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The technique of extended dualization developed in this paper is used to bosonize quantized fermion
systems in arbitrary dimensio@ in the low energy regime. In its origindminimal) form, dualization is
restricted to models wherein it is possible to define a dynamical quantized conserved charge. We generalize the
usual dualization prescription to include systems with dynamical nonconserved quantum currents. Bosoniza-
tion based on this extended dualization requires the introduction of an additional fac&léy field together
with the usual antisymmetric tensor field of rarit{ 2). Our generalized dualization prescription permits one
to clearly distinguish the arbitrariness in the bosonization from the arbitrariness in the quantization of the
system. We study the bosonization of four-fermion interactions with a large mass in arbitrary dimension. First,
we observe that dualization permits one to formally bosonize these models by invoking the bosonization of the
free massive Dirac fermion and adding some extra model-dependent bosonic terms. Second, we explore the
potential of extended dualization by considering the particular cashiadl four-fermion interactions. Here
minimal dualization is inadequate for calculating the extra bosonic terms. We demonstrate the utility of
extended dualization by successfully completing the bosonization of this chiral model. Finally, we consider
two examples in two dimensions which illuminate the utility of using extended dualization by showing how
guantization ambiguities in a fermionic theory propagate into the bosonized version. An explicit parametriza-
tion of the quantization ambiguities of the chiral current in the chiral Schwinger model is obtained. Similarly,
for the sine-Gordon interaction in the massive Thirring model the quantization arbitrariness is explicitly
exhibited and parametrizefS0556-282(196)03710-1

PACS numbdss): 11.30.Ly, 11.10.Kk

[. INTRODUCTION The bosonic variable is an antisymmetric tensor field of rank
D-2, a (D—2) form, denoted\ (P~2),

Bosonization is a procedure for converting a given ferm-  Minimal dualization rewrites the conserved quantized cur-
ion field theory into its bosonic equivalent. This equivalencerent density 7%, in terms of the real field\(°~2) as
is to be understood at the quantum level, as an equivalence
between the Green’s functions of the two quantum theories. FV=+dA P2, (1.2
The importance of bosonization is clear, since it permits one
to investigate quantum fermion systems by using bosonitiered is the exterior differential and * the Hodge star op-
technigues, which are always more powerful and better deeration.

veloped. Alternatively, in explicit components,
The bosonization program started a considerable time
ago, but for many years the known procedures were very %ﬂ(x)=ewl...MDflaf‘lA"Z"'“Dfl(x). (1.2

restrictive, only applying to theories in two-dimensional

(D=2) spacetim¢1-4]. More recently there has been a lot  Forp =2 minimal dualizatiorf6,8] gives the same results

of interest in extending bosonization to higher dimensionsas conventional bosonizati¢a0].

[5]. In this paper we will extend the minimal dualization pro-
A new direction of inquiry has been recently opened bycedure to include anomalous quantum fermion systems. We

applying dualization techniques to the purpose of bosonizadefine an anomalous system as a system with a nonconserved

tion [6—9]. Dualization can be applied to arbitrary spacetimequantum dynamical current. In that case, the current density

dimensionD, and also to arbitrary fermion field theories, ‘,;Z(l) is not necessarily conserved.

provided that a conserved quantum charge can be defined. In extended dualization, the bosonic equivalent action de-

We will call this original prescription “minimal dualiza- pends on the previously introduced antisymmetric rank

tion.” (D—2) field, plus a rank O real scalar field®). The relation
Given aD-dimensional fermion system with a dynamical between the current density and the bosonic fields is modi-

conserved quantum current, minimal dualization guaranteefied to

the existence of a bosonized version. The explicit bosonic

action is obtained by integrating out an auxiliary gauge field. i 7V=d\©@+i*dAP~2), (1.3
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If the quantization of the fermion fields is compatible with  The dimensionD=2 is a special case that we consider
the conservation of the curren?(®), we will see that the separately in Sec. Il. As an example we discuss the applica-
scalar field\ is equal to zero and we recover the usual mini-tion of extended dualization to the bosonization of the
mal dualization. Thirring model. We obtain the explicit dependence of the
Both (1.1) and(1.3) imply that for D>2, the tensor field sine-Gordon equivalent interaction and the bosonic version
A®~2) is not uniquely defined. If twol—2) formsA and  of the currents on the parametrization of the quantization

A’ are related by arbitrariness.
Section 11l will deal with the low energy regime, in arbi-
A —A=dy®-d (1.4) trary dimensionD. For large fermion mass, we study the

bosonization of massive four-fermion interaction models.
The case ofchiral four-fermion interactions is particularly

for some antisymmetricl{—3) form, x then these interesting because it can only be treated within the frame-
two (D—2) forms yield the same current. The bosonic ac-york of extended dualization.

(D-3)

tion has, by constructi(‘)‘n, a gauge ”symmetry. The-2) One should mention here that some other work has been
form A is a so-called “gauge form(generalization of a gone inD>2 bosonization, for nonanomalous systems, us-
gauge fieldi [8]. ing frameworks different from dualization. In particular, for

In Sec. I, we will give a full description of the extendgd the massive Thirring model in dimensi@in= 3, the results in

QUaIization method, anq show that .it permits thg bOSQﬂIZ&Ehe Abelian casd13] are a particular case of the bosonic
tion of anomalous fermion theories in arbitrary dimension. action obtained in this paper using extended dualization. On

Extended dualization is a generalization of minimal dual- : : .
ization to include anomalous quantum systems. It also exhi the other hand, the methods described18], and their ex-

its other virtues that deserve mention here. Within our ex_tensmn to the non-Abelian case4], are quite convoluted.

tended approach, we can reinterpret minimal dualization in 10T€ importantly, those methods are very much tied to the

very simple way. This reinterpretation clearly shows thatPeculiarities of the Thirring model. The dualization prescrip-

there is a considerable amount of freedom involved in thdi®n: Py contrast, is a nice simple technique that allows one
dualization procedure. This arbitrariness in the bosonizatiof® Study & wide range of quantum fermion systems, among
is clearly differentiated from the arbitrariness in the quanti-which the Thirring model is just a particularly simple ex-
zation of the fermion system. ample. Moreover, extended dualization is not restricted by
Although minimal dualization allows one t@t least in ~any symmetry requirement and it also allows the bosoniza-
principle) bosonize any arbitrary fermion theory with a dy- tion of anomalous systems. In Sec. lll we successfully com-
namical conserved current, it does not guarantee the corrglete the bosonization of thehiral four-fermion interaction
sponding bosonic action to be easily tractable or even locamodel.
The use of the above-mentioned arbitrariness in dualization, Section IV is devoted to the dualization of the simplest
that we identify in this paper, can be very convenient inmodel in two dimension&D) without hon-anomalous quan-
order to find the most tractable form of bosonization. Fortization, the chiral Schwinger model. Extended dualization is
instance, we know that systems of nonrelativistic fermions avery useful to show how quantization ambiguities affect the
positive density yield a well-behaved bosonic action usingoosonized version of the model. An explicit parametrization
minimal dualization[8]. However, even for the relatively of the quantization ambiguities associated with the chiral
simple case of a free massive Dirac fermion, the mass makeschingwer model is exhibited. In the bosonic version of the

dualization nontrivial. theory this quantization ambiguity manifests itself as an ad-
The situation we will encounter in this paper is the fol- ditional scalar. Moroever extended dualization permits one
lowing. to write easily an explicit expression for the bosonic equiva-

For D=2, dualization reproduces all the well-known re- lent of the chiral current.
sults of conventional bosonizatid2,11,13. The advantage We will conclude, in Sec. V, with a brief summary of the
of extended dualization is that it permits one to bosonize thénain results on extended dualization.
most general quantization of the fermionic system.
For D=3, we explore the low energy regime. The result-
ing bosonic action turns out to be local. By contrast, it is not Il. EXTENDED DUALIZATION: BOSONIZATION
possible to obtain an equivalent bosonic formulation via du-
alization in the high energy regime. It is in this restricted
sense that one has bosonization in arbitrary dimension. Consider a quantum system of fermions in a flat Euclid-
Dualization has the nice property that it permits one toean spacetinteof arbitrary dimensioD. The partition func-
obtain relationships among a wide class of models. We wiltion is given by
apply this property to obtain the bosonic equivalent of the
D-dimensional massive Thirring mod@lnd other subsidiary
models very simply, by adding some extra model-dependent
bosonic terms to the bosonization of the massive Dirac ferm-
ion. We remark that, in contradistinction to minimal dualiza-
tion, extended dualization allows one to bosonize more gen-1in a general curved spacetime with nontrivial topology, the ex-
eral four-fermion interaction models includinghiral  tended dualization procedure has to be modified, as it is indicated in
currents(which are, in general, anomalgus Appendix A.

A. Extended dualization prescription

z= f D Tipe” S D), (2.0
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whereS; includes any fermion self-interaction, and interac- N — —
tions with other external fields or source terfigenerically e St "MEJ ATy T pexd —Si+F(A, ¢, ¢, ¢)
denoted bye).

We will start by describing a trick to modify the partition + (A, dN+i*dA)]. (2.6

function (2.1). It consists of the introduction of a path- )
integral representation of the identity into the partition func-BY construction, we have
tion. We call this trick “extended dualization.” Later we _ _
will establish the relationship between such manipulations z:f @¢@¢e75f(¢v¢'¢):f 7N
and the bosonization of the fermion system.

Consider the following integral representation of the iden-
tity:

2.7)

Therefore, for any fermionic actio®;(,,¢), we have
introduced an equivalent bosonic acti®(A,\,¢). The
1:f TAT N DNeT AP gAd+ixdd) (o 9 partition function of the quantum system, originally given in
terms of the fermionic fields, admits a bosonic representa-
ny . _ tion in terms of the fields\(°~2) and\ (®,
HereA'" is an auxiliary one-form and the inner scalar prod- ¢ immediately follows from its definition that the bosonic

uct of form$ has been used=(A, .y, ¢) is an arbitrary  action is invariant under an Abelian gauge transformation of
scalar functional depending on the original fields and thehe formA — A +dy(®~3). One says that the form(® =2 is

non-physical vector fielh”), subject to the condition a gauge form, which is to be integrated over the space of
_ gauge orbits.
F(A=0,4,4,¢)=0. (2.3 So far, the bosonic actioS,(A,\,¢) defined in(2.6)

includes an arbitrary function® (A, ¢, ¥, ¢) . It is a matter

of delicacy and judgement to chooBén such a way that the

bosonic action, and the identification between Green'’s func-

tions of the fermion and boson models, become tractable.
In the case of a fermion system whose interaction in-

volves a single current densip]‘”(«//, ), there is a particu-

larly natural and economic choice of the functional

Furthermore A(°~2) is an antisymmetric rank{— 2) ten-
sor field and\(?) is a rank 0 scalar fieldZ[ A] denotes the
measure on the space of gauge orbits

[AJ={A":A'—A=dy(P 3}, (2.9

We relegate the proof dR.2) to Appendix A. -
Now introduce the identity, in its path-integral for(a.2), F(A ¢, ¢, 8):

into the fermion partition function2.1). So far we have -

nothing but an equivalence among path-integral expressions, F(A.Y. 4. ¢)=—1(A 7). 28

The convenience of the choi¢2.8) is clear if, in(2.6), one

= - ] first integrates out the auxiliary field. The current then has
f DpTpe ‘=f DYDY TALA]DN a nice and simple bosonic equivalent
Xexg —Si+ F(A,w,z,_b,d)) j ;@Ae—i(A,;)em,dHi*dA):5(_iy+d)\+i*dA)_
+(A,dN+i*dA)]. (2.5 (2.9

Now we want to extract from this identity a bosonic systemTherefore, the bosonic action defined by
in terms of which we could calculate Green’s functions of

the fermionic theory. For the purpose of bosonization we e—%(&m#);f iff/A@zp@Zexp[—Sf—i(A,;Z)
will first suppose that the change in the order of integration
leaves results unaltered. On the right-hand sid€2d) we +(A,dA+i*dA)] (2.10

will try to perform the integration over the fermions and the
auxiliary field A, and leave an expression in terms/ofind  makes the identification of the bosonic equivalent of the
N (which will be the fields of the bosonized actjon fermion current density very simple:
Define the bosonic actio§,,
i Z(x)=d\(x)+i*dA(X). (2.11

If the dynamics of the system involves several current
densities 72, the prescription(2.8) can be generalized by
introducing as many auxiliary vector field€, and bosonic
(a,b)zdexaﬂlmﬂk(x)bm-;Lk(x)_ fieldsA® and A?, as there are different dynamical currents.

Then one has the identificatid®.11) for each label. For
example, this is one way to get a dual version of non-Abelian

(Adn)= f dPRAK(X)IN(X), systems(such as fermions with non-Abelian gauge interac-

® tions or non-Abelian Thirring models

Remark.Bosonization consists of establishing a relation-
ship between fermionic and bosonic variables and, because

“Given two rank k forms a®=(1/k\)a, ..., (x)dx*1
A---Adx*, andb®, we define the inner scalar product

Then

(A dA) =i €, f APXAH(X) P2 FD-1(X).
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of its generality, it cannot be a unique procedure. In thismodified system obtained from the original one by adding
paper we explicitty demonstrate that behavior. From thecurrent interaction terms in the fermionic description
point of view of finding equivalent representations of theS;{=S;+S(i 7) has a bosonic dual given by
given partition function(2.7), other choices for the func- S, =Sp+ Si(dN+i*dA).

tional F(A, 4, ¢, ¢) [different from (2.8)] are equally valid. As a consequence of this property we can trivially dualize
This arbitrariness in dualization, which differs from the a large class of systems obtained from a given one, by add-
quantization arbitrarinegsnherent in the fermionic integral ing suitable current density interaction terms. Examples are
in (2.6)], is related to the freedom in choosing the bosonicas follows.
variables (more precisely, to the relationship between Current-current interaction terms, such as
bosonic and fermionic variables L L
This functionF can be used to simplify the bosonic action o _ Dy Dy, P _ P
by, for example, cancelling bothersome terms in Ahnte- Sm=+ Ef dXATY ZuOOV iy (6Y). 7uY) =+ E(‘]’V'])’
gration. This could be interesting when the fermionic effec- (2.149
tive action is not quadratic i\ (as is the case foD>2 . . . .
Abelian systems beyond the low energy regime, and fofModify the original bosonized actio, by the term
D-dimensional non-Abelian systems in any energy regime J - .
Even more, the functiof can help us by providing a — 2(dA+i"dAV[dA +i*dA]). (2.15

symmetry in the resulting bosonic action. For example, for. . . : .
- . . ; . Therefore, quartic interactions of fermions become quadratic
D=3 the field A is an abelian gauge field. However, for . L
in terms of the bosonic fields.

non-Abelian fermionic systems these Abelian gauge fields Source terms for the current§?, and interactions with
can be converted into a non-Abelian one by playing with the beli fields®  of the f '
arbitrariness ir [15]. We will go back to this point later on. abelian gauge fielda™™, of the form

The price to pay for such extra free_dom to choésés Sw=(i Z,j+a), 2.16
that the identification of the bosonic equivalent of the current ‘
density will be more complicated thaf2.11). This means |ead in the bosonic action to
that we are choosing other bosonic variables not so trivially
related to the fermionic variables, but better adapted to the (dA+i*dA,j+a). (2.17
bosonic version of the theory. . ]

In this paper we will illustrate extended dualization in  Property B.4. If the quantum field theory admits a quan-
simple cases where it is not necessary to use a nontrividized dynamical conserved fermion current density, then the

choice of bosonic variables. scalar field\(9) is equal to zero, and one recovers minimal
dualization.
(1 I . .
B. Properties of bosonization by extended dualization Proof. Let 7Y(y,4) be a quantized dynamical con-

served current density of the system, and let us use this cur-

_ Let us concentrate on the properties of abelian bosonizagnt density to define the bosonized version of the theory:
tion defined by relatior§2.10.

Property B.1. $ and §, related by (2.10), describe the B — ] /
same partition function, e Sb(A’M=j TIATYyTpexd —S—i(A, 7)

Z:f @zﬁ@@e_sf(w'z"’”:f @[A]@)\G_SD(A')"@. +(A,d)\+i*dA)]. (2.18
(2.12 Now define the “effective action”

This property follows by constructiof@assuming the order of TN | s Ta-S—i(A D)

integration can be exchanged e =) Dyre : (2.19
The expression for the Fermi fields in the bosonic theory . _ o

will, in general, be very complicatef®,8]. However, ferm- First note that, with this dualization, the quantum current

ion bilinears like 74 have simple expressions. density is conserved if and only if the effective action is

Property B.2. Any correlation function of the current 9auge invariant:
i Z(x) in the fermionic theory is related to a correlation . AL B
function of[d\(X) +i*dA(X)] in the bosonic model by d* 7V=0=T(A)=T'(A+da). (2.20

L o Let us study the consequences of this gauge symmetry on the
gkl o] D0 . .
(I770x0) - -1.750(Xn) s bosonic action:

= ([AN+i*dAT#(xy)- - - [dN+i* A T#0(%,))p -
(213 e—Sb(A,)\): J £%Ae—F(A)+(A,d)\+i*dA). (221)

The proof is very straightforward by doing some path-
integral manipulations and changing the order of integrals.
Property B.3. Consider a fermion-boson dual description AV =g 4j*gdpP-2) (2.22
of a given quantum system, where the actiop&/Ss, @)
and S(A,\,¢) are related by extended dualization. Any In terms of the fields/(®) and ¢(°~2) we have

Any nonharmonic one-forrA(*) can be cast into the form
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PN L The above prescription leads to a bosonic action with an
e OCJ 2T exd—T'(¢) Abelian gauge symmetry for each fied®. ForD=3 A is a
vector field; if we want for the bosonic action to have a
+(d{+i*de,d\+i*dA)] non-Abelian symmetry with\%, as a gauge field, extended
dualization is again needed. The coupling betw@wand
=f§1§e(d§’d”j Gpe~Tle)~(de,dA) 7%,(A) is not gauge invariant and one needs to use the

freedom in the functiorF to get such non-Abelian symme-

try. It has been showfpl5] that the mixed Chern-Simons
océ()\)f @(Pe—r(w—(d%df\) te):m 015]
; _ : i i
*5(N) f IAleTTRTAAD. 229 f e AL TS (A) = 55— | d¥xeH P ASATAC,
(2.29

Here Z[ A] is the integral over the space of gauge orbits.
The scalar fielc\ (%) trivially disappears because it is set changes by an integer multiple of72 under simultaneous
to zero by thes function. We can use non-Abelian gauge transformations &f, andA?, . That s, a
choice ofF(A) including a term proportional to

if d3x e Pf 5y AZAPAC (2.26

ut vt
to describe the partition function, originally introduced in
terms of fermions. This is the result of minimal dualization cancels the gauge noninvariance of the coupling between

(68,9 A% and.7% (A) (up to an irrelevant multiple of 2i). In this

Remark Note that the extended dualization presented Mvay, one gets a bosonic action with a non-Abelian symmetry

this paper first enlarges minimal dualization because it PerZ< we had in the fermionic theory. Of course, with this pre-

mits the d'SCl.JSS'.On of anomak_)u_s t_heorles. Second, s_|mpl|f|e cription, we pay the price of loosing the above-mentioned
minimal dualization because it is introduced by an integra ; o
representation of the identity. And third, it allows to identi properties of bosonization.

pres ' ! Iy Ira, | WS 10 | ify For simplicity only Abelian examples will be treated in

a big freedom in the dualization procedyessociated to the ., . : : - :
; . ) . . .. this paper. A detailed analysis of non-Abelian systems will
choice of the functionaF). This arbitrariness is clearly dif- atfe the subject of another paper.

ferentiated from the possible arbitrariness in the path-integr
guantization. . ]
Another advantage of extended dualization is that, in con- C- D=2 free massless Dirac fermion and related models
trast with minimal dualization, one does not need to use any The conventional bosonization of tH2=2 free Dirac
symmetry of the fermion system, even if such symmetryfermion is well known[10]. It is obtained by using a quan-
does exist. This fact opens new possibilities for bosonizingization where the vectorlike fermion current dena?tyﬂ¢
fermionic theories. is conserved. The result is that the free Dirac fermion in
Perhaps the most remarkable examples where we can eg— > js equivalent to a free scalar bosan The bosonized
ploit this advantage are non-Abelian systems. The naturglersion of the vectorlike fermion current i5,,0"A. Mini-
extension of minimal dualization to this case involves non-m 4| dualization agrees with conventional bosonizafi®ss).
Abelian gauge field&\* and tensor fields\®. This last field  However, using all the arbitrariness in the quantization, one
acts as a Lagrange multiplier for the conditioff,,(A)=0  gets a gauge noninvariant result for the fermionic path inte-
and makes the gauge field trivial due to the non-Abeliangral[16,17]. Using extended dualization it is possible to ob-

symmetry of the systerfv,15]. The problem is now that the tain an explicit parametrization of the quantization arbitrari-
coupling betweer andA is not linear inA and therefore it ness in the bosonized version of the system.

is not possible an exact identification of the fermionic current  The partition function is defined by
like (1.2). Due to this fact one loses all the usual properties

such as the direct relation between Green'’s functigmnsp- | e
erty 2.2.2 or the simple rule to introduce interactiofpgop- Zhee= | Ty (2.27
erty 2.2.3.

However, extended dualization of non-Abelian systemsere Sgree(lp@) stands for the free Dirac action in flat Eu-
does not require any modification because one does not negflgean spacetimé:

to implement any non-Abelian symmetry in the theory. As

we said previously, one can apply our dualization prescrip- free; » TN _ T ou

tion (2.10 independently to each current densj#f with the S () vy . (.28
choice (2.8 for F which is linear inA?. Proceeding in this

way, all the properties of bosonization by extended dualiza- , )

tion remain in the non-Abelian case. We should remark here “Our conventions are

that this prescription would lead to an independent Abelian
gauge symmetry for each fiel®, in contradistinction with
the non-Abelian symmetry of minimal dualization. In D=2 we usey,ys=ie,,y".

V=Y Y ¥d=284. A=1.
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In D=2 the antisymmetric formh (°~?) reduces to asca-  As a consequence,
lar field (a zero form. The bosonic action obtained by dual-
ization is given in terms of the two scalar fieldsand\ by S A L) — i(dA dA)
L 2§ 1

*Sgeem,x):f TATYTpex — SI—i (A, 7
o TGATYTpexd — S~ (A, 7) is invariant underA—>A+§,8, A—X,

+(A,dA+i*dA)] (2.36

free _1
=f‘@A@I,{/@Eexquw((y#—i%)w S (AN~ 5 (dh.dy)

o - n
+(A,dN+i*dA)]. (2.29 is invariant under)\ﬂ)\+;a, A—A.

Here we have dualized using the vectorlike currentrperefore we get the final result

T(X)= (%) 7, ().
We introduce the effective action m

2§

Scaling to canonical variables,A— & mA and
N—~n/m\, we find that the free Dirac fermion iD=2
bosonizes into two free scalars. By construction we have the
following identification for the fermion currents:

S A ) = = (dA,dA) + %}(d)\,d)\). (2.37)

e W= J DY D! T IR, (2.30
in terms of which the bosonic action reads

Sgee(A,)\):—lnj gAe—F(A)-F(A,d)\-H*dA). (23])

— & \ﬁ
The effective actionI'(A) can be calculated exactly. 7 \[776‘“’& A O (239
However, we will use a symmetry argument to obtain its
value. Consider a local and arbitrary transformation over the — \ﬁ ) \/E ,
fermion fields Pyuysde \ €wd' N \[ 9N
p—e TPy, (232 The gauge invariant result corresponds\teQ andé=1.
- — Other related models can be trivially bosonized once we
p— e TP, have expressioni2.37) in hand. In particular, consider the

. : . fermionic action given b
Under such transformation the effective action has the prop- 9 y

erty

. g
S :Sfl’ee+ &/, + = 'u/"(,/ , 23
I['(A)=T(A—da+i*dB)—InJ(a,8,A), (2.33 i=Si- +(I 7))+ 5(7.7) (2.39

whereJ(a, 3,A) is the finite Jacobiafil6] corresponding to  With a source termj® for the current density, and a
the fermion transformatiof2.32). Thirring-like interaction of strengthy. Using the general
The most general expression for this Jacobian can be reafoperties of extended dualization we have

for example, from{17]. It has the form _ _
i " So(AN)=S(AN) +(j,dN+i*dA)

i
|nJ(C¥,ﬂ,A): ;[g(ﬂieuvapAv)+i n(a!a,uAp,)] _ g(d)\_’_l*dA d)\+|*dA)
2 ’

1
- + . (. 1 1
71 £(0B.08)+ n(dada)). (230 ~ {7 +o)@nan 3|7 -genan
Here £ and » are parameters introduced to describe the par- +(jLdN+i*dA). (2.40

ticular quantization employed. They satisfy the relation

Etnp=1. The net effect of the fermion self-interaction is a change of
The particular cases{=0, £=1) corresponds to a gauge the kinetic coefficients for the scalar fields.
invariant quantization. This special case is equivalent t0 The stability of the Thirring model requires

minimal dualization6,8].
Property(2.33 implies that the bosonic action satisfies T T
- —<g<—. (2.4)
£ 3 ”

n 1
—BAN+—a|—5—[&dB.d . o o
77'8 Wa) 277[5( A.dB) This is a generalization of the usual conditienr<g. See

Sgee(A,)\)zsgee(AJr

[2].
+n(da,de)]=(dp,dA) = (da,dh). In the range of stability, we rescale and\ to canonical

(2.35 variables
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B y well known in theD =2 bosonization folklor¢11,12. The
A_)ZA’ A=\, (242 main steps of the calculation are exhibited in Appendix B,
and the final result is

where 8 and y are constants defined by

2
ar 1 g 4m 1 g Sgee(m;A,)\):S{)’ee(O;A,A)—ZmAUVf d?x co{?A(x)
?=E+;, 7=7—7—;. (2.43
. . (dA dA)+—(d)\ d\)
In terms of the canonical variables we have 2§
1 1 ) 2
Sy(AN)= E(dA,dA)-F E(d)\’d)\) —2mAyy | d“x co ?A(X) . (2.5)
Y I Here Ay is an ultraviolet cutoff required to regularize the
g Nt o—i*dA ). (244 integral over the auxiliary fieldh.
Adding other interactions and sources to the bosonized
The identification of currents is free massive Dirac fermion is, as before, trivial. Take the
fermionic action to be
l//')’,u’/"_’ b E aVA_lm A, (2.45 free
Si=S[*(m; y, ¢f)+(l/1)+ (7). (252
(//'y#'y5¢<—> 4 —€u LI\ — 2B id,A. The corresponding bosonic action is given by
a

The particular casef?=4w¢, y*=4mn) corresponds to  Sy(m;A,\,j)== z—g)(d)\,d)\)
n

T 1
5 —+g)(dA,dA)+§
the free Dirac fermion. £

2
D. D=2 free massive Dirac fermion and related models _Zm/\uvf d?x CO{?A(X)
The partition function is defined b . .
P Y +(j,dN+i*dA). (2.53
Zied M) = f DY Tape S M), (2.46  Rescaling to the canonical variables introduce@i42 and

(2.43, we have

while the free massive Dirac action has the form Sy(MAN) = H(dA,dA)+ 2(dN,dn)

B
- 2 =
2mAU\,f d XCOE{g

SffrEE( m; l/f,z) = — [ny“&ﬂl}[j'f‘ le/l] . (247)

Consequently, the bosonic action for a free massive Dirac
fermion has the path-integral expression

A(X)

+ j,%d)ﬁ%i*dA .

(2.59

S m; A\ ) = f IADYTpexd — SI—i(A, 7)
The identification of the fermion current densities is not
+(A,d\+i*dA)] modified from the massless ca45), neither is the stabil-
ity condition (2.41).

I iy . This is a generalization of the well-known res{,11]
_f SALYT XLy (9, 1AL that the massive Thirring model is equivalent to the sine-
— ) Gordon model. In our analysis there is also an additional
tmyy+ (A dh+i*dA)]. (248 scalar field\, that plays a role in the identification of the

. . . fermionic current densities
Now, introduce the effective action

B o Y
e Tnl®) = J DT BTN (2 49 DY 5 € A= 519, (2.59
in terms of which Y ” B .
¢yﬂy5¢//<—>  €u e > id, A

free, .. — | crae-TmA)+(Ady+i*dA)
Sp(M;ALN) f!jAe . (250 7pe parameter valug8®?=4x¢, and y?=4m7, correspond

to the massive free Dirac fermion system. In particular, set-
The bosonic actiorsgee(m;A,A) can be calculated by a ting B2=4m, and y>=0, corresponds to minimal dualiza-
power expansion in the fermionic mass. This procedure igion.
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lll. D-DIMENSIONAL MASSIVE FOUR-FERMION rather specific properties of the Thirring model, dualization
INTERACTIONS applies to any fermionic system.

In this section we will concentrate on the dualization of In the Thirring model the current densny,iﬂ(x)

D-dimensional massive four-fermion interactions. First of _ by is vectorlike. Therefore, the system admits a quan-

all, we shall formally derive the bosonic action by invoking tization th_at_ conserves t_he vectorli_ke_ current and we can ap-
the bosonization of the free massive Dirac fermion and the! the minimal dualization prescription. .
incorporating extra bosonic terms. These extra terms will, !N the large mass limit, the gauge invariant effective ac-
depend both on the model and on the particular dualizatiof|ON I'm(A) is quadratic in the fielch, and can be cast into
prescription. Later on, we shall review the results obtainedn® form

for the massive Thirring model using minimal dualization in 1 1

the low energy limit. Finally, we will explore the potential  I' (A)= _f deA“(x)CSV(a,m)A”(XF =(A,CPA).
advantages of extended dualization by performing the 2 2

bosonization of the chiral four-fermion interaction model (3.6

(low energy only. Using the well-known results for the differential operator
For definiteness ng(a,m), [9] we can perform the Gaussian integral®5)
_ _ g in an appropiate gauge.
S‘f”(m;w,ll/):S?ee(m;i//,’/’)Jr5(7»%- (3.1 The.final results for 'Fhe Thirring model in the infinite
mass limit are the following.

s m: 4 7) is the f . ) ion defined D =2. The bosonic action has a scalar fidldvith a mass
Here S; “(m; 4, y) is the free massive Dirac action defined ¢ js proportional to the fermion mass and to the inverse of

in (2.47, while the density currentZ(!)(x) is a rank-one e Thirring couplingg. It is given by
fermion bilinear.
The quantum system is defined by the partition function.

1 6
Including a sourcg () for the current, this reads S(m, oA j) = 5|9+ ?}(d/\,d/\)
. = M i 1
Z4f(1)=f£%¢%¢e S 07D, (3.2 + 56mMA(A,A) +i(],*dA).
The extended dualization of this model proceeds as 3.7
. , M mAn) The mass for the scala¥ is M?=5m?/[1+5g/617].
Z4f(J):J LN Dne” > (MR, 3.3 D =3. The bosonic action includes a gauge fialgl, with
an Abelian Chern-Simons term
The bosonic actiorisﬂf is given by 2

(Th) . P\ — 1
S (mAoeALf) = 59(dA,dA) + *dA)

8w
T (A,
SE(mA )= SEmA M) + S[(dA,dA)— (dh M) stanm
+i(j,*dA). (3.8

+(j,dN+i*dA). 4
(J,dn+i*dA) @4 The gauge field\ , has a topological masd8] given by

Therefore, to obtain the bosonic representation of the madv =87’lg.

sive four-fermion interaction model, the only calculation left ~D=4. The bosonic field is a rankX—2) antisymmetric
to do is the evaluation of bosonic action for the free massivdorm A, ..., ., and the action becomes

Dirac fermionS®%(m; A ,\):

(Th) . : _1 1 s
Sy (m/oo,A,J)—zg(dA,dA)+K—D(A,A)+|(1,*dA).

Sfes(m; A\ ) = f TAe T AN (3 (3.9

In general, for arbitrary mass and dimension, the effectiveTherefore, in terms of the gauge forif®~2), the bosonic
actionI",(A), given by(2.49, is a very complicated func- action is local in the infinite mass limit. The mass for the
tional. However, in the limit of large fermionic mass, form A is M2=1/gKp, whereK is a coefficient depending
m—oo, the effective action becomes quadratic in the fieldon the regularization method.

A and we can give an explicit expression for the bosonic The interpretation of these results as an effective theory at
action Sgee(m/oc;A,)\). low energies(much smaller than the fermion massill be
discussed elsewhefé9].

A. Massive Thirring model: Low energy limit

. - . . B. Chiral four-fermion interactions: Low energy limit
The massive Thirring model is one of the simplest four- 9y

Fermi interaction systems suitable for dualization. Other ap- A considerably less trivial system is obtained when the

proaches have been used to bosonize the massive Thirridigteraction is not parity invariant. For definiteness specialize

model[13]. However, dualization makes the bosonization athe current in(3.1) to be 7,= ¢y, [(1—vs)/2]¢. In this

lot simpler. Additionally, while other approaches rely on case, the relevant current of the interaction cannot be quan-
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tized in a conserved way. We therefore need to invoke ex- The partition function for the chiral Schwinger model is

tended dualization and thereby demonstrate its utility by sucdefined by

cessfully completing the bosonization of this chiral model.
The most general result for the effective action in the

V= | vavysye Scsmb B ~iG, 7™
infinite mass limit is Zesm() J DT Tife” >CM . (4]

= = 1—s The action has the form
Fm(A)z—Inf DyTpexg py* aﬂ_ITA“
— 1 — . 1-s
_ Scs(,4,2)= 7 (da,da)— §y*| 3, ~ie— aﬂ} .
+mW} 4.2
1 Here a!) stands for an Abelian gauge field and the chiral
=5 kp(AA), (3.10  currentis
with a regularization dependent and dimension dependent };h: VY, 5 . (4.3

coefficientkp .

The bosonic action is given b ) . L
g y As a result of integrating out the fermion fields we get an

9 effective action
SEM(m /o2 AN ) = S[(dA,dA) — (dh,dM)]

= Tl T I PR P
Fi(dn i dA) I'csu(@) Inf J/wJ(//exp( byt a,—ie 5 a,l¥l.
(4.9
—mJ IA exd — 3kp(A,A) Evaluating this effective action, in its most general form,
one finds[21,27]
(A AN+i*dA)], (3.11)
e? L
wherej®) is a source for the chiral current. Pes@=5—|é@a)—|a,,—a, || (4.9

The bosonic action contains two field$®~2) and\(©):
Here a;=(1/2)(5w+iew)av. The arbitrariness in the
quantization procedure is reflected in the presence of the lo-
cal term @,a), and this arbitrariness is parameterized by the
coefficienté.
+(j,dN+i*dA). (3.12 This is the result of conventional bosonizatii]. As a

) ) o . . consequence of integrating out the Fermi fields, the gauge

This bosonic action is local and linear in the source, so weig|d acquires a mass term, depending on the arbitrary param-

[(dA,dA)—(d\,d\)]

h 1 1
S(m, o AN, )= 5| g+ —
2 KD

can establish the operator identification eter¢. This effective action can be expressed in a local way
1 by introducing an additional scalar field.
— ~ Vs . Bosonization via extended dualization goes beyond this
—_— +i* . . . . . . o .
"y 2 Yo dh+itdA (313 conventional result since it permits one to exhibit the bosonic

equivalent of the chiral current.

Because of the low energy limit, the bosonic action turns We see in(4.5 that the effective action is never gauge
out to be bilinear in the bosonic fields. We also observe thainvariant for any value of. Therefore the chiral current,
the scalai has a kinetic term with the opposite sign. This is 7", is never conserved for any possible quantization of the
a typical phenomenon related with anomalies that has alehiral Schwinger model. Extended dualization is the only
ready been encountered in the 2D quantization of chiral syssption.
tems. (See for instancd20] and the next section.One The partition functior(4.1) can be expressed in terms of a
should expect the stability of the model to be based on sombosonic action
compensation of states coming from the scalaxith some

scalar states constructed with the tendor Zeslj)= f ZadA] eSS MAanai) (4.6

V. CHIRAL SCHWINGER MODEL: BOSONIZATION The bosonic action, using the extended dualization prescrip-
The chiral Schwinger model is the simplest modeltion, is given by
wherein the dynamical current is always nonconserved. Ex-
tended dualization permits to obtain the bosonic equivalent,-sFS"a aj)_f TR G T, -
. . ! : ! e = ATy TDpexd — J,a
of the chiral Schwinger model including a systematic treat- AALPLYXA ~ Scsml ¥ 4,2)
ment of the quantization arbitrariness. The explicit form of o ehy i/ A och -
the chiral density current in terms of two scalar fields is (1,701 A7)+ (AdA+ixdA)].
obtained. 4.7
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After integrating over the fermions one gets

SSSMAN,a,j)=+3(da,da)+ (ea+j,dA+i*dA)

- |nj gpe TesmA) +(Adh+i*dA)
(4.9

The Gaussian integral over the auxiliary vector fiéldis
straightforward and the result for the bosonic action is

CSM : 1 i ik
S7(ALNa,j)=+ Z(da,da)+(ea+1 JAN+i*dA)

m(4€—1)
+ gergr(dAdA)

m(4é+1)

—ngz(d)\,d)\)—

’7T
Zezg (A ).

(4.9
Introducing canonical variables

Jm

GZE

{(1-28)A+(1+2&)A}, (4.10

¢= \/;(A—)\),

e
the bosonic action becomes

CSM N — 1 _1 E
SN0, 4,a,)) +4(da,da) 2(d0,d0)+2(d¢,d¢)
1% (eati d[2&(0+ @) —
2ﬁ(ea j,d[2£(0+ &) — &])

+ " (eat] i*d[26(6+ d)+ b).
a

2\m
(4.11)

The bosonic action includes the gauge fiald, plus two

scalar fields# and ¢, coupled to this gauge field. The sta-
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functions of the chiral current in the most general quantiza-
tion of the chiral Schwinger model usirg.12.

V. CONCLUSIONS

We have introduced a constructive determination of the
bosonic equivalent of a given anomalous Fermi system,
called extended dualization. The bosonic action includes
both a scalar field and a ranB{ 2) antisymmetric form as
fundamental fields. Our extended duality transformation is a
generalization of minimal dualization. The last one applies
only for systems in the presence of a dynamical conserved
quantum charge and the only relevant bosonic field is the
(D—2) form.

We have seen that for a given fermionic system the
bosonic counterpart is not unique. A large freedom is in-
volved in the dualization transformation. One can choose the
most convenient dualization in order to have the most trac-
table bosonic action and correlation functions for the rel-
evant operators. In general, one can exploit this freedom to
get specific properties for the bosonic action. In this paper
we have explored one of the most simple options that is quite
efficient for abelian bosonization when the fermionic effec-
tive action is quadratic.

A very nice property of dualizatiorteither minimal or
extended is that it permits one to study a wide class of
fermion systems by adding some extra model-related terms
to the known bosonic version of some much simpler fermi-
onic model. We have examined the bosonization of
D-dimensional massive four-fermion interactions by adding
appropriate terms to the bosonization of Bedimensional
free massive Dirac fermion.

We have demonstrated the utility of extended dualization
by explicitly exhibiting the bosonization of the particular
case of the chiral four-fermion interaction modgl the low
energy limid. The bosonization of this chiral model requires
the inclusion of an additional scalar field in order to yield the
bosonic equivalent of the chiral current density.

We have also applied the extended dualization procedure
to determine the bosonized version of the chiral Schwinger
model and we have obtained the expression of the chiral
current, for the most general quantization of the model, in
terms of two independent scalar fieftls.

In all the above-mentioned chiral models, extended dual-

bility of the original model is based on a compensation beization has permitted us to study easily the consequences of

tween states coming from the scatawith some combina-
tion of the scalawp and the(nondecoupledzero component

of the gauge fielda [20].

the quantization arbitrariness in the bosonic version of the
system.
The considerable freedom in the extended dualization pre-

The bosonic equivalent for the chiral current is given by scription introduced in this paper opens up the possibility of

Ys

— e
Wy e m%[zf(tﬂ ) — @]

+i %ewa”[zaw $)+dl. (412

applying this freedom in order to dualize more complicated
fermi systemgwith or without anomalies such as Abelian
systems in more than two dimensions beyond the low energy
regime, and non-Abelian systems. Moreover, this freedom
offers the possibility of imposing new symmetries on the
dual action.

“4Recently, Garoudi23] has presented the dualization of the chiral

The importance of this result is that bosonization based oschwinger model using only one scalar field. It is easy to see that
extended dualization allows one to calculate correlatioris result corresponds to the particular cgse0 in our scheme.
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APPENDIX A xexp:(f,@AhF(AJrAh,z//,Z,qs) glAdMHIxdA),
In this appendix we will prove the identity (A8)

_ _ The proof is as follows: Integrating over the bosonic fields,
1= f AT N]DONeF A dlgAd+ixdd) (A1) e have

We assume that the fields are sufficiently well behaved at the f ZINIZINIZN exp{ f IAGF(A+ A, Z ¢))
boundary that integration by parts is valid. Then we find the R

following.

Integrating out the field\, we have Xe(A'd"”*dA):exr{J DAGF(An 0, b) . (A9)

dA=0. (A2) where translation invariance for the integration over har-

monic one-forms has been used. The identkg) follows,

To integrate out the field we need to perform an ana- provided that

lytic continuation\ —i\, and(at the end of the calculatipn
we need to return to the physical region of interest. This _
implies f DAF (AL, 0, ¢)=0. (A10)

* N —
d*A=0. (A3) This is the generalization, in the case of nontrivial harmonic

Therefore, the result of integrating out the bosonic fields ©n€-forms, of the previous conditidh(A=0.,4,¢)a=0.
and\ is If the functional F(A, ¢, ¢,¢) is linear in the auxiliary

vector field A, as it is the case for the simplest choice
‘ 7 _ F(A, y,¢,¢)=—i(A, 7) [in (2.8)], the condition(A10) is
f IA)ONeANTHIN=5(dA)5(d*A),  (A4)  trivially satisfied and we have

so that the auxiliary vector field must be a harmonic one- f TAF(A+A, zﬁ@ ®)

form AV, That is,AA,=0, whereA is the Laplacian that ' R

acts on one-forms in thB-dimensional space under consid- . .

eration. Therefore =F(A, ¥, ¢, ¢)f L%Ah+f DAF (AN, @)
f TATA]INF AT D gAdFixdA) =F(A .1, ). (A11)

B Therefore, in this case, the only new component to the dual-
= f T EFAn ) (A5) ization for a nontrivial topology comes from the explicit rep-
resentation of the integration over harmonic orbits for the

. . . auxiliary vector fieldA® in (A8). The simplest example, a
In simple cases where spacetime has trivial topology, such &Wo dimensional fermion in a cylinder, has been done in
R" or S", there are no harmonic one-forms, and therefore th%ietail in[6].

identity (A1) follows, provided only that

F(A=0,,4,$)=0. (A6) APPENDIX B

This appendix is devoted to a sketch of the technical de-
In more complicated spacetimes with nontrivial topology, tails of theD =2 path-integral calculation of
a modification of(Al) is necessary, taking into account the

space of harmonic one-forms. We generalize the path- — e A , - = )

integral representation of the identity in the following way: e ZJ TADYTpexd gy (9, —1A ) ¢

we replace the integration over the space of one-fofis _

by an integration over the space of orbits +myp+ (A, dN+i*dA) ], (B1)

[A]={A":A"—A=A,;AA,=0}. (A7) for small fermion massap.
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We will proceed by performing a perturbative expansion e oo
in the mass, but first we rearrange this expression in a more Sy (MAN) =S, (m:O;A,)\)—Inf Y
convenient form.

Consider the following local transformation for the ferm- 1
ion fields: Xexp + E(d(p,d(p)

v a
Viertall e

The parameters of this transformation are the two scalahere the effective actiofi, is the result of the fermionic
fields, { and ¢, used to write the auxiliary vector field, jntegral

A=d{+i*de.
Under such a transformation we have

e Tersy eI ers), (B2) T,

e Iml®l= f DT et i mie 2%y (gg)

_ dfree, . S .
e % (m’A’x):j TRTYTPI(A) So far we have done nothing more than rearrange the
- _ integral in a convenient way. In order to perforf®@8) we
xXexd yy"a, g+ mye 21¢7sy, will do an expansion in powers of the fermion mass. Intro-
+ (AN +i*dA)]. (B3) ducingo-=(1/2)(1* vys5) ¢, one gets

i
|£I1 dZXdeyk

“ m
The Jacobiarl(A) associated with the finite transformation e*Fm[@’]:E Wf
(B2) can be read off from the general res(®34 in the =0

particular caser={¢, B= — ¢. One finds

Xex;{ ZiZk [®(yk)_®(xk)])

1
J(A)=§[§(d¢,dcp)+ n(dZ,dd)]. (B4) _ i
X f @iﬂifﬂﬂe‘”ﬂ"“‘”k[[l o_(XJo(y.  (BY)

Because the mass term depends only on the figlthe
integration over can be easily done. Apart from trivial con-
stants we get

Using Zinn-JustifRef.[11], p. 680, Eq(A28.14], one sees

f @l/fﬁi/@e‘_””"u"’lﬂl o_(X) o4 (Vi)
sfeem: A, \) = %}(d)\,d)\)—lnf DT Ty

_( 1 )ZiHL<||Zk_Z||2|Zf<—Z|'|2
_ - 2w I [z~ 2|7
X ex;{ PyHd P+ mye 25y '

=Ki(X,y), (B10)

+ %(dqp,dgo)—(dcp,d/\)). (B5)  wherezy=x+ixi, z,=yl+iy;.

This implies

Rescaling, to the canonical variablep— \/m/&e a o Z mA

+(nIDA. we have sgee=ﬂ(d)\,d)\)+ z—g(dA,dA)—Inzo T
i
free; . :1 1 Xf d2X d2 K-(X, )
SEmIAN) = 5 (AN AN+ 5 (A, dA) kljl K2y [Ki(x,y
R — — 2
—In f wsw:zzpexp{ Py d i+ my xeXp(l?Ek [A(yk)_A(Xk)])

] T T i
><exp[ —2i \@cer EA) 75} W X f g/xpe*(l’z)(d“"d“’)k]:[l eXp< 2i \/?@(W))

+ E(d%d@)}- (B6) ><k]i[1 exp( —2i \/gtp(xk))- (B11)

Therefore Now using Zinn-JustifRef. [11], p. 664, Eq.(28.13]
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L 0 for 2 €+0,
I
f ?jﬁexp{——(dﬁ,dﬁ)HE eie(xi))oc (B12)
2t i
I1 (Agylxi=xhes?™  for X €=
1<) i

for an ultraviolet cutoffA, that appears when one regularizes the free boson propagator. The fact that this correlation
function is zero unless the coefficients satisfy the conditios)= 0 is a result of invariance under constant translations of the
field 6. The integral over the scalar fielgsresults in

Tpe" 2 (de,de) [T expl 2i \/ 2e(yi) | TT exd —2i \/=e(x0 | < (Aw) 2K (x.y). (B13)
k=1 13 k=1 13

The final result is

free _ (m AUV)ZI 2y A (27 E)A 2 |(2ﬁ/§)A-
S8 m; A \) = (d)\ d)\)+2—§(dA ,dA)—1In ._EOT fd xe fd xe~ . (B19

Consider now the partition function in the presence of a sojirce

:f@[A]gxe—sgee(m;/\,x)—(j,dﬁi*dA)' (B15)

Invoking invariance under constant translations of the fieJdwve can show that the result B12) for =;¢;#0 generalizes,
in the presence of the sourgeto

zzfg/;[A]%exp( 2, (@A) - (dA dA)— (j,d)\+i*dA))

2i 2 i
Xzo(m/;u!v) ( ')(sz o (2mlE)A ) (jdzxei(zw/gm)

fJ[A]J)\eX[{——(d)\ d)\)— (dA dA)— (J,d)\—i-i*dA))

S 8 2i—k
XZO %g{)( )(szxewzw/g ) (fdzxe I(27r/§)A)

J'J[A]J)\eX[{ ——(d)\ d)\)——(dA dA)— (j,d)\-l-i*dA))

o 2i 2i
XE (m/;iUIV) (fdzxei(zw/g)AJrJ dzxe_i(27’/§)/\>
i=o !

=f «Z[A],%\exr{—%(d)\,d)\) T (dA,dA)— (J,d)\+i*dA))

2¢
(mAuv)

<3

=0

i
(Jd2xexﬁ(27ﬂ§)A+J d2xe—l(2'n'/§)A)

=f Z[A]%)\exr{—%(d)\,d)\)— T (dA,dA)— (J,d>\+i*dA))

27
X exr{ 2mAU\,f dzxcos{?A

This result is a generalization of the well-know2,3] equivalence of a massive Dirac fermionn=2 to the sine-Gordon
theory, for the particular valug=1.

2¢

) : (B16)
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