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Barbero recently suggested a modification of Ashtekar’s choice of canonical variables for general relativity.
Although leading to a more complicated Hamiltonian constraint this modified version, in which the configu-
ration variable still is a connection, has the advantage of being real. In this article we derive Barbero’s
Hamiltonian formulation from an action, which can be considered as a generalization of the ordinary Hilbert-
Palatini action]S0556-282(196)04310-X]

PACS numbsgps): 04.20.Fy, 04.20.Cv

In 1986 Ashtekar presented a new pair of canonical vari- {BarAL(X),BarAL(y)}PB: 0,
ables for the phase space of general relatiyity. These
variables led to a much simpler Hamiltonian constraint than Baral (x) EP = — 35 sPs3(x
that in the Arnowitt-Deser-MisnetADM) formulation [2], A Ef(Y)}pe=— B0} 0a0°(XY),
but had the drawback of introducing complex variables in the {E?(X),EL(V)}pBZ 0,

phase-space action—something that leads to difficulties with
reality conditions which then must be imposed. A couple o
years later the Lagrangian density corresponding to As
tekar's Hamiltonian was given independently by Samuel
and by Jacobson and Smolid]. That was seen simply to be
the Hilbert-PalatiniHP) Lagrangian with the curvature ten-
sor replaced by its self-dual part only.

Recently Barbero pointed out that it is possible to choose
a pair of canonical variables that is closely related to Ash-
tekar's, but in contrast to the latter, they are rpél The
price paid is that the simplicity of Ashtekar's Hamiltonian (K arb
constraint is destroyed. However, some advantages are still €*EVE](Fapk— 2Rapi) =0, (1)
present with Barbero’'s choice of variables. For example,
they provide a real theory of gravity with a connection aswhere
configuration variable, and with the usual Gauss and vector
constraint, thus fitting into the class of diffeomorphism in-
variant theories considered 6] in the context of quantiza- .
tion. In this paper we derive Barbero’s result from an action, Rabi= 2dpal v)i + eijkrlarb
and since his formulation includes also that of ADM and
Ashtekar via a parameter, the Lagrangian density used as
starting point in this paper, also includes these cases. Hence
we have found, in a sense, a generalized HP action.

The notation for indices adopted below is as follows.corresponding to Gauss’ law, the vector and the scalar con-
a,B,7,... are used as spacetime indices whemsésc,... de-  straints, respectively.
note spatial components. denotes the time component.  We now write down the action that will be the starting
I,J,K,... are used as Lorentz indices aing,k,... as spatial point in this paper. Thereafter we will motivate that it is a
such. The time component of a Lorentz vector is denoted bgood canditate for an action leading to Barbero’s formula-
0. tion, which then will be explicitly derived from it:

To begin with, let us list Barbero’s formulation so that we
know what we are heading for. The variables %@, and
E,;, and they satisfy the fundamental Poisson brackets

fwhere B is a complex parameteE? is the densitized triad
andA?=T 7+ BK?, wherel { is the spin connectiofsee(2)
below], andK ? the extrinsic curvature. For the choigé=1
these variables are real and lead to the constraints

aaEai_,r_ €ijk BarAaanzo,

EP'F =0,

j k
Fabizzg[a BarAb]i+ eijk BaI‘A]a BarA ,

ith T =L eyt 2)
wi ai zeljkeb a8 (

1
S=3 f ee” e )(F 57— a*F,z5"Y)

* El f ee” eﬁ E 1J_ g EIJ = KL (3)
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Heree,, is the tetradg its determinantFaBIJ is the curva- not have to be zero. But in our case it should be, since the
ture considered as a function of the connectigp);, anda  canonical transformation that we are heading for is of the
is a(complex parameter which will allow us to account for form
all the cases mentioned above. The gtar denotes, as is
seen, the usual duality operator. A AN of[E]

Note that ifa=0 (3) is simply the HP action, which, when afa Y SER
3+1 decomposes, leads to the usual ADM formulation. On
the other hand, whem=i the integrand iz€" e, F ,,", E3_E/3=E23, @)
where *F 5" (A)=F 5" (TA) denotes the self-dual part of o '
the curvature, thus yielding Ashtekar's formulation. Ourwherey is some parameter, and
claim here is thatr=1 leads to Barbero’s Hamiltonian with
his parameted=1, that is, formula(1). (However oura is
not identical to hisg, rathera=p"1, as we will see.

As a first check let us study the variation @) with

. 1 )
f[E]=jF'a[E]Eia with rai:—zeijkegvaebk, (8

respect toAB”. Using I" thus being thespatia) Levi-Civita spin connection. Then
o0 . the functional derivative of [ E] equalsI’, and a simple cal-
OF g™ =271a0Ag ", culation shows that
where & denotes the covariant derivative acting on both . N
spacetime and Lorentz indices, we get f Al'E/? J ALE?

1 .
8S=— j ee“,e’ﬂ( OF 47— bt €L OF . 5" Thus all transformations of the forrf¥) correspond to no
2 2 change in the Lagrangian density.
Now that we have collected enough confidence (Bais
f 533 7 (ee”ePy), (4) the action we are looking for, let us do the-B decomposi-
tion to verify that this indeed is the case. We write the time
where a partial integration was performed, and where component of the tetrad as
8B =6Ag"—ax A", eor=Nn + N, ©)

If a#=i one easily findsSA= SA(JB) from this, and hence Wwheren, is the normalized gradient to the time coordinate
one can choose an arbitrary variatiéB in (4). Fore==+i,  function defined on the spacetime, and hence orthogonal to
that is, Ashtekar's cas@iB," clearly is the self-duafanti-  surfaces with t=const. More preciselyn'e,=0 and
self-dua) part of 5Aﬁ'J and the action contains only n'n;=—1. N andN? are the usual lapse and shift, respec-
“F.g(A)=F, IJ( A) Then we can choose to vary tively. Now we choose the so-called “time gauge:” We
S with respect t(TAB instead. So in either cagd) implies  choose the tetrad in such a way timat=(1,0,0,0. This sim-

ply means that the spatial vectors of the tetegdnow span

T (ee€Py)=0, the tangent space tota=const surface, and that,=0. Of
, . course, this gauge choice does not put any restrictions on the
which gives(see, for exampld,6]) ADM metric itself.
_ With the time gauge imposed, the-3 decomposition of
Auy=ep V. ® (3) looks like
Hence, if(3) is considered as a first-order action it implies,
exactly as the ordinary HP action does, thaf is the Levi- S= 5 f 3%k e, (eniF o+ NP poio+ SNFcji)
Civita spin connection.
Before we perform the-81 decomposition of3) we con- (10

vince ourselves that it gives the right theory, that is, general
relativity, for all complex values of, and not only fore=0

or a=i when it is known to do that. Study the second term in
the action:

where

Fetko=2d[cAqkot 2A ek " Agmo— X €kmn( I cAg™"

+ALC™PAG"+ AL™ A",
eeale,BJelJKLFaﬁKL:eyKeﬁLeaﬁyéFaﬂKL:Eaﬁy(?RaByé_ [c t]p [c t]0

6 ~

© Focko=29bA¢ ko 2A0bjK "Acimo— @ €kmn( dppAg
HereR 5,5 is thg Rlemanr} tgnsor, an@) was used in the' +A[bmpAC]pn+A[me
last step, meaning that this is only true when the evolution
equations are used. But this is clearly equal to zero, since

o_
Riagy™=0. ,
Thus (3) differ from the casex=0, that is ADM, by at —Zaéjkm(a[bA +A[b PAC]p ), (11)

most a canonical transformation, so we are indeed working
with the right theory. Of course, for this conclusion to be and wheree , and €;j = € -
valid it would suffice if (6) was a total derivative—it does The only terms in(10) containing time derivatives are

AC]On)=

Focik= 29ipAcjk T 2Ab(j| "Ac mk+ 2A7b1j *Acok

abc_— Etabc, eukEéOle
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—E%*g, Acko_% ekmAc |
where the useful identity
E abc_ijk — ootk ek
5 € e €ai€pj= €€ =E
was used. This motivates the introduction of new variables:

o
+ — mn
Ae=RAckoT 5 €kmAc

) «
Zek=Acko— 2 fkmnA(r:nn' (12
with the inverse
1 N o
AckOZE( Aokt k),
ij 1 Kij(+ 4 -
Ac ZZ € ( .,/chk— '—/—%ck)- (13)

Substituting B0, AT for (Y. 7., " %) in (11) gives

Fewo= =y 2okt de

o
Atko— > EkmnA{nn)
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-
—Awi e,
= - A S
Focko=20p 2ok 3 €kim 1o 7a)
_(12+3 -7 1 - m
+ da 6k|m=/5[b .,/éc]
a’+1 - m
- —Za €kIm %[b 7?5(;] y
2 2
; ; a“+1 a—1
Fod = €lap, At A
a2+1+/' i+ Kk 3a2—17/ i -
2a2 “%[b L'%c] + 2a2 fzé[b /%C]
2

a‘+1

+— Ll 7M.

From this we see that. 7,; is the dynamical variable and
E? its conjugated momentum. Nondynamical variables,
apart from the lapsé&l and the shiftN%, areA;, Ay, and

* 7, . Note that ifa==i all terms involving™. 7,; disap-
pear, and the constraint below implied by variation"o#,;
does not exist. This simplifies things a lot, and, in fact, Ash-
tekar's Hamiltonian follows almost immediately. However,
for generala we get the following constraints when varying

2 2 : L .
@+l el the Lagrangian density with respectAqq, A;j, and ™. 7,
+ €k|mAt0 7?‘5C+ %C . ) J
2a 2a respectively:
|
0L ) a’+1 a’—1
- Eck_ IlkE_C t 4+ ~ 7=
&Atko (90 € i 2 %cl 2u /{cl O,
ar  a o
aAt — E € mnaCEck_ Ec[m .//ch]:O'
mn
9~ a?+1 a’+1 . / 241 B
J +%c = 2a eklmECkAIOer EabcfljkeklmeaiNdedj(-*-—ﬁgrbn"r‘ f?grbn)_ Ao EabCE”kéukab(Neai)
2
a+1 : L
+ €N (A=) =0,

A lengthy manipulation of these yields

Jf/éai: ’.//Lai—ZaFai y (14)

where I',; is defined as in(8), and they also determine
Aiio=Aso0(". 2T N,N,) which will show up as(part of) a
Lagrange multiplier. Equationil4) is naturally taken as a

second-class constraint in Dirac's notation, since trivially we

have for the conjugated momenta¥, to *. 7, that
=0, and thed* 7Z,— . 74+ 2al ;" W ,ilpe=1 using

the naive canonical Poisson brackets. He(leg should be
inserted into the action. This gives, after some algebraic
work,

S= f [~ 7 KB+ aA(9EK+ o~ LekT ~ 7, ES)

+NIEKE . N L €%, [aF i — (1+a?)Ryd 1],
(19

whereR,;; is given by(2) and
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E BarAai:r‘ai"'ngai-

" ai=Aaio— 2

ik
fijkAJa )
From this we see that

1 _ p—1 -7 _p-18B _ B
Ak:aAtkO+56kmrA?1nv a=p and ~/~/’ai_ﬁ a%ai—a arAai. (16)

Note that fora=i, ~.Z,; and ®¥A; equals Ashtekar’s dy-
Eabi:%[a 77%b]i+a_15ijk A namical variable up to a factor
S JCOq - 7k
Note that if one uses the definitiqi2) of *. 7, in (14) il ami=Paio— 3€ijAN=2" Agio= — "y,
one obtains

and hence
Ai=—e.IK,
* e B il =i = =1 " A0 =1 A
that is,A,j; is simply the spatial Levi-Civita spin connection. . ) .
Hence, what we effectively have done is to solve for the = Puttinga=1 we recognize the four terms ii15) as the

rotational(spatia) part of the connection from the evolution Kinetical term “qp,” Gauss' law constraint, the vector con-
equations and to reinsert it into the action. straint and the scalar constraint in Barbero’s formulafibn

Before we comment on the terms (@5) we should say Furthermore, one easily finds the ADM or the Ashtekar for-
something about how our dynamical variableZ,; is con- ~Mulation by puttinga=0 or a=i, respectively, in15).

nected with the dynamical variables used by Ashtekar and 10 Summarize, we have shown that the actiGh with
Barbero. From the fact tha#,,,; is the Levi-Civita spin con- «=8 " is the one corresponding to Barbero’s formulation.

nection, that ig5), we have This was effectively done by solving for the rotational part
of the spin connectioA,; from the evolution equations,
AaiO:eiBVaeBOEKai’ and by inserting this result into the action. Far0 the

action (3) is the HP action, leading to ADM when+3lL de-
which in fact is nothing but the extrinsic curvature of a composed, and for=i it is the self-dual part of the HP
t=const surface. Hence, our dynamical variable,; can be  action, leading to Ashtekar’'s Hamiltonian. Hence it could be
written looked upon as a nice generalization of the HP action con-
taining Ashtekar’s formulation as a special case.
(64 .
ai=Aaio~ 5 kAL = Kait alai, | would like to thank Peter Peldawho actually was the
one that suggested that the acti@hmight lead to Barbero’s
which should be compared with Barbero’'s dynamical vari-Hamiltonian, and Ingemar Bengtsson, who persuaded me to

able investigate this suggestion.
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