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Question of universality in RP"~! and O(n) lattice o models

Ferenc Niedermayer
Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern, Switzerland

Peter Weisz and Dong-Shin Shin
Max-Planck-Institut fu Physik, Fdringer Ring 6, D-80805 Muchen, Germany
(Received 10 October 1995

We argue that there is no essential violation of universality in the continuum limit of mixé&d 'Réhd
O(n) lattice o models in two dimensions, contrary to opposite claims in the literaf8@556-282(96)03910-
0]

PACS numbgs): 11.15.Pg, 05.56:q, 64.60.Cn, 71.10.Hf

[. INTRODUCTION eral properties and then go on to discuss the continuum limit.
Section Il presents an investigation of perturbed"RP
In this paper we consider two—dimensional mixedmodels, paying special attention to their expected continuum
isovector-isotensor @) o models described by a lattice ac- limit. In particular, we argue there is no contradiction to the
tion of the kind general understanding of universality. Finally, in Sec. IV we
outline some calculations supporting our general scenario.

1
AS)=Bu (1-88,)+ 5812 [1- (S8 )7,
Xp ol ) Il. THE RP "~ MODELS

) 5 ) ) A. Some general properties
with §=1. The sums run over the nearest neighbor sites.

This provides a possible lattice discretization for the con- 1he standard action of the RP' model is
tinuum O(n) nonlinearoc model:

1
. f (8= 5B2 [1-(88 %) 3
o= | d?x[d,9(x) ]2, 2 ’
2 H

It has, compared with the @] model, an extra locaZ,

with =y + Br. . . . . symmetry: it is invariant under the transformation
According to conventional wisdom, different lattice regu-

larizations (preserving the crucial symmetrjeyield the
same continuum field theorfuniversality”). For the case S,—0,S, where g,=*1. 4)
of the action(1), Caracciolo, Edwards, Pelissetto, and Sokal

[1,2], however, question this assumption and in particular -
As a consequence, only those quantities have nonzero expec-

state that the pure- model (3r=0) and the pure RP? i ) : : .
model (8,=0) have different continuum limits fof—sc. tation values which are invariant under this local transforma-
v tion. In particular, the isovector correlation function van-

Since the notion of universality plays an essential role in the .
theory of critical phenomena it is worthwhile to consider this'SheS'

guestion again. In this paper we will explain how the pecu-

liar features observed in the mod@&) can be understood in <sxsy>:o for x#y. (5)

the framework of the conventional picture. We wish to

stress, however, that our scenaridfis the most pajtbased ) ) o )
on plausibility arguments, for which rigorous proofs are un-The simplest local operator with nonvanishing correlation

fortunately still lacking. function is the tensof "= S¢S{ — 5*#/n:
A related problem concerns the mixed fundamental-
adjoint action in pure SU{() gauge theory3] in four dimen- <Tgﬁ-|-;w>¢o_ 6)

sions. The generally accepted belief is that there is a univer-
sal continuum limit for these theories. However, we shall not
discuss this model here. This behavior seems completely different from that of the
The paper is organized as follows. In Sec. 1l we consideiO(n) o model, so that one might expect drastic differences
a class of pure RP'* models. We first describe some gen- in the physics described by the models. This is indeed true
for the theories with finite lattice spacing, but below we shall
argue that in the continuum limit this difference becomes
“On leave from the Institute of Theoretical Physicsnis Uni-  insignificant, and can be resolved by consideration of nonlo-
versity, Budapest. cal variables.
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B. Defects and phase structure where the functiorf(u) satisfies the properties
For convenience, we introduce the notatigy=SS, for f(—uy=f(u), f(1)=0, f'(1)=-1 (10)

the scalar product of two spins. Further, for any patton

the lattice define the observable and f(u) is monotonically decreasing for<0u<1. We as-

sume a weaker form of universality: any of these choices
yields the same continuum limit g8—oc. [Actually, even
less will be sufficient — one can keep the formfdgfi) for
Up<|u|<1 fixed to be the standard ofe.

Let us now introduce a chemical potentjal of the de-
fects modifying the Boltzmann factor by expfungey) where
Nget IS the number of defects. AL>0 the defects are sup-
pressed and gt =< no defects are allowed.

Take first theu =20 case. As was done by Patrascioiu and
Seiler[15], one can define Ising variableg= +1 by

€x=Sg{W(75 )},

w)= 11

xy)e7

Uxy )
where(x,y) denotes the link joining two neighboring points
x andy.

Consider a configuration of the RP* model. One says
that it has a defect associated with a plaquptter a site on
the dual lattice if

W(dp)<O0, 8

wheredp is the boundary of the plaquette. The defects are
end points of paths on the dual lattice formed by those dual
links with u,, <0, wherex andy are the two sites on the starting from a fixed sitex, and going along some path

corresponding link. Because of the local gauge invariance;,@XOX connectingx, to x. Because of the absence of defects,

only the position of the defects is physical, while the pathsex does not depend on the path chosen. For two nearest
can be moved by a gauge transformation.

. ; ; ) X neighbor sites one has
Like the vortices in the two-dimensionXY model [4],

(11)

these defects play an essential role in determining the phase €x€xct = SAMUsxr ) (12)
structure of the RP'! model at finite3 [5]. Some of these

aspects are discussed B7]. The activation energy of a pair Introduce now a new @) vector

of defects grows logarithmically with their separatianThe

standard energy-entropy arguméat then predicts a phase Ox= €S (13

transition at some finitg.. For B< 8. the defects are de- ,

confined, while for 3> 8, they appear in closely bound This has the property thatoy.,=|SS,. .|>0 for nearest
pairs. This difference is expected to show up in an area of€ighbors. The dynamics of the, field is described by the
perimeter law(for B< 3, and 8> 8., respectively of the ~ Modified Of) action

“Wilson loop” expectation value{W(.%)) for large loops

7). y(o)= fy(ogo 14
We see this in a larga-limit of the RP'"~! model[8,9]. vie) B% V(e ) a9

There the phase transition is demonstrated to be first order.,

Furthermore, one verifies the expected “Wilson loop” sig- With

nal: in the leading order{W(%))=0 for B<pB., while f(u) for u=0

(W(2))=exp—AB)| ]} for B> B, with | ~] the perim- fy(u)= - (15)

eter of ¥,

For finiten, however, the situation is not at all clear. The

discussion of the nature of the critical point at fingehas a
long history[10-12,6,7,2 All Monte Carlo (MC) simula-
tions show that, approaching, from below, the tensor cor-

o for u<O.

We also assume that the continuum lim@g-Goo) for this
action is the same as for the standarchiDaction [univer-
sality within the O() model|.

The RP~! model described byd) at u== and the cor-

relation length starts to grow drastically. However, the vari- ) - ; .
ous authors disagree concerning the nature of the transitio@sponding Of) model given by(14) are equivalent in the

the variety of opinions being based merely on theoreticafontinuum limit in the following sense: all gauge-invariant
expectationgand prejudices We shall return to this ques- guantities(such as the tensor correlation function or a Wil-

tion later.

In the following we will discuss the possible continuum
limits. We shall argue that at finit8 the correlation length
(in the vector and tensor channels the RP~! model al-
ways stays finite, and the critical point @t is equivalent
to that of the Of) model.

C. Equivalence of the RP~! and O(n) models
in the continuum limit

Consider a more general form of the lattice"RPaction,

A#1(S) =/a<xzy> f(Uyy), (9)

son loop of scalar produdtin the RP~! model are exactly

the same as in the @] model, while all non-gauge-invariant
quantities vanish in the RP! model. In particular, for the

vector correlation function

(5S))=(exey)(oxoy)=0 for x#y

since(e,ey) = 8,y . TheS, vector of the RP~! model can be
thought of as a product of two independent fields, the “true
vector” o and the Ising variable, ; one is described by the
corresponding Qf) model, and the other by an Ising model
at infinite temperature.

We return now to the case of the RP model at finite
m. With increasingu the average defect density is de-

(16)
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creased. Defects tend to disorder the system; therefore it fsee energy of a pair of defects is likely to saturate around

very plausible to assume that the correlation lengththe  r~§&(8). Hasenbusch14] has given a strong argument

tensor channglgrows with increasinge. Since atu=o the  based on the ideas of the cluster algorithm supporting this

RP'~! model is equivalent to the correspondingn®nodel  expectation. As mentioned above, however, the O(3) corre-

at the sameB, one concludes that the correlation length atlation length atg, of the pure RP model is astronomically

wn=0 is bounded by that of the @] model. large while the density of defects is10™2 [7] at B~ 8.
Assuming further that, according to the standard scenaridlence the saturation of the logarithmic growth will show up

the O() model has a finite correlation length for finig it  only at largerB values where the average defect density

follows that the RP~* model cannot have a phase transitiondecreases untit- 1/¢2(8). It will not, however, influence the

(at finite B) with diverging correlation length in the vector continuum limit, even for the standard action, since the

and tensor channefs. density of defects in this case is expected to be
The latter is in agreement with the largeresult[9] men-  exp(—constx 8?).

tioned above, which predicts a first-order transition. The ex- As a concrete realization of the modified Riodel we

planation for the seemingly divergefitensoj correlation take

length observed in MC simulations could be the following.

For B< B, the defects strongly disorder the system and cause

a small correlation length. Abovg.;, however, the role of

the defects decreases rapidly with increasthgAs the de-

fects become unimportant the correlation length approachddereq=0 and we choosa§=0.8 for definiteness. A simple

that of the Of) model. The numerical simulation of the nhumerical investigation shows that fgr=10 the activation

RP” model[7] gave B.=5.58 which in the O(3) model cor- €nergy for neighboring defects i~ 4. (Of course, noth-

responds to a correlation lenggh- 10°. A sharp transition or  ing forbids takingg=c — it will still define the same con-

a jump to a huge value is therefore not unexpected. Thi§nuum theory)

transition is, however, associated with the nonuniversal dy- By similar modifications of the action it might well be

namics of the defects, not with the universal continuum limitpossible to bring the correlation length down to reasonable

of the theory. values, so that the phase diagram could be reliably investi-
To establish the equivalence of the 'RP model (at  gated numericallyialso in the mixed RP %/O(n) model.

w=0) with the Of) model in the continuum limit, it suf- This would imply that the huge correlation length around the

fices to show that the defects do not play any role in thePoint where the defects start to condense for the standard

B— limit. The classical solution for a pair of defects has aRP"~* model is rather “accidental.”

finite energy which depends on the distamcbetween the

two defects as const(#/2) Inr. The constant contribution lll. THE PERTURBED RP "~! MODEL

coming from the neighborhood of the defects depends

strongly on the actual form of the functidigu) in (9); more

precisely, on the values of(u) for small |u|, say

u?<0.5. Because the defect pairs have finite activation en- .w/é(S)z,BTE f(S,(S,(+M)+ﬁV2 9SS, (19

ergy Ey, they are exponentially suppressed by expE,). ok ok

The subtlety here is that the correlation volumg(p) in the limit Br—c, By=fixed. Here f(u) satisfies(10),

<exp(4rp) (for n=3) predicted by a perturbative renormal- y il the perturbatiorg(u) can, without loss of generality,
ization calculation, is also exponentially large, and pairs ofyq taken to be odd:

defects with limited relative distances will occur in this vol-

ume if theirE, is small enough.These could be, however, g(—u)=—g(u). (19
considered as local, i.e., nontopological, excitations on the

scale of£(8), and we do not expect that they significantly The action(1) is, of course(up to an irrelevant constana
influence theB— limit. The argument becomes even sim- special case. ABr— = the scalar producgS, , , is forced
pler if one changes the form of the action by pushing up théo be arounct-1 or —1, i.e., 1—(3(3(+M)2=O(1/3T).

f(u)=1(1—u2)+ max(u2— u?,0) 17
2 q 0 J).

Consider the perturbed RP' model

values off (u) for u?<0.5 to haveE,> 41 for all defects. In Let us now assume thg; is large enough or the form of
this case the defects are practically absent in the whole cof{u) is chosen such that the defects are completely negli-
relation volumé: gible [as in the example of17) for q=10]. For configura-

As pointed out by Sokdl13], due to the finiteness of the tions with no defects one can introduce the Ising variables
correlation length in the @() model the~Inr growth of the €, in a unique way and define the “true vector” fietd, as
in (13). Separating the sign @i(u) by

!Note that this does not exclude a diverging specific heat, i.e., g9(u)=—sgn(u)go(|ul)
infinite correlation length in the scalar channel. _ /
2lt is easy to show that around a defect at least one of the four - —sgr(u)[go(1)+go(1)(|u| D+l (20
links hasu?<0.5. we obtain
3For the standard RP! action the minimal activation energy is
Ep'"'=2.14. ANS) = A T)F Aysing €) T Aind €,0), (22
“Obviously this argument does not apply if the correlation length
becomes infinite already at fini@ as suggested in Rdf15]. where
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Note that the presence or absence of the interaction is not
() =B Ty(0x0xs ), (22)  connected with the behavior gf{u) aroundu= + 1 [which
o is responsible for the @) continuum limit 8y,—] but
rather with the difference in behavior aroumd=+1 and
Arsing €)= =32 ExExi s (23) u=-1. For example,g(u)= 1/2 (1-u?)+cé(—u) (not
Xp antisymmetrized in this cagewherec>0 and# is the step
function, is a perfectly acceptable discretization of the
, _ o _ o O(n) model for By— and it produces no interaction,
i €.0) g Exxrpl ~ (DL oo+ -+ . _Z=0. On the other handy(u) could be chosen to have,
(24 say, a local maximum ati=+1 instead of a minimum,
) , which would completely destroy thg,—« behavior but
Here B=pBr, J=Bvgo(1), andfy(u) is as in(15). Note 4,4 sfill have the same interaction pattern as for the case
1-0404,=0(1/B) and hence the interaction term g(u)=—u.
x&int(e,q) goes effectl_vely to zero g8— . ) In this sense, the phenomenon around the pdipief) is
Consider first the simple case whe(u) = —sgn(), i.e.,  the consequence of perturbing the"RP model by a term

go(u)=1. In this case the two systems decouple exactlyy eaking the locaZ, symmetry, rather than its mixing with
while the specific behavior of the vector and tensor correlag, O(M) model.

tion functions still persists. Since the correla{&sS,) fac-

torizes,
IV. SOME ANALYTIC STUDIES OF THE MIXED MODEL

(SS) = (exey){oxoy), (25 Let us setBy=(1—w)n/f and Br=wn/f for the bare

couplings in(1). There are various analytic studies which

for J<J. one has . ; .
shed some light on the physics of this model. Among these

ms=m.+m, and m;=2m,, (26)  are the ordinary perturbation theofy-0 and the I ap-
proximation.
where the masses are defined through the exponential decay
of the corresponding correlators. Although the tensor mass is A. Bare perturbation theory

smaller than twice the vector mass;<2mg, one cannot ] i o
conclude from this that there is a pole in the tensor channe| One interesting exercise is to compute the spectrum for a

[2]. Since bothm,(8) and m(J) go to zero as andJ order in bare perturbation theory, one finds
approach their critical values, the ratio

1
_mr 2m, mr(L)L=f+f2—{(n=2)R(L/a)+[1+w(n+1)]P(L/a)}

(27)

r_ =
mg  mg;+m, +0(f3) (29)

can be fixed at any valuee[0,2] by properly approaching
the point J.,«) in the (J,8) plane.
For J>J. the Ising fielde, develops a nonzero expecta-

and to this order the vector masy, is given by

tion value; hence, in this cases=m, andmy/mgs=2. Note my(L)= (n-1) my(L). (29)
that for finite 8 the phase transition aroudd- J. is observed 2n

only in the nonlocal variable, , not in the original variable

SX whose correlation |ength remains finite zt JC_ In (28) the functionsR andP are given by finite sums over

Following the argument in Refg§1,2] one would con- lattice momenta. The relatiof29) holds before the con-
clude that around the poind(8) = (J.,>) one could define tinuum limit has been take(there are no lattice artifacts in
seemingly inequivalent theories differing in the ratio the ratio to this order Furthermore, the ratio is independent
m;/ms. Although this is formally true, the corresponding Of w, which is certainly consistent with notions of universal-
theory is neither really new nor interesting. In particular, allity (the continuum limit is taken here in finite volume$he
the tensor correlation functions are the same as those in tHatio (29) has been shown to hold in the ©( model for
corresponding pure @ model. small volumes, in the continuum limit to third order in the

With the choiceg(u)=—u, i.e., go(u)=|u| (as in[1])  renormalized coupling by Floratos and Petcfs]. Indeed
the situation is more complicated since there is an interactiofhere, to this order, the mass of the tensor of rank pro-
between the two systems. However, as mentioned above, tf@rtional to the eigenvalue of the square Casimir operator:
effective strength of the interaction goes to zerogas «;
hence it might well happen that in the continuum limit one m=Mk(n+k-2) (30
recovers the previous situation.

with M independent ok. In finite volumes the spectrum is
discrete and there is a finite gap betweapand 2m,,; this
>The masses measured [ili] are not the true masses, but those gap is expected to close hs-~o where a cut develops start-
defined through the second moments; it is, however, generally béng at 2m,,. We have numerically computed the mass of the
lieved that the qualitative picture remains unaltered. tensor as well as that of the “true vector” in the RP
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FIG. 1. The order parametbrin the 1h expansion as a function
of the couplingf for o=1. There is a jump aft,(1)=1.046 from a

finite value tob=0 shown by the vertical line. FIG. 2. The order parameteb as a function of f for

0=0.999. It still has a finite jump indicated by the vertical line. At
model. as defined in Sec. II. in small volumes: the resultswzwc:o'gss theS shape dissolves and thus the phase transition

agreed well with the above formulas. disappears.

One can also usg8) to determine the ratio ok param-
eters. For this, it suffices to know the continuum limit
(a/L—0) behavior ofR andP:

where. 7 is the operator

L M=s+it+ 2 {=d%a,
M
R(L/a)~ 2—{In(L/a)—In(7r/\/§)+ yel, (31)
& +0[A,d%3,—(TEA)(1—3%)+AZT).  (36)

P(L/a)~£1—1r (32 Hered, ((9::) denote the lattice forwartbackward deriva-
tives. One first seeks a stationary point Qs at constant
field configurationsA ,(x) =1—b, t(x) =const. Demanding
a saddle point at=0 gives a relation for the constagtin
(35 as a function ob. With s fixed in this way, one seeks

with yg Euler's constant. Denoting by (w) the lattice A
parameter for a model with giveda,

A(w) wm(n+1) minima of Sy as a function ob.
AQ) exp[ - m] (33 For w=1 (the pure RP~! mode), the extremal points are
shown in Fig. 1. In this case there is a symmdiry —Db.
follows, in agreement with the result in R¢L7]. Further,b=0 is an extremal point for alf. For f<1, the

Comparing the two theories in infinite volume, CaraccioloPointsb=0 are maxima and the nonzero values are minima.
and Pelissettd18] also found that the RP! and the Forf=1", b=0 becomes a locabut not absolutemini-

O(n) models haveapart from the redefinition of the cou- MUm and two new local maxima develop. At
pling) the same perturbative expansion. f=1,(1)~1.046 the three minima become degenerate, and

for f>f.(1) the minimum ab=0 is the absolute minimum.

One finds(in the leading order of the A/expansionthat at

this point the tensor correlation length does not go to infinity:
The 1h expansion for the mixed model was to our knowl- there is a jump in the order parameter and the phase transi-

edge first investigated by Magnoli and Ravari®i. We dis-  tion is thus first order.

agree, however, with some of their final conclusions. To dis- For <1, theb— —b symmetry is broken and the local

cuss this, we first introduce a few formulas. After minimum with b>0 is the lowest. Fow only slightly less

introducing auxiliary fieldsA ,(x),t(x) to make the integral than 1, the situation is as in Fig. 2. Here again, at some

guadratic in the spin fields and then performing the Gaussian:fc(w) the parameteb undergoes a finite jump. There is,

integral, the partition function in the absence of externalhowever, a critical value ob = w.~0.985 below which the

B. 1/n expansion

fields takes the form “ S structure” in Fig. 2 dissolves and there is only one ex-
n tremal point forb>0 for all values off. In the w-f plane
Z=constx | [] dAM(x)H dt(x)exp[—— eﬁ], (34)  there is thus a first-order transition line which starts at
X,th X 2 (1,f.(1)), extends only a little way in the plane, and ends at
. . ) a critical pointC=(w.,f¢(w:)~1.075. At C the vector and
with the effective action tensor correlation lengths remain finite. The transitiorCat
1 is, however, second order since the specific heat diverges.
- ; p The cause of this in the leading order of tha Bxpansion
Seff=— ¢ S+it(x)]+tr In.Z, 35 . O
e f; [ ()] 39 can be traced back to a development of a singularity in the
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inverse propagator of the auxiliary fluctuatingjeld® at zero
momentum at the critical point. The singularity in the
propagator seems to remain for higher orders as well. An
infinite correlation length in the energy fluctuations does not
contradict a finite correlation length in the vector and tensor
channels; in particular, there is no conflict with correlation
inequalities. These inequalities state that by increasing a fer-
romagnetic coupling the system becomes more ordered and A
the correlation between any spins increagédthough this Br —C
assumption looks physically quite obvious, it has not been
proven rigorously. The increase of the correlation function,
however, implies the growing of a correlation length with
increasing ferromagnetic coupling only when the corre-
sponding quantity has a vanishing expectation value.

Thus a diverging vectofor tensoy correlation length at
the end pointC would contradict a finite correlation length 0
for large (but finite) By (asymptotic freedom on the other 0 Bv (0 0]
hand, a diverging specific heat@tis not excluded by these
conside_rations. The_ above scenario disagrees with t_hat of F1G. 3 The phase diagram for the mixed RE-O(n) model.
Magnoli and Ravaninf8] who argue(based on correlation

inequalities that the second-order phase transition at the,,re RB model(pointA) suggesting either a first-order tran-
point C is only an artifact of the I approximation. sition or a sharp crossover. Further investigations are needed,
Caracciolo, Pelissetto, and Sokdl9] also discuss the o yever, to clarify the nature of the transition. In this figure
Br/N, By fixed, N—oo limit. They obtain a result which is e 4150 indicate the Ising critical poif discussed in Sec.
equivalent to Eq(26) above(although their interpretation is || The dotted line starting at poirs is the critical line of
different from ours. , _ the underlying Ising variable. This criticality, however,
In our opinion, it is plausible that the phase diagram sugoes not show up in the correlation functions of the original
gested by the large-limit holds for finite n as well. This |, /iaples.
phase diagram is shown in Fig. 3. There is a first-order tran- Note addedRecently, a paper by Hasenbusi@o] has

sition line starting at the poirk of the 81 axis. It ends atthe  5nheared where a conclusion similar to ours concerning uni-
point C where the specific heat becomes infinite, but theversality is reached.

vector and tensor correlation lengths remain finite. Kunz and
Zumbach[7] found a finite cusp in the specific heat in the

-—-w
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