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Question of universality in RPn21 and O„n… lattice s models
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We argue that there is no essential violation of universality in the continuum limit of mixed RPn21 and
O(n) lattices models in two dimensions, contrary to opposite claims in the literature.@S0556-2821~96!03910-
0#
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I. INTRODUCTION

In this paper we consider two–dimensional mixe
isovector-isotensor O(n) s models described by a lattice ac
tion of the kind

A~S!5bV(
x,m

~12SxSx1m!1
1

2
bT(

x,m
@12~SxSx1m!2#,

~1!

with Sx
251. The sums run over the nearest neighbor sit

This provides a possible lattice discretization for the co
tinuum O(n) nonlinears model:

Acont5
1

2
bE d2x@]mS~x!#2, ~2!

with b5bV1bT .
According to conventional wisdom, different lattice regu

larizations ~preserving the crucial symmetries! yield the
same continuum field theory~‘‘universality’’ !. For the case
of the action~1!, Caracciolo, Edwards, Pelissetto, and Sok
@1,2#, however, question this assumption and in particu
state that the pures model (bT50) and the pure RPn21

model (bV50) have different continuum limits forb→`.
Since the notion of universality plays an essential role in t
theory of critical phenomena it is worthwhile to consider th
question again. In this paper we will explain how the pec
liar features observed in the model~1! can be understood in
the framework of the conventional picture. We wish t
stress, however, that our scenario is~for the most part! based
on plausibility arguments, for which rigorous proofs are u
fortunately still lacking.

A related problem concerns the mixed fundamenta
adjoint action in pure SU(n) gauge theory@3# in four dimen-
sions. The generally accepted belief is that there is a univ
sal continuum limit for these theories. However, we shall n
discuss this model here.

The paper is organized as follows. In Sec. II we consid
a class of pure RPn21 models. We first describe some gen

*On leave from the Institute of Theoretical Physics, Eo¨tvös Uni-
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eral properties and then go on to discuss the continuum lim
Section III presents an investigation of perturbed RPn21

models, paying special attention to their expected continuu
limit. In particular, we argue there is no contradiction to th
general understanding of universality. Finally, in Sec. IV w
outline some calculations supporting our general scenario

II. THE RP n21 MODELS

A. Some general properties

The standard action of the RPn21 model is

AT~S!5
1

2
b(
x,m

@12~SxSx1m!2#. ~3!

It has, compared with the O(n) model, an extra localZ2
symmetry: it is invariant under the transformation

Sx→gxSx where gx561. ~4!

As a consequence, only those quantities have nonzero exp
tation values which are invariant under this local transform
tion. In particular, the isovector correlation function van
ishes:

^SxSy&50 for xÞy. ~5!

The simplest local operator with nonvanishing correlatio
function is the tensorTx

ab5Sx
aSx

b2dab/n:

^Tx
abTy

ab&Þ0. ~6!

This behavior seems completely different from that of th
O(n) s model, so that one might expect drastic difference
in the physics described by the models. This is indeed tr
for the theories with finite lattice spacing, but below we sha
argue that in the continuum limit this difference become
insignificant, and can be resolved by consideration of non
cal variables.
5918 © 1996 The American Physical Society
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B. Defects and phase structure

For convenience, we introduce the notationuxy[SxSy for
the scalar product of two spins. Further, for any pathP on
the lattice define the observable

W~P !5 )
^x,y&PP

uxy , ~7!

where^x,y& denotes the link joining two neighboring point
x andy.

Consider a configuration of the RPn21 model. One says
that it has a defect associated with a plaquettep ~or a site on
the dual lattice! if

W~]p!,0, ~8!

where]p is the boundary of the plaquette. The defects a
end points of paths on the dual lattice formed by those d
links with uxy,0, wherex and y are the two sites on the
corresponding link. Because of the local gauge invarian
only the position of the defects is physical, while the pat
can be moved by a gauge transformation.

Like the vortices in the two-dimensionalXY model @4#,
these defects play an essential role in determining the ph
structure of the RPn21 model at finiteb @5#. Some of these
aspects are discussed in@6,7#. The activation energy of a pair
of defects grows logarithmically with their separationr . The
standard energy-entropy argument@4# then predicts a phase
transition at some finitebc . For b,bc the defects are de-
confined, while forb.bc they appear in closely bound
pairs. This difference is expected to show up in an area
perimeter law~for b,bc and b.bc , respectively! of the
‘‘Wilson loop’’ expectation valuê W(L)& for large loops
L @7#.

We see this in a large-n limit of the RPn21 model @8,9#.
There the phase transition is demonstrated to be first ord
Furthermore, one verifies the expected ‘‘Wilson loop’’ sig
nal: in the leading order,̂W(L)&50 for b,bc , while
^W(L)&5exp$2g(b)uLu% for b.bc , with uLu the perim-
eter ofL.

For finiten, however, the situation is not at all clear. Th
discussion of the nature of the critical point at finiteb has a
long history @10–12,6,7,2#. All Monte Carlo ~MC! simula-
tions show that, approachingbc from below, the tensor cor-
relation length starts to grow drastically. However, the va
ous authors disagree concerning the nature of the transit
the variety of opinions being based merely on theoretic
expectations~and prejudices!. We shall return to this ques-
tion later.

In the following we will discuss the possible continuum
limits. We shall argue that at finiteb the correlation length
~in the vector and tensor channels! in the RPn21 model al-
ways stays finite, and the critical point atb5` is equivalent
to that of the O(n) model.

C. Equivalence of the RPn21 and O„n… models
in the continuum limit

Consider a more general form of the lattice RPn21 action,

AT~S!5b (
^x,y&

f ~uxy!, ~9!
s

re
ual

ce,
hs
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where the functionf (u) satisfies the properties

f ~2u!5 f ~u!, f ~1!50, f 8~1!521, ~10!

and f (u) is monotonically decreasing for 0,u,1. We as-
sume a weaker form of universality: any of these choic
yields the same continuum limit asb→`. @Actually, even
less will be sufficient — one can keep the form off (u) for
u0,uuu,1 fixed to be the standard one.#

Let us now introduce a chemical potentialm of the de-
fects modifying the Boltzmann factor by exp(2mndef) where
ndef is the number of defects. Atm.0 the defects are sup
pressed and atm5` no defects are allowed.

Take first them5` case. As was done by Patrascioiu an
Seiler @15#, one can define Ising variablesex561 by

ex5sgn$W~P x0x
!%, ~11!

starting from a fixed sitex0 and going along some path
P x0x

connectingx0 to x. Because of the absence of defec

ex does not depend on the path chosen. For two nea
neighbor sites one has

exex1m5sgn~uxx1m!. ~12!

Introduce now a new O(n) vector

sx5exSx . ~13!

This has the property thatsxsx1m5uSxSx1mu.0 for nearest
neighbors. The dynamics of thesx field is described by the
modified O(n) action

AV~s!5b(
x,m

f V~sxsx1m! ~14!

with

f V~u!5H f ~u! for u>0,

` for u,0.
~15!

We also assume that the continuum limit (b→`) for this
action is the same as for the standard O(n) action @univer-
sality within the O(n) model#.

The RPn21 model described by~9! at m5` and the cor-
responding O(n) model given by~14! are equivalent in the
continuum limit in the following sense: all gauge-invaria
quantities~such as the tensor correlation function or a W
son loop of scalar products! in the RPn21 model are exactly
the same as in the O(n) model, while all non-gauge-invarian
quantities vanish in the RPn21 model. In particular, for the
vector correlation function

^SxSy&5^exey&^sxsy&50 for xÞy ~16!

since^exey&5dxy . TheSx vector of the RP
n21 model can be

thought of as a product of two independent fields, the ‘‘tr
vector’’ sx and the Ising variableex ; one is described by the
corresponding O(n) model, and the other by an Ising mode
at infinite temperature.

We return now to the case of the RPn21 model at finite
m. With increasingm the average defect density is de
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creased. Defects tend to disorder the system; therefore
very plausible to assume that the correlation length~in the
tensor channel! grows with increasingm. Since atm5` the
RPn21 model is equivalent to the corresponding O(n) model
at the sameb, one concludes that the correlation length
m50 is bounded by that of the O(n) model.

Assuming further that, according to the standard scena
the O(n) model has a finite correlation length for finiteb, it
follows that the RPn21 model cannot have a phase transitio
~at finite b) with diverging correlation length in the vecto
and tensor channels.1

The latter is in agreement with the large-n result@9# men-
tioned above, which predicts a first-order transition. The e
planation for the seemingly divergent~tensor! correlation
length observed in MC simulations could be the followin
Forb,bc the defects strongly disorder the system and cau
a small correlation length. Abovebc , however, the role of
the defects decreases rapidly with increasingb. As the de-
fects become unimportant the correlation length approac
that of the O(n) model. The numerical simulation of the
RP2 model@7# gavebc55.58 which in the O(3) model cor-
responds to a correlation lengthj;109. A sharp transition or
a jump to a huge value is therefore not unexpected. T
transition is, however, associated with the nonuniversal d
namics of the defects, not with the universal continuum lim
of the theory.

To establish the equivalence of the RPn21 model ~at
m50) with the O(n) model in the continuum limit, it suf-
fices to show that the defects do not play any role in t
b→` limit. The classical solution for a pair of defects has
finite energy which depends on the distancer between the
two defects as const1(p/2) lnr. The constant contribution
coming from the neighborhood of the defects depen
strongly on the actual form of the functionf (u) in ~9!; more
precisely, on the values off (u) for small uuu, say2

u2,0.5. Because the defect pairs have finite activation e
ergy E0 , they are exponentially suppressed by exp(2bE0).
The subtlety here is that the correlation volume,j2(b)
}exp(4pb) ~for n53) predicted by a perturbative renorma
ization calculation, is also exponentially large, and pairs
defects with limited relative distances will occur in this vo
ume if theirE0 is small enough.

3 These could be, however
considered as local, i.e., nontopological, excitations on
scale ofj(b), and we do not expect that they significantl
influence theb→` limit. The argument becomes even sim
pler if one changes the form of the action by pushing up t
values off (u) for u2,0.5 to haveE0.4p for all defects. In
this case the defects are practically absent in the whole c
relation volume.4

As pointed out by Sokal@13#, due to the finiteness of the
correlation length in the O(n) model the; lnr growth of the

1Note that this does not exclude a diverging specific heat, i
infinite correlation length in the scalar channel.
2It is easy to show that around a defect at least one of the f

links hasu2<0.5.
3For the standard RPn21 action the minimal activation energy is

E0
min52.14.
4Obviously this argument does not apply if the correlation leng

becomes infinite already at finiteb as suggested in Ref.@15#.
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free energy of a pair of defects is likely to saturate aroun
r;j(b). Hasenbusch@14# has given a strong argumen
based on the ideas of the cluster algorithm supporting t
expectation. As mentioned above, however, the O(3) cor
lation length atbc of the pure RP2 model is astronomically
large while the density of defects is;1022 @7# at b;bc .
Hence the saturation of the logarithmic growth will show u
only at largerb values where the average defect densi
decreases until;1/j2(b). It will not, however, influence the
continuum limit, even for the standard action, since th
density of defects in this case is expected to b
exp(2const3b2).

As a concrete realization of the modified RP2 model we
take

f ~u!5
1

2
~12u2!1q max~u0

22u2,0!. ~17!

Hereq>0 and we chooseu0
250.8 for definiteness. A simple

numerical investigation shows that forq510 the activation
energy for neighboring defects isE0'4p. ~Of course, noth-
ing forbids takingq5` — it will still define the same con-
tinuum theory.!

By similar modifications of the action it might well be
possible to bring the correlation length down to reasonab
values, so that the phase diagram could be reliably inves
gated numerically@also in the mixed RPn21/O(n) model#.
This would imply that the huge correlation length around th
point where the defects start to condense for the stand
RPn21 model is rather ‘‘accidental.’’

III. THE PERTURBED RP n21 MODEL

Consider the perturbed RPn21 model

A~S!5bT(
x,m

f ~SxSx1m!1bV(
x,m

g~SxSx1m! ~18!

in the limit bT→`, bV5fixed. Here f (u) satisfies~10!,
while the perturbationg(u) can, without loss of generality,
be taken to be odd:

g~2u!52g~u!. ~19!

The action~1! is, of course,~up to an irrelevant constant! a
special case. AtbT→` the scalar productSxSx1m is forced
to be around11 or 21, i.e., 12(SxSx1m)

25O(1/bT).
Let us now assume thatbT is large enough or the form of

f (u) is chosen such that the defects are completely neg
gible @as in the example of~17! for q>10#. For configura-
tions with no defects one can introduce the Ising variabl
ex in a unique way and define the ‘‘true vector’’ fieldsx as
in ~13!. Separating the sign ofg(u) by

g~u!52sgn~u!g0~ uuu!

52sgn~u!@g0~1!1g08~1!~ uuu21!1•••#, ~20!

we obtain

A~S!5AV~s!1AIsing~e!1Aint~e,s!, ~21!

where

.e.,

our

th
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53 5921QUESTION OF UNIVERSALITY IN RPn21 AND O(n) . . .
AV~s!5b(
x,m

f V~sxsx1m!, ~22!

AIsing~e!52J(
x,m

exex1m , ~23!

Aint~e,s!5(
x,m

exex1m@2g08~1!~12sxsx1m!1•••#.

~24!

Here b5bT , J5bVg0(1), and f V(u) is as in ~15!. Note
12sxsx1m5O(1/b) and hence the interaction term
Aint(e,s) goes effectively to zero asb→`.

Consider first the simple case wheng(u)52sgn(u), i.e.,
g0(u)51. In this case the two systems decouple exac
while the specific behavior of the vector and tensor corre
tion functions still persists. Since the correlator^SxSy& fac-
torizes,

^SxSy&5^exey&^sxsy&, ~25!

for J,Jc one has

mS5me1ms and mT52ms , ~26!

where the masses are defined through the exponential de
of the corresponding correlators. Although the tensor mas
smaller than twice the vector mass,mT,2mS , one cannot
conclude from this that there is a pole in the tensor chan
@in contrast to the pure O(n) model#, as suggested in Ref.
@2#. Since bothms(b) andme(J) go to zero asb and J
approach their critical values, the ratio

r5
mT

mS
5

2ms

ms1me
~27!

can be fixed at any valuerP@0,2# by properly approaching
the point (Jc ,`) in the (J,b) plane.

For J.Jc the Ising fieldex develops a nonzero expecta
tion value; hence, in this casemS5ms andmT /mS52. Note
that for finiteb the phase transition aroundJ5Jc is observed
only in the nonlocal variableex , not in the original variable
Sx whose correlation length remains finite atJ5Jc .

Following the argument in Refs.@1,2# one would con-
clude that around the point (J,b)5(Jc ,`) one could define
seemingly inequivalent theories differing in the ratio5

mT /mS . Although this is formally true, the correspondin
theory is neither really new nor interesting. In particular, a
the tensor correlation functions are the same as those in
corresponding pure O(n) model.

With the choiceg(u)52u, i.e., g0(u)5uuu ~as in @1#!
the situation is more complicated since there is an interact
between the two systems. However, as mentioned above,
effective strength of the interaction goes to zero asb→`;
hence it might well happen that in the continuum limit on
recovers the previous situation.

5The masses measured in@1# are not the true masses, but thos
defined through the second moments; it is, however, generally
lieved that the qualitative picture remains unaltered.
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Note that the presence or absence of the interaction is
connected with the behavior ofg(u) aroundu511 @which
is responsible for the O(n) continuum limit bV→`# but
rather with the difference in behavior aroundu511 and
u521. For example,g(u)5 1/2 (12u2)1cu(2u) ~not
antisymmetrized in this case!, wherec.0 andu is the step
function, is a perfectly acceptable discretization of t
O(n) model for bV→` and it produces no interaction
Aint50. On the other hand,g(u) could be chosen to have
say, a local maximum atu511 instead of a minimum,
which would completely destroy thebV→` behavior but
would still have the same interaction pattern as for the c
g(u)52u.

In this sense, the phenomenon around the point (Jc ,`) is
the consequence of perturbing the RPn21 model by a term
breaking the localZ2 symmetry, rather than its mixing with
the O(n) model.

IV. SOME ANALYTIC STUDIES OF THE MIXED MODEL

Let us setbV5(12v)n/ f and bT5vn/ f for the bare
couplings in ~1!. There are various analytic studies whic
shed some light on the physics of this model. Among the
are the ordinary perturbation theoryf→0 and the 1/n ap-
proximation.

A. Bare perturbation theory

One interesting exercise is to compute the spectrum fo
finite spatial extentL. For the tensor massmT to second
order in bare perturbation theory, one finds

mT~L !L5 f1 f 2
1

n
$~n22!R~L/a!1@11v~n11!#P~L/a!%

1O~ f 3! ~28!

and to this order the vector massmV is given by

mV~L !5
~n21!

2n
mT~L !. ~29!

In ~28! the functionsR andP are given by finite sums ove
lattice momenta. The relation~29! holds before the con-
tinuum limit has been taken~there are no lattice artifacts in
the ratio to this order!. Furthermore, the ratio is independe
of v, which is certainly consistent with notions of universa
ity ~the continuum limit is taken here in finite volumes!. The
ratio ~29! has been shown to hold in the O(n) model for
small volumes, in the continuum limit to third order in th
renormalized coupling by Floratos and Petcher@16#. Indeed
there, to this order, the mass of the tensor of rankk is pro-
portional to the eigenvalue of the square Casimir operato

mk5Mk~n1k22! ~30!

with M independent ofk. In finite volumes the spectrum is
discrete and there is a finite gap betweenmT and 2mV ; this
gap is expected to close asL→` where a cut develops start
ing at 2mV . We have numerically computed the mass of t
tensor as well as that of the ‘‘true vector’’ in the RPn21

e
be-
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model, as defined in Sec. II, in small volumes; the resu
agreed well with the above formulas.

One can also use~28! to determine the ratio ofL param-
eters. For this, it suffices to know the continuum lim
(a/L→0) behavior ofR andP:

R~L/a!;
1

2p
$ ln~L/a!2 ln~p/A2!1gE%, ~31!

P~L/a!;
1

4
~32!

with gE Euler’s constant. Denoting byL(v) the latticeL
parameter for a model with givenv,

L~v!

L~0!
5expH 2

vp~n11!

2~n22! J ~33!

follows, in agreement with the result in Ref.@17#.
Comparing the two theories in infinite volume, Caraccio

and Pelissetto@18# also found that the RPn21 and the
O(n) models have~apart from the redefinition of the cou-
pling! the same perturbative expansion.

B. 1/n expansion

The 1/n expansion for the mixed model was to our know
edge first investigated by Magnoli and Ravanini@8#. We dis-
agree, however, with some of their final conclusions. To d
cuss this, we first introduce a few formulas. Afte
introducing auxiliary fieldsAm(x),t(x) to make the integral
quadratic in the spin fields and then performing the Gauss
integral, the partition function in the absence of extern
fields takes the form

Z5const3E )
x,m

dAm~x!)
x
dt~x!expH 2

n

2
SeffJ , ~34!

with the effective action

Seff52
1

f(x @s1 i t ~x!#1tr lnM, ~35!

FIG. 1. The order parameterb in the 1/n expansion as a function
of the couplingf for v51. There is a jump atf c(1)51.046 from a
finite value tob50 shown by the vertical line.
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whereM is the operator

M5s1 i t1(
m

$2]m* ]m

1v@Am]m* ]m2~]m*Am!~12]m* !1Am
2 #%. ~36!

Here]m (]m* ) denote the lattice forward~backward! deriva-
tives. One first seeks a stationary point ofSeff at constant
field configurationsAm(x)512b, t(x)5const. Demanding
a saddle point att50 gives a relation for the constants in
~35! as a function ofb. With s fixed in this way, one seeks
minima ofSeff as a function ofb.

Forv51 ~the pure RPn21 model!, the extremal points are
shown in Fig. 1. In this case there is a symmetryb→2b.
Further,b50 is an extremal point for allf . For f,1, the
pointsb50 are maxima and the nonzero values are minim
For f511, b50 becomes a local~but not absolute! mini-
mum and two new local maxima develop. At
f5 f c(1)'1.046 the three minima become degenerate, an
for f. f c(1) the minimum atb50 is the absolute minimum.
One finds~in the leading order of the 1/n expansion! that at
this point the tensor correlation length does not go to infinity
there is a jump in the order parameter and the phase tran
tion is thus first order.

For v,1, theb→2b symmetry is broken and the local
minimum with b.0 is the lowest. Forv only slightly less
than 1, the situation is as in Fig. 2. Here again, at som
f5 f c(v) the parameterb undergoes a finite jump. There is,
however, a critical value ofv5vc'0.985 below which the
‘‘ S structure’’ in Fig. 2 dissolves and there is only one ex
tremal point forb.0 for all values off . In thev-f plane
there is thus a first-order transition line which starts a
„1,f c(1)…, extends only a little way in the plane, and ends a
a critical pointC5„vc , f c(vc)'1.075…. At C the vector and
tensor correlation lengths remain finite. The transition atC
is, however, second order since the specific heat diverge
The cause of this in the leading order of the 1/n expansion
can be traced back to a development of a singularity in th

FIG. 2. The order parameterb as a function of f for
v50.999. It still has a finite jump indicated by the vertical line. At
v>vc50.985 theS shape dissolves and thus the phase transitio
disappears.
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inverse propagator of the auxiliary fluctuatingt field6 at zero
momentum at the critical point. The singularity in thet
propagator seems to remain for higher orders as well.
infinite correlation length in the energy fluctuations does n
contradict a finite correlation length in the vector and tens
channels; in particular, there is no conflict with correlatio
inequalities. These inequalities state that by increasing a
romagnetic coupling the system becomes more ordered
the correlation between any spins increases.~Although this
assumption looks physically quite obvious, it has not be
proven rigorously.! The increase of the correlation function
however, implies the growing of a correlation length wi
increasing ferromagnetic coupling only when the corr
sponding quantity has a vanishing expectation value.

Thus a diverging vector~or tensor! correlation length at
the end pointC would contradict a finite correlation length
for large ~but finite! bV ~asymptotic freedom!; on the other
hand, a diverging specific heat atC is not excluded by these
considerations. The above scenario disagrees with tha
Magnoli and Ravanini@8# who argue~based on correlation
inequalities! that the second-order phase transition at t
point C is only an artifact of the 1/n approximation.

Caracciolo, Pelissetto, and Sokal@19# also discuss the
bT /N, bV fixed,N→` limit. They obtain a result which is
equivalent to Eq.~26! above~although their interpretation is
different from ours!.

In our opinion, it is plausible that the phase diagram su
gested by the large-n limit holds for finite n as well. This
phase diagram is shown in Fig. 3. There is a first-order tr
sition line starting at the pointA of thebT axis. It ends at the
point C where the specific heat becomes infinite, but t
vector and tensor correlation lengths remain finite. Kunz a
Zumbach@7# found a finite cusp in the specific heat in th

6Note that theA and t fields mix and it is necessary to diagona
ize.
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pure RP2 model~pointA) suggesting either a first-order tran-
sition or a sharp crossover. Further investigations are need
however, to clarify the nature of the transition. In this figure
we also indicate the Ising critical pointB discussed in Sec.
III. The dotted line starting at pointB is the critical line of
the underlying Ising variablee. This criticality, however,
does not show up in the correlation functions of the origina
variableS.

Note added.Recently, a paper by Hasenbusch@20# has
appeared where a conclusion similar to ours concerning un
versality is reached.
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FIG. 3. The phase diagram for the mixed RPn21-O(n) model.
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