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Lessons from two-dimensional QCD(N —x):
Vacuum structure, asymptotic series, instantons, and all that
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We discuss two-dimensional QCIN{— ) with fermions in the fundamental as well as adjoint represen-
tation. We find factorial growth~(g?N.m)2¢(2k)!(—1)*"Y/(27)?* in the coefficients of the large order
perturbative expansion. We argue that this behavior is related to classical solutions of the theory, instantons;
thus it has nonperturbative origin. Phenomenologically such a growth is related to highly excited states in the
spectrum. We also analyze the heavy-light quark sys@within the operator product expansigwhich
turns out to be an asymptotic sepieSome vacuum condensal{eaxMD”)Z”mfv(x2)”n! which are respon-
sible for this factorial growth are also discussed. We formulate some general puzzles which are not specific for
two-dimensional physics, but are inevitable features of any asymptotic expansion. We resolve these apparent
puzzles within two-dimensional QCD and we speculate that analogous puzzles might occur in real four-
dimensional QCD as wel[.S0556-282(196)07210-4

PACS numbsgs): 11.55.Hx, 11.10.Kk, 11.15.Pg, 12.38.Lg

I. INTRODUCTION plicit solution as well as the coefficients of the perturbative
expansion can be calculated. These coefficients grow facto-
The problem of large-order behavior of perturbativerially with the order and the series is non-Borel summable,
theory attracted renewed attention recently. One of the mobut nevertheless, the physical observables perfectly exist for
tivating factors is a common wisdom that the correspondingny finite coupling constant. The exact result can be recov-
asymptotic behavior is related somehow to very deep physered by special prescription which uses a nontrivial proce-
ics. This is the area where perturbative and nonperturbativdure of analytical continuatiofwhich might be a good ex-
physics strongly interfere. An understanding of this interplayample for other asymptotically free theones
may shed light on the nature of the nonperturbative vacuum The second important theoretical issue can be formulated
structure in general and the origin of vacuum condensates ias follows: Because of dimensionality of the coupling con-
particular. stant in two-dimensional QCD the perturbative expansion
With these general remarks in mind we would like to ~=(g?)"c, and the operator product expansi@PE for a
analyze these problems in solvable two-dimensional QCIxorrelation function~3(g%/Q?)"c, are one and the same
(N—o) [1-7]. We would like to test assumptions, hypoth- expansion. From this simple observation we learn that the
eses, and interpretations, made in four-dimensional fiel®©PE is an asymptotic series. Thus many interesting ques-
theory, within toy two-dimensional QCON—«), where we  tions arise.
expect confinement and many other properties inherent to (a) What kind of vacuum condensates are responsible for
real QCD. Additionally, we extend the analysis to QCD with such a behavior?
adjoint matter[8,9]. As is known, in this theory, the pair (b) Do we extract the actual condensates from the OPE or
creation is not suppressed even in the ladgdimit, and thus  only effective ones?
this model can mimic an exponentially growing density of (c) What kind of vacuum configurations are responsible
states with large mass(m)~exp(m). In this case no exact for suchn! growth?
solution is available, but we argue that general methods such (d) Do these configurations saturate the vacuum conden-
as dispersion relations, duality and unitarity can provide alkates?
the information we need about spectrum for the calculation What is more important, sometimes these questiansl
of large order behavior. many others can be answered. We expect, will argue, that
Why are we so conscious about the large order behaviorthe analogous phenomena might occur in real four-
We see at least a few theoretical and phenomenological reaimensional QCD, thus these questions have not only pure
sons for that. Let us start from the pure theoretical reasongcademic interest.
One may think that the crucial question in this case is Phenomenologically, there are issues which are even
whether the perturbative series is Borel summable or not. more interesting and give much more freedom for specula-
Contrary to the common belief, we do not think that thetion. First of all, let us recall that the reason for interest in the
issue of Borel summabilitfor its losg is the fundamental large order behavior is related to the facton&&n" growth
point. In particular, let us mention an example of the princi-of the perturbative coefficients. This growth can be consid-
pal chiral field theory at larg®&l [10]. In this case, the ex- ered via the dispersion relation and is commonly interpreted
as a reflection of the divergence of the multiparticle cross
section with large number of particles and energp (see
“Electronic address: arz@physics.ubc.ca discussions irf11]). The naive interpretation would be the
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violation of unitarity! We will show however that in two- Let us note that the matrix element on the right is written in
dimensional QCD while we have a factorial growth of coef-the light cone gaugé_=0; to restore the manifest gauge
ficients, this growth has nothing to do with multiparticle pro- invariance one can insert the standard exponential factor
duction since at larg®& the pair creation is suppressed by e'9/A-%+ into the formula(3).

factor 1N. Rather, this growth is related to the highly ex-  Let us review some important properties of E&). The
cited two-particle meson states. Another phenomenologicagntire spectrum is discrete and classified by the integer num-
issue looks mysterious: vacuum condensates extracted frobrer n. The wave functionsp,(x) are orthogonal, complete,
the spectrum might be quite different from the actual mag-and obey the following boundary conditions:

nitude of condensates.
dn(X)—[x(1-x)]%, x—0, x—1,

II. 't HOOFT MODEL

2
m
S p—
Let us start from the analysis of two-dimensional QCD g cotmp) =1 mg’ @

with fermions in the fundamental representation—the

't Hooft model. It is completely solvable in the limit where For largen the spectrum is linear
the number of colordl—« [1]. The Bethe-Salpeter equation 2 2.2 .
for mesonic bound states was solved 11 yielding a spec- m2=m2man,  $n(x)=1/2sin7nx) (5)
trum whose states lie asymptotically on a single “Regge :
trajectory.” We want to point out that many general ques-f?},;ndtI d(_)eslfhnothgleiaﬁnc_it on moas?hofl the (lelark. More”|_r;1por-
tions in this model can be answered without solving an equa- y, In the chiral imi m“f ) the lowest leve{we call i
tion, but using such powerful methods as dispersion rela” mesoi tend; to zero i~ ”."q) and one could expect a
tions, duality and unitarity. In particular, in the weak nonzero magmtude' for the chiral congiensate. Thus we have
coupling regime, come to the very important connection between spectrum

and vacuum structure.

1 As the vacuum of the model is a very important issue for
PN o the following analysis, we would like to recall some results
g"N~const, N—e=, mg>g JN @D with an explanation of the general methods which have been

used to derive them.

the chiral(%//) and gluon condensatééaz y can be calcu- : We define thg chiral condensate in the current algebra
- erms as follows:
latedexactly see below. Additionally, few low-energy theo-
rems can be tested and obtained result imply that there are no ‘ e L
other states in addition to those found by 't Hooft. In other 0= lim if d*x €P*9,(0| T{q7y, ¥sa(X).qys0(0)}|0)
words, the dispersion and duality relations would indicate Pu—0
missing states. —2i/0lAn = =
Here, the entire spectrum is discrete and is classified by 2|<O|qq|0>+2mq(O|T{q| 75000.4i y5a(0)}{0). (6)
the integem. The model we shall consider consists of quarkAs we have already mentioned, the only states of 't Hooft’s
in fundamental representation interacting via anSJJ¢olor  solution are the quark-antiquark bound states, thus they must
gauge group. We follow the notation of Rg2] and present  saturate the dispersion relation. Upon inserting this complete

the 't Hooft equatiori1] in the following form: set of mesons to thés) one obtains
2, 2.2
m2 ¢ (y) - N fn7T mo
2 _ q ) n qu0=—m2— , (7
(0= gy Bo0 P [ Ay L (2 (Olaal0r=—my 2 =~

o , where f,, is defined in terms of the following matrix ele-
where symboP notes as the principal value of the integral

and 0<x<1 is the fraction of the total momentum of the ments:

bound state carried by quackwith massm,. The quantity _ N Mg (1 bn(X)
mi=g°N/ is the basic mass scale in the theory and the(0|qiysan)=\/_7mof,, frmme=—= x(1—x)
index n classifies the ordering number of the bound states 0 ®)

In,p) with total momentunp,, .

The same wave function can be expressed in terms of thg the chiral limit the only state which can contribute to the
following matrix elemen{6]: formula(7) is the = meson. Its matrix element can be calcu-
lated exactly and we end up with the following expression
for the chiral condensate in thna,— 0 limit [12]:

N . _
Pn(X)= \/;f dy.e ¥+ (2P-(0[q(—y)a(y)|n,p)ly_

2
_ Mg >, 9°N
= 0/gq|0)=—N—==, mg=—o,
=0. 3 ( |QQ| ) \/1—2 (U
!in the physical theory, the unitarity is preserved, of course. The froo= - , mi: mq%. (9)
physical question is the following: what can stop this growth? V3 3



53 LESSONS FROM TWO-DIMENSIONAL QCDIj—=): VACUUM ... 5823

The result is confirmed by numericfl3,14] and indepen- Now let us explicitly demonstrate the existence of the
dent analytical calculationl5]. Moreover, the method has term ~m, —1 for the two-pion contribution. In order to do so,
been generalized for the nonzero quark mass and the corrgre write down a dispersion relation fét,
sponding explicit formula for the chiral condensdigq)
with arbitrarymg has been obtained 6].

As was expected, we find thé®qq|0)~N. Besides that, P(0)= ;Lnglmp(s), (13
as we have already noticed[ib2], if we putmy=0 from the

very beginning, the{0[qq|0)=0. This corresponds to the where InP(s) is the physical spectral density. Ther con-
different regime whemm,<g~ 1/JN, when nonplanar dia- tribution is fixed uniquely by9) because of the special role
grams come into the game as we will discuss later. The lasif pions[12]
remark is the observation that the entire nonzero answer for
the condensate comes from the infrared region of the inte- _ Mo
gration in Eq.(8): x~0x~1 which corresponds to the situ- <7T7T|U|Q|0>|pso:T,
ation when one of the quarks carries all the momentum and 3
the second one is at rest. » o

The sum(7) can be calculated exactly for arbitrany, 1 Mo 1

[16]. The crucial point is that for arbitraryn, the nonzero T ImpP7(s)= 6 s(s— 4m2ﬂ)’ (14
contribution comes from the highly excited states>(1)
only. The properties of these states are well known, m2m2 (e ds mng 1
P™™(0)= —— f = ~—.
251, mioa?min, n>1, (10) 0="% am?s\s(s—4m2) 12mZ  mq
and thus the sunt7) can be explicitly evaluated with the |t is clear that the only cause for a singutarL/m, behavior
result[16] is the finiteness of the pion matrix elements at zero momen-
meN tum. At the same time this contribution does not contain the
_ _ large factorN which accompanies a one meson contribution
(0laq|0)= [In(wa) 1=7e to the same correlator. To suppress these nonplanar diagrams

we requireN>ma/m2. Thus we expect that some kind of
+ 1—1)[|(a)—a|(a)—|n4] , (11 Pphase transition may occur in the region,~g, which
a would cause a complete restructuring of the theory.
The last subject we would like to discuss in this section is

22 o : ; . . ;
wherea=mg/mg,ye=0.5772 ... isEuler's constant and  the strict Coleman theorefil 7] which states that a continu-
. _ . ous symmetry cannot be broken spontaneously in a two di-
(a)= d_;_/ 1- (y/sinhy costy) _ mensional theory. As we discussed earfi&?] we expect
o ¥° [a(y cothy—1)+1] that as in the SU{— ) Thirring model (where the chiral

symmetry is “almost” spontaneously brokefi8]), the

This result is exact for largél and arbitrary quark mass Berezinski-Kosterlitz-Thoules®KT) effect[19] operates in
within the 't Hooft regime, i.e.,mq>g~1/\/ﬁ (1). In the  regime(1). This fact also confirms the 't Hooft spectrum:
limit @— o0, it reduces to Eq(9) as it should. states with opposit@ parity are not degenerate in mass and

The last condition ifi,>g) which has to be satisfied for there is an “almost” Goldstone boson withfr~ Mg+ 1N.
the 't Hooft solution to be valid requires some additional To be more specific, one can shd?] that in two-
explanation. Roughly speaking, nonplanar diagrams magimensional QCD K — ) the behavior of the proper two-
contain a factor~m; * which at mg,=0 blows up and the point correlation function is as follows:
theory changes completely. The concept of the proof that

there exists a factor-m;* in nonplanar diagrams is the (0| T{aLar(X),arqL(0)}[0)~x PN, (15
following. _ _ _
Let us consider the correlation function fpr-0 Such a behavior together with cluster propertyxase im-

plies the existence of the condensat&late in a full agree-
) 20 ipx . B ) ment with our previous discussion. At the same time, for any
'f d*x €PX(0[T{qa(x),qa(0)}[0)=P(p9). (12}  finite but largeN, the correlator falls off very slowly dem-
onstrating the BKT behavior with no signs of contradiction
The 't Hooft solution suggests that only planar graphs ardo the Coleman theorem.
taken into account and, consequently, the spectral density Having these general remarks on two-dimensional QCD
contains only contributions from one meson states for whicN) in mind, we turn to our main subject.
Ppiana~ N. At the same time in the chiral limit, we can cal-
culate the two-pion contribution exactly. This contribution is Il. LARGE ORDER BEHAVIOR
not accounted foin deriving (2). Of course, the two-pion IN TWO-DIMENSIONAL QCD (N=c0)
contribution is suppressed by a factoN1/However, it con-
tains a term~mga/m? WhICh tends to infinity fom,—0. The
presence of the factorm in nonplanar diagrams leads to  Let us consider the asymptotic lin@?= — g?>— o« of the
the aforementioned constramt om, . two-point correlation functiof2,12]:

A. 't Hooft model
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_ _ _ where B, is asymptotic expression for the Bernoulli num-
if dx €90 T{aiysa(x),qi ¥s0(0)}|0)=P(Q?).  (16)  pers.
A few comments are in order. First of all, we have explic-
It is clear that the larg&? behavior ofP(Q?) is governed itly demonstrated that the coefficients, in the operator
by the free, massless theory, where expansionS c,, /Q%* are factorial divergent in high orders,
Co~(2k)!, so the expansion is asymptotic in full agreement

) ~ Ne with the general arguments of R¢21].
P(Q%—)=—5_InQ". 17 Additionally we note that the only even poway¥ Q? are
essential in the expansiofgenerally speaking, arbitrary
At the same time the dispersion relations state that powers ofg?/Q? could contribute Nonleading terms in‘ﬁ
N2 o andm?2 might contribute to the odd ppweg?/Q_z. o
P(Q?) = cMo ™™ Z n (19) From the physical point of view this factorial behavior is

related to highly excited states with excitation number
2n0~Q2/m3, and not with multiple production as one might
and the sum is over states with everbecause we are con- naively expect. Indeed let us consid@?/m2~z<2n, in the
sidering the pseudoscalar currents. Here residyesre de- expansion2(1/2n+z)~E(2n/z)k. It is clear that the main

T n-o24... Q%+ mﬁ

fined as follows: contribution comes fronk=2n, and (3)2"0~(2n,)! ex-
N2 actly corresponds with the behavior found above. It is in

I My ; - .

(0[qTysa[n) = cMo f.. n=024, ....(19 agreement with phenomenological analygld], where it

was assumed that the production of a highly excited reso-
nance might be responsible for the large order behavior.
Bearing in mind that for largen, f2—1 and From the theoretical point of view we would expect that
mﬁﬂ mgﬂ-zn, we recover the asymptotic resilt7). We can  this behavior is related, somehow, to purely imaginary in-
reverse arguments by saying that in order to reproducétantonsfin order to provide the correct(1)* behavioi.
|r]Q2 dependence in the dispersion relatida), the residues Any additional arguments in favor of this point will be dis-

f2 must approach the constant(m?, ,—m2) for largen. cussed latter. _ . ,
Now consider &2 expansion for the correlatd8) in ~ We wogld also like to point out tha_t the numerical coef-
order to find the coefficients, of this series at largk ficient, which enters to the formul@1) is follows:
92N\ 2N\ 2K
2 2k
P(Q )N% C29 “Ek C2k(_Q2 : (20 c2kg2k~(gQ2°) : (22)

As we mentioned earlier, in two dimensions the perturbative . ] ]
expansiorc,(g2N)* and the 1/Q?) expansion coincide. At the same time, the perturbativekoop graph gives a
Now, if we knew f, and m, for arbitrary n we could different contribution~(g“N./7Q?)** with an extra factor
calculate the surfil8) precisely, and thus, we would find the 1/7 per ach coupling constant. This extra factomust be
coefficientsc, from (20). Unfortunately, we do not know taken very seriously as it is a large parameter. We definitely
them. However, the key observation is as follows: in spite oﬂmo"z" (from exact 520"“'0)] that the real scale of the problem
the fact that we do not know an analytical expression forS Mo7r>, and notmg=g*N./ as one would naively expect
f, andm, for arbitraryn we still can calculate the leading from the perturbative theory. This means that vacuum con-
behavior ofc, . The reason for that is related to the fact thatdensates which are determined by nonperturbative physics
the only asymptotics of residudg=1, n—o and masses COMe Into the game. Even more, thelr gontnbutlon is much
m2=mim2n, n—» are essential; the corrections to More important than pure perturbative diagrams. Let us note

f =1+0(1/Mn), mi=mém2n+0(1), n—w might change that the lowest vacuum condensates, found exactiyl ),
tf:e preasglmp)toticnbeha(l)\jiror of (k)_)oc but car?not char?ge exhibit this additional factorr. Thus the factorial growth is

the factorial behaviork)!, found below. Using the asymp- relgrtedf, stcrimehow, tt.o tft1e tr;]onperturb?tl\ée tphysm?. f th
totic expressions fof, and m, we find thatP(Q?) is ex- 0 further investigate the nonhperturbative nhature ot the

pressed in terms of transcendental functionaSymIOtOtiC se_ries(in order to support th? previous argu-
W(2)=T"(2)/T(2) where z=Q2mZx2. However we can mentg let us, instead of correlation functigid6), consider
= = 272,

trust only in the leading terms of the corresponding formulathe following difference of correlators:

1 E) [ ax @0l Tiarysa00.aysa(0))|0)

n+tz n
—(0|T{aq(x),aq(0)}[0)}=AP(Q%). (23

Ne
P(Q?)—P(0)=5_2>

©

N, 1 By 1
= E Inz+ ’yE+Z glﬁz_z‘z s - - o -
One can argue that in the chiral linmi;— 0 the perturbative
Q2 (2K)12(— 1)k contribution to (23) is zero. At the same _time dispersion
7= ——, By=—————, (21  relations lead to the same result: the coefficients of the OPE
Mo (2m) are factorially divergent. This growth is related not to some
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perturbative diagrams, but to nonperturbative physics. Wavith real four-dimensional QCI’ Besides that, the quark

will present more arguments for this point of view in the nextmass term produces the analogous small famﬁy’le and

section. can be neglected as well. Thus information about highly ex-
Finally we have explicitly demonstrated that the OPE iscited stateswhich provides the 1®? dependendgecan be

an asymptotic series. However, we cannot answer the impobbtained exclusively from the analysis of the correlation

tant question of what kind of operators are responsible fofunction at largeQ?. In this case the analysis is very similar

such behavior. The reason for that is simple—too many opto 't Hooft case, considered in the previous section:
erators contribute to the correlation functiohé) and the

corresponding classification problem is quite involved. In the 1 (m(Z)WZ)
following we will consider a special heavy-light quark sys- <O|N—\If\lf|nl>=

tem, where such an identification can be made. We find that ¢
some vacuum condensates exhibit a factorial growth. Exactly
this fact is the source of such an asymptotic behavior.

fnl’ nl>1, nlezz,

29°N
my =mgm®ny,  fa =1, mg= gTr (@

B. QCD coupled to adjoint fermions. Instantons The only difference is the doubling of the strength of the

Now we repeat the preceding analysis for the much morénteractiong®— 2g?, [8] and the additional degeneragy,
interesting model of QCD with adjoint Majorana fermions mentioned above. Now the formula B, (26) can be easily

[20,8,9: recovered:
1 — — 2_2\¢2
— 2 o A2 " 2 (mO7T )f
S Jd x Tr 492FMF +iwy DM\IH—m\If\If}. P(Q? ) — Py(0) = = ° 21
(24) T n=024... My +Q
As is known, the most important difference with the 't Hooft L im(Qz)_ (28)
model is that the bound states may contain, in genara, 2m

number of quanta. In other words, pair creation is not sup-

pressed even in the largs limit. The problem becomes As before, any correction to the asymptotic expression
more complicated, but much more interesting, because theuch asfy =1+0(L/n;), m; =mga’ny+0(mg) will pro-
pair creation imitates some physical gluon effects. duce power corrections 1/Q? and they are not interesting at

We consider the following correlator analogous(i®): the moment.

Apparently, the formulag26)—(28) are very similar to
Egs. (17)—(19) which correspond to the 't Hooft model.
if dx éqx<0|-|-[ iTr\?\If(x),iTr\IT\If(O)] |0) However, there is a big difference in interpretation of these
Nc¢ N¢ two cases: in the 't Hooft model we have exclusively two-
parton statestwo bits, in terminology of Refd.8,20]). They
saturate the dispersion relations.

In the case(26)—(28) we have much more states with
arbitrary number of partons. As we explained [B2] the
mixing between the different numbers of partons is not sup-
pressed because ¢fP'¥) condensation. Effectively, how-

ver, all these complex states contribute to the correlation
unction (28) in the same way as in the 't Hooft model. In
this case the integer numbej from (27) should be inter-
preted as an excitation number of two bits in those states.
The matrix elementﬁlzl can be interpreted as a total prob-

) 2 ’ ability to find two bits among the complete set of the mixed
P2(Q% )=~ ﬁan . (26)  states. The total number of states is increasing the mass in-
creases. Thus the probability to find two bits in the given
state is decreasing correspondingly. However, the dispersion
The additional factor 2 comes from two options in calcula-
tion of Tr and related t&, symmetry mentioned if9].

Now the problem arises. In 't Hooft model we definitely 2Naively, one could interpret such a result that the mixing be-
know that only two-particle bound states contribute to thetween different number of partons is highly suppressed. Such a
corresponding correlation function. However, this is not trueconclusion would be in contradiction with numerical res(izg].
for the model under consideration and any states may corHowever, as we argued in recent papg2g], the puzzle can be
tribute to P,. The key observation is as follows: any pair resolved by introducing a nonzero value for vacuum condensate
creation(quantum loops which describe the virtual effeéss  (¥¥). Such a condensation does not break any continuous sym-
suppressed by a factg®N./Q? because of dimensionality metries. Thus no Goldstone boson appears as a consequence of the
of the coupling constant in two-dimensiofis a big contrast  condensation.

=P,(Q?), (29

whereW =¥ Ty, and the labeP, shows the number of par-
tons in the external sourc&W¥(x); the factor 1N, is in-
cluded in the definition of the external current in order to
make the right hand side of the equation independent o
N. In the largeQ? limit the leading contribution to correla-
tion functions is given as before by
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: g2 g _ X
relations(28) tell us that the total probabilitf;, with the (W)=(0[q(x) P€9/0%:d%uq(0)|0)
given excitation numben; remains the same. oo
We can repeat the previous analysis, which led us to the _ 1 5
formula(21) with small changes. Instead of fact®g, in the - zfo (2n)! (a(x,D,)"a). (31)

expression(21) we will find
ok All nontrivial, large distance physics of the system is hidden
Ba=2"Bax there. Together with perturbative contributions one should

. n L expect the following behavior for this correlatd®5]:
for the theory with adjoint matter. This difference was men-

tioned above and is related to the doubling of the strength of PTe An oA
the interactiong®— 2g2. {T4Q(),Qq(0)})~e (32
How could one interpret this result? First of all, let us The perturbative terms, proportional te(g2N/m)"(x?)",
recall that factorial behavior may occur for three different ;ontripute to(32) as nonperturbative ones due to the dimen-
reasons: ultraviolet renormalons, infrared renormalons, angdiqng coupling constarg in two dimensions; thus they in-
instantons. Clearly, the first two reasons cannot cause fQgfere with expansiori3l). As was suggested in the same
such behavior in a field theory with the qlimensional_couplingcontext by Shifmari21], one can get rid of the perturbative
constanyg. Thus we expect that some kind of classical solu-ierms by considering a special combination of scalar and
tion should be responsible for such behavior. If we accept th%seudoscalar correlation functiofisnalogous to(23) with
instanton hypothesis, then_from the very gen_eral argumentgne replacement of a light quark for a heavy qgarkhe
one would expect that the instanton contribution with actionyertyrhative contribution vanishes in the chiral limit for the

S to the largek-order coefficients, is given by[23] combination and we can study the pure nonperturbative
N ks 2ok physics.
(99"~ (K)!1S™H(g9)" (29 Let us note that the general connectitrased on disper-

. . ._sion relationg between spectrum and vacuum condensates
In this case the factor 2, mentioned above, has the foIIowmgvaS considered earlig@1]. It was proven that the OPE is

interpretation: when We go f_ro_m the QCD W!th fundamen_talasymptotic series. Besides that, for demonstration purposes,
matter to the theory with adjoint matter the instanton actiony oo suggested a specific model for the spectral density

is decreased by_a factor of 2. In this case thg faidr from (linear trajectory and it was found that the vacuum conden-
the formula(29) is exactly equal 2 It can be interpreted as sates(31) get the form(g(x,D,)?"q)~ (2n)!
w= o

the decreasing of instanton action by factor 2. Why is the |, this section we essentially follow the steps from the

instanton with the action one-half allowed in the theory with paper[21] with the only difference being that we start from
adjoi_nt matter and for_bidden in the theory with fundamentaltheory defined as two-dimensional QCD and derive @
ferrlrg(t)nss? Johr']ilqggs&qg 22;% ?]t LO br?o?:]]sv‘;ﬁ;(atdfrom ar spectrum from this Lagrangian. We find that we have not a
ments ugiven agove vlve explect t)rl1at sio?ne classical %lljjrlinear spectrum but rath&n~\/ﬁ in t_vvo—dimgnsional QCD.
) : . o ; ; ' for a heavy-light quark system. It gives a different behavior
imaginary solution(we call it instantol, is responsible for f — 200\ |
the factorial behavior found above. or the vacuum condensatéq(xMD_M) a-n'. However,
the main statement that the OPE is an asymptotic series re-
mains the same.
IV. HEAVY-LIGHT QUARK SYSTEM Before going on, we would like to make the following
IN TWO-DIMENSIONAL QCD remark. In two-dimensional QCD one can calculate the ap-
propriate vacuum condensates in the chiral limit from first
] ) ) . principles[28]. Such a calculatiortwhich will be reviewed
~As we mentioned in previous sections we are not able tQ, the next sectionleads to puzzling results. Roughly speak-
identify then! behavior in the OPEfound from the spec- ing the results of direct computation do not agree with indi-
trum) with some specific vacuum condensates. Such an idefact calculations based on the dispersion relations and spec-
tification can be done if one considers the heavy-light quarkyym_ we formulate this puzzle as well as its resolution in the
system. In this case the problem is reduced to the analysis gfext section. Anticipating the event, we would like to note
vacuum expectation value of the Wilson [in€W)  here that the origin of the puzzle is the factorial divergent
=(q(x)P exp(g/oA.dx,)a(0)). Indeed, if we consider as in coefficients in the asymptotic series. If these expansions
[24,29 the correlation function{T{qQ(x),Qq(0)}), de- were convergent series, we would expect an exact coinci-
scribing this system, we end um the limit M y— ) with dence of the results, based on these two methods. However,
the object which is completely factorize@ accordance the analysis in field theory demonstrates that this is not the
with HQET; see, e.g., revie\\26]) from the heavy quark: case.

A. General remarks

_ X J—
(T{@(x),Qq(O)}>~<Hx)P ex;{ igf Adeﬂ) q(0)> B. Spectrum Qq system in two-dimensional QCD(N =cc)
° As we have discussed in previous sections, if we knew the
+ perturb. part. (30 spectrum of highly excited states we would calculat@

dispersion relationsthe large order behavior for the corre-
By definition, (W) in this formula is understood as the Tay- sponding correlation function. As we mentioned above, the
lor expansion: heavy-light quark system is very special in this sense, be-
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cause it allows us to identify the corresponding factorial be-Using the parity relatiof2], which in our notations takes the
havior with specific vacuum condensates. This is the mairiorm,

motivation for the present section: find the spectrum for

highly excited states. Let us note that the heavy-light quark © —
system in this model was considered previously in IR29], fo dadn(a)
but in a quite different context.

As we discussed in Sec. II, the spectrum of highly excitedone can show that the scalar matrix elements have the same

states in two-dimensional QCD is line@). This is certainly  expression in terms of wave functions as the pseudoscalar
true, but only for the finite parameteng, with n—«. We  gneg(37).

—

M= o)
= mofo da o (39

are now interested in a different limit, wheng— o first, Having these results in mind, and using the standard tech-
andn>1 afterwards. These limits do not commute and Wenjques[1—6], one can calculatE32] the matrix elements,,
have to start our analysis from exact original E2). and energiesE,, in the quasiclassical approximation for

In order to perform the limitng— in 't Hooft Eq. (2), p>1:
let us make the following change of variables:

Inn T Inn
m m = —+ —_— 2: \/: _ i

Q Mo (39

Additionally we would like to rescale the wave function and This is the main result of this section. It will be used in what
redefine the energy scalfom now on, the counting of the follows for the calculation of large order behavior and high

energy starts fronmg) in the following way: dimensional condensates.
5 . Let us conclude this section with a few remarks. First of
my= (Mg +E,)“=mg+2mgE,, all, as was expected, in theg— e limit, Egs. (35)—(39) do
not depend omng, (after an appropriate rescaling accor-
mg —— dance with HQET(see, e.g., reviey26]).
Pn(X)— \ — én(a) (34 i i iral limi
n mg " . Our second remark is the observation that the chiral limit

m,=0 is very peculiar. In particular, one cannot take the
Once all these changes have been made we arrive to tHignit mg=0 in the identity(38), because it clearly leads to a
following equation, which replaces the 't Hooft equation, for nonsensical result. The reason for that is very simple. The

the heavy-light quark system in the limitg—ce: edge regiore~m, plays a very important role in making the
theory (and this identity in particularself-consistent. As a

—_— 1 mg—mg consequence, one cannot derive the boundary conditions on
2En (@) =mg| a+ 2 m wave function from the truncated equati¢85) where the
0 limit mg—co already has been taken. In order to do so we
. ;s\(ﬁ_l) need to come back to the original 't Hooft equati@. We
X ¢n(a) — m(Z)Pf d,g”—z ) shall return to this point in the Conclusion. We believe that
0= (a=p) the situation in four-dimensional QCD is quite similar in that

(35) the information about edge behavior in the theory cannot be
found from the truncated Lagrangian with the limit,—

The new set of wave functions in terms of new variables isglready taken.
orthogonal and complete:
C. High order condensates from duality
Snbn(@)dn(B)=(a—B), and dispersion relations

The starting point, as usual, is the correlation function

—

foooda(lsn(a)ﬁbm(a):énm- (36) _ o
_ P(Q2)=iJ e'dx(0|T{qQ(x),Qq(0)}|0)
For the future analysis we need not only the wave func-
tions, but also some physical matrix elements in terms of
these wave functions. It is convenient to separate the com- Nij eiqxdx<0|ax)PeigféAdeMq(0)|O>
mon factor, related tang, and define the matrix elements in
the following way:

+ perturb. part. (40
— N —— |y T We follow [24] and choose the external momentum
(OlaiysQln)= \/; MoMgfn,  fn= fo dar (@) - go=mg—E, q;=0 very close to threshold. For positive

(37)  values ofE the correlation function can be written in the
following way:

3We keep 'Fhe same notatidn for the corre§ponqmg matrix ele- P(E)= fmefEtdt<O|at)Peing)AOdtq(O)|0>+perturb. part.
ments. For light quark system they are defined in a different way 0

(8). We hope it will not confuse the reader. (41
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Let us note that we could consider the difference of two The way to evaluate the coefficierdg is as follows. We
correlation functionglike (23)]. In that case the perturbative are going to use the standard idsae, e.g.[30]) to present
contribution to(41) would vanish. the sum in terms of the integral:
For large enoughE>m; one can expand Eq4l) in I
1E [21 < = f(x “
[21] > F(n)=f #dx, F(x)=J f(x)e Xdt.
L L L n=1 o€ —1 0
— — — 45
P(E)= ¢ |(a0)— £z (aP5a) + &2 (aPoa)— - 49
However, in our case we hav& rather tham itself. The
+perturb. part, (42)  corresponding generalization is known as well:

where Pg=iD is the time component of the momentum g © feh(x,y)f(y)
operator. n§=:1 F[Q(”)]ZJO fo —ox_q dxdy,

Our goal now is to substitute the asymptotic expression
(39 for the matrix elements, and energieE,, into the o
dispersion relationganalogous to(18)]. These will deter- e*yg(p)zf h(x,y)e *Pdx. (46)
mine the higher order corrections to the correlation function 0

as well as the large behavior of the vacuum condensates For our particular case this formula gives the following rep-

(aD?"g). i .
The appropriate dispersion relation states that resentation for the suré4):

1
1 P(e)~> ———
_ 43 noy
2 rhrg @ nrere
. yef (y2/4x) —CcX—ey

1 )
wheree is external energy measuredrimy\/r units. In this P J;fo dx . dy—ama— F—1) (47)
formula we have taken into account the following key obser-

vation which we have used earlier in the deriviation of Eq.Where we have introduced a constarfor the future conve-
(21): the corrections- 1/n to the asymptotic behavior of the nience as an auxiliary parameter. Such a parameter is actu-
residued, and energieg,, (39) might change the preasymp- ally present in original formulag39); however, we believe
totic factor for the large order behavior. However, these corthat the main factorial dependence does not depend on it.
rections cannot change the main result—the factorial growtirhus, after differentiating with respect @ we putc=0 at

of the coefficients found below. This is the reason Why Wethe very end of calculation. One more remark regarding for-
cannot calculate the corresponding coefficiesxactly but  mula (47). Only evenn should be taken into account in this
Only the Ieading factorial factor. For the same reason we d%rmu|a_ However, by redefinition of parametm’and en-

not consider the SDECiaI difference of two correlation fUnC-ergy €, the prob]em can be reduced to the same integra]l The
tions [like (23)], where perturbative contribution is exactly resuylt is an extra power dependence, which is beyond our
canceled. In this case if we knefy,E, exactly, we would  scope of interest. Additionally, a subtraction which should be

calculate the nonperturbative condensagactly Unfortu-  made in this formula to get a convergent result, has no influ-
nately, this is not the case. Thus we ignore all complicationgnce onc, at largek (44).

related to the separation of pure nonperturbative contribution The integration ovex in the formula(47) can be ex-

f2. N

N
P(E)= 5 MoVm2 g E, w

from the perturbative one. o ecuted using the following expansion:
Let us note that the sum in E43) is divergent at large
n. This divergence is related to the necessity of a subtraction X - xK
in the dispersion integralP(E)— P(E)—P(0). Besides &1 :kzo Bii (48)

that, at large energ¥>m, one can estimate the behavior

P(E—)~InE, which corresponds to the pure perturbative\yhere B, are Bernoulli numbers. Bearing in mind that the

one loop diagram. These same features were present in oghpropriate integral frond7) is known exactly,
analogous previous formui@1).

With these remarks in mind, our problem is reduced to the o @ (Y214%) —cx T
calculation of the coefficients, at largek in the following f de= Ee_y‘“c, (49
expansion: 0 X
1 and replacing<® from the formula(48) by (—1)¥(d/dc),
P(€)— subtractions- >, — subtractions we arrive at the following expression for the sy#v):
n \/ﬁ-l-e
1 P 1Fd -y in 1k(d>k<\ﬁy6)
~5 ee —(— —-— —e .
~Ine+2 Ck - (44) (€) 2J)o y yk=2 k! (-1 dc c

< c (50

We note that the only difference with the previous formulaln this formula we ignore the few first ternggroportional to
(21) is the dependence of the sum dﬁ rather tham itself. By,B1) because theya) do not contribute to large order
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coefficientsc,, k>1; and(b) they are divergent and, thus, sults. We explain this puzzle later, but note for now thht

require some subtractions discussed previously. behavior in(54) plays a crucial role in the explanation.
The key observation is as follows: The nonperturbative Finally, as we shall see, the behavior has very general,

part (which is our main interegtin the expansion42) is  essentially kinematical origin in the largd. limit. This

determined by odd powers of E)?™"1. Such terms can be property is related to the so-called master field.

easily extracted from the formul®0) by expanding the ex-

ponent V. HIGH-DIMENSIONAL CONDENSATES
I (—1)lylet- 172 FROM THE THEORY. PUZZLE
v -1y
( \[Ee yw) ZEI I TR (51) One can show28] that the vacuum condensates which
enter into the formula(42) at N=o in the chiral limit
and executing the integration over mq—0 in two dimensions can be reduced to a form which
contains the field strength tensge,,,G,,, only. Indeed, the
* oy I+ covariant derivativegqD"D ,D ,q) placed at the very right
f . dy e Yy =7z (52 and at the very leftnear the quark fieldsan be transformed

into the operatorige,,G,, using the equation of motion

It is now clear that only odéi=2m—1 terms in the formula D 7.9=0. To do the same thing with operat@s, which is

(51) contribute to the coefficients related to the nonperturbaPlaced somewhere in the middie of the expression, we need
tive part (42). For small parametet the coefficientsc,  '© act, for example, on the right until the quark field is
can be easily calculatédby noting that forl=2m—1  reached. By doing so, step by step, we create many addi-

the appropriate terms from(51) take the form tional terms which are either commutator like
c'=¥21~c™1/(2m—1)!. The nonzero result in this case [D,,D,]=-igG,, which is the field strength operator or

[after differentiating ¢/dc)X and taking the limitc=0] Ccommutators like~[D,,e,,G,,]. Fortunately, in two di-
comes exclusively from the terke=m—1 in Eq. (50). Fi-  mensions these terms are related to creation of the quark-

nally we arrive at the following asymptotic expression for antiquark fields anq we discard them in the chiral Iimig be-
the odd coefficients, from the serieg44): cause they do not givej, enhancement; see formula6).
We discuss the exact correspondence in the Appendix, but

1 (—1)*B, for now we emphasize the existence of faatbrin the cor-
Cok-12k-1~ 21 K>1. (53 responding formula:
7 20\ (v2\NA ] ST n
Comparison with the original serie€?2) suggests that as (q(x,D,)"a)~(x*)"n!{a(gE)"a),

dimension of the operator grows, their vacuum expectation

values grow factorially, n>1, E~€,CG\,. (59

(qP2"q)~(qq)(mmy)2"n! 54 __Thus we end up with the vacuum condensates
(g(gE)"g) which are expressed exclusively in terms of the
From this formula one could naively think that half of the field strength tensor. Such vacuum condensates can be cal-

VEV's in (53) vanish because the odd Bernoulli numbers areculatedexactlyin the chiral limit [28]. The reason for this

zero. However, we think that this additional “selection rule” incredible simplification is the observation that in two-

is accidental in its nature and, thus, it should not be considdimensional QCD a gluon is not a physical degree of free-

ered seriously. We believe that this accidental vanishing oflom, but rather is a constrained auxiliary field which can and

the coefficients, in the OPE is related to our approximation Should be expressed in terms of the quark fields. At the same

(39) for the matrix e|ement$n and energiefn . Thus we time, in. the I.argd\l I|m|t, the eXpeCtation VE.ilue of a. product

expect that half of the VEV’s which formally vanish in the Of any invariant operators reduces to their factorized values

leading approximation are actually not zero, but suppresseldll. Exactly this feature of the largdl limit (based on

by a factor~ 1/n’ wheren is dimension of an operator. analySiS of the so-called master f|klnhakes it pOSSible to

Having demonstrated the main result of this section, a fevgalculate the vacuum condensates exactly. Our final expres-

comments are in order. First of all, the OPE ffe) is an  Sion takes the fornj28]

asymptotic series as it must be in agreement with general

argumentg21]. Besides that, we expect the same behavior

for analogous vacuum condensates in four-dimensional QCD

[27]. Additionally, the scale for the vacuum condensates is

my. We shall see in the next section that different calcula-We interpret this expression as follows: Each insertion of an

tions of the same condensates give somewhat different rexdditional factor proportional to field strength tenspE
gives one and the same numerical fag@®). This situation
can be interpreted as having cdassical master field[31]

4As we mentioned before the factorial behavior does not depend

on the particular magnitude. However, forc=0 the calculations

are much easier to present. Nonzero values of the parameter °Of course this is not the case in four dimensions where

might change the preasymptotic behavior, which is beyond thi§D? ,G,,] is an independent operator which cannot be reduced to

method. quark fields.

n

9199 (qq).  (56)

2mq

1
7(‘1('9 €xoCro5)"0) = ( -
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which we insert in place ofE in the vacuum condensates. In two dimensions this problem of course is much sim-
Because of its classical nature, it gives one and the samger. However, the perturbative contributions to the conden-
numerical factor. sates are divergent as well. Nevertheless, the high-
Secondly, it is important to note that the vacuum condendimensional condensates perfectly exist. Indeed, we have a
sate of an arbitrary local operator can be reduced through tHermula (56), with mixed condensates expressed in terms of
equation of motion and constraints to the fundamental quarkhiral condensatéqq), where the latter are defined as the
condensat¢9). remnant after subtraction of the perturbative contributfon
Finally, we must comment on the effective energy scalethe technical details, s¢é6]). Thus our formula56) is un-
which enters into the expressi@s6): This is notmg as one derstood as a nonperturbative one, when we {rgq} as the
could naively think, but rathem?2,= mglmq> mj. The ob-  nonperturbative chiral condensate. Let us note that the gluon
vious technical reason for that is related to the fact that in th€ondensate in this model is finite and can be calculated ex-
light cone gauge(where the theory has been quantized actly [12] (see also the recent pafdi6] on this subjeqt In
A_=1/2(A,—A;)=0 we have few constraints: the usual tWo-dimensional QCD it can be expressed in terms of the

constraint in the gauge sectt®auss law’ chiral condensate.
With this remark in mind, we are now ready to formulate

ab a1 b tec the puzzle The scale which enters into the ORR) presum-
9-EP~g| aiql - oraras |, (57)  ably is determined by the coefficientg from (44). The lead-
ing contribution to these coefficients can be expressed in
with right moving fermionsy, considered as dynamical de- terms of the vacuum condensatés)
grees of freedom. The left-moving fermiogs are nondy-

namical degrees of freedom in this gauge. The latter can be g% (qg)\ X _ 3 ‘
eliminated by the following constraint: Cor1™| = o, (qa)~(mg/mg) k!, k>1.
1 1 o .
&—q+~ m—q, (58  Thus the characteristic scale of the problem‘r@mq. We
- q

see an extra factor iy, in this scale. It has very clear origin
(for more details, see, e.d15]). This relation explicitly ex- (°8) and might be very big in the chiral limit. At the same
plains the origin of the factor &, which is present in the time, the characteristic scale which can be found from the
formula (56) (see[28] for detailg q spectrum(21), (42) is much smaller and proportional to
. 2 . .
Before formulating the puzzle, we would like to pauseMo- This is the puzzle. - _
here in order to explain the definition of the high- The explanation of this apparent paradox is as follows. If

dimensional vacuum condensates. As is known, they are pePUr series(21), (42) were convergent ones, we would be in
turbatively strongly ultravioletUV) divergent objects. ftrouble, but fortunately, our series are asymptotic ones. Thus,
As usual, all vacuum condensates should be understood iR order to make sense of these series we have to define them

a sense that the perturbative part is subtracted. The subtra@?d here7we will use the standard Borell summing prescrip-
tion is organized by introducing of the so-called normaliza-tion [23]." Once this prescription has been accepted, we can
tion parametey. In general, vacuum condensates do dependfite down an expression which reproduces the asymptotic
on this parameter. The gluon condensates of dimensionscoe_ff'c'ents for large numbée and at the same time is well
four, six, eight, etc. in four-dimensional QCD are perfectdefined everywhere:

examples where perturbative parts are divergent, but nonper-

turbative partgthe remnants, which are left after subtracjion D ‘ dy’ 1ty

are perfectly defined. One could naively think that the instan- = CkY ”J We *

tons might spoil this picture, because they give ultraviolet

divergent contribution to high order condensates. However,

we do not think this is the case and one can argue that the G~ (= 1)k ~(—1)"f dy’ -y 9
definition we have formulated remains untouched even with k ' (y k2 '

small size instanton effects taken into account.

The argument is as follows: We should treat the small sizewe did not specify the parameterin this equation on pur-

instantons and the small size perturbative contributions o ;
. - pose. Suppose we have a large scale in the problem deter-
the same basis. So, we should subtract both these dlverﬁ1 PP g P

= B nined by the vacuum condensai@$). In this case dimen-
gences at the same time in order to get the so-called “nong

) ) ) ' Sionless parametey has a large factor fi:
perturbative” condensates which define the large distance P & g q

physics. Of course small-distances physics does not disap-
pear when we do such a subtraction. According to Wilson
OPE the corresponding small distance contributjpertur-
bative part and small instanton contributipnshould be
taken into account separately.

(g°N)?
mgE®

Y~ (60)

"We already mentioned in the Introduction that the Borel summa-
bility or its loss is not the crucial issyd0]. However, for the sake
5This formula explicitly demonstrates why a quark condensateof definitenesgand for simplification, we assume in general dis-
appears in56) each time we insert an extra gluon fietd®. cussion which follows that the series is Borel summable.
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The prescription(59) in this case states that the sum of lead-the result which is order of one. This observation raises the
ing terms~(1/mq)" gives a zero contributiofin the chiral  following question.
limit) (d) Suppose we have a condenséf®) of dimensionk

d which has both parts: the enhanced part, proportional*to
> Ck?’k”J Y
K

and the “regular” one of order 4 As we have learned, the
Y (y+vy')

subseries which have big factors liké& do not contribute
much to the final expression. At the same time they are the

1 main contributions into the condensate with the given dimen-
Y (61 sionk.

q The moral is when we use truncated expansions or ap-
proximate approachedike QCD sum rules we inevitably
study not the actual condensates, but rather, seffeetive
condensate One simple consequence of this is that the lat-
tice calculation of vacuum condensate might be different
tﬁom QCD sum rules analysis.

(e) One may wonder what is the role of the scaledin
s model? The answer is very peculiar. Indeed this scale
can not be seen in spectrum however, from exact identities
like (38) one can see that the edge region of onagrplays
K a very important role in maintaining self-consistency of the
ZQJ f(y) y‘k‘zexy{ _ _)d7~1 theory. The calculation of the condens4fe?], where the
k! Y regionx~my gives whole answer is another example of the
same kind. Exactly this infrared region determines the scale
exactly reproduce & dependence of the coefficients as well for the condensate&6), but not the scale for integral char-
as of the condensates. If this function is mild enough, it will acteristics like the spectrum itself. See also the remark after
not destroy the relatio(61), but might change some numeri- (39) on the same subject.
cal coefficients. (f) Since OPE is an asymptotic series, it is a good idea to
If we could calculate the vacuum condensdt& exactly  keep only a few first terms in the expansifike people do
(and not only the leading terms at;—0), we would find  in the standard QCD sum rules approgd@8g]) and to stop at
that the terms of order one give contribution of order one tasome poinf Any hopes to improve the standard QCD sum
the correlation function. Thus subleading terms play a muchules (like the idea advocated {84]) by summing up of the
more important role in the final formula than the leadingcertain subset of the power corrections, and ignoring all the
ones~1/my. The origin of this mystery of course is the rest, might lead to the results which are much worse than the
factorial growth coefficients in the series. This observationones which follow from a preimproved version of the ap-
actually resolves the puzzle announced in the beginning gbroach. At least in two-dimensional QCD such a procedure,

e -0 (at my—0),

to the physical correlation function. We would like to note
that the effect(61) does not crucially depend on the factor-
ization properties for the condensat&$) as neither on our
assumption of exact factorial dependence of the coefficien
c=k!(—)X (59). Both of these effects presumably lead
(apart tok!) to some mildk dependence which can be easily thi
implemented into the formuld61) by introducing some
smooth functionf(y) whose moments

Ck

the section. as we learned, gives a parametrically incorrect result.
We would like to make a few more remarks regarding this  We would like to make two more remarks which were not
subject in the Conclusion which follows. our main subjects, but look like interesting byproducts wor-
thy of mention.
VI. CONCLUSION (g) We argued that then! behavior found in two-

dimensional QCD is related tmstantons Even more, the

We conclude this manuscript with the following lessons. action of the instanton in the theory with adjoint matter is a

(@) The OPE is an asymptotic series. factor of two less than in the theory with fundamental

(b) We were lucky in a sense that in two-dimensionalquarks. The explicit realization of such a solution is still
QCD the scales for high dimensional conden&emasr,gl and lacking.
for the spectrum~1 were parametrically different. This was  (h) We analyzed th€q system in two-dimensional QCD.
the reason why we noticed the difference very easily. ThaVe found that the edge behavior of the system is very pecu-
lesson we can learn from this example is that numericalljiar and cannot be found from the truncated theory, where
leading terms in the asymptotic expansion may give somelimit mg= is already taken. We believe that the same be-
what negligible contribution into the final expression. We havior is an inevitable feature of the real four-dimensional
believe that this is not a specific result for two-dimensionalQCD.
physics, but rather is a general property of a field theory
associated with an asymptotic series. —

(c) Of course, we do not expect that in the real four- 8 thank Michael Peskin for the discussion of this subject. Actu-
dimensional QCD the vacuum condensates might exhibiglly, he raised the question of the effective nature for the conden-
some parameters similar tem_*. However, it might hap- sates before this work was presented at the SLAC theory seminar.
pen that some subseries of condensates possess a large nfin asymptotic series with coupling constantone should stop
merical factor, let us call iL>1. In this case we would with the number of terms of ordex™*. In particular, in case of
expect that the corresponding contribution into the final for-QCD sum rules, whera ~1/3—1/5 to be determined by the scale
mula will be suppressed, . At the same time, summing of where power corections are 20—30 %, one can estimate the maxi-
a subseries of terms which are order of one, would lead tenum number of terms in the expansion is about 3—5.
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APPENDIX

The main goal of this Appendix is a demonstration of the

factorn! in formula (A1) in the chiral limitm,=0,
(a(x,D,)*"g)~(x*)"n!(q(gE)"q),

n> 1, ENG)\UG)\U. (Al)
We sketch the idea only, ignoring for simplicity all normal-
ization factors.

We use the standard representationfgrmatrices satis-

fying

{’YM!’YV}:Zg/.LV’ Y0~ Oxs Yi=— [ Oy, V5= 03
(A2)
Y+=%Y*v1, D+=DoxDy, ’}’g=0,
¥5=0, yzy+~1%7s.

Dirac equations take the following form in the chiral limit:
(y+D_+vy-D;)g=0. (A3)

By multiplying these equations by.., we arrive at the fol-
lowing relations:

(1+y5)D.q=0, gD=(1*ys)=0. (A4)
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From Lorentz invariance it is clear that a nonzero result
~(x_x;)" comes from terms with equal numbers of
D_ and D, with all possible permutations. Our problem
is how to count them. First, we pick up the projector
(1+vys5) from the expressiorfA5). According to(A4) we
should moveD . to the right andD _ to the left(to reach the
quark field using the following commutation relations:

E.

[D,,D_]~€,,G (A6)

2%
Here the field strengtk can be considered as constéambt
operatoj, because acting the operat@s on E leads to the
pair creation. We neglect everywhere such terms in the limit
N—o,my,—0. The contribution with projection (% ys)
gives exactly the same result after relabelbg<D, and
repeating the procedure described above.

Now one can see that these calculations are very similar
(in the algebraic sengéo the oscillator problem with ladder
operators satisfying the standard relations

[a,a*]=1, al0)=0, (0j]a™=0. (A7)
Our problem is the calculation of mean value of the operator
x?"~(a+a't)?" for the ground state:

(0[x*"0)~(0|(a+a")?"0)~T

z I
n+ 5 ~n!, n>1.
(A8)

This concludes our explanation of the factdr (55) which
we heavily used in our previous discussions.

Let us repeat again that all factors frof®5), (56) have
clear meaning and can be explained without detailed calcu-

Let us present our original condensate in the followinglations. Three steps are involved) The transition from the

form:

— N 1+ys 1—y
(G(x,D )2 q>~<ﬁ 5t 5)

><(x+D+xD+)2“q>. (A5)

operator(q(x,D,)?"q) to the operatorq(gE)"q) with a
factor n! was explained in this AppendiX2) The idea of a
master field predicts that each insertionEointo the expres-
sion for the operatoXq(gE)"q) gives one and the same
constantM . (3) The constraint57), (58) explicitly dem-
onstrate thaMgg~m;*.
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