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Barbero recently suggested a modification of Ashtekar’s choice of canonical variables for general relativity.
Although leading to a more complicated Hamiltonian constraint this modified version, in which the configu-
ration variable still is a connection, has the advantage of being real. In this article we derive Barbero’s
Hamiltonian formulation from an action, which can be considered as a generalization of the ordinary Hilbert-
Palatini action.@S0556-2821~96!04310-X#

PACS number~s!: 04.20.Fy, 04.20.Cv
-

In 1986 Ashtekar presented a new pair of canonical va
ables for the phase space of general relativity@1#. These
variables led to a much simpler Hamiltonian constraint th
that in the Arnowitt-Deser-Misner~ADM ! formulation @2#,
but had the drawback of introducing complex variables in t
phase-space action—something that leads to difficulties w
reality conditions which then must be imposed. A couple
years later the Lagrangian density corresponding to As
tekar’s Hamiltonian was given independently by Samue
and by Jacobson and Smolin@3#. That was seen simply to be
the Hilbert-Palatini~HP! Lagrangian with the curvature ten-
sor replaced by its self-dual part only.

Recently Barbero pointed out that it is possible to choo
a pair of canonical variables that is closely related to As
tekar’s, but in contrast to the latter, they are real@4#. The
price paid is that the simplicity of Ashtekar’s Hamiltonian
constraint is destroyed. However, some advantages are
present with Barbero’s choice of variables. For examp
they provide a real theory of gravity with a connection a
configuration variable, and with the usual Gauss and vec
constraint, thus fitting into the class of diffeomorphism in
variant theories considered in@5# in the context of quantiza-
tion. In this paper we derive Barbero’s result from an actio
and since his formulation includes also that of ADM an
Ashtekar via a parameter, the Lagrangian density used
starting point in this paper, also includes these cases. He
we have found, in a sense, a generalized HP action.

The notation for indices adopted below is as follow
a,b,g,... are used as spacetime indices whereasa,b,c,... de-
note spatial components.t denotes the time component
I ,J,K,... are used as Lorentz indices andi , j ,k,... as spatial
such. The time component of a Lorentz vector is denoted
0.

To begin with, let us list Barbero’s formulation so that w
know what we are heading for. The variables areBarAai and
Eai , and they satisfy the fundamental Poisson brackets
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$BarAa
i ~x!,BarAb

j ~y!%PB50,

$BarAa
i ~x!,Ej

b~y!%PB52bd j
ida

bd3~x,y!,

$Ei
a~x!,Eb

j ~y!%PB50,

whereb is a complex parameter.E i
a is the densitized triad

andA i
a5G i

a1bK i
a, whereG i

a is the spin connection@see~2!
below#, andK i

a the extrinsic curvature. For the choiceb251
these variables are real and lead to the constraints

]aE
ai1e i jk BarAajEk

a50,

EbiFabi50,

e i jkEi
aEj

b~Fabk22Rabk!50, ~1!

where

Fabi52]@a
BarAb] i1e i jk

BarAa
j BarAb

k,

Rabi52]@aGb] i1e i jkGa
j Gb

k

with Gai52
1

2
e i jkeb

j ¹ae
bk ~2!

corresponding to Gauss’ law, the vector and the scalar con
straints, respectively.

We now write down the action that will be the starting
point in this paper. Thereafter we will motivate that it is a
good canditate for an action leading to Barbero’s formula-
tion, which then will be explicitly derived from it:

S5
1

2 E eea
Ie

b
J~Fab

IJ2a*Fab
IJ!

[
1

2 E eea
Ie

b
JS Fab

IJ2
a

2
e IJKLFab

KLD . ~3!
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HereeaI is the tetrad,e its determinant,Fab
IJ is the curva-

ture considered as a function of the connectionAaIJ , anda
is a ~complex! parameter which will allow us to account for
all the cases mentioned above. The star~* ! denotes, as is
seen, the usual duality operator.

Note that ifa50 ~3! is simply the HP action, which, when
311 decomposes, leads to the usual ADM formulation. O
the other hand, whena5i the integrand iseea

Ie
b
J

1Fab
IJ,

where1Fab
IJ(A)5Fab

IJ(1A) denotes the self-dual part of
the curvature, thus yielding Ashtekar’s formulation. Ou
claim here is thata51 leads to Barbero’s Hamiltonian with
his parameterb51, that is, formula~1!. ~However oura is
not identical to hisb, rathera5b21, as we will see.!

As a first check let us study the variation of~3! with
respect toAb

IJ. Using

dFab
IJ52D @adAb]

IJ,

whereD denotes the covariant derivative acting on bo
spacetime and Lorentz indices, we get

dS5
1

2 E eea
Ie

b
JS dFab

IJ2
a

2
e IJKLdFab

KLD
5E dBb

IJDa~eea
Ie

b
J!, ~4!

where a partial integration was performed, and where

dBb
IJ[dAb

IJ2a* dAb
IJ.

If aÞ6i one easily findsdA5dA(dB) from this, and hence
one can choose an arbitrary variationdB in ~4!. For a56i ,
that is, Ashtekar’s case,dBb

IJ clearly is the self-dual~anti-
self-dual! part of dAb

IJ and the action contains only
6Fab

IJ(A)5Fab
IJ(6A). Then we can choose to vary

Swith respect to6Ab
IJ instead. So in either case~4! implies

Da~eea
@ Ie

b
J] !50,

which gives~see, for example,@6#!

AaIJ5ebI“ae
b
J . ~5!

Hence, if ~3! is considered as a first-order action it implies
exactly as the ordinary HP action does, thatAaIJ is the Levi-
Civita spin connection.

Before we perform the 311 decomposition of~3! we con-
vince ourselves that it gives the right theory, that is, gene
relativity, for all complex values ofa, and not only fora50
or a5i when it is known to do that. Study the second term
the action:

eea
Ie

b
Je

IJKLFabKL5eg
Ked

LeabgdFabKL5eabgdRabgd .
~6!

HereRabgd is the Riemann tensor, and~5! was used in the
last step, meaning that this is only true when the evoluti
equations are used. But this is clearly equal to zero, sin
R@abg#

d50.
Thus ~3! differ from the casea50, that is ADM, by at

most a canonical transformation, so we are indeed worki
with the right theory. Of course, for this conclusion to b
valid it would suffice if ~6! was a total derivative—it does
n
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not have to be zero. But in our case it should be, since t
canonical transformation that we are heading for is of th
form

Aa
i→Aa8

i1g
d f @E#

dEi
a ,

Ei
a→Ei8

a5Ei
a , ~7!

whereg is some parameter, and

f @E#5E Ga
i @E#Ei

a with Gai52
1

2
e i jkeb

j
“ae

bk, ~8!

G thus being the~spatial! Levi-Civita spin connection. Then
the functional derivative off [E] equalsG, and a simple cal-
culation shows that

E Ȧa8
iEi8

a5E Ȧa
i Ei

a .

Thus all transformations of the form~7! correspond to no
change in the Lagrangian density.

Now that we have collected enough confidence that~3! is
the action we are looking for, let us do the 311 decomposi-
tion to verify that this indeed is the case. We write the tim
component of the tetrad as

e0I5NnI1NaeaI , ~9!

wherenI is the normalized gradient to the time coordinat
function defined on the spacetime, and hence orthogonal
surfaces with t5const. More preciselynIeaI50 and
nInI521. N andNa are the usual lapse and shift, respec
tively. Now we choose the so-called ‘‘time gauge:’’ We
choose the tetrad in such a way thatnI5~1,0,0,0!. This sim-
ply means that the spatial vectors of the tetradea i now span
the tangent space to at5const surface, and thatea050. Of
course, this gauge choice does not put any restrictions on
ADM metric itself.

With the time gauge imposed, the 311 decomposition of
~3! looks like

S5
1

2 E eabce i jkeai~eb jF̂ctk01Nded jF̂bck01
1
2NF̂bc jk!,

~10!

where

F̂ctk052]@cAt]k012A@cuku
mAt]m02aekmn~]@cAt]

mn

1A@c
mpAt]p

n1A@c
m0At]0

n!,

F̂bck052]@bAc]k012A@buku
mAc]m02aekmn~]@bAc]

mn

1A@b
mpAc]p

n1A@b
m0Ac]0

n!,

F̂bc jk52]@bAc] jk12A@bu j u
mAc]mk12A@bu j u

0Ac]0k

22ae jkm~]@bAc]
m01A@b

mpAc]p
0!, ~11!

and whereeabc[e tabc, e i jk[e0i jk , ande i jk[e0i jk .
The only terms in~10! containing time derivatives are
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2Eck] tSAck02
a

2
ekmnAc

mnD ,
where the useful identity

1

2
eabce i jkeaieb j5eeck[Eck

was used. This motivates the introduction of new variable

1Ack[Ack01
a

2
ekmnAc

mn ,

2Ack[Ack02
a

2
ekmnAc

mn , ~12!

with the inverse

Ack05
1

2
~1Ack1

2Ack!,

Ac
i j5

1

2a
eki j~1Ack2

2Ack!. ~13!

Substituting (Ack0,A c
mn) for ~1Ack ,

2Ack! in ~11! gives

F̂ctk052] t
2Ack1]cSAtk02

a

2
ekmnAt

mnD
1eklmAt0

mS a211

2a
1Ac

l 1
a221

2a
2Ac

l D
s:

2Atkl
2Ac

l ,

F̂bck052]@b
2Ac]k2

a211

4a
eklm

1A@b
l 1Ac]

m

1
2a213

4a
eklm

2A@b
l 2Ac]

m

2
a211

2a
eklm

1A@b
l 2Ac]

m,

F̂bc
jk5e l jk]@bS a211

a
1Ac] l1

a221

a
2Ac] l D

2
a211

2a2
1A@b

j 1Ac]
k1

3a221

2a2
2A@b

j 2Ac]
k

1
a211

a2
1A@b

@ j 2Ac]
k] .

From this we see that2Aai is the dynamical variable and
Eai its conjugated momentum. Nondynamical variable
apart from the lapseN and the shiftNd, areAti0 , Ati j , and
1Aai . Note that ifa56i all terms involving1Aai disap-
pear, and the constraint below implied by variation of1Aai
does not exist. This simplifies things a lot, and, in fact, As
tekar’s Hamiltonian follows almost immediately. Howeve
for generala we get the following constraints when varyin
the Lagrangian density with respect toAti0, Ati j , and

1Aai ,
respectively:
]L

]Atk0
52]cE

ck2e i lkEi
cS a211

2a
1Acl1

a221

2a
2AclD50,

]L

]Atmn
5

a

2
ekmn]cE

c
k2Ec@m 2Ac

n]50,

]L

] 1Ac
l 5

a211

2a
eklmE

ckAt0
m1

a211

4a
eabce i jkeklmeaiN

ded j~
1Ab

m12Ab
m!2

a211

4a
eabce i jke l jk]b~Neai!

1
a211

4a2 eabce i lkNea
i ~1Ab

k22Ab
k!50.
aic

A lengthy manipulation of these yields

1Aai5
2Aai22aGai , ~14!

where Gai is defined as in~8!, and they also determine
Ati05Ati0~

2A,G,N,Na! which will show up as~part of! a
Lagrange multiplier. Equation~14! is naturally taken as a
second-class constraint in Dirac‘s notation, since trivially w
have for the conjugated momenta1Cai to 1Aai that
1Cai50, and then$1Aai2

2Aai12aGai ,
1Cai%PB51 using
e

the naive canonical Poisson brackets. Hence~14! should be
inserted into the action. This gives, after some algebr
work,

S5E @22Ȧ ckE
ck1aLk~]cE

ck1a21ekli 2AclEi
c!

1NdEckF̃dck1N 1
2 eabceai@aF̃bc

i2~11a2!Rbc
i ##,

~15!

whereRabi is given by~2! and
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2Aai5Aai02
a

2
e i jkAa

jk ,

Lk5aAtk01
1

2
ekmnAt

mn ,

F̃abi52]@a
2Ab] i1a21e i jk

2Aa
j 2Ab

k .

Note that if one uses the definition~12! of 6Acl in ~14!
one obtains

Aai j52e i jkGa
k ,

that is,Aai j is simply the spatial Levi-Civita spin connection
Hence, what we effectively have done is to solve for t
rotational~spatial! part of the connection from the evolution
equations and to reinsert it into the action.

Before we comment on the terms in~15! we should say
something about how our dynamical variable2Aai is con-
nected with the dynamical variables used by Ashtekar a
Barbero. From the fact thatAaIJ is the Levi-Civita spin con-
nection, that is~5!, we have

Aai05ei
b¹aeb0[Kai ,

which in fact is nothing but the extrinsic curvature of
t5const surface. Hence, our dynamical variable2Aai can be
written

2Aai5Aai02
a

2
e i jkAa

jk5Kai1aGai ,

which should be compared with Barbero’s dynamical va
able
.
he

nd

a

ri-

BarAai5Gai1bKai .

From this we see that

a5b21 and 2Aai5b21 BarAai5a BarAai . ~16!

Note that fora5i , 2Aai and
BarAai equals Ashtekar’s dy-

namical variable up to a factor

2Aaiua5 i5Aa i02
1
2 e i jkAa

jk521Aai052AshAai ,

and hence

BarAaiua5 i52 i 2Aai5 iAshAai .

Puttinga51 we recognize the four terms in~15! as the
kinetical term ‘‘q̇p,’’ Gauss’ law constraint, the vector con
straint and the scalar constraint in Barbero’s formulation~1!.
Furthermore, one easily finds the ADM or the Ashtekar fo
mulation by puttinga50 or a5i , respectively, in~15!.

To summarize, we have shown that the action~3! with
a5b21 is the one corresponding to Barbero’s formulatio
This was effectively done by solving for the rotational pa
of the spin connectionAaIJ from the evolution equations,
and by inserting this result into the action. Fora50 the
action ~3! is the HP action, leading to ADM when 311 de-
composed, and fora5i it is the self-dual part of the HP
action, leading to Ashtekar’s Hamiltonian. Hence it could b
looked upon as a nice generalization of the HP action co
taining Ashtekar’s formulation as a special case.

I would like to thank Peter Pelda´n, who actually was the
one that suggested that the action~3! might lead to Barbero’s
Hamiltonian, and Ingemar Bengtsson, who persuaded me
investigate this suggestion.
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