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Classical transport theory is used to study the response of a non-Abelian plasma at zero temperature an
chemical potential to weak color electromagnetic fields. In this article the parallelism between the trans
phenomena occurring in a non-Abelian plasma at high temperature and high density is stressed. In part
it is shown that at high densities it is also possible to relate the transport equations to the zero-curv
condition of a Chern-Simons theory in three dimensions, even when quarks are not considered ultrarelati
The induced color current in the cold plasma can be expressed as an average over angles, which repres
directions of the velocity vectors of quarks having Fermi energy. From this color current it is possible
computen-point gluonic amplitudes, with arbitraryn. It is argued that these amplitudes are the same as t
ones computed in the high chemical potential limit of QCD, which are then called hard dense loops.
agreement between the two different formalisms is checked by computing the polarization tensor of QED
to finite density effects in the high density limit.@S0556-2821~96!05610-X#

PACS number~s!: 12.38.Mh, 11.10.Kk, 12.20.Ds, 51.10.1y
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I. INTRODUCTION

Quantum chromodynamics~QCD! undergoes a phase
transition at high temperature and/or high density@1#. Above
a critical temperature and critical chemical potential, qua
and gluons are no longer confined. Those extreme regim
are expected to be found in nature in some cosmological
astrophysical settings~e.g., in the interior of neutron stars! or
in heavy ion collisions. These are the regimes of QCD tha
am going to discuss here.

As is well known now, naive perturbative analysis of hig
temperature QCD fails completely. This was realized wh
physical quantities, such as the gluonic damping rate, w
found to be gauge dependent when computed following
standard rules of quantum field theories at finite temperatu
The connection between expanding in loops and expand
in the gauge coupling constantg is not valid in this regime.
As was realized by Braaten and Pisarski@2#, as well as by
Frenkel and Taylor@3#, there are one-loop corrections, th
hard thermal loops~HTL’s!, which are as important as tre
amplitudes, and they have to be resummed and included c
sistently in all computations to nontrivial order ing. Those
hard thermal loops arise only forsoft external momenta
(;gT) and hard internal loop momentum (;T), where
g!1, andT denotes the plasma temperature. There is
infinite set of HTL’s which possess very interesting prope
ties, such as obeying QED-like Ward identities and bei
gauge independent@3,4#.

The hard thermal loop resummation techniques that w
proposed in@2# were successful in providing one-loop gaug
independent physical answers. Much related work has b
done since their discovery~see Refs.@5,6# for a review and
references!, but here I shall only review different approache
to HTL’s.

Taylor and Wong@7# were able to construct an effectiv
action for hard thermal loops just by solving the gauge
variance condition imposed on that effective action. Efra
and Nair @8,9# have related that condition to the zero
53/96/53~10!/5866~8!/$10.00
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curvature equation of a Chern-Simons theory in~211!-
dimensional space at zero temperature, providing therefo
nonthermal framework to study a thermal effect. This ide
tification has been used by Jackiw and Nair@10# to derive a
non-Abelian generalization of the Kubo formula.

Other derivations of the effective action of hard therm
loops can be found in the literature. Blaizot and Iancu@11#
could extract the hard thermal loop effective action by stud
ing the truncated Schwinger-Dyson hierarchy of equatio
after performing a consistent expansion in the gauge c
pling constant and obtaining quantum kinetic equations
the QCD induced color current. Jackiw, Liu, and Lucche
@12# have also shown that HTL’s can be derived from th
Cornwall-Jackiw-Tomboulis composite effective action@13#,
after requiring its stationarity.

A different derivation of the effective action of HTL’s has
been given in@14#, which does not make use of quantum
field theory, as opposed to all previous approaches. H
thermal effects are exclusively due to thermal fluctuation
and that is why a classical formalism to describe them w
developed in@14#. Just by writing the classical transpor
equations for non-Abelian particles@15#, and using an ap-
proximation scheme that respects the non-Abelian gau
symmetry of the transport equations, the effective action
the infinite set of HTL’s of QCD could be found.

A similar situation may be expected to arise for QCD
high density and zero temperature@16#. Actually, HTL’s
were also studied when a chemical potential was included
quarks, and it was concluded that the only effect of t
chemical potential was in modifying the Debye mass by
term proportional to the chemical potential@17,18#. There-
fore, at very high density or chemical potentialm and zero
temperature, one also may expect that naive one-loop c
putations are incomplete, as one-loop diagrams withsoft
(;gm) external momenta, and quarks running inside t
loop with Fermi energy, are comparable to tree amplitud
and therefore they would have to be resummed. I shall c
5866 © 1996 The American Physical Society
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53 5867HARD DENSE LOOPS IN A COLD NON-ABELIAN PLASMA
those diagrams hard dense loops~HDL’s! in analogy to the
thermal case.

The purpose of this article is to give a derivation of th
hard dense loops of gluonic amplitudes of QCD by using t
classical transport formalism. It is expected that quant
field computations of QCD at high chemical potential w
reproduce the transport results, exactly as happens in
high temperature case, although I do not attempt here
check complete agreement between these two different
malisms.

Although only gluonic amplitudes are studied in this a
ticle, it should be expected that hard dense loops also a
for Feynman diagrams with external quark legs. I do not ta
into consideration those diagrams in the present article,
refer to a recent publication@19# which considers the one-
loop self-energy of the electron for QED at finite density f
those kinds of HDL’s.

I have structured this article as follows. In Sec. II th
classical transport theory for a non-Abelian plasma is brie
reviewed. In Sec. III A it is studied how a cold quark plasm
initially in equilibrium reacts to weak external color electro
magnetic fields, and the transport equation that the indu
color current density obeys are written. The parallelism b
tween the high temperature and high density cases is cle
established, and I also comment on the connection betw
the transport equation and the Chern-Simons eikonal. In S
III B the transport equation in momentum space is solve
using recent results of Ref.@20#. In Sec. III C the polarization
tensor in the quark plasma is given, and it is prescribed h
to derive higher-order point amplitudes. As a check of t
agreement between the transport approach and the
chemical potential limit of QCD, the polarization tensor o
QED due to finite density effects is computed in Sec. IV, a
from it the HDL corresponding to that graph is extracte
which coincides with the one of QCD, up to some col
factors. Complete agreement is found between the two
ferent computations. On this result, I base my expectat
that complete agreement for highern-point gluonic ampli-
tudes should also be true. Finally, I present my conclusio

II. CLASSICAL TRANSPORT THEORY
FOR A NON-ABELIAN PLASMA

The classical transport theory for the QCD plasma w
developed in@15# and further studied in@14#, and here I will
briefly review it. Consider a particle bearing a non-Abelia
SU(N) color chargeQa,a51, . . . ,N221, traversing a world
line x̂a(t). The Wong equations@21# describe the dynamica
evolution of the variablesxm, pm, andQa ~the effect of spin
is neglected here!:

m
dx̂m~t!

dt
5 p̂m~t!, ~2.1a!

m
dp̂m~t!

dt
5gQ̂a~t!Fa

mn~ x̂! p̂n~t!, ~2.1b!

m
dQ̂a~t!

dt
52g fabcp̂m~t!Am

b ~ x̂!Q̂c~t!, ~2.1c!
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where f abc are the structure constants of the group,Fa
mn de-

notes the field strength,g is the coupling constant, and I set
c5\5kB51 henceforth.

The main difference between the equations of electroma
netism and the Wong equations, apart from their intrinsi
non-Abelian structure, comes from the fact that color charge
precess in color space, and therefore they are dynamical va
ables. Equation~2.1c! guarantees that the color current asso
ciated with each colored particle,

j m
a ~x!5gE dt p̂m~t!Q̂a~t!d~4!

„x2 x̂~t!…, ~2.2!

where (x̂m,p̂m,Q̂a) are solutions of the equations of motion,
is covariantly conserved,

~Dm j
m!a~x!5]m j a

m~x!1g fabcAm
b ~x! j mc~x!50, ~2.3!

therefore preserving the consistency of the theory.
The usual (x,p) phase space is thus enlarged to

(x,p,Q) by including color degrees of freedom for colored
particles. Physical constraints are enforced by insertingd
functions in the phase-space volume elementdxdPdQ. The
momentum measure

dP5
d4p

~2p!3
2u~p0!d~p22m2! ~2.4!

guarantees positivity of the energy and on-shell evolution
The color charge measure enforces the conservation of t
group invariants, e.g., for SU~3!,

dQ5d8Qd~QaQ
a2q2!d~dabcQ

aQbQc2q3!, ~2.5!

where the constantsq2 andq3 fix the values of the Casimirs
anddabc are the totally symmetric group constants. The colo
charges which now span the phase space are dependent v
ables. These can be formally related to a set of independe
phase-space Darboux variables@14#. For the sake of simplic-
ity, we will use the standard color charges.

The one-particle distribution functionf (x,p,Q) denotes
the probability for finding the particle in the state (x,p,Q).
In the collisionless case, it evolves in time via a transpo
equationd f /dt50. Using the equations of motion~2.1!, it
becomes the Boltzmann equation@15#

pmF ]

]xm2gQaFmn
a ]

]pn
2g fabcAm

bQc
]

]Qa
G f ~x,p,Q!50.

~2.6!

A complete, self-consistent set of non-Abelian Vlasov
equations for the distribution function and the mean colo
field is obtained by augmenting the Boltzmann equation wit
the Yang-Mills equations:

@DnF
nm#a~x!5Jma~x!5 (

species
(

helicities
j ma~x!, ~2.7!

where the color currentj ma(x) for each particle species is
computed from the corresponding distribution function as
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5868 53CRISTINA MANUEL
j ma~x!5gE dPdQpmQaf ~x,p,Q!. ~2.8!

Notice that if the particle’s trajectory in phase space we
known exactly, then Eq.~2.8! could be expressed as in Eq
~2.2!. Furthermore, the color current~2.8! is covariantly con-
served, as can be shown by using the Boltzmann equa
@14#.

The Wong equations~2.1! are invariant under the finite
gauge transformations~in matrix notation!

x̄m5xm, p̄m5pm, Q̄5UQU21,
~2.9!

Ām5UAmU
212

1

g
U

]

]xm
U21,

whereU5U(x) is a group element.
It can be shown@14# that the Boltzmann equation~2.6! is

invariant under the above gauge transformation if the dis
bution function behaves as a scalar,

f̄ ~ x̄,p̄,Q̄!5 f ~x,p,Q!. ~2.10!

To check this statement it is important to note that unde
gauge transformation the derivatives appearing in the Bo
mann equation~2.6! transform as

]

]xm 5
]

] x̄m 22TrH F S ]

] x̄m
U DU21,Q̄G ]

]Q̄ J ,
]

]pm 5
]

] p̄m ,
]

]Q
5U21

]

]Q̄
U, ~2.11!

that is, they are not gauge invariant by themselves. Only
specific combination of the spatial and color derivatives th
appears in~2.6! is gauge invariant.

The color current~2.8! transforms under~2.9! as a gauge
covariant vector:

j̄ m~ x̄!5gE dPdQpmUQU21f ~x,p,Q!5Uj m~x!U21.

~2.12!

This is due to the gauge invariance of the phase-space m
sure and to the transformation properties off .

III. INDUCED COLOR CURRENT
IN A COLD QUARK PLASMA

A. Transport equation for the color current

In this section the soft disturbances of a completely d
generate quark plasma are studied. The quark plasma at
temperature and finite density is initially in equilibrium. I
the absence of a net color field, and assuming isotropy
color neutrality, the equilibrium distribution function for thi
system is, up to a normalization constant,

f ~0!~p!5u~m2p0!, ~3.1!

whereu is the step function, andm is the chemical potential.
That is, all particle states are occupied with occupancy nu
ber 1 up to the Fermi energyp05m.
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Now I study how the quark plasma reacts to weak exte
nal color electromagnetic fields. I consider that the chemic
potential is large,m@mc, wheremc is the critical chemical
potential, while the color fields aresoftor of the scale order
Fmn;gm2, whereg is the coupling constant which is as-
sumed to be small. The distribution function can be ex
panded in powers ofg as

f5 f ~0!1g f ~1!1g2f ~2!1••• . ~3.2!

The Boltzmann equation~2.6! for f (1) reduces to

pmS ]

]xm 2g fabcAm
bQc

]

]QaD f ~1!~x,p,Q!

5pmQaFmn
a ]

]pn
f ~0!~p0!. ~3.3!

Notice that a complete linearization of the equation inAm
a

would break the gauge invariance of the transport equatio
which is preserved in this approximation. But notice as we
that this approximation tells us thatf (1) also carries ag de-
pendence.

The equation that the color current densityJa
m(x,p) obeys

can be obtained by multiplying~3.3! by pm andQa and then
integrating over the color charges. For quarks in the fund
mental representation

E dQQaQb5
1

2
dab . ~3.4!

Taking also into account

d

dp0
u~m2p0!52d~m2p0!, ~3.5!

one finally gets, after summing over helicities,

@p•DJm~x,p!#a52g2pmpnFn0
a ~x!d~m2p0!. ~3.6!

The total induced current density can be obtained after su
ming over the different contributions due to different quar
flavors. In order to simplify the notation I will not write the
quark flavor index in the color current, chemical potential
masses, etc., and it should be understood that a sum o
quark flavors is to be taken in all final formulas.

From Eq.~3.6! we see that only quarks which are on th
Fermi surface contribute to the induced color current in th
plasma. Quarks which are inside the Fermi sea are block
from reacting to the presence of external fields due to t
Pauli exclusion principle. Furthermore, the plasma only r
sponds to the presence of external color electric fields, a
that is why only those get a screening mass in this approa

In order to solve~3.6!, one first divides the equation by
p0 , and then integrates it overp0 andupu, using the momen-
tum measuredP ~2.4!. Due to thed function in the momen-
tum measure and thed function in the right-hand side~RHS!
of Eq. ~3.6!, Ja

m(x,p) is only nonvanishing when
p05Aupu21m25m. Then one can write Eq.~3.6! as
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@v•DJm~x,v !#a52M2vmvrFr0
a ~x!, ~3.7!

with

M25g2
mpF
2p2 , ~3.8!

where pF5Am22m2 is the Fermi momentum and
vm5„1,(pF /m)v…, and I have defined

J a
m~x,v !5E upu2dupudp0

2p2 2u~p0!d~p22m2! Ja
m~x,p!,

~3.9!

so that the total color current is obtained by integrating ov
all directions of the unit vectorv,

Ja
m~x!5E dV

4p
J a

m~x,v !. ~3.10!

Equation ~3.7! has the same structure as the transp
equation that is obeyed by the induced color density quan
J a

m(T)(x,V) in a softly perturbed hot quark-gluon plasm
@14#:

@V•DJm~T!~x,V!#a52mD
2VmVrFr0

a ~x!, ~3.11!

wheremD
2 5g2T2(N1Nf /2)/3 is the Debye mass squared fo

an SU(N) non-Abelian group, withNf flavors of quarks, and
Vm is a lightlike four-vector.

Equations~3.7! and ~3.11! exhibit a similar structure, al-
though they correspond to two different physical situation
In the case of a hot quark-gluon plasma the contribution
the induced color current comes frombothquarks and gluons
which are thermalized at a temperatureT. This is reflected in
the coefficient of the RHS of~3.11!, the Debye mass
squared. For very high temperatures, we would expect t
quarks in the plasma move very fast, and it is a good
proximation to consider that their velocities are ultrarelati
istic, as long asT@m, wherem is the quark mass, which is
then neglected. Gluons travel at light velocities, howev
without any approximation. These are the reasons why
vectorVm in Eq. ~3.11! is a lightlike four-vector. In the zero-
temperature quark plasma that I am considering here th
are noreal gluons, and that is why they do not contribute
the induced color current. Furthermore, only quarks w
Fermi energy contribute to that current. For very lar
chemical potential, it can be a good approximation to negl
quark masses ifm@m. If quark masses are neglected, the
pF5m, and Eq.~3.7! coincides with Eq.~3.11!, except for
the the factorsmD

2 andM2. I have decided, however, to kee
corrections due to quark masses, which is justified
m.m@gm. Thereforevm is not a lightlike vector in this
more general situation where massive quarks are conside

Before solving Eq.~3.7! I would like to comment on the
connection between this transport problem and the Che
Simons eikonal. Efraty and Nair@8,9# have shown that the
gauge invariance condition for the generating functional
hard thermal loops,GHTL , of QCD can be formally related to
the zero-curvature condition of a Chern-Simons theory in
~211!-dimensional space-time at zero temperature. Furth
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more, it has been shown that this condition can be obtain
from the transport equation~3.11! after assuming
Ja

m(T)(x)52dGHTL@A#/dAm
a (x). The same identifications

can be done for the cold quark plasma, after assuming
the induced color current can be obtained from a generat
functional. The same steps that were necessary to show
identification for the thermal problem can be repeated h
with the only main difference thatvm is not a lightlike vector
when quark masses are not neglected.

For completeness I present that identification below. O
first defines a new current density

J̃ma~x,v !5Jma~x,v !1M2vmA0
a~x!. ~3.12!

ThenJ̃ma obeys the equation

@v•DJ̃m~x,v !#a5M2vm
]

]x0
@v•Aa~x!#. ~3.13!

Now one assumes thatJ̃ a
m can be derived from a gener

ating functional as

J̃ a
m~x,v !5

dW~A,v !

dAm
a ~x!

. ~3.14!

Equation~3.13! then implies thatW(A,v) depends only on
A1
a [(1/A2 f ) v•Aa, with f5pF/m, i.e., W(A,v)

5W(A1), andJ̃ a
m5@dW(A1)/dA1

a ]vm. If I now define

x15A f

2S x011

f
v•xD , ]15

1

A2 f
v•],

~3.15!

x25A f

2S x021

f
v•xD , ]25

1

A2 f
v̄•],

with v̄[„1,2(pF /m)v…, and

Fa5
dW~A1!

dA1a
2
1

2
M2A1

a , ~3.16!

then, after a Wick rotation to Euclidean spac
x1→z, x2→ z̄, A1→Az , and the identification
Fa5A2/ f (1/M2)az̄

a, Eq. ~3.13! is translated into@in matrix
notation, and using anti-Hermitian generators in the fund
mental representation of SU(N)#

]za z̄2] z̄Az1g@Az ,a z̄#50, ~3.17!

which corresponds to the zero-curvature condition of
Chern-Simons theory in~211! Euclidean dimensional space
time, in the gaugeA050.

Solutions of Eq.~3.17! are provided by the Chern-Simon
eikonal and were studied long ago@22#. The generating func-
tional of the induced color current in a cold quark plasma c
then be expressed in terms of the Chern-Simons eiko
exactly as in the case of the hot quark-gluon plasma.
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In spite of the very interesting connection between the
in principle, unrelated problems, I will not pursue the Cher
Simons approach to the transport equations in the remain
part of this article.

B. Solution to the transport equation

Equation~3.7! can be solved after inverting thev•D op-
erator and imposing proper boundary conditions. Then
solution of ~3.7! is expressed in terms of link operator
@7,11#. In this subsection, I prefer to solve the transport equ
tion by going to momentum space exactly as has been d
for Eq. ~3.11! in Ref. @20#. Writing

J a
m~k,v !5E d4x

~2p!4
eik•xJ a

m~x,v !, ~3.18!

Eq. ~3.7! becomes in momentum space

v•kJ a
m~k,v !1 ig f abcE d4q

~2p!4
v•Ab~k2q!Jmc~q,v !

52M2vmFv•kA0a~k!2k0v•A
a~k!

1 ig f abcE d4q

~2p!4
v•Ab~k2q!A0

c~q!G . ~3.19!

Now, after assuming thatJ a
m(k,v) can be expressed as a

infinite power series in the gauge fieldAm
a (k), Eq. ~3.19! can

be solved iteratively for each order in the power series. R
tarded boundary conditions are imposed by the prescript
p0→p01 i e, with e→01, which should be understood in a
following formulas.

The first-order solution is

J a
m~1!~k,v !5M2vmS k0 v•Aa~k!

v•k
2Aa

0~k! D . ~3.20!

Inserting~3.20! in ~3.19! allows solving for the second-orde
term in the series, which reads

J a
m~2!~k,v !52 igM2f abc

3E d4q

~2p!4
vmq0

v•Ab~k2q!v•Ac~q!

~v•k!~v•q!
.

~3.21!

Thenth-order term (n.2) can be expressed as a function
the (n21)th one as

J a
m~n!~k,v !52 ig f abcE d4q

~2p!4
v•Ab~k2q!

v•k
J c

m~n21!~q,v !.

~3.22!

The complete expression of the induced color current
the cold quark plasma is thus given by
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Ja
m~x!5E d4k

~2p!4
e2 ik•x(

n51

`

Ja
m~n!~k!

5E dV

4p E d4k

~2p!4
e2 ik•x(

n51

`

J a
m~n!~x,v !. ~3.23!

The color current is then expressed as an average over
three-dimensional unit vectorv, which represents the direc-
tions of the velocity vectors of quarks with Fermi energy.

It should be possible to construct a generating function
GHDL that generates this current by solving

Ja
m~x!52

dGHDL@A#

dAm
a ~x!

. ~3.24!

It is first required to check thatJa
m(x) obeys integrability

conditions, as has been done in Ref.@7# for the massless and
thermal case.

C. Polarization tensor

The polarization tensorPab
mn can be computed from~3.20!

by using the relation

Ja
m~1!~k!5Pab

mn~k!An
b~k!. ~3.25!

It reads:

Pab
mn~k!5M2S 2gm0gn01k0E dV

4p

vmvn

v•k D dab ,

~3.26!

where we recall thatvm5„1,(pF /m)v…. To avoid the poles in
the above integrand, retarded boundary conditions are im
posed, i.e.,k0→k01 i e.

The polarization tensor~3.26! obeys the Ward identity

kmPab
mn50, ~3.27!

and it is also gauge independent due to the gauge invarian
of the transport formalism.

The real part of the polarization tensor is

RePab
00~k0 ,k!5dabP l~k0 ,k!, ~3.28a!

RePab
0i ~k0 ,k!5dabk0

ki

uku2
P l~k0 ,k!, ~3.28b!

RePab
i j ~k0 ,k!5dabF S d i j2

kikj

uku2DP t~k0 ,k!

1
kikj

uku2
k0
2

uku2
P l~k0 ,k!G , ~3.28c!

where

P l~k0 ,k!5M2S m

pF

k0
2uku

lnUmk01pFuku
mk02pFukuU21D , ~3.29a!
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P t~k0 ,k!52M2
k0
2

uku2 F11
1

2 S pFm uku
k0

2
m

pF

k0
uku D lnUmk01pFuku

mk02pFukuUG . ~3.29b!

The imaginary part of the polarization tensor describ
damping in the quark plasma, explicitly:

ImPab
mn~k0 ,k!52dabM

2pk0E dV

4p
vmvndS k02 pF

m
k•vD .
~3.30!

My result for the polarization tensor agrees with the o
computed in Ref.@23# using classical transport theory for
quark-gluon plasma at finite temperature and baryon den
in the zero-temperature limit.

Notice that if quark masses are neglected, thenpF5m,
and then~3.26! reduces to the same polarization tensor as
one found in a hot quark-gluon plasma@15,23,14#, with a
different screening mass.

Higher ordern-point functions can be found as

d~4!S k2 (
i51

i5n21

qi D Gab1•••bn21

mn1•••nn21~k,q1 , . . . ,qn21!

5
dJa

m~k!

dAn1

b1~q1!•••dAnn21

bn21~qn21!
U
A

r
c50

, ~3.31!

where thed function on the RHS of~3.31! accounts for
conservation of momentum, and permutations of indices a
momentum have to be taken.

Due to the fact that the induced color current can be e
pressed as an infinite power series in the gauge fieldAm

a , it is
obvious that there aren-point gluonic amplitudes, with arbi-
trary n, from 2 to`. All these gluonic amplitudes describ
the polarizability properties of the non-Abelian plasma.

IV. THE POLARIZATION TENSOR OF QED
AT FINITE DENSITY

In this section the computation of the polarization tens
of QED due to the presence of a background density of el
trons is presented, and from it the HDL corresponding to t
amplitude in the massless case is extracted. This computa
has been previously performed by several authors in Euc
ean space-time; see Refs.@24–27#, and also@28# and@29# for
the nonrelativistic case. Here I review how this computati
is performed in Minkowski space-time when retarded boun
ary conditions are imposed. I find it more appropriate
carry out this computation in Minkowski space-time to o
tain the correct analytic properties of the retarded polari
tion tensor.

In the presence of a finite density of electrons the us
definition of creation and annihilation operators for particl
and holes, or antiparticles, of the vacuum has to be modifi
@29#. The ground stateuF0& of the system is constituted by
the Fermi sea, that is, by electrons occupying all parti
states according to the Pauli exclusion principle up to t
Fermi energyp05m. Then one defines a creation operat
es

ne
a
sity

the

nd

x-

e

or
ec-
hat
tion
lid-

on
d-
to
b-
za-

ual
es
ed

cle
he
or

ba
†(p) that acting on the ground state creates one parti
with energyp0.m, and the creation operatorda

†(2p), for
p0,m, which creates a hole, which may be interpreted
the absence of one electron in the Fermi sea. The co
sponding particle and hole destruction operators annihil
the ground state

ba~p!uF0&5da~p!uF0&50, ~4.1!

since the ground state does not contain electrons with en
gies above the Fermi energy or holes inside the Fermi se

The usual averages of products of creation and annih
tion operators that are required to compute Feynman am
tudes are then modified from their vacuum values, explicit

^F0uba~p!ba8
†

~p!uF0&5u~p02m!da,a8. ~4.2!

Then one can compute the Feynman propagator to get@29,5#

iSF~x,y!5^F0uT c~x!c̄~y!uF0&

5u~x02y0!E d3p

~2p!3
1

2p0
@~g•p1m!

3u~p02m!e2 ip~x2y!#2u~y02x0!E d3p

~2p!3
1

2p0

3@~g•p1m!u~m2p0!e
2 ip~x2y!

1~g•p2m!eip~x2y!# ~4.3!

wherep05Aupu21m2. Notice that in the limitm→0, ~4.3!
agrees with the Feynman propagator in the vacuum.

In order to compute the polarization tensor of QED in th
presence of a background density of electrons, the propa
tor ~4.3! is needed. Retarded boundary conditions are tak
into account by introducing convergence factorseex0,
e2ey0, with e→01, as needed when going from configura
tion to momentum space~see Refs.@9# and @10# for explicit
details!. Taking that into account, one finds for the chemic
potential dependent part of the retarded polarization tenso
the massless case

Pmn~k!5g2E d3q

~2p!3
1

2p0

1

2q0
F @u~m2q0!

2u~m2p0!#
Tmn~p,q!

p02q02k02 i e

2u~m2p0!
Tmn~p,q8!

p01q02k02 i e

2u~m2q0!
Tmn~p8,q!

p01q01k01 i eG ~4.4!

where p5(p0 ,p), p85(p0 ,2p), q5(q0 ,q),
q85(q0 ,2q), with p05upu, q05uqu, and p5q1k. We
have further defined

Tmn~p,q![Tr@gmg•pgng•q#. ~4.5!
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In the high chemical potential limit, one conside
k0 ,uku!m. Then one can make the approximations@3,5#

Tmn~p,q!;8q0
2VmVn, ~4.6!

Tmn~p,q8!;Tmn~p8,q!;4q0
2~VmV̄n1V̄mVn22gmn!,

~4.7!

p02q02k0;2k•V, ~4.8!

p01q06k0;2q0 , ~4.9!

u~m2q0!2u~m2p0!;V•kd~m2q0!, ~4.10!

whereV5(1,q/q0) and V̄5(1,2q/q0), to finally get

Pmn~k!52g2E d3q

~2p!3 S V̄mVn1VmVn22k0
VmVn

V•k1 i e D
3d~m2q0!, ~4.11!

which after performing the integral over the modulus ofuqu
reduces to the same polarization tensor~3.26! for the Abelian
and massless case.

V. CONCLUSIONS

In this paper classical transport theory has been used
study the response of a completely degenerate non-Abe
plasma at zero temperature to weak color electromagn
fields. An approximation scheme for the classical transp
equations that respects their non-Abelian gauge symm
has been used, and from it the induced color current in
non-Abelian plasma has been obtained.

The study of the transport phenomena occurring at h
density in a quark plasma that I have carried out here is qu
similar to the one that was done in@14# for a QCD plasma at
high temperature, and I direct the reader to consult that
erence. Throughout this paper the parallelism that these
different problems exhibit has been stressed, as well as t
differences.

At both high temperature and high density, the color co
stituents of the non-Abelian plasma are not confined, a
that is why one can model color degrees of freedom clas
cally.

The transport equations obeyed by the induced color c
rent for a non-Abelian plasma at high temperature and
high density present a similar structure. If quark masses
neglected, then the two transport equations are essentially
same, except for the following. At high temperatureT, both
quarks and gluons which are thermalized at the tempera
T contribute to the induced color current in the plasma.
high chemical potential, only quarks on the Fermi surfa
contribute to that current, as there are noreal gluons at zero
temperature. Then, in that situation, the only difference b
tween the two transport equations and their solutions com
from the screening masses squared, which
mD
2 5g2T2(N1Nf /2)/3 and M25g2Nfm

2/2p2, respec-
tively, for an SU(N) theory withNf flavors of quarks~and
assuming that for all quark flavorsm f5m).
rs

to
lian
etic
ort
etry
the

igh
ite

ref-
two
heir

n-
nd
si-

ur-
at
are
the

ture
At
ce

e-
es

are

I have decided to keep corrections due to quark masses
the present study. The solution to the transport equation c
be expressed in terms of an average of a three-dimensio
unit vectorv, which represents the directions of the velocit
vectors of quarks which have Fermi energy.

It has been also shown that the solution of the transpo
equation can be expressed in terms of the Chern-Simons
konal, even for massive quarks. Even though one cann
define natural light-cone coordinates when quarks are n
considered ultrarelativistic, we have seen that it is still po
sible to relate the transport equation to the zero-curvatu
condition of a Chern-Simons theory in~211! Euclidean
space-time. The transport equation only depends on the p
jections of the vector gauge fields over the four vectorsvm

and v̄m defined in Sec. III A, and this is enough to define
two-dimensional plane where the zero-curvature condition
a Chern-Simons theory can be recognized, after proper ide
tifications.

I have presented a systematic way of computingn-point
gluonic amplitudes using the solution of the classical tran
port equation, and I claim that these results should agree w
the high density limit of a quantum field theory approach
Complete agreement is found for the polarization tens
(n52) in the massless case, and complete agreement sho
be expected for highern-point functions, although I have not
checked this statement, nor am I aware of the computation
those amplitudes in the literature.

Therefore, it must be claimed that a Braaten-Pisarski r
summation procedure should also be used in QCD with hi
chemical potential, as was generally expected, although
more detailed quantum field theoretical study should be ca
ried out to see exactly how this resummation is implemente
I think that it is interesting to have this alternative computa
tion of HDL’s, specially due to the simplicity and transparen
physical interpretation of the classical transport formalism

Finally, one should mention that although the respon
theories of the high temperature limit~at zero chemical po-
tential! and the high chemical potential limit~at zero tem-
perature! of QCD seem almost identical, and one could na
ively conclude that in both situations static color electri
fields are exponentially damped~at least at leading order!,
this is not so. Kapusta and Toimela@30# have pointed out
that the static potential between two static charges in
plasma at zero temperature becomes oscillatory and vanis
as a power at large distances due to the existence of a sh
Fermi surface. This effect was known as Friedel oscillatio
in nonrelativistic quantum theory@29#.

A further study of the high density limit of QCD should
be carried out, and I postpone that study to a further pub
cation.

ACKNOWLEDGMENTS

I am specially grateful to E. Braaten, for suggesting to m
the interest of pursuing this study, and to R. Jackiw, for ve
enlightening discussions. I am also grateful for the commen
on an early version by this manuscript of D. J. Castan˜o, F.
Guerin, and C. Lucchesi, as well as instructive electroni
mail discussions with Y. Lozano. This work is supported i
part by funds provided by the Ministerio de Educacio´n y
Ciencia, Spain, and by U.S. Department of Energy~D.O.E.!
under cooperative agreement No. DE-FC02-94ER40818.



p-

t

53 5873HARD DENSE LOOPS IN A COLD NON-ABELIAN PLASMA
@1# J.I. Kapusta,Finite-Temperature Field Theory~Cambridge
University Press, Cambridge, England, 1989!.

@2# R. Pisarski, Phys. Rev. Lett.63, 1129~1989!; E. Braaten and
R. Pisarski, Nucl. Phys.B337, 569 ~1990!.

@3# J. Frenkel and J.C. Taylor, Nucl. Phys.B334, 119 ~1990!.
@4# E. Braaten and R. Pisarski, Nucl. Phys.B339, 310 ~1992!.
@5# V.P. Nair, ‘‘Chern-Simons and WZNW Theories and th

Quark-Gluon Plasma,’’ Lectures at Mt. Sorak Symposium, R
port No. CCNY-HEP-94-10 and hep-th/9411220~unpub-
lished!.

@6# R. Kobes, ‘‘Hard Thermal Loop Resummation Techniques
Hot Gauge Theories,’’ in IV International Workshop on The
mal Field Theories, Dalian, China, Report No. hep-p
9511208~unpublished!.

@7# J.C. Taylor and S. Wong, Nucl. Phys.B346, 115 ~1990!.
@8# R. Efraty and V.P. Nair, Phys. Rev. Lett.68, 2891~1992!.
@9# R. Efraty and V.P. Nair, Phys. Rev. D47, 5601~1993!.

@10# R. Jackiw and V.P. Nair, Phys. Rev. D48, 4991~1993!.
@11# J.-P. Blaizot and E. Iancu, Phys. Rev. Lett.70, 3376 ~1993!;

Nucl. Phys.B417, 608 ~1994!.
@12# R. Jackiw, Q. Liu, and C. Lucchesi, Phys. Rev. D49, 6787

~1994!.
@13# J.M. Cornwall, R. Jackiw, and E. Tomboulis, Phys. Rev. D10,

2428 ~1974!.
@14# P.F. Kelly, Q. Liu, C. Lucchesi, and C. Manuel, Phys. Re

Lett. 72, 3461~1994!; Phys. Rev. D50, 4209~1994!.
@15# U. Heinz, Phys. Rev. Lett.51, 351~1983!; H.-Th. Elze and U.

Heinz, Phys. Rep.183, 81 ~1989!.
@16# E. Braaten, ‘‘Effective Field Theories for Plasmas at all Tem
e
e-

in
r-
h/

v.

-

peratures and Densities,’’ in III International Workshop on
Thermal Field Theories, Winnipeg, Canada, Report No. he
ph/9303261~unpublished!.

@17# E. Braaten and R. Pisarski, Phys. Rev. D45, 1827~1992!.
@18# H. Vija and M.H. Thoma, Phys. Lett. B342, 212 ~1995!.
@19# J.-P. Blaizot and J.-Y. Ollitrault, Phys. Rev. D48, 1390

~1993!.
@20# X.-F. Zhang and J.-R. Li, ‘‘The Non-Abelian Generation of the

Kubo Formula from Kinetic Theory,’’ Hua-Zhong Normal
University Report No. HZPP-95-08~unpublished!; ‘‘Non-
Abelian Generation of the Kubo Formula and the Multiple
Time Scale Method,’’ Hua-Zhong Normal University Repor
No. HZPP-95-07~unpublished!.

@21# S. Wong, Nuovo Cimento A65, 689 ~1970!.
@22# D. Gonzales and A. Redlich, Ann. Phys.~N.Y.! 169, 104

~1986!; G. Dunne, R. Jackiw, and C. Trugenberger,ibid. 149,
197 ~1989!.

@23# U. Heinz, Ann. Phys.~N.Y.! 161, 48 ~1985!; 168, 148 ~1986!.
@24# B.A. Freedman and L.D. McLerran, Phys. Rev. D16, 1130

~1978!; 16, 1147~1978!; 16, 1169~1978!.
@25# J. Kapusta, Nucl. Phys.B148, 461 ~1979!.
@26# T. Toimela, Int. J. Theor. Phys.24, 901 ~1985!.
@27# E.V. Shuryak, Phys. Rep.61, 71 ~1980!.
@28# A. Abrikosov, L. Gor’kov and I. Dzyaloshinskii,Quantum

Field Theoretical Methods in Statiscal Mechanics~Pergamon
Press, Oxford, 1965!.

@29# A.L. Fetter and J.D. Walecka,Quantum Theory of Many Par-
ticle Systems~McGraw-Hill, New York, 1971!.

@30# J. Kapusta and T. Toimela, Phys. Rev. D37, 3731~1988!.


