions for fermionic correlation functions a
given in Sec. 3.3.2 of Ref.@7#.

Equation~7! provides a particularly straightforward way
of extracting the spectral density

r
AB

~p0 ,p!5
i

2p
~ebp021!D

AB

12~p0 ,p!. ~8!

The 12-component of the two-point Green function can
calculated directly using the TFD Feynman rules. Using t
Schwinger-Dyson equation@10# for the full TFD propagator
~we now drop the indicesA,B for clarity!,

~D21!ab5~p22m2!t3
ab1Sab~p0 ,p!, ~9!

it is straightforward to relate the components of the 232
TFD self-energy matrixSab to the self-energyS of the ana-
lytically continued ITF propagator. For example, the spect
density is related to the ITF self-energy by

r~p0 ,p!52
1

2p i
@D ret~p0 ,p!2Dadv~p0 ,p!#

5
1

p

ImS~p0 ,p!

@p22m21ReS~p0 ,p!#21@ ImS~p0 ,p!#2
.

~10!

We will now use these results to give a three line deriv
tion of the spectral function for the composite fieldf2 within
hot lf4 theory. We concentrate on the same quantity
studied in Ref.@5#, namely,

hf2f2[ lim
p,p0→0

@rf2f2~p0 ,p!/p0#, ~11!

whose relation to the shear viscosity~1! was mentioned
above. Equation ~8! tells us that we must calculate
Df2f2
12 (p0 ,p). The lowest order contribution is shown dia

grammatically in Fig. 1. This is a skeleton diagram, i.e., th
full single-particle propagator must be used for the intern
lines @1,5#. For the one-loop diagram in Fig. 1 only its 12
component is needed. We find
re
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iDf2f2
12

~p0 ,p!52E d4k

~2p!2
n~k0!rff~k0 ,k!n~p02k0!

3rff~p02k0 ,p2k!. ~12!

Combining this with Eqs.~8! and ~11!, we obtain

hf2f2
1 loop

52bE d4k

~2p!3
n~k0!@11n~k0!#@rff~k0 ,uku!#2,

~13!

where we usedn(2k0)52@11n(k0)# as well as

rff~v,p!5sgn~v!rff~ uvu,upu!, ~14!

which follows from spatial isotropy andCPT invariance of
the thermal equilibrium state@5#. The factorb results from
limp0→0(e

bp021)/p0 . Equation~13! agrees, up to a factor

2p because of our different normalization~10! of the spec-
tral density, with the ITF calculation of Ref.@5#.

To further evaluate Eq.~13!, we need the spectral densit
rff(k0 ,k) for the full single-particle propagator. Since th
calculation of hf2f2

1 loop requires taking the zero-momentum
limit of the loop diagram, both internal lines in Fig. 1 ca
become soft. To avoid infrared divergences in massl
lf4 theory, we should thus use resummed effective pro
gators @3,8#. The so-called resummation of ‘‘hard therma
loops’’ @3# in this case generates a thermal mass for the s
lar field which acts as an infrared cutoff. Using such a r
summation scheme, we performed in@9# a two-loop calcula-
tion of rff . We found that for weak coupling (l/24!1),
the spectral function is sharply peaked around the plasm
frequency:

vp~k!5Ak21mth
22 3mth

3 /pT[Ak21mp
2, ~15!

wheremth5TAl/24 is the ‘‘thermal mass’’ andmp is the
plasmon mass@8#. rff can then be well approximated by
relativistic Breit-Wigner function

rff~k0 ,k!'
1

p

2k0g~k!

@k0
22vp

2~k!#214k0
2g2~k!

, ~16!

with the on-shell damping rate for the scalar plasmon
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g~k!5
ImS@vp~k!,k#

2vp~k!
. ~17!

Substituting Eq.~16! into Eq. ~13! and integrating overk0 ,
we obtain@1,5,12#

hf2f2
1 loop'

b

2pE d3k

~2p!3
n@vp~k!#$11n@vp~k!#%

vp
2~k!g~k!

. ~18!

The leading~two-loop! contribution to~17! reads@9,11#

g~k!5
l2T2

256 p3vp~k!
A~x;a!, ~19!

where

A~x;a!5
1

xE0
x

dzFL2~j!1L2S j2z

j~12z! D2L2S j2z

12z D
2L2S ~j2z!~12jz!

j~12z!2 D G , ~20!

with

x5buku, a5bmp , j5e2Ax21a2, z5e2Az21a2,
~21!

and the Spence function~dilogarithm!

L2~z![2E
0

z

dt
ln~12t !

t
. ~22!

A plot of the functionA(x;a) can be found in Figs. 36 and
37 of Ref.@11#. For large momenta,x→`, it approaches the
constant value@11#

lim
x→`

A~x;a!5H p2/6 for a→0,

aK1~a! for a@1,
~23!

while at zero momentum it takes the value@11#
A(0;a)5L2(e

2a) which again goes top2/6 in the weak-
coupling limit a→0 (l→0).

We now evaluate the momentum integral in~18!. It can
be studied analytically in the weak-coupling limitl!1. Let
us begin by neglecting as in@2,5# the momentum dependenc
of the plasmon width, i.e., by replacingg(k) in ~18! by

g~0!5
l2T2

1536pmp
@11O~Al lnl!#. ~24!

Partial integration then leads to

FIG. 1. One-loop skeleton diagram forDf2f2
12 (p0 ,p). The heavy

lines denote full single-particle propagators.
e

hf2f2
1 loopug~0!5

384a3

p2Tl2E
0

` dx

~x21a2!3/2
1

eAx21a221
,

with a5mp /T. For a!1, this integral can be evaluated fol-
lowing Ref. @13#, and we obtain@14#

hf2f2
1 loopug~0!'

96

pT

1

l2 S 12A l

6p21O~l! D . ~25!

With the explicit momentum dependence~19! of the plas-
mon decay width, this approximation can be avoided. Inte
grating Eq.~18! by parts, we find

hf2f2
1 loopug~k!5

64

l2TE0
` dx

eAx21a221

A~x;a!2xA8~x;a!

A2~x;a!
,

~26!

where the prime denotesd/dx. Unfortunately, for weak cou-
pling, the functionA(x;a) exhibits a very strong momentum
dependence in the regiona,x,1; for a50, the limit
x→0 is nonanalytic. To get an idea of the structure of th
integral, let us first neglect the momentum dependence
A ~i.e., of the self-energyS). Then

hf2f2
1 loop'

64

l2T

6

p2E
0

` dx

eAx21a221
. ~27!

In the limit a→0, this integral diverges logarithmically in the
infrared. The singularity can be isolated by writing

E
0

` dx

eAx21a221
5E

a

` «

A«22a2
d«

e«21

5E
a

` d«

e«21
1E

a

`«2A«22a2

A«22a2
d«

e«21

52 ln~12e2a!

1E
a

d«2A«22a2

A«22a2
d«

«
1OS a2d2D

5 lnS 1aD1 ln21O~a!1OS a2d2D . ~28!

In the fourth line we cut off the second integral at the uppe
end at a pointd with a!d!1. This allows the approxima-
tion of the Bose distribution as 1/«. The remaining integral
from d to ` is finite and of ordera2/d2. We thus find, with
this approximation@14#,

hf2f2
1 loop'

384

p2T

1

l2 F lnS T

mp
D1 ln2 1OSmp

T D G
5

192

p2T

1

l2 F lnS 1l D1 ln~96!1O~Al!G . ~29!

The additional logarithmic divergence in the weak
coupling limit of ~29! compared to~25! is generic; its coef-
ficient and the next-to-leading constant term depend, ho



e
a-
-
t-
e

g

-

e

r

ng
d

e
at
-
p
n

,
s

53 5981BRIEF REPORTS
ever, on the~so far neglected! momentum dependence o
A(x;a). Because of the nonanalytic behavior ofA(x;0) near
x50, we did not succeed in extracting an analytical expre
sion similar to~29! for the full integral~26!. The numerical
result shown by the dots in Fig. 2 can, however, be exc
lently fit by

hf2f2
1 loopug~k!

hf2f2
1 loopug~0!

50.3282 lnS T

mp
D11.41682

'
1

p
lnS T

mp
D1A2, ~30!

which suggests the analytical behavior

FIG. 2. The dots represent numerical results for the ratio b
tweenhf2f2

1 loopug(k) andhf2f2
1 loopug(0) as a function ofmp /T. The solid

line indicates a fit of the form (1/p)ln(T/mp)1A2.
f

s-

el-

hf2f2
1 loopug~k!5

96

p2T

1

l2 F lnS T

mp
D1pA21OSmp

T D G
5

48

p2T

1

l2 F lnS 1l D1 ln~24!12pA21O~Al!G .
~31!

As intuitively expected, the viscosity decreases as th
coupling strength increases: In relaxation time approxim
tion, all transport coefficients are proportional to the relax
ation time, which again is inversely proportional to the sca
tering rate which grows with the coupling strength. On th
other hand, the rate at which ourhf2f2 decreases with the
coupling strengthl, is different from the behavior of the
physical shear viscosityh. As discussed in the introduction,
the latter involves four additional spatial derivatives actin
on the scalar field. This translates@1# into an additional fac-
tor k4 in the integrand of Eq.~18!, which removes the infra-
red divergence of this integral in the limita→0 and thereby
also the leading logarithmic term in our final result~31!. This
observation provides a partial explanation for the qualita
tively different behavior of the viscosity as a function of
mp /T which was recently found by Jeon in a more complet
study ofgf31lf4 theory @11#: his numerical results indi-
cate an increase ofl2h with increasingl.

Still, as first pointed out by Jeon in@5# and then quantita-
tively analyzed in@11#, the fact that the shear viscosityh is
proportional to 1/l2 raises a serious problem: simple powe
counting arguments@5# show that then an infinite series of
planar ladder diagrams can also contribute to the leadi
order result for the viscosity. Its summation is nontrivial an
has been recently performed by Jeon@11# using the imagi-
nary time formalism. This work was a genuinetour de force,
and the prospect of generalizing it to non-Abelian gaug
theories, such as QCD, seems frightening. We expect th
efficient use of the analyticity properties of the full propaga
tors as demonstrated here in the framework of TFD will hel
to streamline the calculation and facilitate its generalizatio
to QCD.
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