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The technique of extended dualization developed in this paper is used to bosonize quantized fermi
systems in arbitrary dimensionD in the low energy regime. In its original~minimal! form, dualization is
restricted to models wherein it is possible to define a dynamical quantized conserved charge. We generalize
usual dualization prescription to include systems with dynamical nonconserved quantum currents. Bosoni
tion based on this extended dualization requires the introduction of an additional rank 0~scalar! field together
with the usual antisymmetric tensor field of rank (D22). Our generalized dualization prescription permits one
to clearly distinguish the arbitrariness in the bosonization from the arbitrariness in the quantization of th
system. We study the bosonization of four-fermion interactions with a large mass in arbitrary dimension. Firs
we observe that dualization permits one to formally bosonize these models by invoking the bosonization of t
free massive Dirac fermion and adding some extra model-dependent bosonic terms. Second, we explore
potential of extended dualization by considering the particular case ofchiral four-fermion interactions. Here
minimal dualization is inadequate for calculating the extra bosonic terms. We demonstrate the utility o
extended dualization by successfully completing the bosonization of this chiral model. Finally, we conside
two examples in two dimensions which illuminate the utility of using extended dualization by showing how
quantization ambiguities in a fermionic theory propagate into the bosonized version. An explicit parametriz
tion of the quantization ambiguities of the chiral current in the chiral Schwinger model is obtained. Similarly
for the sine-Gordon interaction in the massive Thirring model the quantization arbitrariness is explicitl
exhibited and parametrized.@S0556-2821~96!03710-1#

PACS number~s!: 11.30.Ly, 11.10.Kk
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I. INTRODUCTION

Bosonization is a procedure for converting a given ferm
ion field theory into its bosonic equivalent. This equivalenc
is to be understood at the quantum level, as an equivale
between the Green’s functions of the two quantum theori
The importance of bosonization is clear, since it permits o
to investigate quantum fermion systems by using boso
techniques, which are always more powerful and better d
veloped.

The bosonization program started a considerable tim
ago, but for many years the known procedures were ve
restrictive, only applying to theories in two-dimensiona
(D52) spacetime@1–4#. More recently there has been a lo
of interest in extending bosonization to higher dimensio
@5#.

A new direction of inquiry has been recently opened b
applying dualization techniques to the purpose of bosoniz
tion @6–9#. Dualization can be applied to arbitrary spacetim
dimensionD, and also to arbitrary fermion field theories
provided that a conserved quantum charge can be defin
We will call this original prescription ‘‘minimal dualiza-
tion.’’

Given aD-dimensional fermion system with a dynamica
conserved quantum current, minimal dualization guarante
the existence of a bosonized version. The explicit boson
action is obtained by integrating out an auxiliary gauge fiel
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The bosonic variable is an antisymmetric tensor field of ran
D22, a (D22) form, denotedL (D22).

Minimal dualization rewrites the conserved quantized cur
rent densityJ (1), in terms of the real fieldL (D22) as

J ~1!5* dL~D22!. ~1.1!

Hered is the exterior differential and * the Hodge star op-
eration.

Alternatively, in explicit components,

Jm~x!5emm1•••mD21
]m1Lm2•••mD21~x!. ~1.2!

ForD52 minimal dualization@6,8# gives the same results
as conventional bosonization@10#.

In this paper we will extend the minimal dualization pro-
cedure to include anomalous quantum fermion systems. W
define an anomalous system as a system with a nonconser
quantum dynamical current. In that case, the current dens
J (1) is not necessarily conserved.

In extended dualization, the bosonic equivalent action d
pends on the previously introduced antisymmetric ran
(D22) field, plus a rank 0 real scalar fieldl (0). The relation
between the current density and the bosonic fields is mod
fied to

iJ ~1!5dl~0!1 i * dL~D22!. ~1.3!
5952 © 1996 The American Physical Society
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If the quantization of the fermion fields is compatible wit
the conservation of the currentJ (1), we will see that the
scalar fieldl is equal to zero and we recover the usual min
mal dualization.

Both ~1.1! and ~1.3! imply that forD.2, the tensor field
L (D22) is not uniquely defined. If two (D22) formsL and
L8 are related by

L82L5dx~D23!, ~1.4!

for some antisymmetric (D23) form, x (D23), then these
two (D22) forms yield the same current. The bosonic a
tion has, by construction, a gauge symmetry. The (D22)
form L is a so-called ‘‘gauge form’’~generalization of a
gauge field! @8#.

In Sec. II, we will give a full description of the extende
dualization method, and show that it permits the bosoni
tion of anomalous fermion theories in arbitrary dimension

Extended dualization is a generalization of minimal dua
ization to include anomalous quantum systems. It also exh
its other virtues that deserve mention here. Within our e
tended approach, we can reinterpret minimal dualization i
very simple way. This reinterpretation clearly shows th
there is a considerable amount of freedom involved in t
dualization procedure. This arbitrariness in the bosonizat
is clearly differentiated from the arbitrariness in the quan
zation of the fermion system.

Although minimal dualization allows one to~at least in
principle! bosonize any arbitrary fermion theory with a dy
namical conserved current, it does not guarantee the co
sponding bosonic action to be easily tractable or even lo
The use of the above-mentioned arbitrariness in dualizat
that we identify in this paper, can be very convenient
order to find the most tractable form of bosonization. F
instance, we know that systems of nonrelativistic fermions
positive density yield a well-behaved bosonic action usi
minimal dualization@8#. However, even for the relatively
simple case of a free massive Dirac fermion, the mass ma
dualization nontrivial.

The situation we will encounter in this paper is the fo
lowing.

For D52, dualization reproduces all the well-known re
sults of conventional bosonization@2,11,12#. The advantage
of extended dualization is that it permits one to bosonize
most general quantization of the fermionic system.

ForD>3, we explore the low energy regime. The resu
ing bosonic action turns out to be local. By contrast, it is n
possible to obtain an equivalent bosonic formulation via d
alization in the high energy regime. It is in this restricte
sense that one has bosonization in arbitrary dimension.

Dualization has the nice property that it permits one
obtain relationships among a wide class of models. We w
apply this property to obtain the bosonic equivalent of t
D-dimensional massive Thirring model~and other subsidiary
models! very simply, by adding some extra model-depende
bosonic terms to the bosonization of the massive Dirac fer
ion. We remark that, in contradistinction to minimal dualiz
tion, extended dualization allows one to bosonize more g
eral four-fermion interaction models includingchiral
currents~which are, in general, anomalous!.
h
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The dimensionD52 is a special case that we conside
separately in Sec. II. As an example we discuss the appl
tion of extended dualization to the bosonization of th
Thirring model. We obtain the explicit dependence of th
sine-Gordon equivalent interaction and the bosonic vers
of the currents on the parametrization of the quantizati
arbitrariness.

Section III will deal with the low energy regime, in arbi
trary dimensionD. For large fermion mass, we study th
bosonization of massive four-fermion interaction mode
The case ofchiral four-fermion interactions is particularly
interesting because it can only be treated within the fram
work of extended dualization.

One should mention here that some other work has b
done inD.2 bosonization, for nonanomalous systems, u
ing frameworks different from dualization. In particular, fo
the massive Thirring model in dimensionD53, the results in
the Abelian case@13# are a particular case of the boson
action obtained in this paper using extended dualization.
the other hand, the methods described in@13#, and their ex-
tension to the non-Abelian case@14#, are quite convoluted.
More importantly, those methods are very much tied to t
peculiarities of the Thirring model. The dualization prescri
tion, by contrast, is a nice simple technique that allows o
to study a wide range of quantum fermion systems, amo
which the Thirring model is just a particularly simple ex
ample. Moreover, extended dualization is not restricted
any symmetry requirement and it also allows the bosoni
tion of anomalous systems. In Sec. III we successfully co
plete the bosonization of thechiral four-fermion interaction
model.

Section IV is devoted to the dualization of the simple
model in two dimensions~2D! without non-anomalous quan
tization, the chiral Schwinger model. Extended dualization
very useful to show how quantization ambiguities affect t
bosonized version of the model. An explicit parametrizati
of the quantization ambiguities associated with the chi
Schingwer model is exhibited. In the bosonic version of t
theory this quantization ambiguity manifests itself as an a
ditional scalar. Moroever extended dualization permits o
to write easily an explicit expression for the bosonic equiv
lent of the chiral current.

We will conclude, in Sec. V, with a brief summary of th
main results on extended dualization.

II. EXTENDED DUALIZATION: BOSONIZATION

A. Extended dualization prescription

Consider a quantum system of fermions in a flat Eucli
ean spacetime1 of arbitrary dimensionD. The partition func-
tion is given by

Z5E DcDce2Sf ~c,c,f!, ~2.1!

1In a general curved spacetime with nontrivial topology, the e
tended dualization procedure has to be modified, as it is indicate
Appendix A.
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whereSf includes any fermion self-interaction, and interac
tions with other external fields or source terms~generically
denoted byf).

We will start by describing a trick to modify the partition
function ~2.1!. It consists of the introduction of a path-
integral representation of the identity into the partition fun
tion. We call this trick ‘‘extended dualization.’’ Later we
will establish the relationship between such manipulatio
and the bosonization of the fermion system.

Consider the following integral representation of the ide
tity:

15E DAD@L#DleF~A,c,c,f!e~A,dl1 i* dL!. ~2.2!

HereA(1) is an auxiliary one-form and the inner scalar prod
uct of forms2 has been used.F(A,c,c,f) is an arbitrary
scalar functional depending on the original fields and t
non-physical vector fieldA(1), subject to the condition

F~A50,c,c,f!50. ~2.3!

Furthermore,L (D22) is an antisymmetric rank (D22) ten-
sor field andl (0) is a rank 0 scalar field.D@L# denotes the
measure on the space of gauge orbits

@L#5$L8:L82L5dx~D23!%. ~2.4!

We relegate the proof of~2.2! to Appendix A.
Now introduce the identity, in its path-integral form~2.2!,

into the fermion partition function~2.1!. So far we have
nothing but an equivalence among path-integral expressio

E DcDce2Sf5E DcDcDAD@L#Dl

3exp@2Sf1F~A,c,c,f!

1~A,dl1 i * dL!#. ~2.5!

Now we want to extract from this identity a bosonic syste
in terms of which we could calculate Green’s functions o
the fermionic theory. For the purpose of bosonization w
will first suppose that the change in the order of integratio
leaves results unaltered. On the right-hand side of~2.5! we
will try to perform the integration over the fermions and th
auxiliary fieldA, and leave an expression in terms ofL and
l ~which will be the fields of the bosonized action!.

Define the bosonic actionSb ,

2Given two rank k forms a(k)5(1/k!)am1•••mk
(x)dxm1

`•••`dxmk, andb(k), we define the inner scalar product

~a,b![EdDxam1•••mk
~x!bm1•••mk~x!.

Then

~A,dl!5EdDxAm~x!]ml~x!,

~A,i*dL!5iemm1•••mD21EdDxAm~x!]m1Lm2•••mD21~x!.
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e2Sb~L,l,f![E DADcDcexp@2Sf1F~A,c,c,f!

1~A,dl1 i * dL!#. ~2.6!

By construction, we have

Z5E DcDce2Sf ~c,c,f!5E D@L#Dle2Sb~L,l,f!.

~2.7!

Therefore, for any fermionic actionSf(c,c,f) , we have
introduced an equivalent bosonic actionSb(L,l,f). The
partition function of the quantum system, originally given in
terms of the fermionic fieldc, admits a bosonic representa
tion in terms of the fieldsL (D22) andl (0).

It immediately follows from its definition that the bosonic
action is invariant under an Abelian gauge transformation
the formL→L1dx (D23). One says that the formL (D22) is
a gauge form, which is to be integrated over the space
gauge orbits.

So far, the bosonic actionSb(L,l,f) defined in ~2.6!

includes an arbitrary functionalF(A,c,c,f) . It is a matter
of delicacy and judgement to chooseF in such a way that the
bosonic action, and the identification between Green’s fun
tions of the fermion and boson models, become tractable.

In the case of a fermion system whose interaction in
volves a single current densityJ (1)(c,c), there is a particu-
larly natural and economic choice of the functiona
F(A,c,c,f):

F~A,c,c,f!52 i ~A,J !. ~2.8!

The convenience of the choice~2.8! is clear if, in ~2.6!, one
first integrates out the auxiliary fieldA. The current then has
a nice and simple bosonic equivalent

E DAe2 i ~A,J !e~A,dl1 i* dL!5d~2 iJ1dl1 i * dL!.

~2.9!

Therefore, the bosonic action defined by

e2Sb~L,l,f![E DADcDcexp@2Sf2 i ~A,J !

1~A,dl1 i * dL!#, ~2.10!

makes the identification of the bosonic equivalent of th
fermion current density very simple:

iJ ~x!5dl~x!1 i * dL~x!. ~2.11!

If the dynamics of the system involves several curre
densitiesJ a, the prescription~2.8! can be generalized by
introducing as many auxiliary vector fieldsAa, and bosonic
fields la andLa, as there are different dynamical currents
Then one has the identification~2.11! for each labela. For
example, this is one way to get a dual version of non-Abelia
systems~such as fermions with non-Abelian gauge interac
tions or non-Abelian Thirring models!.

Remark.Bosonization consists of establishing a relation
ship between fermionic and bosonic variables and, becau
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of its generality, it cannot be a unique procedure. In th
paper we explicitly demonstrate that behavior. From th
point of view of finding equivalent representations of th
given partition function~2.7!, other choices for the func-
tional F(A,c,c,f) @different from ~2.8!# are equally valid.
This arbitrariness in dualization, which differs from th
quantization arbitrariness@inherent in the fermionic integral
in ~2.6!#, is related to the freedom in choosing the boson
variables ~more precisely, to the relationship betwee
bosonic and fermionic variables!.

This functionF can be used to simplify the bosonic actio
by, for example, cancelling bothersome terms in theA inte-
gration. This could be interesting when the fermionic effe
tive action is not quadratic inA ~as is the case forD.2
Abelian systems beyond the low energy regime, and f
D-dimensional non-Abelian systems in any energy regime!.

Even more, the functionF can help us by providing a
symmetry in the resulting bosonic action. For example, f
D53 the fieldL is an abelian gauge field. However, fo
non-Abelian fermionic systems these Abelian gauge fiel
can be converted into a non-Abelian one by playing with th
arbitrariness inF @15#. We will go back to this point later on.

The price to pay for such extra freedom to chooseF is
that the identification of the bosonic equivalent of the curre
density will be more complicated than~2.11!. This means
that we are choosing other bosonic variables not so trivia
related to the fermionic variables, but better adapted to t
bosonic version of the theory.

In this paper we will illustrate extended dualization i
simple cases where it is not necessary to use a nontriv
choice of bosonic variables.

B. Properties of bosonization by extended dualization

Let us concentrate on the properties of abelian bosoni
tion defined by relation~2.10!.

Property B.1. Sf and Sb related by (2.10), describe the
same partition function,

Z5E DcDce2Sf ~c,c,f!5E D@L#Dle2Sb~L,l,f!.

~2.12!

This property follows by construction~assuming the order of
integration can be exchanged!.

The expression for the Fermi fields in the bosonic theo
will, in general, be very complicated@3,8#. However, ferm-
ion bilinears likeJ (1) have simple expressions.

Property B.2. Any correlation function of the curren
iJ (x) in the fermionic theory is related to a correlation
function of@dl(x)1 i * dL(x)# in the bosonic model by

^ iJm1~x1!••• iJ
mn~xn!& f

5^@dl1 i * dL#m1~x1!•••@dl1 i * dL#mn~xn!&b .

~2.13!

The proof is very straightforward by doing some path
integral manipulations and changing the order of integrals

Property B.3. Consider a fermion-boson dual descriptio
of a given quantum system, where the actions Sf(c,c,f)
and Sb(L,l,f) are related by extended dualization. An
is
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modified system obtained from the original one by addin
current interaction terms in the fermionic description
Sf85Sf1Sint( iJ ) has a bosonic dual given by
Sb85Sb1Sint(dl1 i * dL).

As a consequence of this property we can trivially dualiz
a large class of systems obtained from a given one, by ad
ing suitable current density interaction terms. Examples a
as follows.

Current-current interaction terms, such as

Sint51
1

2E dDxdDyJm~x!Vmn~x,y!J n~y!51
1

2
~J ,VJ !,

~2.14!

modify the original bosonized actionSb by the term

2 1
2 ~dl1 i * dL,V@dl1 i * dL#!. ~2.15!

Therefore, quartic interactions of fermions become quadrat
in terms of the bosonic fields.

Source terms for the currents,j (1), and interactions with
abelian gauge fieldsa(1), of the form

Sint5~ iJ , j1a!, ~2.16!

lead in the bosonic action to

~dl1 i * dL, j1a!. ~2.17!

Property B.4. If the quantum field theory admits a quan
tized dynamical conserved fermion current density, then th
scalar fieldl (0) is equal to zero, and one recovers minima
dualization.

Proof: Let J (1)(c,c) be a quantized dynamical con-
served current density of the system, and let us use this c
rent density to define the bosonized version of the theory:

e2Sb~L,l!5E DADcDcexp@2Sf2 i ~A,J !

1~A,dl1 i * dL!#. ~2.18!

Now define the ‘‘effective action’’

e2G~A![E DcDce2Sf2 i ~A,J !. ~2.19!

First note that, with this dualization, the quantum curren
density is conserved if and only if the effective action is
gauge invariant:

d*J ~1!50⇔G~A!5G~A1da!. ~2.20!

Let us study the consequences of this gauge symmetry on
bosonic action:

e2Sb~L,l!5E DAe2G~A!1~A,dl1 i* dL!. ~2.21!

Any nonharmonic one-formA(1) can be cast into the form

A~1!5dz~0!1 i * dw~D22!. ~2.22!

In terms of the fieldsz (0) andw (D22) we have
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e2Sb~L,l!}E DzDw exp@2G~w!

1~dz1 i * dw,dl1 i * dL!#

5E Dze~dz,dl!E Dwe2G~w!2~dw,dL!

}d~l!E Dwe2G~w!2~dw,dL!

}d~l!E D@A#e2G~A!1~A,i* dL!. ~2.23!

HereD@A# is the integral over the space of gauge orbits.
The scalar fieldl (0) trivially disappears because it is se

to zero by thed function. We can use

e2Sb~L![E D@A#e2G~A!1~A,i* dL!, ~2.24!

to describe the partition function, originally introduced i
terms of fermions. This is the result of minimal dualizatio
@6,8,9#.

Remark. Note that the extended dualization presented
this paper first enlarges minimal dualization because it p
mits the discussion of anomalous theories. Second, simpli
minimal dualization because it is introduced by an integr
representation of the identity. And third, it allows to identif
a big freedom in the dualization procedure~associated to the
choice of the functionalF). This arbitrariness is clearly dif-
ferentiated from the possible arbitrariness in the path-integ
quantization.

Another advantage of extended dualization is that, in co
trast with minimal dualization, one does not need to use a
symmetry of the fermion system, even if such symmet
does exist. This fact opens new possibilities for bosonizi
fermionic theories.

Perhaps the most remarkable examples where we can
ploit this advantage are non-Abelian systems. The natu
extension of minimal dualization to this case involves no
Abelian gauge fieldsAa and tensor fieldsLa. This last field
acts as a Lagrange multiplier for the conditionF mn

a (A)50
and makes the gauge field trivial due to the non-Abelia
symmetry of the system@7,15#. The problem is now that the
coupling betweenA andL is not linear inA and therefore it
is not possible an exact identification of the fermionic curre
like ~1.2!. Due to this fact one loses all the usual propertie
such as the direct relation between Green’s functions~prop-
erty 2.2.2! or the simple rule to introduce interactions~prop-
erty 2.2.3!.

However, extended dualization of non-Abelian system
does not require any modification because one does not n
to implement any non-Abelian symmetry in the theory. A
we said previously, one can apply our dualization prescr
tion ~2.10! independently to each current densityJ a with the
choice~2.8! for F which is linear inAa. Proceeding in this
way, all the properties of bosonization by extended dualiz
tion remain in the non-Abelian case. We should remark he
that this prescription would lead to an independent Abeli
gauge symmetry for each fieldAa, in contradistinction with
the non-Abelian symmetry of minimal dualization.
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The above prescription leads to a bosonic action with a
Abelian gauge symmetry for each fieldLa. ForD53 L is a
vector field; if we want for the bosonic action to have
non-Abelian symmetry withLm

a as a gauge field, extended
dualization is again needed. The coupling betweenLm

a and
F mn

a (A) is not gauge invariant and one needs to use t
freedom in the functionF to get such non-Abelian symme-
try. It has been shown@15# that the mixed Chern-Simons
term

i

2pE d3xemnrLm
a
F nr

a ~A!2
i

24pE d3xemnr f abcAm
aAn

bAr
c ,

~2.25!

changes by an integer multiple of 2p i under simultaneous
non-Abelian gauge transformations ofLm

a andAm
a . That is, a

choice ofF(A) including a term proportional to

i E d3xemnr f abcAm
aAn

bAr
c , ~2.26!

cancels the gauge noninvariance of the coupling betwe
Lm
a andF mn

a (A) ~up to an irrelevant multiple of 2p i ). In this
way, one gets a bosonic action with a non-Abelian symmet
as we had in the fermionic theory. Of course, with this pre
scription, we pay the price of loosing the above-mentione
properties of bosonization.

For simplicity only Abelian examples will be treated in
this paper. A detailed analysis of non-Abelian systems w
be the subject of another paper.

C. D52 free massless Dirac fermion and related models

The conventional bosonization of theD52 free Dirac
fermion is well known@10#. It is obtained by using a quan-
tization where the vectorlike fermion current densitycgmc
is conserved. The result is that the free Dirac fermion
D52 is equivalent to a free scalar bosonL. The bosonized
version of the vectorlike fermion current isemn]nL. Mini-
mal dualization agrees with conventional bosonization@6,8#.
However, using all the arbitrariness in the quantization, on
gets a gauge noninvariant result for the fermionic path int
gral @16,17#. Using extended dualization it is possible to ob
tain an explicit parametrization of the quantization arbitrar
ness in the bosonized version of the system.

The partition function is defined by

Zfree5E DcDce2Sf
free
. ~2.27!

HereSf
free(c,c) stands for the free Dirac action in flat Eu-

clidean spacetime:3

Sf
free~c,c!52cgm]mc. ~2.28!

3Our conventions are

gm
†5gm , $gm ,gn%52dmn , g5

†5g5.

In D52 we usegmg55 i emngn.
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In D52 the antisymmetric formL (D22) reduces to a sca-
lar field ~a zero form!. The bosonic action obtained by dua
ization is given in terms of the two scalar fieldsL andl by

e2Sb
free

~L,l!5E DADcDcexp@2Sf
free2 i ~A,J !

1~A,dl1 i * dL!#

5E DADcDcexp@cgm~]m2 iAm!c

1~A,dl1 i * dL!#. ~2.29!

Here we have dualized using the vectorlike curre
Jm(x)5c(x)gmc(x).

We introduce the effective action

e2G~A!5E DcDcecgm~]m2 iAm!c, ~2.30!

in terms of which the bosonic action reads

Sb
free~L,l!52 lnE DAe2G~A!1~A,dl1 i* dL!. ~2.31!

The effective actionG(A) can be calculated exactly
However, we will use a symmetry argument to obtain
value. Consider a local and arbitrary transformation over
fermion fields

c→ei ~a1bg5!c, ~2.32!

c→ce2 i ~a2bg5!.

Under such transformation the effective action has the pr
erty

G~A!5G~A2da1 i * db!2 lnJ~a,b,A!, ~2.33!

whereJ(a,b,A) is the finite Jacobian@16# corresponding to
the fermion transformation~2.32!.

The most general expression for this Jacobian can be r
for example, from@17#. It has the form

lnJ~a,b,A!5
i

p
@j~b,emn]mAn!1 ih~a,]mAm!#

2
1

2p
@j~db,db!1h~da,da!#. ~2.34!

Herej andh are parameters introduced to describe the p
ticular quantization employed. They satisfy the relatio
j1h51.

The particular case (h50, j51) corresponds to a gaug
invariant quantization. This special case is equivalent
minimal dualization@6,8#.

Property~2.33! implies that the bosonic action satisfies

Sb
free~L,l!5Sb

freeS L1
j

p
b,l1

h

p
a D2

1

2p
@j~db,db!

1h~da,da!#2~db,dL!2~da,dl!.

~2.35!
l-

nt

.
its
the

op-

ead,

ar-
n

e
to

As a consequence,

Sb
free~L,l!2

p

2j
~dL,dL!

is invariant underL→L1
j

p
b, l→l,

~2.36!

Sb
free~L,l!2

p

2h
~dl,dl!

is invariant underl→l1
h

p
a, L→L.

Therefore we get the final result

Sb
free~L,l!5

p

2j
~dL,dL!1

p

2h
~dl,dl!. ~2.37!

Scaling to canonical variables,L→Aj/pL and
l→Ah/pl, we find that the free Dirac fermion inD52
bosonizes into two free scalars. By construction we have
following identification for the fermion currents:

cgmc↔Aj

p
emn]nL2Ah

p
i ]ml, ~2.38!

cgmg5c↔Ah

p
emn]nl2Aj

p
i ]mL.

The gauge invariant result corresponds tol50 andj51.
Other related models can be trivially bosonized once

have expression~2.37! in hand. In particular, consider the
fermionic action given by

Sf5Sf
free1~ iJ , j !1

g

2
~J ,J !, ~2.39!

with a source termj (1) for the current density, and a
Thirring-like interaction of strengthg. Using the general
properties of extended dualization we have

Sb~L,l!5Sb
free~L,l!1~ j ,dl1 i * dL!

2
g

2
~dl1 i * dL,dl1 i * dL!

5
1

2 S p

j
1gD ~dL,dL!1

1

2 S p

h
2gD ~dl,dl!

1~ j ,dl1 i * dL!. ~2.40!

The net effect of the fermion self-interaction is a change
the kinetic coefficients for the scalar fields.

The stability of the Thirring model requires

2
p

j
,g,

p

h
. ~2.41!

This is a generalization of the usual condition2p,g. See
@2#.

In the range of stability, we rescaleL andl to canonical
variables
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L→
b

2p
L, l→

g

2p
l, ~2.42!

whereb andg are constants defined by

4p

b2 5
1

j
1
g

p
,

4p

g2 5
1

h
2
g

p
. ~2.43!

In terms of the canonical variables we have

Sb~L,l!5
1

2
~dL,dL!1

1

2
~dl,dl!

1S j , g

2p
dl1

b

2p
i * dL D . ~2.44!

The identification of currents is

cgmc↔
b

2p
emn]nL2

g

2p
i ]ml, ~2.45!

cgmg5c↔
g

2p
emn]nl2

b

2p
i ]mL.

The particular case (b254pj, g254ph) corresponds to
the free Dirac fermion.

D. D52 free massive Dirac fermion and related models

The partition function is defined by

Zfree~m!5E DcDce2Sf
free

~m;c,c!, ~2.46!

while the free massive Dirac action has the form

Sf
free~m;c,c!52@cgm]mc1mcc#. ~2.47!

Consequently, the bosonic action for a free massive Di
fermion has the path-integral expression

Sb
free~m;L,l!5E DADcDcexp@2Sf

free2 i ~A,J !

1~A,dl1 i * dL!#

5E DADcDcexp@cgm~]m2 iAm!c

1mcc1~A,dl1 i * dL!#. ~2.48!

Now, introduce the effective action

e2Gm~A!5E DcDcecgm~]m2 iAm!c1mcc, ~2.49!

in terms of which

Sb
free~m;L,l!5E DAe2Gm~A!1~A,dl1 i * dL!. ~2.50!

The bosonic actionSb
free(m;L,l) can be calculated by a

power expansion in the fermionic mass. This procedure
rac

is

well known in theD52 bosonization folklore@11,12#. The
main steps of the calculation are exhibited in Appendix B
and the final result is

Sb
free~m;L,l!5Sb

free~0;L,l!22mLUVE d2x cosF2p

j
L~x!G

5
p

2j
~dL,dL!1

p

2h
~dl,dl!

22mLUVE d2x cosF2p

j
L~x!G . ~2.51!

HereLUV is an ultraviolet cutoff required to regularize the
integral over the auxiliary fieldA.

Adding other interactions and sources to the bosoniz
free massive Dirac fermion is, as before, trivial. Take th
fermionic action to be

Sf5Sf
free~m;c,c!1~ iJ , j !1

g

2
~J ,J !. ~2.52!

The corresponding bosonic action is given by

Sb~m;L,l, j !5
1

2 S p

j
1gD ~dL,dL!1

1

2 S p

h
2gD ~dl,dl!

22mLUVE d2x cosF2p

j
L~x!G

1~ j ,dl1 i * dL!. ~2.53!

Rescaling to the canonical variables introduced in~2.42! and
~2.43!, we have

Sb~m;L,l, j !5 1
2 ~dL,dL!1 1

2 ~dl,dl!

22mLUVE d2xcosFbj L~x!G
1S j , g

2p
dl1

b

2p
i * dL D . ~2.54!

The identification of the fermion current densities is no
modified from the massless case~2.45!, neither is the stabil-
ity condition ~2.41!.

This is a generalization of the well-known result@2,11#
that the massive Thirring model is equivalent to the sin
Gordon model. In our analysis there is also an addition
scalar fieldl, that plays a role in the identification of the
fermionic current densities

cgmc↔
b

2p
emn]nL2

g

2p
i ]ml, ~2.55!

cgmg5c↔
g

2p
emn]nl2

b

2p
i ]mL.

The parameter valuesb254pj, andg254ph, correspond
to the massive free Dirac fermion system. In particular, se
ting b254p, and g250, corresponds to minimal dualiza-
tion.
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III. D-DIMENSIONAL MASSIVE FOUR-FERMION
INTERACTIONS

In this section we will concentrate on the dualization
D-dimensional massive four-fermion interactions. First
all, we shall formally derive the bosonic action by invokin
the bosonization of the free massive Dirac fermion and th
incorporating extra bosonic terms. These extra terms w
depend both on the model and on the particular dualizat
prescription. Later on, we shall review the results obtain
for the massive Thirring model using minimal dualization
the low energy limit. Finally, we will explore the potentia
advantages of extended dualization by performing t
bosonization of the chiral four-fermion interaction mod
~low energy only!.

For definiteness

Sf
4 f~m;c,c!5Sf

free~m;c,c!1
g

2
~J ,J !. ~3.1!

HereSf
free(m;c,c) is the free massive Dirac action define

in ~2.47!, while the density currentJ (1)(x) is a rank-one
fermion bilinear.

The quantum system is defined by the partition functio
Including a sourcej (1) for the current, this reads

Z4 f~ j !5E DcDce2Sf
4 f

2~ iJ , j !. ~3.2!

The extended dualization of this model proceeds as

Z4 f~ j !5E D@L#Dle2Sb
4 f

~m;L,l, j !. ~3.3!

The bosonic actionSb
4 f is given by

Sb
4 f~m;L,l, j !5Sb

free~m;L,l!1
g

2
@~dL,dL!2~dl,dl!#

1~ j ,dl1 i * dL!. ~3.4!

Therefore, to obtain the bosonic representation of the m
sive four-fermion interaction model, the only calculation le
to do is the evaluation of bosonic action for the free mass
Dirac fermionSb

free(m;L,l):

Sb
free~m;L,l!5E DAe2Gm~A!1~A,dl1 i * dL!. ~3.5!

In general, for arbitrary mass and dimension, the effect
actionGm(A), given by ~2.49!, is a very complicated func-
tional. However, in the limit of large fermionic mass
m→`, the effective action becomes quadratic in the fie
A and we can give an explicit expression for the boson
actionSb

free(m↗`;L,l).

A. Massive Thirring model: Low energy limit

The massive Thirring model is one of the simplest fou
Fermi interaction systems suitable for dualization. Other a
proaches have been used to bosonize the massive Thir
model @13#. However, dualization makes the bosonization
lot simpler. Additionally, while other approaches rely o
of
of
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ed
in
l
he
el

d

n.

as-
ft
ive

ive

,
ld
ic

r-
p-
ring
a
n

rather specific properties of the Thirring model, dualizatio
applies to any fermionic system.

In the Thirring model the current density,Jm(x)
5cgmc is vectorlike. Therefore, the system admits a qua
tization that conserves the vectorlike current and we can
ply the minimal dualization prescription.

In the large mass limit, the gauge invariant effective a
tion Gm(A) is quadratic in the fieldA, and can be cast into
the form

Gm~A!5
1

2E dDxAm~x!Cmn
D ~],m!An~x!5

1

2
~A,CDA!.

~3.6!

Using the well-known results for the differential operato
Cmn
D (],m), @9# we can perform the Gaussian integral in~3.5!

in an appropiate gauge.
The final results for the Thirring model in the infinite

mass limit are the following.
D52. The bosonic action has a scalar fieldL with a mass

that is proportional to the fermion mass and to the inverse
the Thirring couplingg. It is given by

Sb
~Th!~m↗`;L, j !5

1

2 Fg1
6p

5 G~dL,dL!

1
1

2
6pm2~L,L!1 i ~ j ,*dL!.

~3.7!

The mass for the scalarL is M255m2/@115g/6p#.
D53. The bosonic action includes a gauge fieldLm , with

an Abelian Chern-Simons term

Sb
~Th!~m↗`;L, j !5

1

2
g~dL,dL!1

8p2

sign~m!
~L,*dL!

1 i ~ j ,*dL!. ~3.8!

The gauge fieldLm has a topological mass@18# given by
M58p2/g.

D>4. The bosonic field is a rank (D22) antisymmetric
form Lm1•••mD22

, and the action becomes

Sb
~Th!~m↗`;L, j !5

1

2
g~dL,dL!1

1

KD
~L,L!1 i ~ j ,*dL!.

~3.9!

Therefore, in terms of the gauge formL (D22), the bosonic
action is local in the infinite mass limit. The mass for th
form L isM251/gKD , whereKD is a coefficient depending
on the regularization method.

The interpretation of these results as an effective theory
low energies~much smaller than the fermion mass! will be
discussed elsewhere@19#.

B. Chiral four-fermion interactions: Low energy limit

A considerably less trivial system is obtained when t
interaction is not parity invariant. For definiteness special
the current in~3.1! to be Jm5cgm@(12g5)/2#c. In this
case, the relevant current of the interaction cannot be qu
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tized in a conserved way. We therefore need to invoke e
tended dualization and thereby demonstrate its utility by su
cessfully completing the bosonization of this chiral model

The most general result for the effective action in th
infinite mass limit is

Gm~A!52 lnE DcDcexpFcgmS ]m2 i
12g5

2
AmDc

1mcc G
5
1

2
kD~A,A!, ~3.10!

with a regularization dependent and dimension depend
coefficientkD .

The bosonic action is given by

Sb
~ch!~m↗`;L,l, j !5

g

2
@~dL,dL!2~dl,dl!#

1 i ~ j ,dl1 i * dL!

2 lnE DA exp@2 1
2kD~A,A!

1~A,dl1 i * dL!#, ~3.11!

where j (1) is a source for the chiral current.
The bosonic action contains two fieldsL (D22) andl (0):

Sb
~ch!~m↗`;L,l, j !5

1

2 S g1
1

kD
D @~dL,dL!2~dl,dl!#

1~ j ,dl1 i * dL!. ~3.12!

This bosonic action is local and linear in the source, so w
can establish the operator identification

icgm

12g5

2
c↔dl1 i * dL. ~3.13!

Because of the low energy limit, the bosonic action turn
out to be bilinear in the bosonic fields. We also observe th
the scalarl has a kinetic term with the opposite sign. This i
a typical phenomenon related with anomalies that has
ready been encountered in the 2D quantization of chiral s
tems. ~See for instance@20# and the next section.! One
should expect the stability of the model to be based on so
compensation of states coming from the scalarl with some
scalar states constructed with the tensorL.

IV. CHIRAL SCHWINGER MODEL: BOSONIZATION

The chiral Schwinger model is the simplest mode
wherein the dynamical current is always nonconserved. E
tended dualization permits to obtain the bosonic equivale
of the chiral Schwinger model including a systematic trea
ment of the quantization arbitrariness. The explicit form o
the chiral density current in terms of two scalar fields
obtained.
x-
c-
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The partition function for the chiral Schwinger model is
defined by

ZCSM~ j !5E DaDcDce2SCSM~c,c,a!2 i ~ j ,Jch!. ~4.1!

The action has the form

SCSM~c,c,a!5
1

4
~da,da!2cgmF]m2 ie

12g5

2
amGc.

~4.2!

Here a(1) stands for an Abelian gauge field and the chira
current is

Jm
ch5cgm

12g5

2
c. ~4.3!

As a result of integrating out the fermion fields we get a
effective action

GCSM~a!52 lnE DcDcexpS cgmF]m2 ie
12g5

2
amGc D .

~4.4!

Evaluating this effective action, in its most general form
one finds@21,22#

GCSM~a!5
e2

2p Fj~a,a!2S am
1 ,

]m]n

]2
an

1D G . ~4.5!

Here am
15(1/2)(dmn1 i emn)an . The arbitrariness in the

quantization procedure is reflected in the presence of the
cal term (a,a), and this arbitrariness is parameterized by th
coefficientj.

This is the result of conventional bosonization@21#. As a
consequence of integrating out the Fermi fields, the gau
field acquires a mass term, depending on the arbitrary para
eterj. This effective action can be expressed in a local wa
by introducing an additional scalar field.

Bosonization via extended dualization goes beyond th
conventional result since it permits one to exhibit the boson
equivalent of the chiral current.

We see in~4.5! that the effective action is never gauge
invariant for any value ofj. Therefore the chiral current,
J ch, is never conserved for any possible quantization of th
chiral Schwinger model. Extended dualization is the on
option.

The partition function~4.1! can be expressed in terms of a
bosonic action

ZCSM~ j !5E DaD@L#Dle2Sb
CSM

~L,l,a, j !. ~4.6!

The bosonic action, using the extended dualization prescr
tion, is given by

e2Sb
CSM

~L,l,a, j !5E DADcDcexp@2SCSM~c,c,a!

2 i ~ j ,J ch!2 i ~A,J ch!1~A,dl1 i * dL!#.

~4.7!
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After integrating over the fermions one gets

Sb
CSM~L,l,a, j !51 1

4 ~da,da!1~ea1 j ,dl1 i * dL!

2 lnE DAe2GCSM~A!1~A,dl1 i * dL!.

~4.8!

The Gaussian integral over the auxiliary vector fieldA is
straightforward and the result for the bosonic action is

Sb
CSM~L,l,a, j !51

1

4
~da,da!1~ea1 j ,dl1 i * dL!

1
p~4j21!

8e2j2
~dL,dL!

2
p~4j11!

8e2j2
~dl,dl!2

p

4e2j2
~dL,dl!.

~4.9!

Introducing canonical variables

u5
Ap

2ej
$~122j!L1~112j!l%, ~4.10!

f5
Ap

e
~L2l!,

the bosonic action becomes

Sb
CSM~u,f,a, j !51

1

4
~da,da!2

1

2
~du,du!1

1

2
~df,df!

1
e

2Ap
~ea1 j ,d@2j~u1f!2f#!

1
e

2Ap
~ea1 j ,i * d@2j~u1f!1f#!.

~4.11!

The bosonic action includes the gauge fielda(1), plus two
scalar fieldsu andf, coupled to this gauge field. The sta
bility of the original model is based on a compensation b
tween states coming from the scalaru with some combina-
tion of the scalarf and the~nondecoupled! zero component
of the gauge fielda @20#.

The bosonic equivalent for the chiral current is given b

icgm

12g5

2
c↔

e

2Ap
]m@2j~u1f!2f#

1 i
e

2Ap
emn]n@2j~u1f!1f#. ~4.12!

The importance of this result is that bosonization based
extended dualization allows one to calculate correlati
-
e-

y

on
on

functions of the chiral current in the most general quantiz
tion of the chiral Schwinger model using~4.12!.

V. CONCLUSIONS

We have introduced a constructive determination of t
bosonic equivalent of a given anomalous Fermi syste
called extended dualization. The bosonic action includ
both a scalar field and a rank (D22) antisymmetric form as
fundamental fields. Our extended duality transformation is
generalization of minimal dualization. The last one appli
only for systems in the presence of a dynamical conserv
quantum charge and the only relevant bosonic field is
(D22) form.

We have seen that for a given fermionic system t
bosonic counterpart is not unique. A large freedom is
volved in the dualization transformation. One can choose
most convenient dualization in order to have the most tra
table bosonic action and correlation functions for the re
evant operators. In general, one can exploit this freedom
get specific properties for the bosonic action. In this pap
we have explored one of the most simple options that is qu
efficient for abelian bosonization when the fermionic effe
tive action is quadratic.

A very nice property of dualization~either minimal or
extended! is that it permits one to study a wide class o
fermion systems by adding some extra model-related ter
to the known bosonic version of some much simpler ferm
onic model. We have examined the bosonization
D-dimensional massive four-fermion interactions by addi
appropriate terms to the bosonization of theD-dimensional
free massive Dirac fermion.

We have demonstrated the utility of extended dualizati
by explicitly exhibiting the bosonization of the particula
case of the chiral four-fermion interaction model~in the low
energy limit!. The bosonization of this chiral model require
the inclusion of an additional scalar field in order to yield th
bosonic equivalent of the chiral current density.

We have also applied the extended dualization proced
to determine the bosonized version of the chiral Schwing
model and we have obtained the expression of the ch
current, for the most general quantization of the model,
terms of two independent scalar fields.4

In all the above-mentioned chiral models, extended du
ization has permitted us to study easily the consequence
the quantization arbitrariness in the bosonic version of t
system.

The considerable freedom in the extended dualization p
scription introduced in this paper opens up the possibility
applying this freedom in order to dualize more complicat
fermi systems~with or without anomalies!, such as Abelian
systems in more than two dimensions beyond the low ene
regime, and non-Abelian systems. Moreover, this freed
offers the possibility of imposing new symmetries on th
dual action.

4Recently, Garousi@23# has presented the dualization of the chir
Schwinger model using only one scalar field. It is easy to see t
his result corresponds to the particular casej50 in our scheme.
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APPENDIX A

In this appendix we will prove the identity

15E DAD@L#DleF~A,c,c,f!e~A,dl1 i* dL!. ~A1!

We assume that the fields are sufficiently well behaved at
boundary that integration by parts is valid. Then we find t
following.

Integrating out the fieldL, we have

dA50. ~A2!

To integrate out the fieldl we need to perform an ana
lytic continuationl→ il, and~at the end of the calculation!
we need to return to the physical region of interest. Th
implies

d*A50. ~A3!

Therefore, the result of integrating out the bosonic fieldsL
andl is

E D@L#Dle~A,dl1 i* dL!5d~dA!d~d*A!, ~A4!

so that the auxiliary vector field must be a harmonic on
form Ah

(1) . That is,DAh50, whereD is the Laplacian that
acts on one-forms in theD-dimensional space under consid
eration. Therefore

E DAD@L#DleF~A,c,c,f!e~A,dl1 i* dL!

5E DAhe
F~Ah ,c,c,f!. ~A5!

In simple cases where spacetime has trivial topology, such
Rn or Sn, there are no harmonic one-forms, and therefore
identity ~A1! follows, provided only that

F~A50,c,c,f!50. ~A6!

In more complicated spacetimes with nontrivial topolog
a modification of~A1! is necessary, taking into account th
space of harmonic one-forms. We generalize the pa
integral representation of the identity in the following wa
we replace the integration over the space of one-formsA(1)

by an integration over the space of orbits

@A#5$A8:A82A5Ah ;DAh50%. ~A7!
rk
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The generalization of~A1! is obtained by taking a quo-
tient over the space of harmonic one-forms, and then av
aging the functionalF over all harmonic one-form transfor-
mations,

15E D@A#D@L#Dl

3expS E DAhF~A1Ah ,c,c,f! De~A,dl1 i* dL!.

~A8!

The proof is as follows: Integrating over the bosonic fields
we have

E D@A#D@L#Dl expS E DAhF~A1Ah ,c,c,f! D
3e~A,dl1 i* dL!5expS E DAhF~Ah ,c,c,f! D . ~A9!

where translation invariance for the integration over ha
monic one-forms has been used. The identity~A8! follows,
provided that

E DAhF~Ah ,c,c,f!50. ~A10!

This is the generalization, in the case of nontrivial harmon
one-forms, of the previous conditionF(A50,c,c,f)a50 .

If the functionalF(A,c,c,f) is linear in the auxiliary
vector field A, as it is the case for the simplest choice
F(A,c,c,f)52 i (A,J ) @in ~2.8!#, the condition~A10! is
trivially satisfied and we have

E DAhF~A1Ah ,c,c,f!

5F~A,c,c,f!E DAh1E DAhF~Ah ,c,c,f!

5F~A,c,c,f!. ~A11!

Therefore, in this case, the only new component to the du
ization for a nontrivial topology comes from the explicit rep
resentation of the integration over harmonic orbits for th
auxiliary vector fieldA(1) in ~A8!. The simplest example, a
two dimensional fermion in a cylinder, has been done
detail in @6#.

APPENDIX B

This appendix is devoted to a sketch of the technical d
tails of theD52 path-integral calculation of

e2Sb
free

~m;L,l!5E DADcDcexp@cgm~]m2 iAm!c

1mcc1~A,dl1 i * dL!#, ~B1!

for small fermion mass,m.
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We will proceed by performing a perturbative expansio
in the mass, but first we rearrange this expression in a m
convenient form.

Consider the following local transformation for the ferm
ion fields:

c→ei ~z1wg5!c, c→ce2 i ~z2wg5!. ~B2!

The parameters of this transformation are the two sca
fields, z and w, used to write the auxiliary vector field
A5dz1 i * dw.

Under such a transformation we have

e2Sb
free

~m;L,l!5E DADcDcJ~A!

3exp@cgm]mc1mce22iwg5c

1~A,dl1 i * dL!#. ~B3!

The JacobianJ(A) associated with the finite transformatio
~B2! can be read off from the general result~2.34! in the
particular casea5z, b52w. One finds

J~A!5
1

2p
@j~dw,dw!1h~dz,dz!#. ~B4!

Because the mass term depends only on the fieldw, the
integration overz can be easily done. Apart from trivial con
stants we get

Sb
free~m;L,l!5

p

2h
~dl,dl!2 lnE DwDcDc

3expS cgm]mc1mce22iwg5c

1
j

2p
~dw,dw!2~dw,dL! D . ~B5!

Rescaling, to the canonical variablew→Ap/jw
1(p/j)L, we have

Sb
free~m;L,l!5

p

2h
~dl,dl!1

p

2j
~dL,dL!

2 lnE DwDcDcexpH cgm]mc1mc

3expF22i SAp

j
w1

p

j
L D g5Gc

1
1

2
~dw,dw!J . ~B6!

Therefore
n
ore

-

lar
,

n

-

Sb
free~m;L,l!5Sb

free~m50;L,l!2 lnE Dw

3expS 1
1

2
~dw,dw!

2GmFAp

j
w1

p

j
LG D , ~B7!

where the effective actionGm is the result of the fermionic
integral

e2Gm@Q#5E DcDcecgm]mc1mce22iQg5c. ~B8!

So far we have done nothing more than rearrange t
integral in a convenient way. In order to perform~B8! we
will do an expansion in powers of the fermion mass. Intro
ducings6[c(1/2)(16g5)c , one gets

e2Gm@Q#5(
i50

`
m2i

i ! i ! E F )
k51

i

d2xkd
2ykG

3expS 2i(
k

@Q~yk!2Q~xk!# D
3E DcDcecgm]mc)

k51

i

s2~xk!s1~yk!. ~B9!

Using Zinn-Justin@Ref. @11#, p. 680, Eq.~A28.14!#, one sees

E DcDcecgm]mc)
k51

i

s2~xk!s1~yk!

5S 1

2p D 2i Pk, l
i uzk2zl u2uzk82zl8u

2

Pk,l
i uzk2zl8u

2

[Ki~x,y!, ~B10!

wherezk5xk
01 ixk

1 , zk85yk
01 iyk

1 .
This implies

Sb
free5

p

2h
~dl,dl!1

p

2j
~dL,dL!2 ln(

i50

`
m2i

i ! i !

3E F )
k51

i

d2xkd
2ykGKi~x,y!

3expS i 2p

j (
k

@L~yk!2L~xk!# D
3E Dwe1~1/2!~dw,dw!)

k51

i

expS 2iAp

j
w~yk!D

3)
k51

i

expS 22iAp

j
w~xk!D . ~B11!

Now using Zinn-Justin@Ref. @11#, p. 664, Eq.~28.13!#
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E DuexpS 2
1

2t
~du,du!1 i(

i
e iu~xi ! D}H 0 for (

i
e iÞ0,

)
i, j

~LUVuxi2xj u!e ie j t/2p for (
i

e i50,

~B12!

for an ultraviolet cutoffLUV that appears when one regularizes the free boson propagator. The fact that this corre
function is zero unless the coefficients satisfy the condition( ie i50 is a result of invariance under constant translations of t
field u. The integral over the scalar fieldsw results in

E Dwe1~1/2!~dw,dw!)
k51

i

expS 2iAp

j
w~yk! D )

k51

i

expS 22iAp

j
w~xk! D}~LUV!2iKi

21~x,y!. ~B13!

The final result is

Sb
free~m;L,l!5

p

2h
~dl,dl!1

p

2j
~dL,dL!2 ln(

i50

`
~mLUV!2i

2i ! S 2ii D S E d2xei ~2p/j!LD i S E d2xe2 i ~2p/j!LD i . ~B14!

Consider now the partition function in the presence of a sourcej :

Z5E D@L#Dle2Sb
free

~m;L,l!2~ j ,dl1 i* dL!. ~B15!

Invoking invariance under constant translations of the fieldL, we can show that the result of~B12! for ( ie iÞ0 generalizes,
in the presence of the sourcej , to

Z5E D@L#DlexpS 2
p

2h
~dl,dl!2

p

2j
~dL,dL!2~ j ,dl1 i * dL! D

3(
i50

`
~mLUV!2i

2i ! S 2ii D S E d2xei ~2p/j!LD i S E d2xe2 i ~2p/j!LD i

5E D@L#DlexpS 2
p

2h
~dl,dl!2

p

2j
~dL,dL!2~ j ,dl1 i * dL! D

3(
i50

`
~mLUV!2i

2i ! (
k50

2i S 2ik D S E d2xei ~2p/j!LD kS E d2xe2 i ~2p/j!LD 2i2k

5E D@L#DlexpS 2
p

2h
~dl,dl!2

p

2j
~dL,dL!2~ j ,dl1 i * dL! D

3(
i50

`
~mLUV!2i

2i ! S E d2xei ~2p/j!L1E d2xe2 i ~2p/j!LD 2i

5E D@L#DlexpS 2
p

2h
~dl,dl!2

p

2j
~dL,dL!2~ j ,dl1 i * dL! D

3(
i50

`
~mLUV! i

i ! S E d2xexpi ~2p/j!L1E d2xe2 i ~2p/j!LD i

5E D@L#DlexpS 2
p

2h
~dl,dl!2

p

2j
~dL,dL!2~ j ,dl1 i * dL! D

3expS 2mLUVE d2xcosF2p

j
LG D . ~B16!

This result is a generalization of the well-known@2,3# equivalence of a massive Dirac fermion inD52 to the sine-Gordon
theory, for the particular valuej51.
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