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Recently it was shown how to formulate the finite-element equations of motion of a non-Abelian g
theory, by gauging the free lattice difference equations, and simultaneously determining the form of the
transformations. In particular, the gauge-covariant field strength was explicitly constructed, locally, in term
a path-ordered product of exponentials~link operators!. On the other hand, the Dirac and Yang-Mills equation
were nonlocal, involving sums over the entire prior lattice. Earlier, Matsuyama had proposed a local
equation constructed from just the above-mentioned link operators. Here, we show how his scheme, w
closely related to our earlier one, can be implemented for a non-Abelian gauge theory. Although both
and Yang-Mills equations are now local, the field strength is not. The technique is illustrated with a d
calculation of the current anomalies in two and four space-time dimensions. Unfortunately, unlike the or
finite-element proposal, this scheme is in general nonunitary.

PACS number~s!: 11.15.Ha, 11.15.Tk, 11.30.Rd, 12.20.Ds
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I. INTRODUCTION

An alternative approach to lattice field theories, based
the finite-element equations of motion, has been under de
opment for over a decade.~For a recent review see@1#.!
Shortly after the introduction of this method, it was seen ho
an Abelian gauge field could be coupled to a fermion in th
way @2#. The resulting Dirac equation was nonlocal: I
Minkowski space-time, the term proportional tog j involved
a sum over all values of the corresponding lattice coordin
mj , 1<mj<M , whereM is the number of lattice sites in the
j direction, while the term proportional tog0 involved a sum
over all previous times, 0<n8<n, wheren is the current
lattice time. Shortly after our paper appeared, Matsuyama@3#
proposed a local finite-element Dirac equation for QE
based on the immediate introduction of link operators in
the free Dirac equation. Although it could be argued that th
latter approach was somewhat unnatural because it in
duced interactions into the mass term, the primary reas
this idea was not pursued was that it was quite unclear w
the form of the non-Abelian gauge transformations should
on the finite-element lattice.

Instead, the first foray into non-Abelian finite-elemen
gauge theory@4# was based on straightforward gauging o
the global phase symmetry of the free finite-element Dir
equation. The form of the interacting Dirac equation w
determined, nonlocally as in the Abelian case, and at
same time, the form of the gauge transformations of the v
tor and scalar potentials was determined, in terms of an
finite sequence of nested commutators. The Yang-M
equations were determined analogously. The only thing
explicitly determined at the time was the form of the con
struction of the field strength tensor in terms of the pote
tials; although it was perfectly clear that the process could
continued indefinitely, only the first four terms in the se
quence in powers of potentials were given. Although@4# had
been restricted to 111 dimensions for simplicity, that restric-
tion was easily removed@5#.

*Electronic address: kmilton@uoknor.edu
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The completion of this construction was only given la
spring @6#. The essential element was the recognition th
under the previously determined gauge transformations
suitable link operator transformed appropriately. These
erators then can be used to transform the field strengthFmn

averaged over the finite-element hypercube to them,n plane
where it may be expressed as a path-ordered product of
operators around a plaquette.

This development makes it possible to revisit Matsuy
ma’s scheme@3#. We will see that it is not only possible to
formulate a local Dirac equation in the non-Abelian regim
but local gauge-covariant Yang-Mills equations as well. T
resulting equations are inequivalent to those given previou
@6#, but not so different either, for the previous equatio
were quasilocal, as seen in the simple difference equa
given for the interaction terms. But the new formulation
still nonlocal in that the field strength that appears in th
Yang-Mills equation involves the vector potential over th
entire previous lattice.

In the next section we restate the gauge transforma
properties of the link operators, and give the correspond
construction of the field strength. Then, in Sec. III we resta
Matsuyama’s prescription for the Dirac equation, followe
by the corresponding local Yang-Mills equation. The resu
ing nonlocality in the construction of the field strength
shown. A simple calculation of the axial-vector anomaly
two dimensions is given in Sec. IV. However, it is not cle
how to extend such calculations to four dimensions becau
unlike the original formulation@7#, in general, interactions
here break unitarity. In a particular gauge in which the tra
fer matrix is unitary, the current anomalies are computed
the smallest nontrivial four-dimensional lattice in Sec.
The corresponding calculation in the standard finite-elem
formulation is given in Sec. VI. A discussion of how sym
metry breaking occurs here is given in the Conclusion a
the Appendix.

II. GAUGE-COVARIANT LINK OPERATORS
AND CONSTRUCTION OF THE FIELD STRENGTH

It is convenient to define the link operator using coord
nates referring to a given finite element,
5898 © 1996 The American Physical Society
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~Lm! i jkl5exp@2 igh~Am!m11 i ,m21 j ,m31k,m41 l #, ~2.1!

whereh is the lattice constant, and the vector potential is
appropriately averaged one:

Amm ,m'

m 5
1

2
~Amm ,m'

m 1Amm21,m'

m !. ~2.2!

The notation here is that m' refers to space-time lattice co
ordinates other than the one singled out,mm . Each index in
~2.1! takes on two values, 0 or 1. The result of a detaile
constructive calculation@6# is the following simple transfor-
mation law for the link operator:

d~Lm!10005 ig@dv0000~Lm!10002~Lm!1000dv1000#, ~2.3!

where we have assumed that the first coordinate index re
to them direction. Then, it is easy to see that the ‘‘trans
versely local’’ field strengthF mn is given by the following
path-ordered product of link operators around them,n
‘‘plaquette’’:

e2 igh2~F mn!m5P expS 2 ig R A•dl D
5~Lm!1000~Ln!1100~Lm

† !1100~Ln
†!0100, ~2.4!

where the first index is them coordinate and the second
index then coordinate. To construct the full field strength
which is forward averaged over a hypercube with lower le
hand corner at m, we use the gauge-covariant average op
tors constructed from the links:

~D̃lF
mn!00005

1

2
@~Ll!1~F

mn!1~Ll
†!11~F mn!0#, ~2.5!

where on the right-hand side, we have only displayed thel
coordinate~the rest are 0!. That is, with an overbar represent
ing forward averaging,

xm̄5
1

2
~xm1xm11!, ~2.6!

the field strength is given by1

~Fmn!m̄5S )
lÞm,n

D̃lF mnD
m

, ~2.7!

where symmetrical averaging is to be understood. It is i
mediately obvious thatFmn given by ~2.7! transforms cova-
riantly,

~dFmn!m̄5 ig@dvm ,~F
mn!m̄#. ~2.8!

1The averaging over the finite element on the left-hand side
~2.7!, required by the finite-element prescription, is necessary
ensure unitarity. If (Fmn)m̄ were replaced by (Fmn)m , even the free
theory would not be unitary.
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III. LOCAL FORMULATION
OF YANG-MILLS EQUATIONS

Matsuyama had proposed a local finite-element formu
tion of a fermion interacting with an Abelian gauge field@3#.
He began by adopting a local form for the fermionic gaug
transformation,

dcm5 igdvmcm, ~3.1!

defined on fields at the lattice sites, rather than in the midd
of the finite element as in@2,4,6#. Then, covariant derivative
and averaging operators can be defined in terms of the l
operators which are defined in~2.1!:

~Dmc!00005
1

h
@~Lm!1c12c0#, ~3.2a!

~D̃mc!00005
1

2
@~Lm!1c11c0#. ~3.2b!

Up to an ordering ambiguity then, the gauge-covariant Dir
equation is

igm )
nÞm

D̃nDmc1m)
n

D̃nc50. ~3.3!

By virtue of ~2.3!, Eq. ~3.3! is covariant not only under Abe-
lian gauge transformations, but under non-Abelian ones
well. Finally, we can transform to a gauge-covariant avera
Dirac field by averaging operators,

Cm̄5S)
l

D̃lc D
m

, ~3.4!

@Þcm̄ using the notation of~2.6!# which transforms covari-
antly in the sense of@6#:

dCm̄5 igdvmCm̄ . ~3.5!

However, in@6# it is the ‘‘free’’ average of the Dirac field
cm̄ that transforms covariantly.

We proceed similarly in the gauge sector. If the fiel
strength like the Dirac field transformed locally at the lattic
sites,

~dFmn!m5 ig@dvm,~F
mn!m#, ~3.6!

rather than as in@6#, gauge-covariant derivative and averag
ing operators could be defined by~2.5! and

~DlF
mn!00005

1

h
@~Ll!1~F

mn!1~Ll
†!12~Fmn!0#, ~3.7!

which yields the local covariant Yang-Mills equation

)
lÞn

D̃lDnF
mn5 j m, ~3.8!

where we can adopt the following as a gauge-covariant c
rent ~see Sec. VI!:

~ j m!m5gC̄mTgmCm. ~3.9!
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However,~3.6! does not hold.As shown in Sec. II the field
strength constructed locally in terms of the link operato
transforms according to~2.8!, defined at the center of the
finite element. However, givenFmn constructed in Sec. II,
we can construct a locally covariant field strengthf mn ac-
cording to

~Fmn!m̄5S)
l

D̃l f mnD
m

, ~3.10!

which does transform according to~3.6!, and which then
satisfies~3.8!. Note that, in part,~3.10! undoes the transfor-
mation ~2.7!, so that if we choose an appropriate ordering

~F mn!5D̃mD̃n f mn . ~3.11!

However, as a result of inverting the averaging operato
D̃m , that is solving the difference equation~3.11!, f mn is not
local, but depends on vector potentials over the entire pr
lattice. It appears impossible to have a completely local fo
malism.

IV. AXIAL-VECTOR CURRENT ANOMALY
IN 111 DIMENSIONS

Let us illustrate the calculational aspects of this scheme
the simplest context, that of an Abelian theory in which th
only nontrivial element is the Dirac equation~3.3!. ~We will
henceforward replaceg by e.) Although the result was stated
in @3#, it is useful to first revisit the two-dimensional case o
the Schwinger model, with the fermion massm50. In terms
of chiral components, that is, eigenvectors ofig5 with eigen-
value equal to61, the solution of that equation is~for a
particular ordering!

cm11,n11
~1 ! 5exp@ ieh~A0!m,n11#

3exp@ ieh~A1!m11,n11#cm,n
~1 ! , ~4.1a!

cm,n11
~2 ! 5exp@ ieh~A0!m,n11#

3exp@2 ieh~A1!m11,n#cm11,n
~2 ! . ~4.1b!

The current is given by~3.9! with T51; in terms of chiral
components what we wish to compute are the combinatio

^ ‘‘ ]m j
m’’ &5

1

h
^ j m11,n11

~1 ! 2 j m,n
~1 !1 j m,n11

~2 ! 2 j m11,n
~2 ! &, ~4.2a!

^ ‘‘ ]m j 5
m’’ &5

1

h
^ j m11,n11

~1 ! 2 j m,n
~1 !2 j m,n11

~2 ! 1 j m11,n
~2 ! &, ~4.2b!

where the quotation marks signify finite-element lattice d
rivatives. We use the solution~4.1! to refer all Dirac fields to
the intermediate timen11 and we evaluate the fermion ma
trix elements according to the Fock space rule@8#

^cm,n
~6 !†cm1q,n

~6 ! &56q
i

L

1

sinp/M
for M even, ~4.3a!
rs

,

rs
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in
e

f
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e-
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^cm,n
~6 !†cm1q,n

~6 ! &56q
i

L

cos2p/2M

sinp/M
for M odd, ~4.3b!

whereq561. In both cases, the vacuum expectation valu
is taken to be zero ifm5m8. ~As noted in@8#, the actual
value in that case is irrelevant.! Then, using~4.1! in, for
example,

S)
n

D̃nc~1 !D
m,n

5
1

4
~cm,n

~1 !1exp@2 ieh~A1!m11,n#cm11,n
~1 !

1exp@2 ieh~A0!m,n11#cm,n11
~1 !

1exp@2 ieh~A1!m11,n#

3exp@2 ieh~A0!m11,n11#cm11,n11
~1 ! !,

~4.4!

we easily find that the vector current is conserved exactly2

^ ‘‘ ]m j
m’’ &50, ~4.5!

while the axial-vector current is anomalous,

^ ‘‘ ]m j 5
m’’ &5

e

2Mh2
1

sinp/M
$sineh~A1!m12,n11

1sineh~A1!m11,n11

1sineh@~A0!m11,n112~A0!m12,n11

2~A1!m12,n#

2sineh@~A0!m11,n111~A1!m11,n

2~A0!m,n11#%

'
e

M sinp/M
E, ~h→0!, ~4.6!

where E5 ‘‘ ]0A12]1A0’’ is the lattice electric field, the
familiar finite-element lattice result@1#.

The above calculation seems quite similar to that give
for the nonlocal finite-element formulation in@8#, and is cer-
tainly no simpler. In fact, the calculations are identical if, a
in @8#, we choose the gaugeA050. For then, the massless
Dirac equation can be written in terms of the transfer matrix
defined by

cn115Tcn , ~4.7!

which is to be understood as a matrix equation in the spat
coordinates. Here, the transfer matrix is

T5
11 ig5D

12 ig5D
, ~4.8!

where the covariant derivative,D52(h/2)(D̃1)
21D1 , is

defined in terms of~the time coordinaten is suppressed!

2In @3#, results~4.5! and ~4.6! were established only toO(h).
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~D̃1!m,m85
1

2
~dm,m81dm11,m8exp@2 ieh~A1!m11# !,

~4.9a!

~D1!m,m85
1

h
~2dm,m81dm11,m8exp@2 ieh~A1!m11# !.

~4.9b!

Equation~4.9a! is inverted as in~17! of @8#, with the result
that the covariant derivative operator coincides exactly w
that given in~10! of that reference, and hence the same co
clusions follow.

V. CURRENT ANOMALIES IN 3 11 DIMENSIONS

We wish to repeat the above calculation in four dime
sions. Again, we will set the massm50, so we have to solve
the symbolic Dirac equation involving the link operator
~2.1! for the simplest possible ordering

g0~L311!~L211!~L111!~L021!c

1g1~L311!~L211!~L121!~L011!c

1g2~L311!~L221!~L111!~L011!c

1g3~L321!~L211!~L111!~L011!c50,
~5.1!

where, for example,c5c0000, L0c5(L0)0001c0001, and
L2L0c5(L2)0100(L0)0101c0101. We must solve this system
of equations at each lattice site at a given time. For simpl
ity, let us consider the simplest nontrivial rectangular spat
lattice, with the number of sites in the 1 direction bein
M152, while in the other two directions, there is but a sing
site, M25M351. We anticipate the periodic-antiperiodi
boundary condition@2#

cm1M5~21!M11cm , ~5.2!

so we expect that the fields should be antiperiodic in the
direction. The system of Dirac equations reduces to t
simple matrix problem

Rc15Sc0 , ~5.3!

where the Dirac fields at time 1 and time 0 are

c15S c01

c11
D , c05S c00

c10
D , ~5.4!

and the matrices are given by
ith
n-

n-

s

ic-
ial
g
le
c

1
he

g0R15S 0 2 l 0c 2l̃ 0l̃ 1 2 l̃ 0l̃ 1c

l 0c* 2l 0 l̃ 0l̃ 1c* 0

22l 0l 1 l 0l 1d 0 2 l̃ 0d

2 l 0l 1d* 0 l̃ 0d* 2l̃ 0

D ,
g0R25S 2l 0 l 0c 0 l̃ 0l̃ 1c

2 l 0c* 0 2 l̃ 0l̃ 1c* 2l̃ 0l̃ 1

0 2 l 0l 1d 2l̃ 0 l̃ 0d

l 0l 1d* 22l 0l 1 2 l̃ 0d* 0

D ~5.5!

and

g0S15S 2 c 0 l̃ 1c

2c* 0 2 l̃ 1c* 2l̃ 1

0 2 l 1d 2 d

l 1d* 22l 1 2d* 0

D ,
g0S25S 0 2c 2l̃ 1 2 l̃ 1c

c* 2 l̃ 1c* 0

22l 1 l 1d 0 2d

2 l 1d* 0 d* 2

D , ~5.6!

where

l 05~L0!01, l̃ 05~L0!11, l 15~L1!00, l̃ 15~L1!10,
~5.7!

and

c5tan
eh

2
~A3!001 i tan

eh

2
~A2!00,

d5tan
eh

2
~A3!101 i tan

eh

2
~A2!10, ~5.8!

and we have denoted eigenvalues ofig5 by the 6 super-
scripts, have used the representation of Dirac matrices,

g0g5 ig5s, ~5.9!

and have chosens1 to be the Paulisz matrix. The transfer
matrix T is then given by

T5R21S. ~5.10!

Unfortunately, it turns out, in general, the theory is no
unitary, that isTT†Þ1. This is true even in the tempora
gauge,A050. This is traced back to the failure of the cova
riant derivative, given by~3.3!,

D5
1

D̃0
D, ~5.11!

where symbolically
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D̃05~L311!~L211!~L111!,

D15~L311!~L211!~L121!,

D25~L311!~L221!~L111!,

D35~L321!~L211!~L111!, ~5.12!

to be skew Hermitian.3 In fact, it is easily verified that al-
thoughD1 is skew Hermitian,D2 is not unlessl 1l̃ 151. So,
to proceed, we will simply choose the gauge wit
A05A150, which should suffice for the anomaly calcula
tion. This simplifies the transfer matrix dramatically by re
placing

l 0→1, l̃ 0→1, l 1→1, l̃ 1→1. ~5.13!

Then, it is easily seen thatT is unitary.@If c were periodic
rather than antiperiodic in the 1 direction, which would b
accomplished by changing the sign ofl 1 in ~5.5! and ~5.6!,
T would not be unitary.# In fact, it will suffice in the follow-
ing to expandT to bilinears inc andd. It then turns out to be

T1'S y d 211j 0

2c* y 0 11 j̃

11 j̃ 0 y* c

0 211j 2d* y*

D ,
T2'S y* 2c 11 j̃ 0

d* y* 0 211j

211j 0 y 2d

0 11 j̃ c* y

D , ~5.14!

where we have abbreviated

j5
1

2
dd* , j̃52

1

2
cc* , y52

1

2
dc* . ~5.15!

In the following we will use the block form ofT, which
refers to specific spatial coordinates,

T5S T00 T01

T10 T11
D . ~5.16!

We now take matrix elements of the current in Foc
space states defined in terms of the momentum-space ex
sion of the free Dirac field@8,7#

cm,15(
s,p
Am

v
~bpsupsexp@ i ~p11/2!m2p/M #

1dps
† vpsexp@2 i ~p11/2!m2p/M # !. ~5.17!

3It is easily seen that no other ordering will resolve this problem
For the given ordering, D25(L111)21(L221)21(L2
11)(L121); the inner factor involvingL2 is clearly skew Hermit-
ian, but the appearance of theL1 terms destroys that property.
h
-
-

e

k-
pan-

Because of the particular choice of gauge~5.13!, the current
is proportional to the usual finite-element one, and the matr
element ofj 0, for example, is

^ j m,n
0 &5C

e

16
^$@c1

†~11T!#11@c1
†~11T!#0%

3$@11T†!c1#11@~11T†!c1#0%&, ~5.18!

where the Dirac fields are those given in~5.4!,

C5cos2
eh

2
~A2!00cos

2
eh

2
~A3!00, ~5.19!

and the matrix subscripts refer to the spatial coordinate. T
matrix elements are evaluated using the easily derived fo
mula forM52

^cm
†Gcm8&5

1

h3
~dmm8 trG12i emm8 trg

0g1G!. ~5.20!

Then, a straightforward calculation gives the result

^ j m,n
0 &5

e

h3
~11l!C, ~5.21!

where

l5
1

4
~dd*2cd*2dc*2cc* !. ~5.22!

A similar calculation reveals that̂j 1&50. The axial-vector
current matrix elements vanish. Consequently, for this tin
lattice, there is no axial-vector current anomaly, but there is
vector current anomaly,

^ ‘‘ ]m j
m’ ’ &52

e3

8h2
$@~A2!11

2 1~A2!11~A2!01

1~A2!01
2 2~A2!10

2 2~A2!10~A2!00

2~A2!00
2 #1@2↔3#%, ~5.23!

a somewhat curious result which will be discussed below.

VI. FINITE-ELEMENT CURRENT
ANOMALY CALCULATION

Because of the various difficulties seen in the calculatio
exhibited in the previous section, we return now to origina
formulation. There, theunitary transfer matrix in 311 di-
mensions is, in the gaugeA050, @7#

T5
11g0g•D

12g0g•D
, ~6.1!

where~the time coordinaten is suppressed!

Dmi ,m' ;m
i8 ,m'8

i
52~21!mi1mi8~emimi8

cosẑmimi8

2 i sinẑmimi8
!secz~ i !dm'm'8

, ~6.2!

.
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where~and now all the local dependence on the other spa
coordinates is also suppressed!

zmi
5
eh

2
Ami

i , z~ i !5 (
mi51

M

zmi
, ~6.3!

and

ẑmi ,mi8
5 (

mi951

M

sgn~mi92mi ! sgn~mi92mi8!zm
i9
. ~6.4!

Here, the sign function is

sgn~m!5H 1, m.0,

21, m<0.
~6.5!

Again, let us consider the smallest possible nontrivial lattic
with the number of lattice points in the 1 direction bein
M152, while the 2 and 3 directions have but one sit
M25M351. This leads again to a 434 transfer matrix for
each chirality, which for smallehA is, in the block form
given in ~5.16!,

T00
6 5S l 6

c1d

2

7
c*1d*

2
l

D ,

T01
1 5T10

2†5
s

2 S a b

b* 2a* D , ~6.6a!

T10
1 5T01

2†5
s*

2 S ã b̃

b̃* 2ã* D ,

T11
6 5S 2l̃ 6

c1d

2

7
c*1d*

2
2l̃

D . ~6.6b!

Here,l is defined above in~5.22!,

l̃5
1

4
~dd*1cd*1dc*2cc* !, ~6.7!

c andd are as in~5.8!,

a5
1

2
~414i t 124t12dd*1d* c2c* d2cc* !, ~6.8a!

ã5
1

2
~2424i t 114t11dd*1d* c2c* d1cc* !, ~6.8b!

b5d~11 i t 1!2c~12 i t 1!, ~6.8c!

b̃5d~12 i t 1!2c~11 i t 1!, ~6.8d!

and

t i5tanz~ i !, s52exp@ i ~z1
12z2

1!#secz~1!. ~6.9!
tial

e,
g
e,

Even though the transfer matrices are quite different@the
form in ~6.6! is more complicated becauseA1Þ0#, the re-
sults of the calculation are very similar: The axial-vecto
anomaly is zero, while the vector anomaly is

^ ‘‘ ]m j
m’’ &52

e

2h4
@~ t2!21~ t2!111~ t3!21~ t3!11

2~ t2!20~ t2!102~ t3!20~ t3!10#. ~6.10!

Here, the current is not~3.9!, but

jm,n
m 5ec̄ m̄, n̄ gmcm̄, n̄ , ~6.11!

the averaging being over the finite element without the lin
operators. The result~6.10!, which is manifestly gauge in-
variant, appears to be, like~5.23!, a lattice artifact.4 It is not
a lattice version ofF2, as one might anticipate. However, we
should not be discouraged, since the calculation given is
a truly tiny, unrealistic lattice. The extension of this calcula
tion to larger lattices will be presented elsewhere.

VII. HERMITICITY, UNITARITY, AND THE EXISTENCE
OF A SYMMETRY CURRENT

In this paper we pursued a variation on the finite-eleme
formulation of lattice gauge theory which seemed at fir
sight very promising. The idea was to use the link variable
in terms of which the local field strength was constructed,
express the Dirac and Yang-Mills equations in local form
rather than the form involving the entire prior lattice give
previously. A locally gauge-invariant construction can in
deed be done, one which is inequivalent to the earlier form
lation. However, the new scheme is less advantageous tha
first seemed, and ultimately fails to be consistent.

The field strength which appears in the Yang-Mills equ
tion is not locally constructed in terms of local link opera
tors. It appears impossible to have a local formulation co
sistent with local non-Abelian gauge symmetry.

Moreover, detailed calculations, even in the Abelia
theory, where the equations are local, turn out to be no si
pler, and perhaps more complicated than those in the origi
formulation.

Disastrously, unitarity is violated. Explicitly, we have
seen in the Abelian case that the transfer matrix is not u
tary, even in a temporal gauge. This is traced to the fact th
the covariant derivative operators are not skew Hermitian.
contrast, the original formulation is manifestly unitary~ca-
nonical!. It should be recalled that preservation of the ca
nonical commutation relations at the lattice sites was t
original motivation for adopting the finite-element prescrip
tion for field theory on a Minkowski lattice.

We can interpret these results in a positive light. It wa
always apparent that, although some arbitrary choices had
be made to implement local gauge invariance, the requi

4It is probable that this result reflects the rectangular nature of t
lattice considered here. A similar ‘‘anomalous’’ anomaly was foun
when the space-time lattice was not chosen to be square: Tha
when the lattice spacing in the time direction was not equal to th
in the space directions. See@8#.
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ment of that invariance, that is, that the transformation equ
tions could be ‘‘integrated,’’ was rather rigid. The finding
presented here strengthen that conclusion. The fact that
have now shown that a rather natural and attractive alter
tive gauging process is ultimately inconsistent, makes
pursuit of extracting physical information from the origina
consistent, approach that much more compelling.

Finally, we should add some remarks about the curre
employed in both formulations studied here. It should
noted that the choice of current was essentially arbitra
subject only to the requirement that it be locally gaug
covariant. It is essential to note thatthe current cannot be
derived from the Dirac equation.In fact, because our equa
tions of motion cannot be derived from an action, there is
connection between symmetry~say chiral symmetry! and
conservation laws~say axial-vector current conservation!. In
our consistent formulation, this is because the Dirac equat
is asymmetric between past and future. If one were interes
in an Euclidean formulation, one would choose a Dirac equ
tion symmetric in the fourth coordinate, and an action, a
corresponding current, could be constructed. That curr
would, however, also involve all lattice sites in the fourt
coordinate, and therefore would be unusable in t
Minkowski context, where we wish to solve the operat
equations of motion by time stepping through the lattic
This Euclidean construction and its Minkowski failure i
sketched in the Appendix.
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APPENDIX: CURRENT CONSTRUCTED
FROM EUCLIDEAN LAGRANGIAN

In the text we simply assumed a form of the current~3.9!
and ~6.11! which was manifestly gauge invariant. We are
liberty to do so, because the Minkowski finite-element equ
tions of motion are not derivable from a Lagrangian. Th
current cannot be derived from the Dirac equation, but is
independent source for the Maxwell equations, see Refs.@2,
4#. However, if one were to work in Euclidean space-tim
~periodic or antiperiodic in all four directions!, it is possible
to construct an action from which the equations of motio
are derivable, and which therefore supplies a lattice curre
The fermion part of that action is~a factor ofi is absorbed in
going to Euclidean space!

Wf5h4 (
m,m8

cm̄
† S 2hG–D1 im D

m,m8

cm̄8 ,

G5~g0gk ,g
0!. ~A1!

If we vary ~A1! with respect toc†, we obtain the Euclidean
Dirac equation
a-
s
we
na-
the
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nt
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S 2hG–D1 im Dc50, ~A2!

where, as in~A1!, a four-dimensional scalar product is im
plied.

Given an action, we can construct a conserved vector c
rent by making a local gauge transformation

dcm̄5 iedVmcm̄ . ~A3!

Because the Dirac equation, and hence the action, is inv
ant under the global version of~A3!, dVm5dV5constant,
we must have by the action principle

dWf5052h4(
m

Jm
i 1

h
~dVmi ,m'

2dVmi21,m'
!, ~A4!

from which we read off the conserved current

Jm
i 52e (

mi8,mi9
cm̄

i9,m̄'

†
G icm̄

i9 ,m̄'
sgn~mi2mi8!

3sgn~mi2mi9!~21!mi81mi9secz~ i !

3exp~2 i em
i8,mi9

ẑm
i8,mi9

!. ~A5!

@The same result, of course, can be obtained by varyingD

~6.2! with respect toAmi ,m'

i .# The expression for this Eu-

clidean current has been simplified by deleting consta
terms. It is easy to verify explicitly that this current is both
conserved and gauge invariant. Similarly, by making a chir
transformation

dcm̄5g0g5dVmcm̄ , ~A6!

we can construct the axial-vector currentJ5m
i , which has the

form of ~A5! with the replacement

eG i→g0ig5G
i[G5

i , G5
i 5~2 ig5g

i ,2 ig5!. ~A7!

By construction, these currents possess no anomalies. H
ever, they appear to be completely unacceptable, beca
they are horribly nonlocal. In particular, they possess n
Minkowski analogues, in the sense that it is not possible
analytically continue back to real unbounded times. Cruc
to our formulation is the propagation of the operators fro
past times to the present time, so that we can solve for
field operators by time stepping through the lattice. The E
clidean current~A5! involves fermion field operators at all
Euclidean times, which would make it impossible to solv
for the operators at timen in terms of operators at earlier
times. Therefore, for the considerations of the text we use
gauge-invariant current~3.9! and ~6.11! and their axial ana-
logues, currents which can and do possess anomalies.

It is further illuminating to note that if we were to use the
current~A5! in a one-loop lattice calculation of the vacuum
polarization in two dimensions, we would find a vanishin
anomaly, rather than the valuee2/p reported in@8#. This is
because species doublers occur in the action defined by~A1!.
Such doublers are absent in the finite-element scheme ba
on equations of motion and the current~6.11!.
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