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Discretized light cone quantization and the coherent state basis
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We suggest the use of a coherent state basis to calculate the Hamiltonian matrix elements in the discretized
light cone quantization method of bound state calculations as a possible way of avoiding the vanishing energy
denominators and the resulting true infrared singularities. As an example, we obtain the light comn§ehro
equation for positronium using the coherent state basis and show the absence of the “Coulomb singularity.”

PACS numbds): 11.15.Bt, 12.20.Ds, 36.10.Dr

I. INTRODUCTION such a calculation and show that the coherent state formalism
leads to the elimination of the Coulomb singularity in light
In the past few years, discretized light cone quantizatiorcone Schrdinger equation for positronium. More generally
(DLCQ) has attracted a lot of attention as a practical com-speaking, the calculation of matrix elements in a coherent
putational method to obtain the mass spectrum and wavetate basis provides a cutoff on tké=0, k, =0 mode in a
functions of relativistic bound stat¢]. The DLCQ method natural way and it can provide a way of avoiding the vanish-
is based on diagonalization of the light cone Hamiltonian ining energy denominators in light cone bound state calcula-
a truncated Fock basis. The bound state, for example, posiions. It is well known that the infrared catastrophe encoun-

tronium is an eigenstate of the light cone Hamiltonian tered in the corrections to the fine structure of positronium is
eliminated by the use of an artificial infrared cutoff in diver-
Hicl ) =M?|4). (1)  gent contribution§9]. However, it was shown by Fulton and

Karplus[10] that the region cut off by the infrared regulator
Projecting this equation onto various Fock statese|, does not really contribute to the relevant integrals if one
(e,e,v|, ... one gets an infinite number of coupled integratakes into account the binding in intermediate states. The
eigenvalue equations. Discretizing the momentum space arfellton-Karplus approach is an extension of the Bethe-
putting a cutoff on the number of Fock states as well as orSalpeter equatiofil1] for systems in which an instantaneous
large values of transverse momenta, this infinite set of equdnteraction is responsible for binding. The equation describ-
tions reduces to a finite one and the problem of solving theng the bound state of two oppositely charged fermions is
eigenvalue equation basically reduces to one of diagonalizzorrected by replacing the free particle Green'’s functions that
ing a finite dimensional matrix. The initial success of DLCQ occur in certain low order interactions by corrected Green’s
method has been established(int+1)-dimensional models, functions, which take into account the instantaneous Cou-
where the mass spectrum and wave functions have been olemb interaction. However, the terms including Coulomb en-
tained successfully in Yukawa theory, QED, the masslesgrgy are explicitely omitted from higher order corrections.
Schwinger modelg? theory and #1 QCD[1-4]. In 3+1  This special treatment of the low energy region eliminates
dimension the method has been develojgdind applied to  the infrared(ir) catastrophe in the hyperfine structure of pos-
light cone QED to obtain the mass spectrum and wave funcitronium. The use of the coherent state basis in DLCQ cal-
tions of positronium[6]. Krautgatner et al. have obtained culations is analogous to the Fulton-Karplus approach in
the light cone Tamm-Dancoff equation for the charge zeraonventional calculations as it takes into account the emis-
sector under certain model assumptions and have solved tiséon and absorption of soft photons in intermediate states. In
eigenvalue problem for various approximations to this equathe present work, we have obtained the light cone Schro
tion. The successive approximations they have consideredinger equation of Ref6] using the coherent state basis and
are the Tamm-Dancoff equation, the light cone Sdimger  have shown that our formalism provides a natural cutoff on
equation and the Coulomb Schiinger equation. They have small values of photon momenta and thus avoids the Cou-
developed a numerical procedure to solve these equations iamb singularity from the discretized version of the equa-
a truncated and discretized Fock basis. In all the three casd#ons. The analysis can be carried out to the more general
they have found good agreement with previous results. All oase of the Tamm-Dancoff equation in a similar manner. The
the equations considered in their paper suffer from the usuahethod presented here is in no way an alternative to the
integrable singularity of equal time formulation, which has “Coulomb trick” of Ref. [6]. The Coulomb counterterm of
been dealt with by a mathematical artifact called the “Cou-Ref.[6] is just a mathematical artifact to produce convergent
lomb trick.” In the present work, we show that the Coulomb results, whereas the extra contribution to the light cone
singularity does not appear in the light cone Sclimger  Schralinger equation obtained here is a result of binding in
equation if one uses a coherent state basis to calculate tiiee intermediate states. We would like to emphasize that the
matrix elements. In a previous wofl], we had suggested cutoff obtained in this manner is not equivalent to the proce-
using the coherent state basis as an alternative to the Fockire of eliminatingk* =0, k, =0 state from the discretized
basis for calculating the Hamiltonian matrix elements in theequation by hand as done by Taegal. [5]. As a matter of
light cone bound state calculations. Now we will presentfact, the contribution of soft photons is taken carebefore
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the discretization is carried out and therefore the infraredight cone Schrdinger equation is cancelled automatically
cutoff eliminates not just the&k" =0, k, =0, but all the up toO(«). Section IV extends the analysis of Sec. Il to
points in the soft region. O(«?) first in a Fock basis containing two hard photons and
We would like to emphasize that the the coherent statéhen in the corresponding coherent state basis. Here we show
method is in no way complimentary to the Tamn-Dancoffhow the true infrared divergences arisedie) in the bind-
method of Fock space truncation in spite of the fact that dng energy of positronium in the light cone Hamiltonian for-
coherent state is a superposition of an arbitrary number ofalism and how the coherent state contributions exactly can-
soft photon states. In fact, we asepplementinghe Tamn-  C€l these divergences. Section V contains a summary of the

Dancoff truncation of hard photons with a summation overP@P€r and emphasizes the equivalence of coherent state

an arbitrary number of soft photons thereby providing a picmethod and the Fulton-Karplus method of dealing with the
pfrared divergences in the equal time formulation. The Ap-

ture that combines the long distance and the short distand ) : A . .
behavior of the theory. We would also like to remind the P€ndix contains the derivation of the modified light cone
reader that the true ir divergences as defined in fBfare  Schralinger equation.

related to the long distance behavior of the theory as opposed

to the UV divergences and the spurios ir divergences related Il. PRELIMINARIES

to the short distance behavior and hence there is no reason to
believe that they should be dealt with in a similar fashion.
Moreover, the elimination of the true ir divergences does no

We will follow the notation of Ref[6]. The light cone
pED Hamiltonian is given by

remove the physics associated with the zero modes as the Hc=P*P~—P? )
spurious ir divergences(i.e., those associated with L
k*=0, k, #0 still remain. where
Recently, there has been a lot of interest in the “zero
mode” problem of light cone field theorigd6-19. It has P =Hy+V;+V,+V;3 (3)

been pointed oufl18] that in light cone quatization, where

the vacuum is simple in contrast to the complicated vacuunis the light cone energy operatdt, being the free part and
structure of equal time theories, the physics associated witlr,, V,, andV; being the interaction parts. The expressions
the vacuum state is manifested in the zero mode and ther¢or these can be found in R€fZ]. In the DLCQ method, the
fore, on first sight, the removal of true ir divergences at-mass spectrum of a bound state is obtained by diagonalizing
tempted here may appear to be an undesirable feature. Howhe discretized form of the Hamiltonian eigenvalue equation
ever, the removal of true ir divergences does in no way

eliminate the physics associated with the zero modes as these HiclW)=M?|P), 4
divergences correspond to tiggobal and not to theproper

zero modes which play a role in spontanenous symmetrwhereM? is the mass-squared operator 4t is the bound
breaking. The proper zero modes, in our terminology, arestate.|'¥), in our case positronium, can be expanded in the
related to the “spurious” ir divergences and the coherentFock basis. Restricting only to the first two Fock states one
state formalism developed in R¢8] does not remove these can write

divergences. It has been pointed out by Kalloniatial.[18]

that, at present, “there is no definite prescription for dealing _ i o

with the global zero modes and in the discussion of vacuum |\P>_Z Yere-(xkL)le7,€7);

problem, these are usually ignored without giving rise to any
inconsistencies as far as spontaneous symmetry breaking
(SSB is concerned.”

We would also like to point out in the very beginning the
difference between our approach and the standard DLCQvhere the sum over denotes the sum over spins and inte-
First, we are using a coherent state basis in place of thgration over all possible momentum configurations. Follow-
standard Fock basis. Second, we start from the outset in thag the conventions of Ref6], the transverse momentum of
continuum and discretize only after the true IR divergenceshe bound stat®, is chosen to be zero and the momenta of
are removed from the light cone Schioger equation. This electron, positron and photon are parametrized as
is in contrast to the standard DLCQ technique. The formal-
ism is established in a finite space with discrete momenta . k2 +m?
and sums right from the beginnif§]. ke=|xP 1kL!F

The plan of the paper is as follows: In Sec. Il we will set

+ 2 Yoo (kiale ey )

up our notation and will give a brief summary of the DLCQ K2 +m?2
method of solving the Hamiltonian eigenvalue problem. We kg= ( (1-x)P*, —k,, i—+>
will closely follow the notation of Ref[6] and will show (1=x)P

briefly how the light cone Schdinger equation is obtained )

as the nonrelativistic limit of the light cone Tamm-Dancoff _ i n

equation. In Sec. Il we will obtain the modified light cone q—(yP ’QL’>/_F>+)' ©®
Schralinger equation by using the coherent state basis to

expand the Hamiltonian eigenstates and will then show hovBubstituting the expansion in E¢p) into Eq. (4), one gets a
by using this basis the Coulomb singularity in the modifiedset of coupled equations:
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Hogthete-+ H01¢e+e‘y: M21/19+e—, where

H10¢e*e’+H11¢e+e’7: Mz'pe*e*y' (7)

whereH;;=(i|H|j), the statege™,e”) and|e”,e",y) be-
ing denoted by0) and|1), respectively. The above equa- . ) o
tions can be rewritten in terms of an effective HamiltonianWriting Heyr in terms of creation and annihilation operators

1
Heg=Hgot HmmHlo- 9

acting only in the space de&*,e”) states: and calculating the matr_ix elements_ of between Fock
states, Eq.(8) together with Eq.(9) gives the light cone
Hethete- =M Peie-, (8)  Tamm-Dancoff equatiof6]
|
2 2

me+k? ) , ,

WA M pockuse s+ 2 Ld”x’kuse'Se—fVeffw)Ix’,k’,sg,se—>¢<x',k1,sg,se—>=o, (10
SeSg~

where ¢(x,K | ,S.,Sz) refers tog.+.- andV is the effective interaction Hamiltonian defined by

V= Hmm"'lo- (11

Taking the nonrelativistic Iimit[kf<m2,(x—1/2)2<1] in the nondiagonal term of Ed10), one obtains the light cone
Schralinger equationi6]
24+ k2

X(1—x

8m2y(x’ k)
lp(x,kg—izf dx’ d%’ ALt
2 D

J_4m2(x_xr)2+(ki_ki)2:Mzw(xikj_)' (12)

The matrix elements o¥ .« can be evaluated in standard cutoff. One can notice that the discretized version of #8)
manner. In Ref[6], Eq.(12) has been discretized and solved has a singularity at the point=x’, k, =k| coming from
numerically using the Gauss integration method under théhe second term on the right-hand sidRHS). In Ref. [6],
following model assumptiong1) Only those diagrams cor- this singularity has been avoided by using @eulomb trick
responding to instantaneous exchange¥p are included which is a mathematical artifact. In our opinion, however,
which satisfy the gauge cutoff conditidb], i.e., a diagram the singularity has a physical origin, since expanding the
involving instantaneous exchange is included only when @ound state in the Fock basis, one assumes that the interme-
real dynamical parton with the same space like momenturdiate states are free particle states that do not interact with
and the same Fock space configuration is allowed by ultraeach other. Now, if one calculates the Hamiltonian matrix
violet cutoff and Fock space truncation2) In the elements in the coherent state basis the Coulomb singularity
(e*e”vy) space, the interaction corresponding to the ex-does not appear as the the contribution of small momentum
change of an instantaneous photon is set equal to &rtn region in Eq.(12) is cancelled by a coherent state contribu-
the matrix elements d¥ ¢, the eigenvaludi?= o has been tion which actually is a result of binding between constituent

set equal to the symmetrized mass: particles in the intermediate state. In other words, the coher-
— o 12 ent state formalism puts a cutoff on small values of the en-
o o m+k? me+k; (13 oMo denominator in Eq(12) in a natural manner. We will

- 2x(1—x) * 2x'(1—-x")" show this in the next section.
Discretizing the momentum space and using the Gauss
guadrature method to convert the integral in Et) into a
finite sum, this equation is converted into a finite dimen-
sional matrix equation and the problem of obtaining the mass We will now obtain the light cone Schdinger equation
spectrum is reduced to finding the eigenvalues of this matrixirom the Hamiltonian eigenvalue equation by expanding the
Note that the finite dimensionality of the Hamiltonian matrix eigenstate in a coherent state basis. Coherent states can be
is a consequence of Fock space truncation and the ultravioléefined in the usual manner p$2,8|

lll. LIGHT CONE SCHRO DINGER EQUATION
AND THE COHERENT STATE BASIS

:coh) = s [ dZKLka' f(k,\) =% (kN :ppack
[n:coh) =ex —e 2, | o) el [fi(k,Nippal (k,N) = (kN :ppack,\)T{[n), (14)

where
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pi/.Le’;\L( k)

fi(k,\,:pi) =s; oK

(AP —p;-k), (15
and the sum is over all the fermions in the Fock stade p; is momentum of théth fermion ands; is —1 or +1 for positrons
and electrons, respectiveR." is the total longitudinal momentum of the bound sfal® andA is a small parameter with the
dimension of light cone energy. Expandij\§) in the basis defined by E¢14) and truncating in a manner so that only those
states which are obtained by applying the asymptotic operator to the Fock statd&s),e (k.)) and
le*(kg),e (ke),¥(q)) are allowed, one can write

(W)= Yore- (ko )[e" (Ke) e (Ke):00R+ 2 Yre,(xiky A€ (Ke), e (ke), y(@):00R), (16)

where again the sum ovémeans a summation over the spins and integration over all possible momentum configurations of
constituent fermions and the hard photon in the coherent state. The expressions for the coherent statts) ifolityy from
the general expression in Ed.4):

| ke~ ke>coh= |e+(ke_) e (Ke): C0h>

—exg —e > dic dzklka-kk Tk,N)— F* (kKo ks)ack, M) ] [t (ks), e (k 1
=ex e>\=1,2 WW[(,-eveﬁa(,) (k,\:ke kga(k,M) ] |le" (ke e (ke)), (17)

and
le* (ke),e™ (ke), ¥(q):coh) > [ cll] [f(k ke ke)al(k\)
e e , :coh=expg —e — Nike ke)a'(k,
(ke e v(q = W W’Z ( e Ke (
_f*(k1xkeakg)a(kvx)] |e+(k;)1e_(ke)1Y(q)>i (18)
where
Ko, €4(k kg, el (k
f(k,\:Ke,ks) = Mamp*—ke.k)— enad O(AP* —kz=K) |. (19)
Ke-K kg~ Kk
These coherent states satisfy the properties
e f(kNkeg,k
a(k,)\)|e+,e*,y:c0h>=—(277)3,2 ( < e_)|e+,ef,y:coh)+53(k—q)|e+,e*:c0h>, (20)

2k*
and

e fknikl kD

— A —. N <) VA L A AN~ <) VA L
(e*,e”,y:cohe*, e :coh); = — 8 (ky— ki) 6 (kg ke—)m T (22)
where the sum is over all the fermions. Substituting the expansion ofiBpin Eq. (4), one gets the equation
2 Yoo (6K (Ho+ V[e* (ke e (ke): colit 2 e o, (X, ki, @) (Hot V)le” (ke e (o), v(a):coh
=0 2 Pore- (k)" (Ke)e (ke):00M + X e, (XK A€ (Ke) e (Ke), y(a):c0R) |, (22

wherew=M?2. Taking product of Eq(22) with j(e+,e‘:coH and j(e+,e‘,y:coH, respectively, we arrive at the following set
of equations:

> z/;ie+e,j<e*,e*: col(Ho+V)|e* e :coh)i+ X, wL+e,yj<e+,e*: col(Hy+V)|e,e” y:coh),

: (23

=w

> Y. (e*,eicohe’, e icoh+ w;+e,7j<e+,e‘:coﬁe+,e‘,y: coh),;
I |
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and

Ei ¢L+e,j<e+,e‘,y: coH(H0+V)|e+,e‘:coh}i+Ei ¢L+e,yj(e+,e‘,y:coH(H0+V)|e+,e‘,y:coh)i

=w Z ¢L+e_j<e+,e‘,y:coHe*,e‘:coh}i+Zi ¢L+e_yj<e+,e‘,y:coHe+,e‘,y:coh)i . (24)

Eliminating ¢L+e,7’s from Egs.(23) and (24), one arrives at the following set of coupled integral equations/fgr,-'s

Z ¢ie+e—(x,kl),—(e+,e‘:coH(H0+V)|e+,e‘:coh>i—Z ; ZI o o (€7 ,€7:CON(Ho+V—w*)|e* e, y:coh;

1
X (e*,e”,yicono0——
i<e e,y CO}'{HO_ "

=0, Y., (e e :cole’ e :coh;, (25)

e*,e,y:coh> (e*,e”,y:con(Ho+V—o0*)le*,e,:coh,
Il

where we have seb=w* and have also ignored the instantaneous interaction as assumed in the previous section. One must
notice that this equation is different from the effective equation obtained in the previous section as neither
i(e",e":colHole",e™, y:coh); nor j(e*,e :cohV|e", e :coh); is zero in the coherent state basis. This follows from the
properties of the coherent states, H@) and(21). For example, the matrix eleme[(te+ e :conP"P~|e*,e :coh); is not

equal to just M?+ kf)/x(l x), but has an additional contribution which is given by

(e* (kD) e (kL):cofP"P~|e" (kg),e (ke):coh)
2+k 1+y m2+ k>
=53 . R

— 6@ (ke— kL) 83 (ks— kD) f J 2./ q N x)(l .

X 5 +2kg ! )0 APT —ke )+ e +2k7 )0Ap+ ke q)

ea’ a ko “ V" Te 2" g e/ ed

2Ke kg~ 2|(;r 1 2kei ) ”

T ke keq) g kog O(AP" —Ke Q) 0(AP* —kg=q) | . 26
( (kerq@)(ke=aq)  q* keq qF ke=q ( e ) o( —q) (26)

All the matrix elements in Eq.25) can be calculated in a straightforward manner. Details of this calculation are given in the
Appendix. The procedure is the standard one followed in Ffwherein we write the light cone Hamiltonian in terms of
creation and annihilation operators and calculate the matrix elements between the coherent states by making use of the
properties of coherent states. The equation so obtained imdlfiedlight cone Schrdinger equation

m?+k? 8m2y(x’ k)) a 8m2y(x’,k))
21! - 21,1
X(1—x) | POk~ fdx K a2 (k, k2 T f X K P x =X )2T (k, — K] )2
=M2p(x,k,), (27)

whereD. is defined in the Appendix and is actually a small tion under consideration is an integrable singularity and
region around the point at which the energy denominatohence the relevance of the above discussion is not really
vanishes: clear. However, the analysis of this section can be carried
o over to higher orders too. It is well known that the hyperfine
D¢:4m?(x—x')2+(k, —k|)?<R 2. (28)  structure(hfs) of positronium has infrare€r) divergences in
O(a?). In DLCQ method of bound state calculations this
Equation(27) is different from Eq.(12) due to the presence divergence appears () matrix elements when the num-
of the third term on the LHS, which is a coherent state conber of basis states is increased to allow states with 2 hard
tribution. This term, on discretization, cancels the Coulombphotons. In the next section, we will extend our analysis to
singularity in the second term. Thus, we have shown that tthe case when the Fock space truncation allows
0O(e?), the coherent state formalism removes the Coulomie*,e™,y,y) states also, in addition to the previously in-
singularity in a natural manner. One may raise the point thatluded|e*,e”) and|e*,e”,y) states. We will not give the
the Coulomb singularity in the light cone ScHinger equa- complete light cone Schdinger equation in this approxima-
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FIG. 1. Nontrivial O(a?) graphs corresponding to matrix ele-

ments in Eq(33). FIG. 2. AdditionalO(a?) graphs corresponding to matrix ele-

ment in Eq.(33).

tion. However, we will calculate th&(a?) ir divergent

terms and will then show that the additional coherent stat@nd will then show, with a model calculation, how the

contributions in the same order cancel these terms exactl@(az) ir divergences are expected to cancel in the light cone

thus indicating the possibility of obtaining in a systematic Schralinger equation. First, consider the Fock space expan-

manner Tamm-Dancoff equations which are free of true irsion of the bound state:

divergences.

[W)=2 Pore-le",e)i+ 2 e ,let 07,7

IV. COHERENT STATE BASIS AND THE TRUE ir ! !

DIVERGENCES IN O(a? CORRECTIONS TO THE

BINDING ENERGY OF POSITRONIUM +> ¢pie+e,w|e+,e_,'y,y)i : (29
I
In this section, we will find the effective Hamiltonian in
the truncated coherent state basis Following the same steps as in Sec. Il, we arrive at the fol-
lowing effective Hamiltonian in the space [#*,e™) states
{|le*,e":coh),|e*,e”,y:coh),|e",e”,y,y:coh} [6]:

Hey=Hgot+H ! [H +H ! H }

o M —Hy —Hy 10— Hp) Ha | 10 HPo—Hy 2
+H Hoo+H ! Hio+H ! H H (30

Zw—Hpl ' Po—Hy—Hifl(wo—Hp Hxu| © Po—Hy )

Omitting all the interactions that change the parton number by 2, the effective Hamiltonian reduces to

1
o—Hp—Hf1/(0—Hy) Hp

He=Hoot Hop Ho, (31)

and the light cone Tamm-Dancoff equation is given by

1 i 2 i
Foot Ror o T L0 Ry |2 hd Vere =M Yere 32
O(a?) contributions to Eq(32) come from matrix elements
M = Hog——Hyp——Hyy———H 33
- Olw_Hll lZ(D_H22 21w_H11 10- ( )

The diagrams corresponding to these matrix elements are given in Figs. 1 @et&e are essentially the diagrams in Fig. 13
of Ref.[6].) For example, the term corresponding to Fi¢r)lhere can be shown to be equal to
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2 1 1 1 1 1 1 1
M(l)z ZJ +f dzqi + ¥ T T 7+ ’r+ + + + du—,u(ke_ ké—'_q)dvp(Q)
4m°) 29 (2a3) \2k; \2k,T y2k" 2k 2(ke"—a") 2(kg—q™)

X[lf_(k?—Q)Yov(ké)][U_(ké) yu(ke—a)1lv (ke)y"v(ke—a)1[u (ke—q) y*u(ke)]
D,D2Ds '

(34)
where
d3=ke—k¢+a,
Di=w*—(ke—q)” —d3 kg,
Dy=0w*—(ke—q) —(ke—q)"—q -0,
Ds=ow*—k¢ —a3 —(kg—0a) ™. (39

Using the parametrization in E¢6) and calculating the numerator in E&4) by using the Dirac matrix elements for helicity
spinors of Ref[13] the gauge-independe@(m*) term of M(y) is calculated to be

M __fdy 1 f 1 1 [ 1 . 1
L 8w%) 2y (2y3) ql \/1 x 1= =y X' =y [(1=X)(1=x=y)X(X'=y)  (1=x=y)(1=x")x(X'=Y)

1 m?*
+ — . 36
(1—X)(x—y)x X —y) " (@=x—y)(I—x )X (x _y)}DlDZDS (39
In the nonrelativistic approxmatidi(x— 1/2)?<1k*<m?], [6] Eq. (36) simplifies to
. af dy 1 d?q,
My =72(8m )f 2y 2y3) D;D,D3’ 37

At k, =k, x=x', D; andD5 can be shown to be equal teke-qs/(ks —q3) and —(ks—qs)/(k;-—q3 ), respectively and
henceM(’l) will have true ir singularity as defined in RdB] at such points. Simplifying the denominator in Eg7) one
obtains

1

M/, 8m )f — L[ 9
= 2y 2y [w*—k;—k;—qg]DlD3

d — — — .
2y 2ys qL[w*_ke —kg—051°D1D3
(39

+?(8m4)j

A similar calculation for Fig. b) will give the O(m*a?) contribution to the sum of Figs.(4) and 1b) as

PN LR PR S ] PR S
2y 2y3 [0* —ke —kg=—0Q3]D;D3 7 YYs [0* —Ke —Kg =03 1%(ke- @) (kg )
(39

[One can readily check using E@) that atk, =k, D; and  show a similar cancellation of true ir divergences can be
D3 are proportional td.- qs andk;- gz, respectively. Thus achieved in the DLCQ approach also by using a coherent
there will be singularities in the discretized version of light state basis. We claim our method to be analogous to the
cone Tamm-Dancoff equation i@(a?) at k, =k, x=x’ Fulton-Karplus method of obtaining “modified” bound state
wheneverk,- g3 or k- s approaches zero. These singulari-equationgi.e., equations which are free of ir divergencies

ties correspond to true ir divergence of the thetagd not the Hamiltonian formalism because it takes into account the
the spurious divergencé8]). Such singularities and similar emission and absorption of soft photons. In the coherent state
ones coming from other terms are the DLCQ analogue obasis defined in Sec. lll, th®(«?) matrix elements of the
O(a?) ir divergences in hfs of positronium. It was shown by Hamiltonian will have additional terms corresponding to dia-
Fulton and Karplu$10] thatO(a?) ir divergences in the hfs grams in Figs. 3 and én addition to the diagrams in Fig. 13

of positronium are cancelled when one takes into account thef Ref. [6] where dotted lines represent the exchange of a
binding between the constituents of the intermediate statesoherent state phot@nin the following text we will show
This was done by adding Coulomb corrections to the singlethe O(m*) term of Fig. 3a) actually cancels the true ir di-
and two-photon exchange diagrams. In what follows, we willvergences in Eq4), which is actually the
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X x/ x x' x x’
P~ : ',
| :}7
) []
| 1 -
. i 4\ 1-x 1-x' 1-x 1-x
1-x 1-x’
(a) (b)
(a)
x x'
- 1 T (c)
V.
! \ FIG. 4. O(a?) graphs in coherent state basis which cancel the
1‘ " 1 < ; true IR divergences in diagrams of FiggaR 2(b), and Zc).
- 1-X

line and the sum of these digrams does not have true IR
divergences. Hence, the true ir divergences in the diagrams
(b) of Fig. 2 cancel with the coherent state contributions shown
in Fig. 4. Thus, the the diagrams in Fig. 1 are the only non-
trivial diagrams inO(«?) in the present context and we will
FIG. 3. O(a?) graphs in coherent state basis which cancel thenow show that the true ir divergences in these given by Eq.
true ir divergences in diagrams of Figgaland Xb). (4) are cancelled exactly by the coherent state contributions
represented by Figs.(® and 3b). To begin with, we will
O(m* term in the sum of Figs.(#) and 1b). One can show obtain the form of the effective Hamiltonian in the truncated
in an identical manner that the true ir divergences in the sungoherent state basis:
of Figs. 1c) and Xd) are cancelled by Fig.(B). The dia- _ _ _ )
grams in Fig. 2 are much easier to deal with as they contain {le”,e":cohy,[e",e”, y:con,[e,e”, y,y:con)}.
subdiagrams involving a single-photon exchange which, ineypanding the bound state in the above basis, we write
turn, arises from the tery,[ 1/(w—H17) Vg in the effec-
tive Hamiltonian. Now we have already seen in Sec. Il that i L i .o
the true ir divergences Wy, 1/(w—H1;)]Vy, are cancelled |‘I’>=§i: Yere-le” e :C°h>i+§i: Yere,le" €7, yicoN)
exactly by theO(a) contributionsVy, and Hy— w)gg [SEE
Egs. (A8)—(A10)]. In our pictorial representation, the later i Lo
two contributions correspond to a diagram in which a single- T Z Vereyyl€7 €7 7, 7iC0N;, (40
photon exchange has been replaced by a dotted line. Now
corresponding to every diagram involving (aonoverlap- and following the procedure of Ref6], we arrive at the
ping) photon exchange, there exists another diagram ifollowing effective Hamiltonian in the space of
which the single-photon exchange is replaced by a dottete™,e™:coh) states:

1

Hert= H00+(H01_wC01)w_ Hii— (Hio— 0C1)[1/(0—Hy) J(Ha1— wCyy)

(Hyg— @Cyp), (41)

where again, we have ignored the interactions that change the particle numberCgy, 22,,, and C,; appear due to
nonorthogonality of the coherent states:

Co= (e+ ,67100He+ ,e”,y:coh,
Ci,=(e",e ,y:cole’,e”,y,y:coh,
Cx=(e",e7,y,y:cohe’,e”,y:coh. (42)

It is now clear that there will be an addition@l «?) contribution toH . apart from those in Eq33). In particular, the matrix
element considered in the previous section,



5882 ANURADHA MISRA 53
M,=H 1 H 43
2= Mo 1 0 10> (43

will have an additional contribution which we had ignoreddf«) and which arises becaust ; has anO(«) term too. In
the following, we will calculate this contributioiM , can be rewritten as

pl!p lvkl C0h>

Mzzigz d°pid®p 1d%ki(ke kg~ cONV|p2,p 2, ko: C0h><p2,p 2,K: CO"{
X{p1,p 1,K1:colV|ke, ks coh. (44)

This expression has anO(a?) contribution because the second matrix element on the RHS involves
(e*,e”,y: conP*P~|e*,e”,y:coh), which has arD(«) contribution in the coherent state basis:

(P2.p 2,kp:CONP*P~|py,p 1,ks:cON= 83 (p1—p2) 8 (p 1—p 2) (ki —ky)

2a
X|(py+p 1tk )P++2 f fdz(h[q (py +p 1 +K{)+q (py+p 1 +ky)

2q”
+a21F* (A A1p2.P 2) F(AAIP1,P 1) (45)
Substituting Eq(45) in Eq. (44), one gets
M,o=MP+M2), (46)

whereM{Y andM$? are theO(a) andO(a?) terms inM, given by

M(21)=<ké,k4v _1 Vke,ke> (47
w—Ho
and
M =M 22+ M) (48)
where
2 +
i e e i e P S

v (k) y"v(kHu (kg) y*u(ke)

[w*_kl_k;_q?:]z V,u(q3)l (49)

X f*(g,N:Ke, ke F(g,N:ke kgD

a? 1 1 1 1 . (dg*
M0 = b\°’(ke+k;—k,’3—ke—)j +jd2ql(q‘+~-)

4m® kT 2k, 2kt 2k 29

u (ke)y"u(ke)v (ke v v(kg)
[w* —ki—kg=—05]°

Xf*(q,X:ke,k;)f(q,R:ke,k;) dv,u,(q?:)v (50)

where- - - denotes terms that can be ignorekatk| , x=x' in the ir limit. M(zza) andM(zf)) correspond to diagrams in Figs.
3(a) and 3b), respectively. Substituting fdi(q,\:ke,ks) andf*(q,\:ke,kg), taking the nonrelativistic limit and simplifying,
one finds that Eq(49) has a term proportional tm* which exactly cancels the ir divergent part, of the second term in4q.

y ( d2q, a4~ 0(AP* —ke-q) O(AP* —k~q)
M= 4m4a€ Ket Kg— ki — kD f f ) 51
27 gt e (K.- Q) (Kg= q)[@* — k™ — kg — (ke—ki+a) 12 51
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Similarly, Fig. 3b) cancels the true ir divergences in the (which are to be taken as basis statese actually not free
diagram shown in Figs.(&) and Xd). As argued earlier, the states, and therefore one must take into account the binding
true ir divergences in Figs.(®, 3(b), and 3c) will be can-  between them. The binding can be incorporated by the intro-
celed by coherent state contributions in Fig&)44(b), and  duction of an instantaneous interaction or equivalently by the
4(c), respectively, because these are basic@l(y) diver-  exchange of soft photons between the constituents of the
gences and we have already shown in Sec. Ill that to thadeound state. Now thérue) ir divergences of the theory are
order true ir divergences are absent in the coherent state beglated to the long distance behavior of the interaction in
sis. Thus theO(m*) term of O(a?) true ir divergences is contrast to the UV divergences and the spurious ir diver-
cancelled exactly by the corresponding term in the sum of algences which are related to short distance behavior. Since the
extra contributions to the Hamiltonian eigenvalue equation irir divergence are associated with the classical lifti#], a
the coherent state basis. This calculation indicates the posgilassical treatment of the true ir divergendeased on the
bility of the coherent state basis being a useful way of elimi-coherent state formalisnmay be useful to seperate them
nating the vanishing enegry denominators and the resultinffom the other kind of divergences. An alternative method to
true ir divergences from the light cone bound state calcularemove the true ir divergences would be to add an instanta-
tions. neous interactio;,; to the free Hamiltonian and calculate
the matrix elements between the Fock states. The coherent
V. SUMMARY state formalism developed here will then be useful in deriv-
ing the form ofV,,4. In the case of QCD, one may use the
We have applied the coherent state formalism developegbrm of artificial confining potential as proposed by Wilson

in an earlier work 8] for the continuum light cone QED to a and collaborator§15] to find the appropriate form of coher-
bound state calculation in DLCQ. We have shown that tthnt states for infrared cancellations.

true ir singularities in the discretized light cone Salinger
equation for positronium which are usually dealt with by ACKNOWLEDGMENTS
adding Coulomb counterterms by hand are absent up to

O(«) in the modified light cone Schdinger equation which liah field theori Prof G S |
is the light cone Schdinger equation obtained by calculat- ight cone field theories to Professor George Sterman.
ing the Hamiltonian matrix elements between the appropriy‘{OUId like to thank h'”ﬁ for his help and many usefu_l discus-
ately chosen coherent states instead of using the usual Fo ns. I. would a!so like to acknowiedge the InSt'tUte. for
basis. We have also presented@fu?) calculation to show heoretical Physics at Stony Brook as well as Council for
how the present formalism may be extended to remove the §cientific and Industrial Research in India for financial sup-
port. Last but not least, | would like to thank the staff of

divergence in hfs of positronium. We claim that our methodI titute for Th tical Phvsics. St Brook for thei
is essentially equivalent to a treatment of ir divergence i nstitute for Theoretical FhysICS, Stony Brook for their warm
ospitality and their ready help.

equal time bound state calculations by Fulton and Karplu
where they introduce an instantaneous interaction between
the constituents of the bound state. The reason for this claim
is the following: Both the introduction of an instantaneous In this appendix, we will show how the modified light
interaction and the use of coherent states are based on thene Schrdinger equatiori27) is derived from Eq(25). For
observation that the constituents of intermediate statesotational convenience, we will rewrite ER5) as

| owe the idea that the coherent states may be useful in

APPENDIX

Ei: z,//;e,Mﬂ—zk‘, z/x':3+e,Mj“,‘(D=w§i: ... (e*,e":colje” e :coh);, (A1)
where we define
Mf=(e*,e :coh(Ho+V)|e* e :coh) (A2)
and

1
MjC=(e".e :col(Ho+V—ow*)|e" e, y:coh), <e+,e‘,y:co)—{m
i 0~

ete, y:coh>
I

x{e*,e”,y:coN(Ho+V—ow*)|e’ e :coh). (A3)

The first two terms irMﬂ- can be calculated by substitutitty andV in terms of creation and annihilation operators and using
the fact thafe™,e™:coh), and|e*,e*:coh)j are eigenstates of the annihilation operator:
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i(e*,e icolfHole™,e7: cohy= 83(ke—k{) 83 (ke—kD)| (kg +k)(Kg + kg3 )+ qu fdz

><[(ke_+k;)q++(kg+kg)q_+Qf]f(q9\1ke,keﬁf*(q.>\1ke,keﬁ}- (A4)

Substituting forf (q,\:ke,ks) and keeping only the cross termsfitg,A: ke, kg) f* (q,\: ke k) (i.e., terms in which the soft
photon is not emiited and absorbed by the same fermibis expression simplifies to

ke'd 9" keq q°

ke-ke Ko ke=q K¢
j<e+,e‘:coHHO|e+,e‘:coh>i=b\3(ke—kg)53(ke——k;ﬁ[(k§+k2—)(k +k+ — def d?q, ( ed )

X O(AP* —Kq-q) +

— 0(AP+—k;q)H. (A5)
q

Similarly,

Ke- k* k+ k= k+
e )e(Ap* ke Q)

+ A= + ' dy
(e",e":conV]e*,e™: coh)= 8%(ke— k) (ke keﬁ{ 3 24f fdz H g o kg T

(ke-ke ke kzke-q) H
+ (AP —kz=q) | . (A6)

M{i® is a sum of the terms

MiP=M}P+M5EP+MEP+MyP, (A7)
where
1
—> > (e",e":coH(Ho— w*)|e", e, y:coh); <e+,e‘,y:co)—+H—* e+,e‘,y:c0h>
i [ i 0 M
x(e",e”,y:cohV]e*,e :cohy, (A8)

* e*,e,y:coh>

1
MYP=—2>' > (e',e :cofVle’,e",y:coh, <e*ey:co)—{H
i | i 0

1
x(e*,e”,y:coNHy— w*|e*,e":coh), (A9)

1
M'B\ID:—E z j<e+,67300H(H0—w*)|e+,€f,'}’ZC0h>i <e+:e:’}’:co"+H * e+,e,'}/:C0h>
T 9 i U I

x{e*,e”,y:.coNHy— w*|e*,e”:coh), (A10)

1
MYP=—> > (e",e": colV|e’,e”,y:coh) <e+,e‘,y:co%H - e+,e‘,y:coh>
i | i 0

I
x{e*,e”,y.conV|e*, e :coh). (A11)

Here, MfD is the usual term corresponding to Fock representation which gives a nondiagonal term in the light cone
Schralinger equatiorf12) in O(«) and which has been calculated@f«?), Sec. IV.M}®, MP, andM}P can be calculated
in the usual manner by substituting from Ed&5) and (A6). We will give below the final expressions for the gauge
independent parts of the cross terms in these:

« (dy k e
Mye—mpo— - 5[ SV aea, {k © BAPT kgt I ke'ml, (A12)
e’
J J e ke APt k) B(AP* —ko-q) (A13)
3 qJ_qJ_ (ke q)(k Q) e d e d)|-
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Substituting from Eqs(A5), (A6), (A12), and(A13) in Eqg. (A1), we obtain

m?+k, 2 E 1 t o coh
X(l—X) lf”e*ej e e :co VTHOVG e .co |
dy m? m? + + _ i — 2,
+ 5 2y) || g T G PO R DOAPT ke @) [ =MWy (ALY
e

The quantity in the square bracket in the third term on the LHS of(Efi4) is the coherent state contribution and it can be
calculated by substituting fdt,- q andkg=q:

X y m7y
ke-q=2—y (qL_;kL + 2 |
1-x

y 2 mRy?
(qi+ 1—xki) + 1,2 (A15)

After appropriate changes of the integration variables and on taking the nonrelativistic limit, the coherent state contribution
reduces to

ke=q= 2y

f f ql4m 249(AP+ (4m?y?+q2)), (A16)

which actually is an integral over the region defined in E8):

o
Iczﬁf f ql4my +q°° (AL7)

Substitutingl ¢ into Eq. (A14), we obtain Eq(27).
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