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Classical transport theory is used to study the response of a hon-Abelian plasma at zero temperature and high
chemical potential to weak color electromagnetic fields. In this article the parallelism between the transport
phenomena occurring in a non-Abelian plasma at high temperature and high density is stressed. In particular,
it is shown that at high densities it is also possible to relate the transport equations to the zero-curvature
condition of a Chern-Simons theory in three dimensions, even when quarks are not considered ultrarelativistic.
The induced color current in the cold plasma can be expressed as an average over angles, which represent the
directions of the velocity vectors of quarks having Fermi energy. From this color current it is possible to
computen-point gluonic amplitudes, with arbitrany. It is argued that these amplitudes are the same as the
ones computed in the high chemical potential limit of QCD, which are then called hard dense loops. The
agreement between the two different formalisms is checked by computing the polarization tensor of QED due
to finite density effects in the high density limf§0556-282(96)05610-X]

PACS numbes): 12.38.Mh, 11.10.Kk, 12.20.Ds, 51.1y

I. INTRODUCTION curvature equation of a Chern-Simons theory (& 1)-
dimensional space at zero temperature, providing therefore a
Quantum chromodynamic$éQCD) undergoes a phase nonthermal framework to study a thermal effect. This iden-
transition at high temperature and/or high denflfy Above tification has been used by Jackiw and Ndi@] to derive a
a critical temperature and critical chemical potential, quarksion-Abelian generalization of the Kubo formula.
and gluons are no longer confined. Those extreme regimes Other derivations of the effective action of hard thermal
are expected to be found in nature in some cosmological angops can be found in the literature. Blaizot and lafit]
astrophysical setting®.g., in the interior of neutron starsr  could extract the hard thermal loop effective action by study-
in heavy ion collisions. These are the regimes of QCD that ing the truncated Schwinger-Dyson hierarchy of equations,
am going to discuss here. after performing a consistent expansion in the gauge cou-

As is well known now, naive perturbative analysis of high jing constant and obtaining quantum kinetic equations for
temperature QCD fails completely. This was realized whenpe ‘Gcp induced color current. Jackiw, Liu, and Lucchesi

physical quantities, such as the gluonic damping rate, wer 2] have also shown that HTL's can be derived from the

found to be gauge dependent when _compu_te_d following th ornwall-Jackiw-Tomboulis composite effective act{d3],
standard rules of quantum field theories at finite temperature, S : .
i S ._dfter requiring its stationarity.

The connection between expanding in loops and expanding . L . . ,

: . : S . A different derivation of the effective action of HTL’s has

in the gauge coupling constagtis not valid in this regime. been given in[14], which does not make use of quantum

As was realized by Braaten and PisarEkj, as well as by given 1 » Whi . u quantu
field theory, as opposed to all previous approaches. Hard

Frenkel and Taylof3], there are one-loop corrections, the . )
hard thermal loop$HTL's), which are as important as tree thermal effects are exclusively due to thermal fluctuations,

amplitudes, and they have to be resummed and included cognd that is why a classical formalism to describe them was
sistently in all computations to nontrivial order in Those ~ developed in[14]. Just by writing the classical transport
hard thermal loops arise only fasoft external momenta €duations for non-Abelian particldd 5], and using an ap-
(~gT) and hard internal loop momentum ~+T), where proximation scheme that respects the non-Abelian gauge
g<1, andT denotes the plasma temperature. There is agymmetry of the transport equations, the effective action of
infinite set of HTL’s which possess very interesting proper-the infinite set of HTL's of QCD could be found.
ties, such as obeying QED-like Ward identities and being A similar situation may be expected to arise for QCD at
gauge independei8, 4. high density and zero temperatuf&6]. Actually, HTL's

The hard thermal loop resummation techniques that werwere also studied when a chemical potential was included for
proposed irf 2] were successful in providing one-loop gaugequarks, and it was concluded that the only effect of the
independent physical answers. Much related work has beethemical potential was in modifying the Debye mass by a
done since their discoverigee Refs[5,6] for a review and term proportional to the chemical potent{dl7,18. There-
referencel but here | shall only review different approachesfore, at very high density or chemical potentgaland zero
to HTL's. temperature, one also may expect that naive one-loop com-

Taylor and Wond 7] were able to construct an effective putations are incomplete, as one-loop diagrams sibfi
action for hard thermal loops just by solving the gauge in-(~gu) external momenta, and quarks running inside the
variance condition imposed on that effective action. Efratyloop with Fermi energy, are comparable to tree amplitudes,
and Nair [8,9] have related that condition to the zero- and therefore they would have to be resummed. | shall call
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those diagrams hard dense lodgptDL’s) in analogy to the wheref,, are the structure constants of the groBf,” de-
thermal case. notes the field strengtly is the coupling constant, and | set
The purpose of this article is to give a derivation of thec=#=kg=1 henceforth.
hard dense loops of gluonic amplitudes of QCD by using the The main difference between the equations of electromag-
classical transport formalism. It is expected that quantunhetism and the Wong equations, apart from their intrinsic
field computations of QCD at high chemical potential will nhon-Abelian structure, comes from the fact that color charges
reproduce the transport results, exactly as happens in thsrecess in color space, and therefore they are dynamical vari-
high temperature case, although | do not attempt here tables. Equatiori2.19 guarantees that the color current asso-
check complete agreement between these two different fogiated with each colored particle,
malisms.
Although only gluonic amplitudes are studied in this ar- A . - 4 .
ticle, it should be expected that hard dense loops also arise Jﬂ(x)=gf d7P(NQY( 1)V x—%(7), (2.2
for Feynman diagrams with external quark legs. | do not take
into consideration those diagrams in the present article, angnere &=, p*, Q%) are solutions of the equations of motion,
refer to a recent publicatiofil9] which considers the one- g covariantly conserved,
loop self-energy of the electron for QED at finite density for

those kinds of HDL's. : _ D ()i 4C( v —
D,i".(xX)=4,j%(x)+gf X)j*¢(x)=0, (2.3
| have structured this article as follows. In Sec. Il the (DuI)a(x)=3,15(x) +gTapdA, (X)]*(x) 23

classical transport theory for a non-Abelian plasma is brieﬂytherefore preserving the consistency of the theory
reviewed. In Sec. lll A it is studied how a cold quark plasma The usual &.p) phase space is thus enlérged to
initially in equilibrium reacts to weak external color electro- p,Q) by incluéling color degrees of freedom for colored

magnetic fields, ar_ld the transport _equation that the_induce articles. Physical constraints are enforced by inserting
color current density obeys are written. The parallelism beLﬁ

; . : X unctions in the phase-space volume elendxd PdQ The
tween the high temperature and high density cases is clear| oment
. , um measure
established, and | also comment on the connection between

the transport equation and the Chern-Simons eikonal. In Sec. 4p
[l B the transport equation in momentum space is solved, dP=——7326(py) 8(p>*—m?) (2.9
using recent results of R4R0]. In Sec. Il C the polarization (27)

tensor in the quark plasma is given, and it is prescribed how o )
to derive higher-order point amplitudes. As a check of theQuarantees positivity of the energy and on-shell evolution.

agreement between the transport approach and the higﬂ‘e cqlor qharge measure enforces the conservation of the
chemical potential limit of QCD, the polarization tensor of 9roup invariants, e.g., for S8),

QED due to finite density effects is computed in Sec. IV, and 8 a Abonc

from it the HDL corresponding to that graph is extracted, dQ=d"Q48(QaQ%~02) 8(dapQ°Q°Q°—1q3), (2.9
which coincides with the one of QCD, up to some color ] o
factors. Complete agreement is found between the two difwhere the constant, andqs fix the values of the Casimirs
ferent computations. On this result, | base my expectatio@®Nddap. are the totally symmetric group constants. The color
that complete agreement for highespoint gluonic ampli- ~ ¢harges which now span the phase space are dependent vari-

tudes should also be true. Finally, | present my conclusionsdbles. These can be formally related to a set of independent
phase-space Darboux variabldd]. For the sake of simplic-

ity, we will use the standard color charges.
Il. CLASSICAL TRANSPORT THEORY The one-particle distribution functiof(x,p,Q) denotes
FOR A NON-ABELIAN PLASMA the probability for finding the particle in the state,p,Q).

The classical transport theory for the QCD plasma wadh the collisionless case, it evolves in time via a transport
developed if15] and further studied ifil4], and here I will gquatlondfr/]dr=?. Using the equations of motiof2.1), it
briefly review it. Consider a particle bearing a non-AbelianP&comes the Boltzmann equatifib]

SU(N) color chargeQ?a=1,... N?>—1, traversing a world

line Xx*(7). The Wong equation1] describe the dynamical o 9 Fa 9 f bc O f(x -0.
evolution of the variables*, p#, andQ? (the effect of spin P G~ 9Qa wap, 9 abAuQ 9Qa (x.p.Q)
is neglected hepe (2.9
dxe A complete, self-consistent set of non-Abelian Vlasov
m X*(7) =pH(7), (2.19  €quations for the distribution function and the mean color
dr field is obtained by augmenting the Boltzmann equation with
the Yang-Mills equations:
L S T E R LT
dr a COPAT, ' [DF ) =dx)= 3 > %), (2.7
specieshelicities
dQ*(7) where the color current*?(x) for each particle species is

m

= —gfP%PH(NAL(R)QY7),  (2.19

dr computed from the corresponding distribution function as
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Now | study how the quark plasma reacts to weak exter-

J'“a(X)ng dPdQp'Q%*(x,p,Q). (2.8 nal color electromagnetic fields. | consider that the chemical

potential is largeu> u., where u. is the critical chemical
Notice that if the particle’s trajectory in phase space werepotential, while the color fields aoftor of the scale order
known exactly, then Eq2.8) could be expressed as in Eq. F#,,~g,u2, whereg is the coupling constant which is as-
(2.2). Furthermore, the color curre(®.8) is covariantly con- sumed to be small. The distribution function can be ex-
served, as can be shown by using the Boltzmann equatigpanded in powers af as
[14].
The Wong equation$2.1) are invariant under the finite f=f0+gfM4+g2f@+.... (3.2
gauge transformation@n matrix notation
— _ — - The Boltzmann equatiof®.6) for ) reduces to
x#=x#, pf=pk, Q=UQU™,
(2.9

1% 14
— 1 0 ul _— _ qfabcpaby T | £(1)
A =UA U*l__u_u*l, p IXH gf A,LLQCaQa f (le!Q)
M ld g &X/L
d
whereU =U(x) is a group element. =p*QqaF 5, —— P (po). (3.3
It can be showi14] that the Boltzmann equatigi2.6) is P,
invariant under the above gauge transformation if the distri- ) o -
bution function behaves as a scalar, Notice that a complete linearization of the equauonAljj
o would break the gauge invariance of the transport equation,
f(x,p,Q)=1(x,p,Q). (2.10  which is preserved in this approximation. But notice as well

_ o that this approximation tells us th&t") also carries @ de-
To check this statement it is important to note that under gendence.

gauge transformation the derivatives appearing in the Boltz- The equation that the color current denslg(xyp) Obeys

mann equatior2.6) transform as can be obtained by multiplyin(3.3) by p* andQ, and then
integrating over the color charges. For quarks in the funda-
i_ i _ i -1 (9_ mental representation
== —-2Tr —U|U 5Q ,
ax® 9x IXE IQ
1
g d 9 _ut d - f dQQaQb=7% Jap- (3.9
g QY Y B

. . ) Taking also into account
that is, they are not gauge invariant by themselves. Only the

specific combination of the spatial and color derivatives that d
appears in2.6) is gauge invariant. — O(pu—Pg)=— 8(u—Po), (3.5
The color current2.8) transforms undef2.9) as a gauge dpo

covariant vector: ) . o
one finally gets, after summing over helicities,

F‘(X_)Igf dPdQPUQU™(x,p,Q)=Uj*(x)U"".
(2.12

This is due to the gauge invariance of the phase-space mey‘e total induced current density can be obtained after sum-
sure and to the transformation propertiesf of ming over the different contributions due to different quark

flavors. In order to simplify the notation I will not write the
quark flavor index in the color current, chemical potentials,
lll. INDUCED COLOR CURRENT masses, etc., and it should be understood that a sum over
IN'A COLD QUARK PLASMA quark flavors is to be taken in all final formulas.
A. Transport equation for the color current From Eqg.(3.6) we see that only quarks which are on the
Fermi surface contribute to the induced color current in the

In this section the soft distur_bances of a completely de; lasma. Quarks which are inside the Fermi sea are blocked
generate quark pla}sma are §tu¢e<;i._'!’he quark plgsrna at ZeFr%m reacting to the presence of external fields due to the
temperature and finite density is initially in equilibrium. In

the absence of a net color field, and assuming isotropy anPauli exclusion principle. Furthermore, the plas.ma. only re-
color neutrality, the equilibrium distribution function for this onn_ds to the presence of external color electric fields, and
svstem is. U t,o a normalization constant that is why only those get a screening mass in this Qpproach.

y » up ' In order to solve(3.6), one first divides the equation by

£ (p)= 60— po), (3.1) Po. and then integrates it ovex, and|p|, using the momen-
tum measurel P (2.4). Due to thed function in the momen-

whered is the step function, angd is the chemical potential. tum measure and th&function in the right-hand sideRHS)
That is, all particle states are occupied with occupancy numef Eqg. (3.6, J4(x,p) is only nonvanishing when
ber 1 up to the Fermi energy,= u. Po=\|p|?+m?= w. Then one can write Eq3.6) as

[p-DJIX(X,p)]2= —g?p*P"Fip(X) 8(u—Po). (3.6
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[v-D 7*(x,v)]2= — szuvppzo(x), (3.7 more, it has been shown that this condition can be obtained
from the transport equation(3.11) after assuming
with I (x)= = Ty [A1/SA%(X). The same identifications
can be done for the cold quark plasma, after assuming that
M2= o MPF (3.9 the induced color current can be obtained from a generating
—9 272’ ' functional. The same steps that were necessary to show that

identification for the thermal problem can be repeated here
where pg=u?-m? is the Fermi momentum and with the only main difference that* is not a lightlike vector
v#=(1,(pe/p)v), and | have defined when quark masses are not neglected.
For completeness | present that identification below. One
|?dlpldpo 20 first defines a new current density
2

ﬁg‘(x,v)=f P 5o (Po) S(p?—m?)  J&(x,p),

(3.9 THRA(x,0)= T7(x,0)+MZHAY(X).  (3.12)

so that the total color current is obtained by integrating ove

ma i
all directions of the unit vectov, [I'hen] obeys the equation

~ J
soo=[ G Ao, (310 [v:D 7 (o) =M Galv- A%C0]. - (313

Equation (3.7) has the same structure as the transport Now one assumes thgts can be derived from a gener-
equation that is obeyed by the induced color density quantititing functional as
/%(T)(X,V) in a softly perturbed hot quark-gluon plasma
[14]: ~ SW(A,v)
T (3.19
[V-D 7#D(x,V)]2= —m3VAVPF2y(x),  (3.1)) OAL(X)

wherem? =g?T2(N+N;/2)/3 is the Debye mass squared for Equation(3.13 then implies thatW(A,v) depends only on
an SUN) non-Abelian group, wittN; flavors of quarks, and A% =(1/2f) v-A%  with  f=pe/p, e, W(A)

V* is a lightlike four-vector. =W(A,), and Z4=[ SW(A )/ 5A%]v*. If | now define
Equations(3.7) and (3.11) exhibit a similar structure, al-

though they correspond to two different physical situations. f 1 1

In the case of a hot quark-gluon plasma the contribution to X \/: Xot+= v-x), dy=—uv-0,

the induced color current comes frdsothquarks and gluons 2 f \/E

which are thermalized at a temperatiireThis is reflected in (3.19

the coefficient of the RHS o0f(3.11), the Debye mass f 1 1

squared. For very high temperatures, we would expect that X_= \ﬁ( xo——v'x), J_=——1v-9,

qguarks in the plasma move very fast, and it is a good ap- 2 f V2t

proximation to consider that their velocities are ultrarelativ-

istic, as long ag>m, wherem is the quark mass, which is with v=(1,— (pg/u)Vv), and

then neglected. Gluons travel at light velocities, however,

without any approximation. These are the reasons why the SW(AL) 1

vectorV# in Eq.(3.11) is a lightlike four-vector. In the zero- ETH 3 AT, (3.19

temperature quark plasma that | am considering here there

are noreal gluons, and that is why they do not contribute to . . .

the induced color current. Furthermore, only quarks Withthen’ after a Wick rotation to Eucl_ldear_1_ space,

Fermi energy contribute to that current. For very large™t —% _*-—=2 A+—A;, and the identification

chemical potential, it can be a good approximation to negleck \_/Z_/f(l/M )?q, EQ-_(3.13 is translated |ntc[|_n matrix

quark masses if:>m. If quark masses are neglected, thennotation, and using anti-Hermitian generators in the funda-

pe=u, and Eq.(3.7) coincides with Eq(3.11), except for ~mental representation of SNJ]

the the factorsn3 andM?2. | have decided, however, to keep

corrections due to quark masses, which is justified if da7— d7A;+g[A;,a7]=0, (3.1

u>m>gu. Thereforev® is not a lightlike vector in this

more general situation where massive quarks are consideregthich corresponds to the zero-curvature condition of a
Before solving Eq(3.7) | would like to comment on the Chern-Simons theory if2+1) Euclidean dimensional space-

connection between this transport problem and the Cherrtime, in the gaugéd,=0.

Simons eikonal. Efraty and NajB,9] have shown that the Solutions of Eq(3.17) are provided by the Chern-Simons

gauge invariance condition for the generating functional ofeikonal and were studied long af22]. The generating func-

hard thermal loopd;' ;7. , of QCD can be formally related to tional of the induced color current in a cold quark plasma can

the zero-curvature condition of a Chern-Simons theory in dhen be expressed in terms of the Chern-Simons eikonal,

(2+1)-dimensional space-time at zero temperature. Furtherexactly as in the case of the hot quark-gluon plasma.



5870 CRISTINA MANUEL 53

In spite of the very interesting connection between these, d*k
in principle, unrelated problems, | will not pursue the Chern- Jg’“(x)zf 5
Simons approach to the transport equations in the remaining (2m)
part of this article.

e—ik-Xngl Jg(n)(k)

dQ [ d*%k O
:fﬂf (277)4eilk'xn§=:1 74" (xv). 3.23
B. Solution to the transport equation
Equation(3.7) can be solved after inverting the D op-

erator and imposing proper boundary conditions. Then th
solution of (3.7) is expressed in terms of link operators
[7,11]. In this subsection, | prefer to solve the transport equa
tion by going to momentum space exactly as has been do
for Eq. (3.11) in Ref.[20]. Writing

The color current is then expressed as an average over the
?hree—dimensional unit vectar, which represents the direc-
tions of the velocity vectors of quarks with Fermi energy.

It should be possible to construct a generating functional
rieHDL that generates this current by solving

dx . ol'ypL[A]
g = ik-x HX)=— —————. .
Eq. (3.7) becomes in momentum space It is first required to check thailg(x) obeys integrability
conditions, as has been done in R&f. for the massless and
4 thermal case.

, : dq
0K ZE00) 0T | yiz0-A(K=0) 7#(a,0)
(2m) C. Polarization tensor
The polarization tensdil 4 can be computed frort8.20

=-M%* . :
v by using the relation

v -KA3(K) — ko - A3(K)

d* A () = TTAY( k) AP
+igfane —(Zgw-Ab(k—q)Aa(q)] (319 Ja 0= (0A (). (329
It reads:
Now, after assuming thay%(k,v) can be expressed as an oy
infinite power series in the gauge fietd,(k), Eq.(3.19 can 42 (K) = MZ( — gr0g"0+k, dQ vty ) -
be solved iteratively for each order in the power series. Re- 4w v-K
tarded boundary conditions are imposed by the prescription (3.26
Po— Po+ie€, with e—0", which should be understood in all ) .
following formulas. where we recall that*= (1,(pr /1) V). To avoid the poles in
The first-order solution is the above integrand, retarded boundary conditions are im-

posed, i.e.kg—Kkgtie.
The polarization tensa(3.26 obeys the Ward identity

v-Aalk) —A%K)|. (320

L;Z"(l)(k,v)z M2v#| ko
a v-k k, I14=0, (3.27

Inserting(3.20 in (3.19 allows solving for the second-order and it is also gauge independent due to the gauge invariance
term in the series, which reads of the transport formalism.
The real part of the polarization tensor is

TE2(K,v)=—igM?f 4,
4 b, _ . AC
><f(dq . VA (k—qg)u-A%q)

2m T W i K
Rd]gb(ko,k)=5abk0WH,(ko,k), (3.28h

ReT3%(ko,K) = 8apTT (Ko . K), (3.283

(3.2)
The nth-order term >2) can be expressed as a function of ij _ i k'K
the (n—1)th one as Rellab(ko, k)= dap) | 0 k|2 Mi(ko,k)
d*q v-AP(k—q) - KK o IT, (k k)} (3.280
. v : - _ T2 112 1 1 .
78" (k)= =igfape Zm? vk 76" (). K[ [
(322 where
The complete expression of Fhe induced color current in o n Ko Mk0+pF|k|‘
the cold quark plasma is thus given by I (kg, k) =M*| — In -1}, (3.293
Pe 2[K| Mko_pF|kH
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kg 1/ pe |K| bl(p) that acting on the ground state creates one particle
(ko k)=~ Mzw[ 2\ Ky with energyp,>u, and the creation operatat,(— p), for
0 po<m, which creates a hole, which may be interpreted as
Ko uko+ pelK| the absence of one electron in the Fermi sea. The corre-
- EW) n m . (3.299 sponding particle and hole destruction operators annihilate

the ground state
The imaginary part of the polarization tensor describes

damping in the quark plasma, explicitly: b, (p)|®Po)=d,(p)|P)=0, 4.2
IMIT2Y (Ko, K) = — 83pM Zﬂkof @v“UVzS( Ko— &k-v). since the ground state does not contain electrons with ener-
4 M gies above the Fermi energy or holes inside the Fermi sea.
(3.30 The usual averages of products of creation and annihila-

My result for the polarization tensor agrees with the onetlon operators that are required to compute Feynman ampli-

computed in Ref[23] using classical transport theory for a tudes are then modified from their vacuum values, explicitly,
guark-gluon plasma at finite temperature and baryon density +
in the zero-temperature limit. (Dolbu(P)b, (P)|[Po)=0(Po— p)Bpp0r- (4.2
Notice that if quark masses are neglected, tpers u,
and then(3.26) reduces to the same polarization tensor as th&hen one can compute the Feynman propagator t629eh|
one found in a hot quark-gluon plasma5,23,14, with a
different screening mass. ISE(X,Y) = (@l 7Y(X) iAY)| Do)
Higher ordem-point functions can be found as

d®p 1
i=n—1 =0(x°—y°)j(27)32—[(7-p+m)
o k= 3 g |TE Ak, Gaey) Po
= aby---by_4

" . d®p 1
X 6(po— p)e”PHY] - H(YO—XO)f 27)° 2pe

834(K)
SALL () - OA," X (ap-1)

’ (330 X[(y-p+m)6(u—pole P

+(y-p—m)ePy] (4.3

57
P

where theé function on the RHS 0f(3.31) accounts for

conservation of momentum, and permutations of indices ang¢{here Po= |p[Z+ mZ Notice that in the limitu—0, (4.3)
momentum have to be taken. agrees with the Feynman propagator in the vacuum.

Due to the fact that the induced color current can be ex- " |n order to compute the polarization tensor of QED in the
pressed as an infinite power series in the gauge Aglditis  presence of a background density of electrons, the propaga-
obvious that there ane-point gluonic amplitudes, with arbi- tor (4.3) is needed. Retarded boundary conditions are taken
trary n, from 2 tow. All these gluonic amplitudes describe into account by introducing convergence factoes®,
the polarizability properties of the non-Abelian plasma. e %o, with e—~0", as needed when going from configura-

tion to momentum spacsee Refs[9] and[10] for explicit
IV. THE POLARIZATION TENSOR OF QED detailg. Taking that into account, one finds for the chemical
AT FINITE DENSITY potential dependent part of the retarded polarization tensor in

. . . _— the massless case
In this section the computation of the polarization tensor

of QED due to the presence of a background density of elec-
trons is presented, and from it the HDL corresponding to thanw(k):
amplitude in the massless case is extracted. This computation
has been previously performed by several authors in Euclid-

d3q 1
2 - _
9 f@w)3 200 Zqi[ew %)

ean space-time; see Reff24—27), and alsd 28] and[29] for —O(u— po)]L’m_

the nonrelativistic case. Here | review how this computation Po—Go—Ko—ie€

is performed in Minkowski space-time when retarded bound- T#(p,q’)

ary conditions are imposed. | find it more appropriate to —0(—Po) L

carry out this computation in Minkowski space-time to ob- Potdo—ko—ie

tain the correct analytic properties of the retarded polariza- T#(p',q)

tion tensor. —0(p—Oo)—F———— (4.9
Pot+Qot+kotie

In the presence of a finite density of electrons the usual
definition of creation and annihilation operators for particles
and holes, or antiparticles, of the vacuum has to be modifiewhere  p=(po.p), p'=(po,—p), a=(do,q),
[29]. The ground statéd,) of the system is constituted by d'=(do,—d), with po=|[p[, do=|al, and p=g+k. We
the Fermi sea, that is, by electrons occupying all particldhave further defined
states according to the Pauli exclusion principle up to the
Fermi energypo= . Then one defines a creation operator T(p,q)=Tr y*v-py’y-q]. 4.5
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In the high chemical potential limit, one considers | have decided to keep corrections due to quark masses in

Ko,|K|< . Then one can make the approximati¢Bs5] the present study. The solution to the transport equation can
be expressed in terms of an average of a three-dimensional
T#"(p,q)~8agVHV?, (4.6)  unit vectorv, which represents the directions of the velocity
. vectors of quarks which have Fermi energy.
T’”(p,q’)~T'”(p’,q)~4q§(V“V”+V"V”—29’”), It has been also shown that the solution of the transport

4.7 equation can be expressed in terms of the Chern-Simons ei-
konal, even for massive quarks. Even though one cannot

Po—do— Ko~ —K-V, (4.9  define natural light-cone coordinates when quarks are not
considered ultrarelativistic, we have seen that it is still pos-
Po+do*kKo~2qp, (4.9 sible to relate the transport equation to the zero-curvature

condition of a Chern-Simons theory if2+1) Euclidean

space-time. The transport equation only depends on the pro-
O(pu—0o) = O(—pPo)~V-kd(n—do), (410 jections of the vector gauge fields over the four veciots

andv” defined in Sec. Ill A, and this is enough to define a

whereV=(1,d/qp) andV=(1,-d/qo), to finally get two-dimensional plane where the zero-curvature condition of
a Chern-Simons theory can be recognized, after proper iden-
3 g tifications.
T1#7(K) = _ng d QS(WVVJFVMVV_ZkO v V_ I hgve pre'sented a'systematic way of computiﬁgoint
(2m) V-k+ie gluonic amplitudes using the solution of the classical trans-

port equation, and | claim that these results should agree with
X 0(p=0o), (4.19 the high density limit of a quantum field theory approach.
Complete agreement is found for the polarization tensor
(n=2) in the massless case, and complete agreement should
be expected for higher-point functions, although | have not
checked this statement, nor am | aware of the computation of
those amplitudes in the literature.
V. CONCLUSIONS Therefore, it must be claimed that a Braaten-Pisarski re-

In this paper classical transport theory has been used f#mmation procedure should also be used in QCD with high
study the response of a completely degenerate non-Abeligghemical potential, as was generally expected, although a
plasma at zero temperature to weak color electromagneti®ore detailed quantum field theoretical study should be car-
fields. An approximation scheme for the classical transporfied out to see exactly how this resummation is implemented.
equations that respects their non-Abelian gauge symmet think that it is interesting to have 'Fhls gl_ternatlve computa-
has been used, and from it the induced color current in th80n of HDL's, specially due to the simplicity and transparent
non-Abelian plasma has been obtained. physical interpretation of the classical transport formalism.

The study of the transport phenomena occurring at high Finally, one should mention that although the response
density in a quark plasma that | have carried out here is quitéheories of the high temperature liniét zero chemical po-
similar to the one that was done[ib4] for a QCD plasma at tentia) and the high chemical potential lim{at zero tem-
high temperature, and | direct the reader to consult that refPeraturg of QCD seem almost identical, and one could na-
erence. Throughout this paper the parallelism that these tWUer conclude that_ in both situations static cplor electric
different problems exhibit has been stressed, as well as thelields are exponentially dampe@t least at leading ordgr
differences. this is not so. Kapusta and ToimeJ@0] have pointed out

At both high temperature and high density, the color conihat the static potential between two static charges in a
stituents of the non-Abelian plasma are not confined, andlasma at zero tempe_rature becomes OSC|II§tory and vanishes
that is why one can model color degrees of freedom class@@S & power at large distances due to the existence of a sharp
cally. Fermi surface. This effect was known as Friedel oscillation

The transport equations obeyed by the induced color curll nonrelativistic quantum theorf29].
rent for a non-Abelian plasma at high temperature and at A further study of the high density limit of QCD should
high density present a similar structure. If quark masses ar@e carried out, and | postpone that study to a further publi-
neglected, then the two transport equations are essentially ti¢&tion.
same, except for the following. At high temperatdreboth
guarks and gluons which are thermalized at the temperature
T contribute to the induced color current in the plasma. At | am specially grateful to E. Braaten, for suggesting to me
high chemical potential, only quarks on the Fermi surfacehe interest of pursuing this study, and to R. Jackiw, for very
contribute to that current, as there arereal gluons at zero  enlightening discussions. | am also grateful for the comments
temperature. Then, in that situation, the only difference beon an early version by this manuscript of D. J. Castah.
tween the two transport equations and their solutions comesuerin, and C. Lucchesi, as well as instructive electronic-
from the screening masses squared, which arenail discussions with Y. Lozano. This work is supported in
m3=g°T*(N+N/2)/3 and M2=g?N;u?/2w% respec- part by funds provided by the Ministerio de Educacip
tively, for an SUQN) theory with N¢ flavors of quarkdand  Ciencia, Spain, and by U.S. Department of Enef@yO.E)
assuming that for all quark flavoys;= u). under cooperative agreement No. DE-FC02-94ER40818.

which after performing the integral over the modulus|gif
reduces to the same polarization ten&26 for the Abelian
and massless case.
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