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Quasilocal formulation of non-Abelian finite-element gauge theory
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Department of Physics and Astronomy, The University of Oklahoma, Norman, Oklahoma 73019
(Received 28 November 1995

Recently it was shown how to formulate the finite-element equations of motion of a non-Abelian gauge
theory, by gauging the free lattice difference equations, and simultaneously determining the form of the gauge
transformations. In particular, the gauge-covariant field strength was explicitly constructed, locally, in terms of
a path-ordered product of exponentidiek operatorg. On the other hand, the Dirac and Yang-Mills equations
were nonlocal, involving sums over the entire prior lattice. Earlier, Matsuyama had proposed a local Dirac
equation constructed from just the above-mentioned link operators. Here, we show how his scheme, which is
closely related to our earlier one, can be implemented for a non-Abelian gauge theory. Although both Dirac
and Yang-Mills equations are now local, the field strength is not. The technique is illustrated with a direct
calculation of the current anomalies in two and four space-time dimensions. Unfortunately, unlike the original
finite-element proposal, this scheme is in general nonunitary.

PACS numbgs): 11.15.Ha, 11.15.Tk, 11.30.Rd, 12.20.Ds

I. INTRODUCTION The completion of this construction was only given last
spring [6]. The essential element was the recognition that
An alternative approach to lattice field theories, based oninder the previously determined gauge transformations, a
the finite-element equations of motion, has been under devesuitable link operator transformed appropriately. These op-
opment for over a decadéFor a recent review sefl].)  erators then can be used to transform the field streRgth
Shortly after the introduction of this method, it was seen how2veraged over the finite-element hypercube toghe plane
an Abelian gauge field could be coupled to a fermion in thisWhere it may be expressed as a path-ordered product of link
way [2]. The resulting Dirac equation was nonlocal: In OPerators around a plaquette. _ o
Minkowski space-time, the term proportional 46 involved This development makes it possible to revisit Matsuya-

a sum over all values of the corresponding lattice coordinatg@'s Schem¢3]. We will see that it is not only possible to
m;, L<m, <M, whereM is the number of lattice sites in the formulate a local Dirac equation in the non-Abelian regime,

j direction, while the term proportional tg° involved a sum  Put local gauge-covariant Yang-Mills equations as well. The
over all previous times, €n’=n, wheren is the current resulting equatlons are meguwalent to those given prewpusly
lattice time. Shortly after our paper appeared, Matsuyggha L6 but not so different either, for the previous equations
proposed a local finite-element Dirac equation for QED,Were quasilocal, as seen in the simple difference equation
based on the immediate introduction of link operators intgdVen for the interaction terms. But the new formulation is
the free Dirac equation. Although it could be argued that thiStill nonlocalin that the field strength that appears in the
latter approach was somewhat unnatural because it intro.@nd-Mills equation involves the vector potential over the
duced interactions into the mass term, the primary reasofntire previous lattice. _
this idea was not pursued was that it was quite unclear what N the next section we restate the gauge transformation

the form of the non-Abelian gauge transformations should b@roperties of the link operators, and give the corresponding
on the finite-element lattice. construction of the field strength. Then, in Sec. lll we restate

Instead, the first foray into non-Abelian finite-element Matsuyama’s prescription for the Dirac equation, followed

gauge theonf4] was based on straightforward gauging of _by the corregponding local Yang—MiIIs equa_tion. The resu_It—
the global phase symmetry of the free finite-element Dirad"9 nonlocality in the construction of the field strength is
equation. The form of the interacting Dirac equation wasSNOWn- A simple calculation of the axial-vector anomaly in
determined, nonlocally as in the Abelian case, and at th&V0 dimensions is given in Sec. IV. However, it is not clear
same time, the form of the gauge transformations of the ved?OW t0 extend such calculations to four dimensions because,
tor and scalar potentials was determined, in terms of an indnlike the original formulatior{7], in general, interactions
finite sequence of nested commutators. The Yang-Milld'€re break unitarity. In a particular gauge in which the trans-
equations were determined analogously. The only thing nd€" Matrix is unitary, the current anomalies are computed in
explicitly determined at the time was the form of the Con_the smallest no_ntr|V|aI four_-d|n_1en5|onal Iattlce_lr_l Sec. V.
struction of the field strength tensor in terms of the poten-I N€ corresponding calculation in the standard finite-element
tials; although it was perfectly clear that the process could b&rmulation is given in Sec. VI. A discussion of how sym-
continued indefinitely, only the first four terms in the se-Metry breaking occurs here is given in the Conclusion and
quence in powers of potentials were given. Althofighhad  the Appendix.

been restricted to+1 dimensions for simplicity, that restric-

. - Il. GAUGE-COVARIANT LINK OPERATORS
tion was easily removefb].

AND CONSTRUCTION OF THE FIELD STRENGTH

It is convenient to define the link operator using coordi-
*Electronic address: kmilton@uoknor.edu nates referring to a given finite element,
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(Lot =X =190, mg .my fmg komgs 1] (2D ll. LOCAL FORMULATION
OF YANG-MILLS EQUATIONS

whereh is the lattice constant, and the vector potential is an  Matsuyama had proposed a local finite-element formula-
appropriately averaged one: tion of a fermion interacting with an Abelian gauge fi¢g].
He began by adopting a local form for the fermionic gauge

transformation,

, 1
A = (Al A (2.2

PR ,m; mlu—l,ml)'

5¢m:i95wmwm- (3.2

Thdg notatlor;] herﬁ IS tEathTefe_rs ltodspace-tlmeh Igtélce €0~ defined on fields at the lattice sites, rather than in the middle
ordinates other than the one singled auf,. Each index in ¢ yhe finite element as if2,4,6. Then, covariant derivative

(2.1) takes on tlwol values, Ohorfl.”Thg result IOf a de;""”ed’and averaging operators can be defined in terms of the link
constructive calculatiofé] is the following simple transfor-  §oorator which are defined i@.1):

mation law for the link operator:
1
5(L#)1000:i9[5w000d L,u)lOOO_(Lp.)lOOO5wlOOO]= 2.3 (Du‘p)OOOO:ﬁ[(LM)l'ﬂl_ thol, (3.29

where we have assumed that the first coordinate index refers _ 1

to the u direction. Then, it is easy to see that the “trans- (DM¢)0000=§[(LM)1¢1+ o). (3.2b
versely local” field strength7,, is given by the following
path-ordered product of link operators around thev

Up to an ordering ambiguity then, the gauge-covariant Dirac
“plaquette’” p g guity gaug

equation is

_igh2( 7 . ~ ~
eI urm=p exrl(—lg %A-dl) iy*I] D,D,y+ull D,y=0. (3.3
vFE L v

_ t t
=(L ) 100dLs) 110d L ) 110d L 1) 01008 2.4 By virtue of (2.3), Eq.(3.3) is covariant not only under Abe-

lian gauge transformations, but under non-Abelian ones as
well. Finally, we can transform to a gauge-covariant average
Dirac field by averaging operators,

where the first index is the. coordinate and the second
index thev coordinate. To construct the full field strength,
which is forward averaged over a hypercube with lower left-

hand corner at m, we use the gauge-covariant average opera- -
tors constructed from the links: V= ( 1:[ Dxl/f) : (3.4
m

(BNyMV)OOOO:E[(Lh)l(_g;W)l(L‘{)l_,_('/ﬁw)o]’ (2.5)  [#¢musing the notation of2.6)] which transforms covari-
2 antly in the sense di6]:

where on the right-hand side, we have only displayed\the Vr=igéwn V. (3.5

coordinatgthe rest are D That is, with an overbar represent- ) o ) .

ing forward averaging, However, in[6] it is the “free” average of the Dirac field

Y that transforms covariantly.
We proceed similarly in the gauge sector. If the field

1
thz(xm+ Xm+1)» (2.6 strength like the Dirac field transformed locally at the lattice
sites,
the field strength is given By (SF#") n=ig[ Swm,(F~") ], (3.6
~ rather than as ifi6], gauge-covariant derivative and averag-
(Fu)m= )\:#H,u DaT | ing operators could be defined 2.5 and
WV m
1
where symmetrical averaging is to be understood. It is im- (D)\FMV)OOOO:H[(L)\)l(F#V)l(LI)l_(FMV)O]v 3.7
mediately obvious thak ,, given by(2.7) transforms cova-
riantly, which yields the local covariant Yang-Mills equation
MYy _—— i y72% ~
(5F )m Ig[5wm,(F )ﬂ (28) H D)\DVF;U/:J'/J,, (38)
ANFv

The averaging over the finite element on the left-hand side ofwhere we can adopt the following as a gauge-covariant cur-
(2.7, required by the finite-element prescription, is necessary taent (see Sec. Vit
ensure unitarity. If £ ,,)were replaced byK,,,),, even the free _
theory would not be unitary. ()Y m=g¥ Ty*¥ . (3.9
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However,(3.6) does not holdAs shown in Sec. Il the field i co@m/2M

strength constructed locally in terms of the link operators{ ¥ ¥iniqn = * 9 s for M odd, (4.3b
transforms according t62.8), defined at the center of the
finite element. However, givek ,, constructed in Sec. Il,

: . whereg= = 1. In both cases, the vacuum expectation value
we can construct a locally covariant field strendth), ac-

is taken to be zero im=m’. (As noted in[8], the actual

cording to value in that case is irrelevaptThen, using(4.1) in, for
example,
(Fu)im= (1} ) (3.10
m (]._.[ Dv‘//(+)> ——(lﬁ +eXF[—|eh( %1)m+ln]¢m+ln
which does transform according 8.6), and which then mn
satisfies(3.8). Note that, in part(3.10 undoes the transfor- +exd —ieh(.Zo)mns 1 104 )11

mation (2.7), so that if we choose an appropriate ordering, .
+exg —ieh(.Zy)m+ 1,n]

Xexd —ieh(.Zg)m+1n+1] ¢|('n+-l—)1,n+ ol

However, as a result of inverting the averaging operators (4.9
D, thatis solving the difference equatié®.11), f,,, is not o _
local, but depends on vector potentials over the entire priowe easily find that the vector current is conserved exdctly,

lattice. It appears impossible to have a completely local for- _
malism. ("“aum)=0, (4.9

(7,,)=D,D,f,,. (3.11

nv

while the axial-vector current is anomalous,

IV. AXIAL-VECTOR CURRENT ANOMALY

IN 1+1 DIMENSIONS (“a,jL )= €

1
= ———{sineh(.Z
2M h2 S|n’7T/M {S ne ( Jl)m+2,n+1
Let us illustrate the calculational aspects of this scheme in _
the simplest context, that of an Abelian theory in which the +sineh(.Zy)m+1n+1
only nontrivial element is the Dirac equati¢d.3). (We will . P p
Y quaniéd.3. ( + SN (Ao)ms1ns1— (- Z0dmsznsa

henceforward replaag by e.) Although the result was stated

in [3], it is useful to first revisit the two-dimensional case of — (A1) m+2n)
the Schwinger model, with the fermion mass-0. In terms . ,
of chiral components, that is, eigenvectors f with eigen- —sireh[ (. Zo)m+1n+1F (ZD)m+1n
value equal to+1, the solution of that equation idor a — () I
particular orderiny 0/m,n+1
e
l//m+1n+1 eXF[IEh( //O)m n+1] ~ M sinw/M E’ (h_>0)v (46)

xexpien( Z)m: e 11¥imn, (413 where E= “ 9pA;— d;A,” is the lattice electric field, the

familiar finite-element lattice resuft].
Ynr1=exien(Zo)mn+1] The above calculation seems quite similar to that given
. _ for the nonlocal finite-element formulation [B8], and is cer-

X exf —ien(.71)ms 1] l/’(m*)l'”' (4.10 tainly no simpler. In fact, the calculations are identical if, as
in [8], we choose the gaugk,=0. For then, the massless
Dirac equation can be written in terms of the transfer matrix,
defined by

The current is given by3.9) with T=1; in terms of chiral
components what we wish to compute are the combination

. 1. . (- (~
(“au )= H<J§n++>1,n+1_J§11+,—r1+]$n,r2+1_1$n+)1,n>1 (4.23 Yne1=T¥n, S
which is to be understood as a matrix equation in the spatial

. 1. . L L coordinates. Here, the transfer matrix is
(“9,J8")= i inei—Ima—Imas1tind1n), (42D

where the quotation marks signify finite-element lattice de- Cl-iyso” 4.8

rivatives. We use the solutio@.1) to refer all Dirac fields to
the |ntermed|ate t|me+ 1 and we eVaIUate the ferm|0n ma- Where the Covanant denvaﬂv&/ — (h/2)(D ) lDl, iS

trix elements according to the Fock space fidg defined in terms ofthe time coordinate is suppressed

1
()T, + for M even 4.3
{mn m“‘ 0= q L sina/M ' (4.33 2In [3], results(4.5) and (4.6) were established only t®(h).
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3 1 0 1o 20 —Tdac
(DD)mm =5 (S + St 1w €XH —i€N( A1) 1 11), o S0 o
2 loc* 2l lgl4c* 0
O+ 0'1
(4.99 y'R"= ~ ,
—2lgly  lglyd 0 —lod

1 —lold* 0 Tyd* 2,
(Dl)m,m’:H(_‘Sm,m’+5m+1,m’exq_ieh('/zl)m-#l])-

(49b) 2|0 I()C 0 Iol lC
OR? _ - Ioc* 0 _TOTlC* 2TOT1 5
Equation(4.93 is inverted as in(17) of [8], with the result YR = 0 —1olyd 2]'0 Tod (5.9
that the covariant derivative operator coincides exactly with . ~
that given in(10) of that reference, and hence the same con- lol1d —2loly  —lod 0
clusions follow.
and
V. CURRENT ANOMALIES IN 3 +1 DIMENSIONS 2 c 0 Tlc
We wish to repeat the above calculation in four dimen- 0gt— —c* 0 —Tier 2
sions. Again, we will set the mags=0, so we have tosolve 7> ~| —1,d 2 d |’
the symbolic Dirac equation involving the link operators N .
(2.1) for the simplest possible ordering lyd* -2, —d 0
o 0 —C 2T1 —Tlc
Y (La+1)(La+1)(Lyi+1)(Lo—1)¢ o 2 Tt 0
YOS = ! , (5.6)
- 2| 1 I 1d 0 - d

+ ¥y (La+1)(Ly+1)(Ly—1)(Lo+ 1)y
—Ld* 0 d* 2

+7%(Ls+ 1) (L~ 1)(L1+1)(Lo+ 1)y where
+y3(L3—1)(L2+l)(L1+1)(L0+1)(//=0, 61 lo=(Lo)o1, lo=(Lo)1z, l1=(L1)oo, |1=(L1)1?é_7)
and

where, for example= ¢o00, Lo¥=(Lo)ooo1tooo1, and
LoLo#r=(L2)o10d Lo)o101tPo101. We must solve this system

of equations at each lattice site at a given time. For simplic-
ity, let us consider the simplest nontrivial rectangular spatial

eh ~eh
c=tan?(.,,/%§3)oo+| tan?(ﬁiz)oo,

lattice, with the number of sites in the 1 direction being eh ~eh

M, =2, while in the other two directions, there is but a single d=tan>-(. 7310t tan-(-72)10, (5.8
site, M,=M3z=1. We anticipate the periodic-antiperiodic

boundary conditiori2] and we have denoted eigenvaluesi f by the = super-

scripts, have used the representation of Dirac matrices,

¢m+M:(_1)M+1¢my (5.2 0 .
Y y=iyso, (5.9

so we expect that the fields should be antiperiodic in the L,q have chosen, to be the Paulir, matrix. The transfer
direction. The system of Dirac equations reduces to thenatrix T is then given by

simple matrix problem

T=R1s (5.10
Ry1=Siyo, (5.3 _ _ .
Unfortunately, it turns out, in general, the theory is not
_ . _ . unitary, that isTT'#1. This is true even in the temporal
where the Dirac fields at time 1 and time 0 are gauge A,=0. This is traced back to the failure of the cova-
riant derivative, given by3.3),
’ _(%1) v _( 'ﬂoo) 5.4 1
Sl T L) ' =3 A (5.1

0

and the matrices are given by where symbolically
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Zo:(Ler 1)(Ly+1)(Ly+1), Because of the particular choice of gaugel3), the current

is proportional to the usual finite-element one, and the matrix
Ay=(Lg+1)(Ly+1)(L;—1), element ofj°, for example, is
A2=(Lat (Lo~ DiLat D), (%) = C e LWL+ DI+ [+ T)]o)
Az=(Lz=1)(La+ 1)(Ly+1), (5.12

X{L+THy i +[(L+THylol),  (5.18

to be skew Hermitiar.In fact, it is easily verified that al- |\ here the Dirac fields are those given(B4),

though; is skew Hermitian,% is not unlesd,l,=1. So,

to proceed, we will simply choose the gauge with eh

Ao=A;=0, which should suffice for the anomaly calcula- C=cos —- 5 (- ’/2)ooC052 ( #3) 00, (5.19
tion. This simplifies the transfer matrix dramatically by re-

placing and the matrix subscripts refer to the spatial coordinate. The
~ ~ matrix elements are evaluated using the easily derived for-
lo—1, lp—1, I1—1, -1 (5.13  mulaform=2

Then, it is easily seen that is unitary.[If ¢ were periodic 1
rather than antiperiodic in the 1 direction, which would be (¥l ¥m)= 173 (Omuy T+ 2i €y try®y'T). (5.20
accomplished by changing the signlgfin (5.5 and(5.6),

T would not be unitaryl.In fact, it will suffice in the follow-  Then, a straightforward calculation gives the result
ing to expandr to bilinears inc andd. It then turns out to be

, e
v d -1+ 0 (imn) = p3(1+0)C, (5.20
—c* v 0 1+¢
T~ ~ , where
1+& 0 v* c
— —_d* * 1
0 1+¢ d v )\=Z(dd*—cd*—dc*—cc*). (5.22
v* -c 1+¢ 0
N . A similar calculation reveals tha§')=0. The axial-vector
T~ d v 0 —1+¢ (5.14 current matrix elements vanish. Consequently, for this tiny
-1+¢ O v —-d |’ ' lattice, there is no axial-vector current anomaly, but there is a
0 147 v vector current anomaly,
. _ e , ,
where we have abbreviated ("9, y=— W{[("%Z)iﬁ(”%2)11('%2)01
1 ~ 1 1 2 2 ) y
&= Edd*’ E=— —CC* v=— Edc*' (5.15 (7201~ (+22) 10~ (-Z2)10(-Z2) 00
= (225l +[23]}, (5.23
In the following we will use the block form off, which
refers to specific spatial coordinates, a somewhat curious result which will be discussed below.
_ Too Toa . (5.16
Tio Tia VI. FINITE-ELEMENT CURRENT

ANOMALY CALCULATION
We now take matrix elements of the current in Fock-

space states defined in terms of the momentum-space expa r?g(i:gsﬁ ?;;hergagozssgg'gwt'ese Sree?nrr']nntge ?()&|g;.l|8.2(;?
sion of the free Dirac field8,7] exnibited | previou lon, W u W gl

formulation. There, thaunitary transfer matrix in 31 di-

\/; mensions is, in the gaugk,=0, [7]

lpm,l:;p —(bpsipsexli(p-+1/2)m2m/M] Py
- =10

+dlwpexd —i(p+1/2m2m/M]).  (5.17) YrZ

where(the time coordinate is suppressed

(6.9

31t is easily seen that no other ordering will resolve this problem.
For the given ordering, Z,=(L;+1) }YL,—1)"Y(L,
+1)(L,—1); the inner factor involvind., is clearly skew Hermit- R (i
ian, but the appearance of the terms destroys that property. : Smgmimi )seq ‘5nnmy 6.2

4 — _(_1ym+m/ >
/m mim’ m! (=DM '(fmimi’coimimi’
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where(and now all the local dependence on the other spatiaEven though the transfer matrices are quite differighe
coordinates is also suppresged form in (6.6) is more complicated becausgg # 0], the re-
sults of the calculation are very similar: The axial-vector

(= ﬂ/é,m = % - 6.3 anomaly is zero, while the vector anomaly is
! 2 ! mi:l ! e

and ("9t )y=— W[(tz)zl(tz)n"‘ (t3)21(t3)11

- M . L = (t2)20(t2) 20~ (t3)20(t3) 10]- (6.10

{m = 2 SQUMY—my) sgr(my' —m{) . (6.9) _

bom=1 : Here, the current is naB.9), but
Here, the sign function is j“ n:eIrWTYMWnTWv (6.1
sgnm)= 1. m>0, (6.5) the averaging being over the finite element without the link
g -1, m=<O0. ' operators. The resul6.10, which is manifestly gauge in-

variant, appears to be, lik&.23, a lattice artifact. It is not
Again, let us consider the smallest pOSSibIe nontrivial |atticea lattice version 0F21 as one m|ght anticipate_ However, we
with the number of lattice points in the 1 direction being should not be discouraged, since the calculation given is for
M;=2, while the 2 and 3 directions have but one site,a truly tiny, unrealistic lattice. The extension of this calcula-
M,=M3=1. This leads again to a>44 transfer matrix for tjon to larger lattices will be presented elsewhere.
each chirality, which for smalehA is, in the block form

given in (5.16), VII. HERMITICITY, UNITARITY, AND THE EXISTENCE
OF A SYMMETRY CURRENT

c+d
A r— . i -
. -2 In this paper we pursued a variation on the finite-element
Too= ot 1 g* , formulation of lattice gauge theory which seemed at first
¥ A sight very promising. The idea was to use the link variables,

in terms of which the local field strength was constructed, to

express the Dirac and Yang-Mills equations in local form,

@ B ) (6.63 rather than the form involving the entire prior lattice given
' ' previously. A locally gauge-invariant construction can in-
deed be done, one which is inequivalent to the earlier formu-

st [ @ E lation. However, the new scheme is less advantageous than it
+ _ -1 . . . .
T10=To1 —7(~* _~*> , first seemed, and ultimately fails to be consistent.
B @ The field strength which appears in the Yang-Mills equa-
_ c+d tion is not locally constructed in terms of local link opera-
- +— tors. It appears impossible to have a local formulation con-
T 2 6.6D) sistent with local non-Abelian gauge symmetry.
1 c* +d* ~ | ' Moreover, detailed calculations, even in the Abelian
+ 2 —A theory, where the equations are local, turn out to be no sim-
pler, and perhaps more complicated than those in the original
Here, \ is defined above irf5.22), formulation.
Disastrously, unitarity is violated. Explicitly, we have
~ 1 " N N seen in the Abelian case that the transfer matrix is not uni-
A=7(dd*+cd®+dc* —cc®), (67 tary, even in a temporal gauge. This is traced to the fact that

the covariant derivative operators are not skew Hermitian. In
¢ andd are as in(5.8), contrast, the original formulation is manifestly unitaiga-
nonica). It should be recalled that preservation of the ca-
(6.89 nqn!cal commu_tation relatio_ns at th_e_lattice sites was .the
original motivation for adopting the finite-element prescrip-
tion for field theory on a Minkowski lattice.

1
a= §(4+4it1—4t1—dd* +d*c—c*d—cc¥),

~ 1 . We can interpret these results in a positive light. It was
a= 5( —4—4it;+4t,+dd* +d*c—c*d+cc*), (6.8bH always apparent that, although some arbitrary choices had to
be made to implement local gauge invariance, the require-
B=d(1+ity)—c(1l—ity), (6.80
:é: d(1—ity))—c(1+ity), (6.80 Yt is probable that this result reflects the rectangular nature of the
lattice considered here. A similar “anomalous” anomaly was found
and when the space-time lattice was not chosen to be square: That is,

0 1 1 when the lattice spacing in the time direction was not equal to that
ti=tanl"’, s=-—exfi({1—{3)]sed . 6.9  inthe space directions. S¢8].
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ment of that invariance, that is, that the transformation equa-
tions could be “integrated,” was rather rigid. The findings
presented here strengthen that conclusion. The fact that we
have now shown that a rather natural and attractive alterngynere, as in(A1), a four-dimensional scalar product is im-
tive gauging process is ultimately inconsistent, makes theieq.

pursuit of extracting physical information from the original, = Gjyen an action, we can construct a conserved vector cur-

2
Hr-yﬂﬂ) =0, (A2)

consistent, approach that much more compelling. rent by making a local gauge transformation
Finally, we should add some remarks about the current
employed in both formulations studied here. It should be Sm=1e6Q (A3)

noted that the choice of current was essentially arbitrary,

subject only to the requirement that it be locally gauge-Because the Dirac equation, and hence the action, is invari-
covariant. It is essential to note thiite current cannot be ant under the global version 6A3), 5Q = 6() = constant,
derived from the Dirac equatiorin fact, because our equa- we must have by the action principle

tions of motion cannot be derived from an action, there is no 1

connection between symmetifgay chiral symmetry and i

conservation lawgsay axial-vector current conservatjoimn OWp=0=— h4% Jmﬁ( 5Qmi m T ‘mmi—lv"n)' (A4)
our consistent formulation, this is because the Dirac equation

is asymmetric between past and future. If one were interesteflom which we read off the conserved current

in an Euclidean formulation, one would choose a Dirac equa-

tion symmetric in the fourth coordinate, and an action, and i t ; ,
corresponding current, could be constructed. That current In=—¢ 2 'pﬂ’,rﬂrlmvrﬁsg“mi_mi)
would, however, also involve all lattice sites in the fourth i

coordinate, and therefore would be unusable in the
Minkowski context, where we wish to solve the operator
equations of motion by time stepping through the lattice. X exXp(—i € mrlm m')- (A5)
This Euclidean construction and its Minkowski failure is P

sketched in the Appendix.

X sgrim;—m)(—1)™ "™ seqV

[The same result, of course, can be obtained by varging
(6.2 with respect to ‘/'ml .m, -] The expression for this Eu-

clidean current has been simplified by deleting constant
| thank the U.K. PPARC for financial support and Impe- terms. It is easy to verify explicitly that this current is both
rial College for its hospitality during the initial stages of conserved and gauge invariant. Similarly, by making a chiral
writing this paper. | further thank the U.S. Department oftransformation
Energy and the University of Oklahoma College of Arts and
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for useful conversations. we can construct the axial-vector currdl,, which has the

form of (A5) with the replacement
i, .0 i i i i
APPENDIX: CURRENT CONSTRUCTED el'—y iys'=T¢, 1"5—( iysy',—ivs). (A7)

FROM EUCLIDEAN LAGRANGIAN . .
By construction, these currents possess no anomalies. How-

In the text we simply assumed a form of the curréh®) ever, they appear to be completely unacceptable, because
and(6.11) which was manifestly gauge invariant. We are atthey are horribly nonlocal. In particular, they possess no
liberty to do so, because the Minkowski finite-element equaMinkowski analogues, in the sense that it is not possible to
tions of motion are not derivable from a Lagrangian. Theanalytically continue back to real unbounded times. Crucial
current cannot be derived from the Dirac equation, but is arfo our formulation is the propagation of the operators from
independent source for the Maxwell equations, see R2fs. past times to the present time, so that we can solve for the
4]. However, if one were to work in Euclidean space-timefield operators by time stepping through the lattice. The Eu-
(periodic or antiperiodic in all four directiopsit is possible  clidean currenfA5) involves fermion field operators at all
to construct an action from which the equations of motionEuclidean times, which would make it impossible to solve
are derivable, and which therefore supplies a lattice currenfor the operators at time in terms of operators at earlier
The fermion part of that action is factor ofi is absorbed in  times. Therefore, for the considerations of the text we use the
going to Euclidean spage gauge-invariant currer8.9) and(6.11) and their axial ana-

logues, currents which can and do possess anomalies.

2 ] It is further illuminating to note that if we were to use the
=h? H . g+ ! . g . X
Wi=h n% Um hF I+ip ,’ﬁm’ current(A5) in a one-loop lattice calculation of the vacuum
' mm polarization in two dimensions, we would find a vanishing
I'=(+y,7°. (A1)  anomaly, rather than the val@é/ 7 reported in[8]. This is

because species doublers occur in the action definéd by
If we vary (A1) with respect tay', we obtain the Euclidean Such doublers are absent in the finite-element scheme based
Dirac equation on equations of motion and the curré6t1l).
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