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We suggest the use of a coherent state basis to calculate the Hamiltonian matrix elements in the discr
light cone quantization method of bound state calculations as a possible way of avoiding the vanishing en
denominators and the resulting true infrared singularities. As an example, we obtain the light cone Schro¨dinger
equation for positronium using the coherent state basis and show the absence of the ‘‘Coulomb singula
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I. INTRODUCTION

In the past few years, discretized light cone quantizati
~DLCQ! has attracted a lot of attention as a practical com
putational method to obtain the mass spectrum and wa
functions of relativistic bound states@1#. The DLCQ method
is based on diagonalization of the light cone Hamiltonian
a truncated Fock basis. The bound state, for example, p
tronium is an eigenstate of the light cone Hamiltonian

HLCuc&5M2uc&. ~1!

Projecting this equation onto various Fock states^e,ē u,
^e,ē ,gu, . . . one gets an infinite number of coupled integ
eigenvalue equations. Discretizing the momentum space
putting a cutoff on the number of Fock states as well as
large values of transverse momenta, this infinite set of eq
tions reduces to a finite one and the problem of solving t
eigenvalue equation basically reduces to one of diagona
ing a finite dimensional matrix. The initial success of DLC
method has been established in~111!-dimensional models,
where the mass spectrum and wave functions have been
tained successfully in Yukawa theory, QED, the massle
Schwinger model,f4 theory and 111 QCD @1–4#. In 311
dimension the method has been developed@5# and applied to
light cone QED to obtain the mass spectrum and wave fu
tions of positronium@6#. Krautgärtner et al. have obtained
the light cone Tamm-Dancoff equation for the charge ze
sector under certain model assumptions and have solved
eigenvalue problem for various approximations to this equ
tion. The successive approximations they have conside
are the Tamm-Dancoff equation, the light cone Schro¨dinger
equation and the Coulomb Schro¨dinger equation. They have
developed a numerical procedure to solve these equation
a truncated and discretized Fock basis. In all the three ca
they have found good agreement with previous results. All
the equations considered in their paper suffer from the us
integrable singularity of equal time formulation, which ha
been dealt with by a mathematical artifact called the ‘‘Co
lomb trick.’’ In the present work, we show that the Coulom
singularity does not appear in the light cone Schro¨dinger
equation if one uses a coherent state basis to calculate
matrix elements. In a previous work@8#, we had suggested
using the coherent state basis as an alternative to the F
basis for calculating the Hamiltonian matrix elements in th
light cone bound state calculations. Now we will prese
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such a calculation and show that the coherent state formali
leads to the elimination of the Coulomb singularity in ligh
cone Schro¨dinger equation for positronium. More generally
speaking, the calculation of matrix elements in a cohere
state basis provides a cutoff on thek150, k'50 mode in a
natural way and it can provide a way of avoiding the vanish
ing energy denominators in light cone bound state calcul
tions. It is well known that the infrared catastrophe encoun
tered in the corrections to the fine structure of positronium
eliminated by the use of an artificial infrared cutoff in diver-
gent contributions@9#. However, it was shown by Fulton and
Karplus@10# that the region cut off by the infrared regulator
does not really contribute to the relevant integrals if on
takes into account the binding in intermediate states. Th
Fulton-Karplus approach is an extension of the Bethe
Salpeter equation@11# for systems in which an instantaneous
interaction is responsible for binding. The equation descri
ing the bound state of two oppositely charged fermions
corrected by replacing the free particle Green’s functions th
occur in certain low order interactions by corrected Green
functions, which take into account the instantaneous Co
lomb interaction. However, the terms including Coulomb en
ergy are explicitely omitted from higher order corrections
This special treatment of the low energy region eliminate
the infrared~ir! catastrophe in the hyperfine structure of pos
itronium. The use of the coherent state basis in DLCQ ca
culations is analogous to the Fulton-Karplus approach
conventional calculations as it takes into account the em
sion and absorption of soft photons in intermediate states.
the present work, we have obtained the light cone Schr¨-
dinger equation of Ref.@6# using the coherent state basis an
have shown that our formalism provides a natural cutoff o
small values of photon momenta and thus avoids the Co
lomb singularity from the discretized version of the equa
tions. The analysis can be carried out to the more gene
case of the Tamm-Dancoff equation in a similar manner. Th
method presented here is in no way an alternative to t
‘‘Coulomb trick’’ of Ref. @6#. The Coulomb counterterm of
Ref. @6# is just a mathematical artifact to produce convergen
results, whereas the extra contribution to the light con
Schrödinger equation obtained here is a result of binding i
the intermediate states. We would like to emphasize that t
cutoff obtained in this manner is not equivalent to the proce
dure of eliminatingk150, k'50 state from the discretized
equation by hand as done by Tanget al. @5#. As a matter of
fact, the contribution of soft photons is taken care ofbefore
5874 © 1996 The American Physical Society
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53 5875DISCRETIZED LIGHT CONE QUANTIZATION AND THE . . .
the discretization is carried out and therefore the infrar
cutoff eliminates not just thek150, k'50, but all the
points in the soft region.

We would like to emphasize that the the coherent sta
method is in no way complimentary to the Tamn-Danco
method of Fock space truncation in spite of the fact tha
coherent state is a superposition of an arbitrary number
soft photon states. In fact, we aresupplementingthe Tamn-
Dancoff truncation of hard photons with a summation ov
an arbitrary number of soft photons thereby providing a p
ture that combines the long distance and the short dista
behavior of the theory. We would also like to remind th
reader that the true ir divergences as defined in Ref.@8# are
related to the long distance behavior of the theory as oppo
to the UV divergences and the spurios ir divergences rela
to the short distance behavior and hence there is no reaso
believe that they should be dealt with in a similar fashio
Moreover, the elimination of the true ir divergences does n
remove the physics associated with the zero modes as
spurious ir divergences~i.e., those associated with
k150, k'Þ0 still remain!.

Recently, there has been a lot of interest in the ‘‘ze
mode’’ problem of light cone field theories@16–19#. It has
been pointed out@18# that in light cone quatization, where
the vacuum is simple in contrast to the complicated vacuu
structure of equal time theories, the physics associated w
the vacuum state is manifested in the zero mode and th
fore, on first sight, the removal of true ir divergences a
tempted here may appear to be an undesirable feature. H
ever, the removal of true ir divergences does in no w
eliminate the physics associated with the zero modes as th
divergences correspond to theglobal and not to theproper
zero modes which play a role in spontanenous symme
breaking. The proper zero modes, in our terminology, a
related to the ‘‘spurious’’ ir divergences and the cohere
state formalism developed in Ref.@8# does not remove these
divergences. It has been pointed out by Kalloniatiset al. @18#
that, at present, ‘‘there is no definite prescription for dealin
with the global zero modes and in the discussion of vacuu
problem, these are usually ignored without giving rise to a
inconsistencies as far as spontaneous symmetry brea
~SSB! is concerned.’’

We would also like to point out in the very beginning th
difference between our approach and the standard DLC
First, we are using a coherent state basis in place of
standard Fock basis. Second, we start from the outset in
continuum and discretize only after the true IR divergenc
are removed from the light cone Schrod¨inger equation. This
is in contrast to the standard DLCQ technique. The form
ism is established in a finite space with discrete mome
and sums right from the beginning@5#.

The plan of the paper is as follows: In Sec. II we will se
up our notation and will give a brief summary of the DLCQ
method of solving the Hamiltonian eigenvalue problem. W
will closely follow the notation of Ref.@6# and will show
briefly how the light cone Schro¨dinger equation is obtained
as the nonrelativistic limit of the light cone Tamm-Danco
equation. In Sec. III we will obtain the modified light con
Schrödinger equation by using the coherent state basis
expand the Hamiltonian eigenstates and will then show h
by using this basis the Coulomb singularity in the modifie
ed
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light cone Schro¨dinger equation is cancelled automaticall
up toO(a). Section IV extends the analysis of Sec. III to
O(a2) first in a Fock basis containing two hard photons an
then in the corresponding coherent state basis. Here we sh
how the true infrared divergences arise inO(a2) in the bind-
ing energy of positronium in the light cone Hamiltonian for
malism and how the coherent state contributions exactly ca
cel these divergences. Section V contains a summary of
paper and emphasizes the equivalence of coherent s
method and the Fulton-Karplus method of dealing with th
infrared divergences in the equal time formulation. The Ap
pendix contains the derivation of the modified light con
Schrödinger equation.

II. PRELIMINARIES

We will follow the notation of Ref.@6#. The light cone
QED Hamiltonian is given by

HLC5P1P22P'
2 , ~2!

where

P25H01V11V21V3 ~3!

is the light cone energy operator,H0 being the free part and
V1 , V2 , andV3 being the interaction parts. The expression
for these can be found in Ref.@7#. In the DLCQ method, the
mass spectrum of a bound state is obtained by diagonaliz
the discretized form of the Hamiltonian eigenvalue equatio

HLCuC&5M2uC&, ~4!

whereM2 is the mass-squared operator anduC& is the bound
state.uC&, in our case positronium, can be expanded in th
Fock basis. Restricting only to the first two Fock states o
can write

uC&5(
i

ce1e2
i

~x,k'!ue1,e2& i

1(
i

ce1e2g
i

~x,k',q!ue1,e2,g& i , ~5!

where the sum overi denotes the sum over spins and inte
gration over all possible momentum configurations. Follow
ing the conventions of Ref.@6#, the transverse momentum o
the bound stateP' is chosen to be zero and the momenta
electron, positron and photon are parametrized as

ke5S xP1,k',
k'
21m2

xP1 D ,
kē 5S ~12x!P1,2k',

k'
21m2

~12x!P1D ,
q5S yP1,q',

q'
2

yP1D . ~6!

Substituting the expansion in Eq.~5! into Eq. ~4!, one gets a
set of coupled equations:
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H00ce1e21H01ce1e2g5M2ce1e2,

H10ce1e21H11ce1e2g5M2ce1e2g , ~7!

whereHi j5^ i uHu j &, the statesue1,e2& and ue1,e2,g& be-
ing denoted byu0& and u1&, respectively. The above equa
tions can be rewritten in terms of an effective Hamiltonia
acting only in the space ofue1,e2& states:

Heffce1e25M2ce1e2, ~8!
-
n

where

Heff5H001H01

1

M22H11
H10. ~9!

Writing Heff in terms of creation and annihilation operators
and calculating the matrix elements ofH between Fock
states, Eq.~8! together with Eq.~9! gives the light cone
Tamm-Dancoff equation@6#
Fm21k'
2

x~12x!
2M2Gc~x,k',se ,sē !1 (

se8 ,sē

8E
D
dx8^x,k',se ,sē uVef f~v!ux8,k'8 ,se8 ,sē8&c~x8,k'8 ,se8 ,sē8!50 , ~10!

wherec(x,k',se ,sē ) refers toce1e2 andVeff is the effective interaction Hamiltonian defined by

Veff5H01

1

M22H11
H10. ~11!

Taking the nonrelativistic limit@k'
2!m2,(x21/2)2!1# in the nondiagonal term of Eq.~10!, one obtains the light cone

Schrödinger equation@6#

Fm21k'
2

x~12x!
Gc~x,k'!2

a

2p2E
D
dx8d2k'8

8m2c~x8,k'8 !

4m2~x2x8!21~k'2k'8 !2
5M2c~x,k'!. ~12!
e-
h

ty

-
-

be
The matrix elements ofV eff can be evaluated in standar
manner. In Ref.@6#, Eq. ~12! has been discretized and solve
numerically using the Gauss integration method under
following model assumptions:~1! Only those diagrams cor-
responding to instantaneous exchanges inVeff are included
which satisfy the gauge cutoff condition@5#, i.e., a diagram
involving instantaneous exchange is included only when
real dynamical parton with the same space like moment
and the same Fock space configuration is allowed by ult
violet cutoff and Fock space truncation.~2! In the
(e1e2g) space, the interaction corresponding to the e
change of an instantaneous photon is set equal to zero.~3! In
the matrix elements ofVeff , the eigenvalueM

25v has been
set equal to the symmetrized mass:

v5v*5
m21k'

2

2x~12x!
1

m21k'8
2

2x8~12x8!
. ~13!

Discretizing the momentum space and using the Ga
quadrature method to convert the integral in Eq.~12! into a
finite sum, this equation is converted into a finite dime
sional matrix equation and the problem of obtaining the ma
spectrum is reduced to finding the eigenvalues of this mat
Note that the finite dimensionality of the Hamiltonian matri
is a consequence of Fock space truncation and the ultravi
d
d
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cutoff. One can notice that the discretized version of Eq.~12!
has a singularity at the pointx5x8, k'5k'8 coming from
the second term on the right-hand side~RHS!. In Ref. @6#,
this singularity has been avoided by using theCoulomb trick,
which is a mathematical artifact. In our opinion, however,
the singularity has a physical origin, since expanding the
bound state in the Fock basis, one assumes that the interm
diate states are free particle states that do not interact wit
each other. Now, if one calculates the Hamiltonian matrix
elements in the coherent state basis the Coulomb singulari
does not appear as the the contribution of small momentum
region in Eq.~12! is cancelled by a coherent state contribu-
tion which actually is a result of binding between constituent
particles in the intermediate state. In other words, the coher
ent state formalism puts a cutoff on small values of the en
ergy denominator in Eq.~12! in a natural manner. We will
show this in the next section.

III. LIGHT CONE SCHRO¨ DINGER EQUATION
AND THE COHERENT STATE BASIS

We will now obtain the light cone Schro¨dinger equation
from the Hamiltonian eigenvalue equation by expanding the
eigenstate in a coherent state basis. Coherent states can
defined in the usual manner by@12,8#
un:coh&5expF2e (
l51,2

E dk1

A2k1E d2k'

~2p!3/2(i @ f i~k,l:pi !a
†~k,l!2 f i* ~k,l:pi !a~k,l!#G un&, ~14!

where
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f i~k,l,:pi !5si
pimel

m~k!

pi•k
u~DP12pi•k!, ~15!

and the sum is over all the fermions in the Fock stateun&. pi is momentum of thei th fermion andsi is 21 or11 for positrons
and electrons, respectively.P1 is the total longitudinal momentum of the bound stateuC& andD is a small parameter with the
dimension of light cone energy. ExpandinguC& in the basis defined by Eq.~14! and truncating in a manner so that only those
states which are obtained by applying the asymptotic operator to the Fock statesue1(kē ),e

2(ke)& and
ue1(kē ),e

2(ke),g(q)& are allowed, one can write

uC&5(
i

ce1e2
i

~x,k'!ue1~kē !,e2~ke!:coh& i1(
i

ce1e2g
i

~x,k',q!ue1~kē !,e2~ke!,g~q!:coh& i , ~16!

where again the sum overi means a summation over the spins and integration over all possible momentum configuratio
constituent fermions and the hard photon in the coherent state. The expressions for the coherent states in Eq.~16! follow from
the general expression in Eq.~14!:

ukē ,ke&coh5ue1~kē !,e2~ke!:coh&

5expF2e (
l51,2

E dk1

A2k1E d2k'

~2p!3/2
@ f ~k,l:ke ,kē !a†~k,l!2 f * ~k,l:ke ,kē !a~k,l!#G ue1~kē !,e2~ke!&, ~17!

and

ue1~kē !,e2~ke!,g~q!:coh&5expF2e (
l51,2

E dk1

A2k1E d2k'

~2p!3/2
@ f ~k,l:ke ,kē !a†~k,l!

2 f * ~k,l:ke ,kē !a~k,l!#G ue1~kē !,e2~ke!,g~q!&, ~18!

where

f ~k,l:ke ,kē !5S kemel
m~k!

ke•k
u~DP12ke•k!2

kē mel
m~k!

kē •k
u~DP12kē •k!D . ~19!

These coherent states satisfy the properties

a~k,l!ue1,e2,g:coh&52
e

~2p!3/2
f ~k,l:ke ,kē !

A2k1
ue1,e2,g:coh&1d3~k2q!ue1,e2:coh&, ~20!

and

f^e
1,e2,g:cohue1,e2:coh& i52d~3!~ke

i 2ke
f !d~3!~kē

i 2kē
f !

e

~2p!3/2
f ~k,l:ke

i ,kē
i !

A2k1
, ~21!

where the sum is over all the fermions. Substituting the expansion of Eq.~16! in Eq. ~4!, one gets the equation

(
i

ce1e2
i

~x,k'!~H01V!ue1~kē !,e2~ke!: coh& i1(
i

ce1e2g
i

~x,k',q!~H01V!ue1~kē !,e2~ke!,g~q!:coh& i

5vF(
i

ce1e2
i

~x,k'!ue1~kē !,e2~ke!:coh& i1(
i

ce1e2g
i

~x,k',q!ue1~kē !,e2~ke!,g~q!:coh& i G , ~22!

wherev5M2. Taking product of Eq.~22! with j^e
1,e2:cohu and j^e

1,e2,g:cohu, respectively, we arrive at the following set
of equations:

(
i

ce1e2 j
i ^e1,e2: cohu~H01V!ue1,e2:coh& i1(

i
ce1e2g j
i ^e1,e2: cohu~H01V!ue1,e2g:coh& i

5vF(
i

ce1e2
i

j^e
1,e2:cohue1,e2:coh& i1(

i
ce1e2g
i

j^e
1,e2:cohue1,e2,g: coh& i G , ~23!
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and

(
i

ce1e2 j
i ^e1,e2,g: cohu~H01V!ue1,e2:coh& i1(

i
ce1e2g j
i ^e1,e2,g:cohu~H01V!ue1,e2,g:coh& i

5vF(
i

ce1e2 j
i ^e1,e2,g:cohue1,e2:coh& i1(

i
ce1e2g j
i ^e1,e2,g:cohue1,e2,g:coh& i G . ~24!

Eliminatingce1e2g
i ’s from Eqs.~23! and ~24!, one arrives at the following set of coupled integral equations forc i

e1e2’s:

(
i

c i
e1e2~x,k'! j^e

1,e2:cohu~H01V!ue1,e2:coh& i2(
i

(
k

(
l

ck
e1e2 j^e

1,e2:cohu~H01V2v* !ue1,e2,g:coh& i

3
i
K e1,e2,g:cohU 1

H02v* Ue1,e2,g:cohL
l l

^e1,e2,g:cohu~H01V2v* !ue1,e2,:coh&k

5v(
i

ce1e2 j
i ^e1,e2:cohue1,e2:coh& i , ~25!

where we have setv5v* and have also ignored the instantaneous interaction as assumed in the previous section. One
notice that this equation is different from the effective equation obtained in the previous section as ne
j^e

1,e2:cohuH0ue1,e2,g:coh& i nor j^e
1,e2:cohuVue1,e2:coh& i is zero in the coherent state basis. This follows from the

properties of the coherent states, Eqs.~20! and~21!. For example, the matrix elementj^e
1,e2:cohuP1P2ue1,e2:coh& i is not

equal to just (m21k'
2)/x(12x), but has an additional contribution which is given by

^e1~kē8!,e2~ke8!:cohuP1P2ue1~kē !,e2~ke!:coh&

5d~3!~ke2ke8!d~3!~kē 2kē8!H m21k'
2

x~12x!
1

a

2p2E dy

2yE d2q'Fq'
2 S 11y

y
D 1

m21k'
2

x~12x!
~11y!G

3F S 2
ke
2

ke•q
1
2ke

1

q1

1

ke•q
D u~DP12ke•q!1S 2

kē
2

~kē •q!2
1
2kē

1

q1

1

kē •q
D u~DP12kē •q!

1S 2
2ke•kē

~ke•q!~kē •q!
1
2ke

1

q1

1

ke•q
1
2kē

1

q1

1

kē •q
D u~DP12ke•q!u~DP12kē •q!G J . ~26!

All the matrix elements in Eq.~25! can be calculated in a straightforward manner. Details of this calculation are given in
Appendix. The procedure is the standard one followed in Ref.@8# wherein we write the light cone Hamiltonian in terms of
creation and annihilation operators and calculate the matrix elements between the coherent states by making use
properties of coherent states. The equation so obtained is themodifiedlight cone Schro¨dinger equation

Fm21k'
2

x~12x!
Gc~x,k'!2

a

2p2E
D
dx8d2k'8

8m2c~x8,k'8 !

4m2~x2x8!21~k'2k'8 !2
1

a

2p2E
Dc

dx8d2k'8
8m2c~x8,k'8 !

4m2~x2x8!21~k'2k'8 !2

5M2c~x,k'!, ~27!
y
d

d

whereDc is defined in the Appendix and is actually a sma
region around the point at which the energy denomina
vanishes:

Dc :4m
2~x2x8!21~k'2k'8 !2,R̄ 2. ~28!

Equation~27! is different from Eq.~12! due to the presence
of the third term on the LHS, which is a coherent state co
tribution. This term, on discretization, cancels the Coulom
singularity in the second term. Thus, we have shown that
O(e2), the coherent state formalism removes the Coulom
singularity in a natural manner. One may raise the point th
the Coulomb singularity in the light cone Schro¨dinger equa-
ll
tor

n-
b
to
b
at

tion under consideration is an integrable singularity and
hence the relevance of the above discussion is not reall
clear. However, the analysis of this section can be carrie
over to higher orders too. It is well known that the hyperfine
structure~hfs! of positronium has infrared~ir! divergences in
O(a2). In DLCQ method of bound state calculations this
divergence appears inO(a2) matrix elements when the num-
ber of basis states is increased to allow states with 2 har
photons. In the next section, we will extend our analysis to
the case when the Fock space truncation allows
ue1,e2,g,g& states also, in addition to the previously in-
cludedue1,e2& and ue1,e2,g& states. We will not give the
complete light cone Schro¨dinger equation in this approxima-
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tion. However, we will calculate theO(a2) ir divergent
terms and will then show that the additional coherent sta
contributions in the same order cancel these terms exac
thus indicating the possibility of obtaining in a systemat
manner Tamm-Dancoff equations which are free of true
divergences.

IV. COHERENT STATE BASIS AND THE TRUE ir
DIVERGENCES IN O„a2

… CORRECTIONS TO THE
BINDING ENERGY OF POSITRONIUM

In this section, we will find the effective Hamiltonian in
the truncated coherent state basis

$ue1,e2:coh&,ue1,e2,g:coh&,ue1,e2,g,g:coh&%

FIG. 1. NontrivialO(a2) graphs corresponding to matrix ele
ments in Eq.~33!.
te
tly,
ic
ir

and will then show, with a model calculation, how the
O(a2) ir divergences are expected to cancel in the light con
Schrödinger equation. First, consider the Fock space expa
sion of the bound state:

uC&5(
i

ce1e2
i ue1,e2& i1(

i
ce1e2g
i ue1,e2,g& i

1(
i

ce1e2gg
i ue1,e2,g,g& i . ~29!

Following the same steps as in Sec. II, we arrive at the fo
lowing effective Hamiltonian in the space ofue1,e2& states
@6#:

-
FIG. 2. AdditionalO(a2) graphs corresponding to matrix ele-

ment in Eq.~33!.
3

Heff5H001H01

1

v2H112H12@1/~v2H22!#H21
FH101H12

1

v2H22
H20G

1H02

1

v2H22
HH201H21

1

v2H112H12@1/~v2H22!#H21
FH101H12

1

v2H22
H20G J . ~30!

Omitting all the interactions that change the parton number by 2, the effective Hamiltonian reduces to

Heff5H001H01

1

v2H112H12@1/~v2H22!#H21
H10, ~31!

and the light cone Tamm-Dancoff equation is given by

FH001H01

1

v2H112H12@1/v2H22!
GH21H10]ce1e2

i
5M2ce1e2

i . ~32!

O(a2) contributions to Eq.~32! come from matrix elements

M5H01

1

v2H11
H12

1

v2H22
H21

1

v2H11
H10. ~33!

The diagrams corresponding to these matrix elements are given in Figs. 1 and 2.~These are essentially the diagrams in Fig. 1
of Ref. @6#.! For example, the term corresponding to Fig. 1~a! here can be shown to be equal to
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M ~1!5
a2

4p2E dq1

2q1E d2q'

1

~2q3
1!

1

A2ke1
1

A2ke81

1

A2kē1
1

A2kē81

1

2~ke8
12q1!

1

2~kē
12q1!

dsm~ke2ke81q!dnr~q!

3
@ v̄ ~kē 2q!gsv~kē8!#@ ū ~ke8!gru~ke82q!#@ v̄ ~kē !gnv~kē 2q!#@ ū ~ke82q!gmu~ke!#

D1D2D3
, ~34!

where

q35ke2ke81q,

D15v*2~ke82q!22q3
22kē

2 ,

D25v*2~ke82q!22~kē 2q!22q22q3
2 ,

D35v*2ke8
22q3

22~kē82q!2. ~35!

Using the parametrization in Eq.~6! and calculating the numerator in Eq.~34! by using the Dirac matrix elements for helicity
spinors of Ref.@13# the gauge-independentO(m4) term ofM (1) is calculated to be

M ~1!8 5
a2

8p2E dy

2y

1

~2y3!
E d2q'

1

Ax8
1

A12x8

1

12x82y

1

x82y F 1

~12x!~12x2y!x~x82y!
1

1

~12x2y!~12x8!x~x82y!

1
1

~12x!~x2y!x8~x82y!
1

1

~12x2y!~12x8!x8~x82y!G m4

D1D2D3
. ~36!

In the nonrelativistic approxmation@(x21/2)2!1,k'
2!m2#, @6# Eq. ~36! simplifies to

M ~1!8 5
a2

p2 ~8m4!E dy

2y

1

2y3
E d2q'

D1D2D3
. ~37!

At k'5k'8 , x5x8, D1 andD3 can be shown to be equal to2ke•q3 /(ke
12q3

1) and2(kē 2q3)/(kē
12q3

1), respectively and
henceM (1)8 will have true ir singularity as defined in Ref.@8# at such points. Simplifying the denominator in Eq.~37! one
obtains

M ~1!8 5
a2

p2 ~8m4!E dy

2y

1

2y3
E d2q'

1

@v*2ke
22kē

22q3
2#D1D3

1
a2

p2 ~8m4!E dy

2y

1

2y3
E d2q'

q2

@v*2ke
22kē

22q3
2#2D1D3

.

~38!

A similar calculation for Fig. 1~b! will give theO(m4a2) contribution to the sum of Figs. 1~a! and 1~b! as

M5
a2

p2 ~4m4!E dy

2y

1

2y3
E d2q'

1

@v*2ke
22kē

22q3
2#D1D3

1
a2

p
m4E dy

yy3
E d2q'

q2

@v*2ke8
22kē

22q3
2#2~ke•q!~kē •q!

.

~39!
@One can readily check using Eq.~2! that atk'5k'8 , D1 and
D3 are proportional toke•q3 andkē8•q3 , respectively#. Thus
there will be singularities in the discretized version of ligh
cone Tamm-Dancoff equation inO(a2) at k'5k'8 , x5x8
wheneverke•q3 or kē8•q3 approaches zero. These singula
ties correspond to true ir divergence of the theory~and not
the spurious divergences@8#!. Such singularities and similar
ones coming from other terms are the DLCQ analogue
O(a2) ir divergences in hfs of positronium. It was shown b
Fulton and Karplus@10# thatO(a2) ir divergences in the hfs
of positronium are cancelled when one takes into account
binding between the constituents of the intermediate sta
This was done by adding Coulomb corrections to the sing
and two-photon exchange diagrams. In what follows, we w
t

ri-

of
y

the
tes.
le-
ill

show a similar cancellation of true ir divergences can be
achieved in the DLCQ approach also by using a coherent
state basis. We claim our method to be analogous to the
Fulton-Karplus method of obtaining ‘‘modified’’ bound state
equations~i.e., equations which are free of ir divergences! in
the Hamiltonian formalism because it takes into account the
emission and absorption of soft photons. In the coherent state
basis defined in Sec. III, theO(a2) matrix elements of the
Hamiltonian will have additional terms corresponding to dia-
grams in Figs. 3 and 4~in addition to the diagrams in Fig. 13
of Ref. @6# where dotted lines represent the exchange of a
coherent state photon!. In the following text we will show
theO(m4) term of Fig. 3~a! actually cancels the true ir di-
vergences in Eq.~4!, which is actually the
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O(m4) term in the sum of Figs. 1~a! and 1~b!. One can show
in an identical manner that the true ir divergences in the s
of Figs. 1~c! and 1~d! are cancelled by Fig. 3~b!. The dia-
grams in Fig. 2 are much easier to deal with as they cont
subdiagrams involving a single-photon exchange which,
turn, arises from the termV01@1/(v2H11)#V10 in the effec-
tive Hamiltonian. Now we have already seen in Sec. III th
the true ir divergences inV01@1/(v2H11)#V10 are cancelled
exactly by theO(a) contributionsV00 and (H02v)00 @see
Eqs. ~A8!–~A10!#. In our pictorial representation, the late
two contributions correspond to a diagram in which a sing
photon exchange has been replaced by a dotted line. N
corresponding to every diagram involving a~nonoverlap-
ping! photon exchange, there exists another diagram
which the single-photon exchange is replaced by a dot

FIG. 3. O(a2) graphs in coherent state basis which cancel t
true ir divergences in diagrams of Figs. 1~a! and 1~b!.
um

ain
in

at

r
le-
ow

in
ted

line and the sum of these digrams does not have true
divergences. Hence, the true ir divergences in the diagra
of Fig. 2 cancel with the coherent state contributions show
in Fig. 4. Thus, the the diagrams in Fig. 1 are the only non
trivial diagrams inO(a2) in the present context and we will
now show that the true ir divergences in these given by E
~4! are cancelled exactly by the coherent state contributio
represented by Figs. 3~a! and 3~b!. To begin with, we will
obtain the form of the effective Hamiltonian in the truncate
coherent state basis:

$ue1,e2:coh&,ue1,e2,g:coh&,ue1,e2,g,g:coh&%.

Expanding the bound state in the above basis, we write

uC&5(
i

ce1e2
i ue1,e2:coh& i1(

i
ce1e2g
i ue1,e2,g:coh& i

1(
i

ce1e2gg
i ue1,e2,g,g:coh& i , ~40!

and following the procedure of Ref.@6#, we arrive at the
following effective Hamiltonian in the space of
ue1,e2:coh& states:

he

FIG. 4. O(a2) graphs in coherent state basis which cancel th
true IR divergences in diagrams of Figs. 2~a!, 2~b!, and 2~c!.
Heff5H001~H012vC01!
1

v2H112~H122vC12!@1/~v2H22!#~H212vC21!
~H102vC10!, ~41!

where again, we have ignored the interactions that change the particle number by 2.C01, C12, andC21 appear due to
nonorthogonality of the coherent states:

C015^e1,e2:cohue1,e2,g:coh&,

C125^e1,e2,g:cohue1,e2,g,g:coh&,

C215^e1,e2,g,g:cohue1,e2,g:coh&. ~42!

It is now clear that there will be an additionalO(a2) contribution toHeff apart from those in Eq.~33!. In particular, the matrix
element considered in the previous section,
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M25H01

1

v2H11
H10, ~43!

will have an additional contribution which we had ignored inO(a) and which arises becauseH11 has anO(a) term too. In
the following, we will calculate this contribution.M2 can be rewritten as

M25 (
i51,2

E d3pid
3p̄ id

3ki^ke8 ,kē8 : cohuVup2 ,p̄ 2 ,k2 :coh&K p2 ,p̄ 2 ,k2 :cohU 1

v2HUp1 ,p̄ 1 ,k1 :cohL
3^p1 ,p̄ 1 ,k1 :cohuVuke ,kē :coh&. ~44!

This expression has anO(a2) contribution because the second matrix element on the RHS involves
^e1,e2,g: cohuP1P2ue1,e2,g:coh&, which has anO(a) contribution in the coherent state basis:

^p2 ,p̄ 2 ,k2 :cohuP1P2up1 ,p̄ 1 ,k1 :coh&5d~3!~p12p2!d
~3!~ p̄ 12 p̄ 2!d

~3!~k12k2!

3F ~p121 p̄ 1
21k1

2!P11
2a

2pE dq1

2q1E d2q'@q2~p1
11 p̄ 1

11k1
1!1q1~p1

21 p̄ 1
21k1

2!

1q'
2 # f * ~q,l:p2 ,p̄ 2! f ~q,l:p1 ,p̄ 1!. ~45!

Substituting Eq.~45! in Eq. ~44!, one gets

M25M2
~1!1M2

~2! , ~46!

whereM2
(1) andM2

(2) are theO(a) andO(a2) terms inM2 given by

M2
~1!5 K ke8 ,kē8UV 1

v2H0
VUke ,kē L ~47!

and

M2
~2!5M2

~2a!1M2
~2b! , ~48!

where

M2
~2a!5

a2

4p2

1

A2ke1
1

A2ke81

1

A2kē1
1

A2kē81
d3~ke1kē 2ke82kē8!E dq1

2q1E d2q'~q21••• !

3 f * ~q,l:ke ,kē ! f ~q,l:ke ,kē !
v̄ ~kē !gnv~kē8!ū ~ke8!gmu~ke!

@v*2ke82kē
22q3

2#2
dnm~q3!, ~49!

M2
~2b!5

a2

4p2

1

A2ke1
1

A2ke81

1

A2kē1
1

A2kē81
d3~ke1kē 2ke82kē8!E dq1

2q1E d2q'~q21••• !

3 f * ~q,l:ke ,kē ! f ~q,l:ke ,kē !
ū ~ke8!gnu~ke!v̄ ~kē !gmv~kē8!

@v*2ke82kē
22q3

2#2
dnm~q3!, ~50!

where••• denotes terms that can be ignored atk'5k'8 , x5x8 in the ir limit. M2a
(2) andM2b

(2) correspond to diagrams in Figs.
3~a! and 3~b!, respectively. Substituting forf (q,l:ke ,kē ) and f * (q,l:ke ,kē ), taking the nonrelativistic limit and simplifying,
one finds that Eq.~49! has a term proportional tom4 which exactly cancels the ir divergent part, of the second term in Eq.~4!:

M2852
a2

4p24m
4d3~ke1kē 2ke82kē8!E dy

y E d2q'

y3

q2u~DP12ke•q!u~DP12kē8•q!

~ke8•q!~kē •q!@v*2ke8
22kē

22~ke2ke81q!2#2
. ~51!
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Similarly, Fig. 3~b! cancels the true ir divergences in th
diagram shown in Figs. 1~c! and 1~d!. As argued earlier, the
true ir divergences in Figs. 3~a!, 3~b!, and 3~c! will be can-
celed by coherent state contributions in Figs. 4~a!, 4~b!, and
4~c!, respectively, because these are basicallyO(a) diver-
gences and we have already shown in Sec. III that to t
order true ir divergences are absent in the coherent state
sis. Thus theO(m4) term of O(a2) true ir divergences is
cancelled exactly by the corresponding term in the sum of
extra contributions to the Hamiltonian eigenvalue equation
the coherent state basis. This calculation indicates the po
bility of the coherent state basis being a useful way of elim
nating the vanishing enegry denominators and the result
true ir divergences from the light cone bound state calcu
tions.

V. SUMMARY

We have applied the coherent state formalism develop
in an earlier work@8# for the continuum light cone QED to a
bound state calculation in DLCQ. We have shown that t
true ir singularities in the discretized light cone Schro¨dinger
equation for positronium which are usually dealt with b
adding Coulomb counterterms by hand are absent up
O(a) in the modified light cone Schro¨dinger equation which
is the light cone Schro¨dinger equation obtained by calculat
ing the Hamiltonian matrix elements between the approp
ately chosen coherent states instead of using the usual F
basis. We have also presented anO(a2) calculation to show
how the present formalism may be extended to remove th
divergence in hfs of positronium. We claim that our metho
is essentially equivalent to a treatment of ir divergence
equal time bound state calculations by Fulton and Karp
where they introduce an instantaneous interaction betw
the constituents of the bound state. The reason for this cla
is the following: Both the introduction of an instantaneou
interaction and the use of coherent states are based on
observation that the constituents of intermediate sta
e

hat
ba-

all
in
ssi-
i-
ing
la-

ed

he

y
to

-
ri-
ock

e ir
d
in
lus
een
im
s
the
tes

~which are to be taken as basis states! are actually not free
states, and therefore one must take into account the bind
between them. The binding can be incorporated by the int
duction of an instantaneous interaction or equivalently by t
exchange of soft photons between the constituents of
bound state. Now the~true! ir divergences of the theory are
related to the long distance behavior of the interaction
contrast to the UV divergences and the spurious ir dive
gences which are related to short distance behavior. Since
ir divergence are associated with the classical limit@14#, a
classical treatment of the true ir divergences~based on the
coherent state formalism! may be useful to seperate them
from the other kind of divergences. An alternative method
remove the true ir divergences would be to add an instan
neous interactionVinst to the free Hamiltonian and calculate
the matrix elements between the Fock states. The coher
state formalism developed here will then be useful in deri
ing the form ofVinst. In the case of QCD, one may use th
form of artificial confining potential as proposed by Wilson
and collaborators@15# to find the appropriate form of coher-
ent states for infrared cancellations.
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APPENDIX

In this appendix, we will show how the modified light
cone Schro¨dinger equation~27! is derived from Eq.~25!. For
notational convenience, we will rewrite Eq.~25! as
ng
(
i

ce1e2
i M ji

d2(
k

ce1e2
k M jk

ND5v(
i

ce1e2
i

j^e
1,e2:cohue1,e2:coh& i , ~A1!

where we define

M ji
d5 j^e

1,e2:cohu~H01V!ue1,e2:coh& i ~A2!

and

M jk
ND5 j^e

1,e2:cohu~H01V2v* !ue1,e2,g:coh& i
i
K e1,e2,g:cohU 1

H02v* Ue1,e2,g:cohL
l l

3^e1,e2,g:cohu~H01V2v* !ue1,e2:coh&k . ~A3!

The first two terms inMi j
d can be calculated by substitutingH0 andV in terms of creation and annihilation operators and usi

the fact thatue1,e2:coh& i and ue1,e2:coh& j are eigenstates of the annihilation operator:
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j^e
1,e2:cohuH0ue1,e2: coh& i5d3~ke2ke8!d3~kē2kē8 !F ~ke11kē

1!~ke
21kē

2!1
a

2p2E dq1E d2q'

3@~ke
21kē

2!q11~ke
11kē

1!q21q'
2 # f ~q,l:ke ,kē! f * ~q,l:ke ,kē!G . ~A4!

Substituting forf (q,l:ke ,kē) and keeping only the cross terms inf (q,l:ke ,kē) f * (q,l:ke ,kē) ~i.e., terms in which the soft
photon is not emiited and absorbed by the same fermion!, this expression simplifies to

j^e
1,e2:cohuH0ue1,e2: coh& i5d3~ke2ke8!d3~kē2kē8 !H ~ke

11kē
1!~ke

21kē
2!1

a

p2E dy

y E d2q'F S ke•kēke•q
2
ke

1

q1

kē•q

ke•q
2
ke

1

q1D
3u~DP12ke•q!1S ke•kē

k ē•q
2
kē

1

q1 2
kē

1

q1

ke•q

kē•q
D u~DP12kē•q!G J . ~A5!

Similarly,

j^e
1,e2:cohuVue1,e2: coh& i5d3~ke2ke8!d3~kē2kē8 !H 2

a

2p24E dy

y E d2q'F S ke•kēke•q
2
ke

1

q1

kē•q

ke•q
2
ke

1

q1D u~DP12ke•q!

1S ke•kē
k ē•q

2
kē

1

q1 2
kē

1

q1

ke•q

kē•q
D u~DP12kē•q!G J . ~A6!

M ji
ND is a sum of the terms

M ji
ND5M1

ND1M2
ND1M3

ND1M4
ND, ~A7!

where

M1
ND52(

i
(
l

j^e
1,e2:cohu~H02v* !ue1,e2,g:coh& i

i
K e1,e2,g:cohU 1

H02v* Ue1,e2,g:cohL
l l

3^e1,e2,g:cohuVue1,e2:coh&k , ~A8!

M2
ND52(

i
(
l

j^e
1,e2:cohuVue1,e2,g:coh& i

i
K e1e2g:cohU 1

H02v* Ue1,e2,g:cohL
l l

3^e1,e2,g:cohuH02v* ue1,e2:coh&k , ~A9!

M3
ND52(

i
(
l

j^e
1,e2:cohu~H02v* !ue1,e2,g:coh& i

i
K e1,e2,g:cohU 1

H02v* Ue1,e2,g:cohL
l l

3^e1,e2,g:cohuH02v* ue1,e2:coh&k , ~A10!

M4
ND52(

i
(
l

j^e
1,e2: cohuVue1,e2,g:coh& i

i
K e1,e2,g:cohU 1

H02v* Ue1,e2,g:cohL
l l

3^e1,e2,g:cohuVue1,e2:coh&k . ~A11!

Here,M4
ND is the usual term corresponding to Fock representation which gives a nondiagonal term in the light

Schrödinger equation~12! in O(a) and which has been calculated inO(a2), Sec. IV.M1
ND, M2

ND, andM3
ND can be calculated

in the usual manner by substituting from Eqs.~A5! and ~A6!. We will give below the final expressions for the gaug
independent parts of the cross terms in these:

M1
ND5M2

ND52
a

2p2xE dy

2yE d2q'Fke•kēke•q
u~DP12ke•q!1

ke•kē

k ē•q
u~DP12kē•q!G , ~A12!

M3
ND5

a

2p2E dy

2yE d2q'q'
2 F 2ke•kē

~ke•q!~kē•q!
u~DP12ke•q!u~DP12kē•q!G . ~A13!
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Substituting from Eqs.~A5!, ~A6!, ~A12!, and~A13! in Eq. ~A1!, we obtain

Fm21k'
2

x~12x! Gce1e2
i

2(
k

ce1e2
k

j K e1e2:cohUV 1

v*2H0
VUe1e2:cohL

i

1
a

2p24E dy

2yE d2q'F S m2

~ke•q!
1

m2

~kē•q!
D u~DP12ke•q!u~DP12kē•q!Gce1e2

i
5M2ce1e2

i . ~A14!

The quantity in the square bracket in the third term on the LHS of Eq.~A14! is the coherent state contribution and it can be
calculated by substituting forke•q andkē•q:

ke•q5
x

2y F S q'2
y

x
k'D 21 m2y2

x2 G ,
kē•q5

12x

2y F S q'1
y

12x
k'D 21 m2y2

12x2G . ~A15!

After appropriate changes of the integration variables and on taking the nonrelativistic limit, the coherent state contrib
reduces to

I C5
a

2p2E dy

2yE d2q'

8m2

4m2y21q'
2 u„DP12~4m2y21q'

2 !…, ~A16!

which actually is an integral over the region defined in Eq.~28!:

I C5
a

2p2E
Dc

dy

2yE d2q'

8m2

4m2y21q'
2 . ~A17!

SubstitutingI C into Eq. ~A14!, we obtain Eq.~27!.
.
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