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Lessons from two-dimensional QCD„N˜`…:
Vacuum structure, asymptotic series, instantons, and all that

Ariel R. Zhitnitsky*

Physics Department, University of British Columbia, 6224 Agricultural Road, Vancouver, British Columbia, Canada V6
~Received 30 October 1995!

We discuss two-dimensional QCD (Nc→`) with fermions in the fundamental as well as adjoint represen-
tation. We find factorial growth;(g2Ncp)

2k(2k)!(21)k21/(2p)2k in the coefficients of the large order
perturbative expansion. We argue that this behavior is related to classical solutions of the theory, instantons;
thus it has nonperturbative origin. Phenomenologically such a growth is related to highly excited states in the
spectrum. We also analyze the heavy-light quark systemQq̄ within the operator product expansion~which
turns out to be an asymptotic series!. Some vacuum condensates^q̄(xmDm)

2nq&;(x2)nn! which are respon-
sible for this factorial growth are also discussed. We formulate some general puzzles which are not specific for
two-dimensional physics, but are inevitable features of any asymptotic expansion. We resolve these apparent
puzzles within two-dimensional QCD and we speculate that analogous puzzles might occur in real four-
dimensional QCD as well.@S0556-2821~96!07210-4#

PACS number~s!: 11.55.Hx, 11.10.Kk, 11.15.Pg, 12.38.Lg
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I. INTRODUCTION

The problem of large-order behavior of perturbativ
theory attracted renewed attention recently. One of the m
tivating factors is a common wisdom that the correspondi
asymptotic behavior is related somehow to very deep ph
ics. This is the area where perturbative and nonperturbat
physics strongly interfere. An understanding of this interpla
may shed light on the nature of the nonperturbative vacuu
structure in general and the origin of vacuum condensates
particular.

With these general remarks in mind we would like t
analyze these problems in solvable two-dimensional QC
(N→`) @1–7#. We would like to test assumptions, hypoth
eses, and interpretations, made in four-dimensional fie
theory, within toy two-dimensional QCD (N→`), where we
expect confinement and many other properties inherent
real QCD. Additionally, we extend the analysis to QCD wit
adjoint matter@8,9#. As is known, in this theory, the pair
creation is not suppressed even in the largeNc limit, and thus
this model can mimic an exponentially growing density o
states with large massr(m);exp(m). In this case no exact
solution is available, but we argue that general methods su
as dispersion relations, duality and unitarity can provide
the information we need about spectrum for the calculati
of large order behavior.

Why are we so conscious about the large order behavi
We see at least a few theoretical and phenomenological r
sons for that. Let us start from the pure theoretical reaso
One may think that the crucial question in this case
whether the perturbative series is Borel summable or not

Contrary to the common belief, we do not think that th
issue of Borel summability~or its loss! is the fundamental
point. In particular, let us mention an example of the princ
pal chiral field theory at largeN @10#. In this case, the ex-
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plicit solution as well as the coefficients of the perturbative
expansion can be calculated. These coefficients grow fac
rially with the order and the series is non-Borel summable
but nevertheless, the physical observables perfectly exist f
any finite coupling constant. The exact result can be reco
ered by special prescription which uses a nontrivial proce
dure of analytical continuation~which might be a good ex-
ample for other asymptotically free theories!.

The second important theoretical issue can be formulate
as follows: Because of dimensionality of the coupling con
stant in two-dimensional QCD the perturbative expansio
;((g2)ncn and the operator product expansion~OPE! for a
correlation function;((g2/Q2)ncn are one and the same
expansion. From this simple observation we learn that th
OPE is an asymptotic series. Thus many interesting que
tions arise.

~a! What kind of vacuum condensates are responsible f
such a behavior?

~b! Do we extract the actual condensates from the OPE
only effective ones?

~c! What kind of vacuum configurations are responsibl
for suchn! growth?

~d! Do these configurations saturate the vacuum conde
sates?

What is more important, sometimes these questions~and
many others! can be answered. We expect, will argue, tha
the analogous phenomena might occur in real fou
dimensional QCD, thus these questions have not only pu
academic interest.

Phenomenologically, there are issues which are eve
more interesting and give much more freedom for specul
tion. First of all, let us recall that the reason for interest in th
large order behavior is related to the factorialn!.nn growth
of the perturbative coefficients. This growth can be consid
ered via the dispersion relation and is commonly interprete
as a reflection of the divergence of the multiparticle cros
section with large number of particles and energy.n ~see
discussions in@11#!. The naive interpretation would be the
5821 © 1996 The American Physical Society



in
e
tor

m-
,

or-

ave
um

or
ts
en

bra

t’s
ust
ete

-

e
-
n

5822 53ARIEL R. ZHITNITSKY
violation of unitarity.1 We will show however that in two-
dimensional QCD while we have a factorial growth of coe
ficients, this growth has nothing to do with multiparticle pro
duction since at largeN the pair creation is suppressed b
factor 1/N. Rather, this growth is related to the highly ex
cited two-particle meson states. Another phenomenolog
issue looks mysterious: vacuum condensates extracted f
the spectrum might be quite different from the actual ma
nitude of condensates.

II. ’t HOOFT MODEL

Let us start from the analysis of two-dimensional QC
with fermions in the fundamental representation—t
’t Hooft model. It is completely solvable in the limit where
the number of colorsN→` @1#. The Bethe-Salpeter equatio
for mesonic bound states was solved in@1# yielding a spec-
trum whose states lie asymptotically on a single ‘‘Reg
trajectory.’’ We want to point out that many general que
tions in this model can be answered without solving an eq
tion, but using such powerful methods as dispersion re
tions, duality and unitarity. In particular, in the wea
coupling regime,

g2N;const, N→`, mq@g;
1

AN
~1!

the chiral^c̄c& and gluon condensates^Gmn
2 & can be calcu-

latedexactly; see below. Additionally, few low-energy theo
rems can be tested and obtained result imply that there ar
other states in addition to those found by ’t Hooft. In oth
words, the dispersion and duality relations would indica
missing states.

Here, the entire spectrum is discrete and is classified
the integern. The model we shall consider consists of qua
in fundamental representation interacting via an SU(N) color
gauge group. We follow the notation of Ref.@2# and present
the ’t Hooft equation@1# in the following form:

mn
2fn~x!5

mq
2

x~12x!
fn~x!2m0

2PE dy
fn~y!

~x2y!2
, ~2!

where symbolP notes as the principal value of the integra
and 0,x,1 is the fraction of the total momentum of th
bound state carried by quarkq with massmq . The quantity
m0
2[g2N/p is the basic mass scale in the theory and t

index n classifies the ordering number of the bound sta
un,p& with total momentumpm .

The same wave function can be expressed in terms of
following matrix element@6#:

fn~x!5AN

pE dy1e
2 iy1~122x!p2^0uq̄~2y!q~y!un,p&uy2

50 . ~3!

1In the physical theory, the unitarity is preserved, of course. T
physical question is the following: what can stop this growth?
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Let us note that the matrix element on the right is written
the light cone gaugeA250; to restore the manifest gaug
invariance one can insert the standard exponential fac
eig*A2dy1 into the formula~3!.

Let us review some important properties of Eq.~2!. The
entire spectrum is discrete and classified by the integer nu
ber n. The wave functionsfn(x) are orthogonal, complete
and obey the following boundary conditions:

fn~x!→@x~12x!#b, x→0, x→1,

pb cot~pb!512
mq
2

m0
2 . ~4!

For largen the spectrum is linear

mn
2.p2m0

2n, fn~x!.A2sin~pnx! ~5!

and does not depend on mass of the quark. More imp
tantly, in the chiral limit (mq→0) the lowest level~we call it
p meson! tends to zero (mp

2;mq) and one could expect a
nonzero magnitude for the chiral condensate. Thus we h
come to the very important connection between spectr
and vacuum structure.

As the vacuum of the model is a very important issue f
the following analysis, we would like to recall some resul
with an explanation of the general methods which have be
used to derive them.

We define the chiral condensate in the current alge
terms as follows:

05 lim
pm→0

i E d2x eipx]m^0uT$q̄gmg5q~x!,q̄g5q~0!%u0&

52i ^0uq̄qu0&12mq^0uT$q̄ig5q~x!,q̄ig5q~0!%u0&. ~6!

As we have already mentioned, the only states of ’t Hoof
solution are the quark-antiquark bound states, thus they m
saturate the dispersion relation. Upon inserting this compl
set of mesons to the~6! one obtains

^0uq̄qu0&52mq(
n

N

p

f n
2p2m0

2

mn
2 , ~7!

where f n is defined in terms of the following matrix ele
ments:

^0uq̄ig5qun&5AN

p
pm0f n , f npm05

mq

2 E
0

1 fn~x!

x~12x!
dx.

~8!

In the chiral limit the only state which can contribute to th
formula ~7! is thep meson. Its matrix element can be calcu
lated exactly and we end up with the following expressio
for the chiral condensate in themq→0 limit @12#:

^0uq̄qu0&52N
m0

A12
, m0

25
g2N

p
,

f n505
1

A3
, mp

25mq

2m0

A3
. ~9!he
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The result is confirmed by numerical@13,14# and indepen-
dent analytical calculations@15#. Moreover, the method has
been generalized for the nonzero quark mass and the co
sponding explicit formula for the chiral condensate^q̄q&
with arbitrarymq has been obtained@16#.

As was expected, we find that^0uq̄qu0&;N. Besides that,
as we have already noticed in@12#, if we putmq50 from the
very beginning, then̂0uq̄qu0&50. This corresponds to the
different regime whenmq!g;1/AN, when nonplanar dia-
grams come into the game as we will discuss later. The l
remark is the observation that the entire nonzero answer
the condensate comes from the infrared region of the in
gration in Eq.~8!: x;0,x;1 which corresponds to the situ-
ation when one of the quarks carries all the momentum a
the second one is at rest.

The sum~7! can be calculated exactly for arbitrarymq
@16#. The crucial point is that for arbitrarymq the nonzero
contribution comes from the highly excited states (n@1)
only. The properties of these states are well known,

f n
2→1, mn

2→p2m0
2n, n@1, ~10!

and thus the sum~7! can be explicitly evaluated with the
result @16#

^0uq̄qu0&5
mqN

2p H ln~pa!212gE

1S 12
1

a D @ I ~a!2aI ~a!2 ln4#J , ~11!

wherea5m0
2/mq

2 ,gE50.5772 . . . isEuler’s constant and

I ~a!5E
0

`dy

y2
12 ~y/sinhy coshy!

@a~y cothy21!11#
.

This result is exact for largeN and arbitrary quark mass
within the ’t Hooft regime, i.e.,mq@g;1/AN ~1!. In the
limit a→`, it reduces to Eq.~9! as it should.

The last condition (mq@g) which has to be satisfied for
the ’t Hooft solution to be valid requires some additiona
explanation. Roughly speaking, nonplanar diagrams m
contain a factor;mq

21 which atmq50 blows up and the
theory changes completely. The concept of the proof th
there exists a factor;mq

21 in nonplanar diagrams is the
following.

Let us consider the correlation function forp→0

i E d2x eipx^0uT$q̄q~x!,q̄q~0!%u0&5P~p2!. ~12!

The ’t Hooft solution suggests that only planar graphs a
taken into account and, consequently, the spectral den
contains only contributions from one meson states for whi
Pplanar;N. At the same time in the chiral limit, we can cal
culate the two-pion contribution exactly. This contribution i
not accounted forin deriving ~2!. Of course, the two-pion
contribution is suppressed by a factor 1/N. However, it con-
tains a term;m0

2/mp
2 which tends to infinity formq→0. The

presence of the factor;mq
21 in nonplanar diagrams leads to

the aforementioned constraint onmq .
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Now let us explicitly demonstrate the existence of th
term;mq

21 for the two-pion contribution. In order to do so,
we write down a dispersion relation forP,

P~0!5
1

pE4mp
2

` ds

s
ImP~s!, ~13!

where ImP(s) is the physical spectral density. Thepp con-
tribution is fixed uniquely by~9! because of the special role
of pions @12#

^ppuq̄qu0&up→05
m0p

A3
,

1

p
ImPpp~s!5

m0
2p2

6

1

As~s24mp
2 !
, ~14!

Ppp~0!5
m0
2p2

6 E
4mp

2

` ds

sAs~s24mp
2 !

5
m0
2p2

12mp
2 ;

1

mq
.

It is clear that the only cause for a singular;1/mq behavior
is the finiteness of the pion matrix elements at zero mome
tum. At the same time this contribution does not contain th
large factorN which accompanies a one meson contributio
to the same correlator. To suppress these nonplanar diagra
we requireN@m0

2/mp
2 . Thus we expect that some kind of

phase transition may occur in the regionmq;g, which
would cause a complete restructuring of the theory.

The last subject we would like to discuss in this section
the strict Coleman theorem@17# which states that a continu-
ous symmetry cannot be broken spontaneously in a two
mensional theory. As we discussed earlier@12# we expect
that as in the SU(N→`) Thirring model ~where the chiral
symmetry is ‘‘almost’’ spontaneously broken@18#!, the
Berezinski-Kosterlitz-Thouless~BKT! effect @19# operates in
regime ~1!. This fact also confirms the ’t Hooft spectrum:
states with oppositeP parity are not degenerate in mass an
there is an ‘‘almost’’ Goldstone boson withmp

2;mq11/N.
To be more specific, one can show@12# that in two-

dimensional QCD (N→`) the behavior of the proper two-
point correlation function is as follows:

^0uT$q̄LqR~x!,q̄RqL~0!%u0&;x2 1/N. ~15!

Such a behavior together with cluster property asx→` im-
plies the existence of the condensate atN5` in a full agree-
ment with our previous discussion. At the same time, for an
finite but largeN, the correlator falls off very slowly dem-
onstrating the BKT behavior with no signs of contradictio
to the Coleman theorem.

Having these general remarks on two-dimensional QC
(N) in mind, we turn to our main subject.

III. LARGE ORDER BEHAVIOR
IN TWO-DIMENSIONAL QCD „N5`…

A. ’t Hooft model

Let us consider the asymptotic limitQ252q2→` of the
two-point correlation function@2,12#:
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i E dx eiqx^0uT$q̄ig5q~x!,q̄ig5q~0!%u0&5P~Q2!. ~16!

It is clear that the largeQ2 behavior ofP(Q2) is governed
by the free, massless theory, where

P~Q2→`!52
Nc

2p
lnQ2. ~17!

At the same time the dispersion relations state that

P~Q2!5
Ncm0

2p2

p (
n50,2,4, . . .

f n
2

Q21mn
2 ~18!

and the sum is over states with evenn because we are con-
sidering the pseudoscalar currents. Here residuesf n are de-
fined as follows:

^0uq̄ig5qun&5ANcm0
2p2

p
f n , n50,2,4, . . . . ~19!

Bearing in mind that for large n, f n
2→1 and

mn
2→m0

2p2n, we recover the asymptotic result~17!. We can
reverse arguments by saying that in order to reprodu
lnQ2 dependence in the dispersion relation~17!, the residues
f n
2 must approach the constant;(mn11

2 2mn
2) for largen.

Now consider aQ22k expansion for the correlator~18! in
order to find the coefficientsck of this series at largek

P~Q2!;(
k
c2kg

2k;(
k
c2kS g2Nc

Q2 D k. ~20!

As we mentioned earlier, in two dimensions the perturbati
expansionck(g

2N)k and the 1/(Q2)k expansion coincide.
Now, if we knew f n andmn for arbitrary n we could

calculate the sum~18! precisely, and thus, we would find the
coefficientsck from ~20!. Unfortunately, we do not know
them. However, the key observation is as follows: in spite
the fact that we do not know an analytical expression f
f n andmn for arbitraryn we still can calculate the leading
behavior ofck . The reason for that is related to the fact tha
the only asymptotics of residuesf n51, n→` and masses
mn
25m0

2p2n, n→` are essential; the corrections to
f n511O(1/n), mn

25m0
2p2n1O(1), n→` might change

the preasymptotic behavior ofck , k→`, but cannot change
the factorial behavior (k)!, found below. Using the asymp-
totic expressions forf n andmn we find thatP(Q2) is ex-
pressed in terms of transcendental functio
C(z)5G8(z)/G(z) where z5Q2/m0

2p2. However we can
trust only in the leading terms of the corresponding formu

P~Q2!2P~0!5
Nc

2p( S 1

n1z
2
1

nD
52

Nc

2p F lnz1gE1
1

2z
2 (

k51

`
B2k

2k

1

z2kG ,
z5

Q2

m0
2p2 , B2k5

~2k!!2~21!k21

~2p!2k
, ~21!
ce
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whereB2k is asymptotic expression for the Bernoulli num-
bers.

A few comments are in order. First of all, we have explic
itly demonstrated that the coefficientsc2k in the operator
expansion(c2k /Q

2k are factorial divergent in high orders,
c2k;(2k)!, so the expansion is asymptotic in full agreemen
with the general arguments of Ref.@21#.

Additionally we note that the only even powersg2/Q2 are
essential in the expansion~generally speaking, arbitrary
powers ofg2/Q2 could contribute!. Nonleading terms inf n

2

andmn
2 might contribute to the odd powersg2/Q2.

From the physical point of view this factorial behavior is
related to highly excited states with excitation numbe
2n0;Q2/m0

2 , and not with multiple production as one might
naively expect. Indeed let us considerQ2/m0

2;z<2n0 in the
expansion((1/2n1z);((2n/z)k. It is clear that the main
contribution comes fromk.2n0 and (2n0)

2n0;(2n0)! ex-
actly corresponds with the behavior found above. It is i
agreement with phenomenological analysis@11#, where it
was assumed that the production of a highly excited res
nance might be responsible for the large order behavior.

From the theoretical point of view we would expect tha
this behavior is related, somehow, to purely imaginary in
stantons@in order to provide the correct (21)k behavior#.
Any additional arguments in favor of this point will be dis-
cussed latter.

We would also like to point out that the numerical coef-
ficient, which enters to the formula~21! is follows:

c2kg
2k;S g2Nc

Q2 D 2k. ~22!

At the same time, the perturbative 2k-loop graph gives a
different contribution;(g2Nc /pQ

2)2k with an extra factor
1/p per each coupling constant. This extra factorp must be
taken very seriously as it is a large parameter. We definite
know ~from exact solution!, that the real scale of the problem
ism0

2p2, and notm0
25g2Nc /p as one would naively expect

from the perturbative theory. This means that vacuum co
densates which are determined by nonperturbative phys
come into the game. Even more, their contribution is muc
more important than pure perturbative diagrams. Let us no
that the lowest vacuum condensates, found exactly in@12#,
exhibit this additional factorp. Thus the factorial growth is
related, somehow, to the nonperturbative physics.

To further investigate the nonperturbative nature of th
asymptotic series~in order to support the previous argu-
ments! let us, instead of correlation function~16!, consider
the following difference of correlators:

i E dx eiqx$^0uT$q̄ig5q~x!,q̄ig5q~0!%u0&

2^0uT$q̄q~x!,q̄q~0!%u0&%5DP~Q2!. ~23!

One can argue that in the chiral limitmq→0 the perturbative
contribution to ~23! is zero. At the same time dispersion
relations lead to the same result: the coefficients of the OP
are factorially divergent. This growth is related not to som
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perturbative diagrams, but to nonperturbative physics. W
will present more arguments for this point of view in the ne
section.

Finally we have explicitly demonstrated that the OPE
an asymptotic series. However, we cannot answer the imp
tant question of what kind of operators are responsible
such behavior. The reason for that is simple—too many o
erators contribute to the correlation function~16! and the
corresponding classification problem is quite involved. In th
following we will consider a special heavy-light quark sys
tem, where such an identification can be made. We find t
some vacuum condensates exhibit a factorial growth. Exac
this fact is the source of such an asymptotic behavior.

B. QCD coupled to adjoint fermions. Instantons

Now we repeat the preceding analysis for the much mo
interesting model of QCD with adjoint Majorana fermion
@20,8,9#:

Sadj5E d2x TrF2
1

4g2
FmnF

mn1 i C̄gmDmC1mC̄C G .
~24!

As is known, the most important difference with the ’t Hoof
model is that the bound states may contain, in general,any
number of quanta. In other words, pair creation is not su
pressed even in the largeN limit. The problem becomes
more complicated, but much more interesting, because
pair creation imitates some physical gluon effects.

We consider the following correlator analogous to~16!:

i E dx eiqx^0uTH 1

Nc
TrC̄C~x!,

1

Nc
TrC̄C~0!J u0&

5P2~Q
2!, ~25!

whereC̄5CTg0 and the labelP2 shows the number of par-
tons in the external sourceC̄C(x); the factor 1/Nc is in-
cluded in the definition of the external current in order t
make the right hand side of the equation independent
N. In the largeQ2 limit the leading contribution to correla-
tion functions is given as before by

P2~Q
2→`!52

2

2p
lnQ2. ~26!

The additional factor 2 comes from two options in calcula
tion of Tr and related toZ2 symmetry mentioned in@9#.

Now the problem arises. In ’t Hooft model we definitely
know that only two-particle bound states contribute to th
corresponding correlation function. However, this is not tru
for the model under consideration and any states may c
tribute to P2 . The key observation is as follows: any pair
creation~quantum loops which describe the virtual effects! is
suppressed by a factorg2Nc /Q

2 because of dimensionality
of the coupling constant in two-dimensions~in a big contrast
e
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with real four-dimensional QCD!.2 Besides that, the quark
mass term produces the analogous small factormq

2/Q2 and
can be neglected as well. Thus information about highly e
cited states~which provides the lnQ2 dependence! can be
obtained exclusively from the analysis of the correlatio
function at largeQ2. In this case the analysis is very simila
to ’t Hooft case, considered in the previous section:

^0u
1

Nc
C̄Cun1&5A~m0

2p2!

p
f n1, n1@1, n1P2Z,

mn1
2 5m0

2p2n1 , f n1
2 51, m0

25
2g2Nc

p
. ~27!

The only difference is the doubling of the strength of th
interactiong2→2g2, @8# and the additional degeneracyZ2 ,
mentioned above. Now the formula forP2 ~26! can be easily
recovered:

P2~Q
2→`!2P2~0!5

2

p (
n150,2,4 . . .

~m0
2p2! f n1

2

mn1
2 1Q2

→2
2

2p
ln~Q2!. ~28!

As before, any correction to the asymptotic expression~7!,
such asf n1

2 511O(1/n1), mn1
2 5m0

2p2n11O(mq) will pro-

duce power corrections;1/Q2 and they are not interesting a
the moment.

Apparently, the formulas~26!–~28! are very similar to
Eqs. ~17!–~19! which correspond to the ’t Hooft model
However, there is a big difference in interpretation of the
two cases: in the ’t Hooft model we have exclusively two
parton states~two bits, in terminology of Refs.@8,20#!. They
saturate the dispersion relations.

In the case~26!–~28! we have much more states with
arbitrary number of partons. As we explained in@22# the
mixing between the different numbers of partons is not su
pressed because of^C̄C& condensation. Effectively, how-
ever, all these complex states contribute to the correlat
function ~28! in the same way as in the ’t Hooft model. In
this case the integer numbern1 from ~27! should be inter-
preted as an excitation number of two bits in those stat
The matrix elementf n1

2 .1 can be interpreted as a total prob

ability to find two bits among the complete set of the mixe
states. The total number of states is increasing the mass
creases. Thus the probability to find two bits in the give
state is decreasing correspondingly. However, the dispers

2Naively, one could interpret such a result that the mixing b
tween different number of partons is highly suppressed. Suc
conclusion would be in contradiction with numerical results@20#.
However, as we argued in recent papers@22#, the puzzle can be
resolved by introducing a nonzero value for vacuum condens
^C̄C&. Such a condensation does not break any continuous s
metries. Thus no Goldstone boson appears as a consequence
condensation.
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relations~28! tell us that the total probabilityf n1
2 with the

given excitation numbern1 remains the same.
We can repeat the previous analysis, which led us to

formula ~21! with small changes. Instead of factorB2k in the
expression~21! we will find

B2k⇒22kB2k

for the theory with adjoint matter. This difference was me
tioned above and is related to the doubling of the strength
the interactiong2→2g2.

How could one interpret this result? First of all, let u
recall that factorial behavior may occur for three differe
reasons: ultraviolet renormalons, infrared renormalons, a
instantons. Clearly, the first two reasons cannot cause
such behavior in a field theory with the dimensional coupli
constantg. Thus we expect that some kind of classical so
tion should be responsible for such behavior. If we accept
instanton hypothesis, then from the very general argume
one would expect that the instanton contribution with acti
S to the largek-order coefficientsck is given by@23#

ck~g
2!k;~k!!S2k~g2!k. ~29!

In this case the factor 2, mentioned above, has the follow
interpretation: when we go from the QCD with fundament
matter to the theory with adjoint matter the instanton acti
is decreased by a factor of 2. In this case the factorS2k from
the formula~29! is exactly equal 2k. It can be interpreted as
the decreasing of instanton action by factor 2. Why is t
instanton with the action one-half allowed in the theory wi
adjoint matter and forbidden in the theory with fundamen
fermions? This question has yet to be answered.

Let us conclude this section by noting that from arg
ments given above we expect that some classical, p
imaginary solution~we call it instanton!, is responsible for
the factorial behavior found above.

IV. HEAVY-LIGHT QUARK SYSTEM
IN TWO-DIMENSIONAL QCD

A. General remarks

As we mentioned in previous sections we are not able
identify the n! behavior in the OPE~found from the spec-
trum! with some specific vacuum condensates. Such an id
tification can be done if one considers the heavy-light qua
system. In this case the problem is reduced to the analysi
vacuum expectation value of the Wilson linêW&
5^q̄(x)P exp(ig*0

xAmdxm)q(0)&. Indeed, if we consider as in
@24,25# the correlation function^T$q̄Q(x),Q̄q(0)%&, de-
scribing this system, we end up~in the limit MQ→`) with
the object which is completely factorized~in accordance
with HQET; see, e.g., review@26#! from the heavy quark:

^T$q̄Q~x!,Q̄q~0!%&;K q̄~x!P expS igE
0

x

AmdxmD q~0!L
1perturb. part. ~30!

By definition, ^W& in this formula is understood as the Tay
lor expansion:
the
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^W&5^0uq̄~x!Peig*0
xAmdxmq~0!u0&

5 (
n50

n5`
1

~2n!!
^q̄~xmDm!2nq&. ~31!

All nontrivial, large distance physics of the system is hidde
there. Together with perturbative contributions one shou
expect the following behavior for this correlator@25#:

^T$q̄Q~x!,Q̄q~0!%&;e2L•x. ~32!

The perturbative terms, proportional to;(g2N/p)n(x2)n,
contribute to~32! as nonperturbative ones due to the dimen
sional coupling constantg in two dimensions; thus they in-
terfere with expansion~31!. As was suggested in the same
context by Shifman@21#, one can get rid of the perturbative
terms by considering a special combination of scalar a
pseudoscalar correlation functions@analogous to~23! with
the replacement of a light quark for a heavy quark#. The
perturbative contribution vanishes in the chiral limit for the
combination and we can study the pure nonperturbati
physics.

Let us note that the general connection~based on disper-
sion relations! between spectrum and vacuum condensat
was considered earlier@21#. It was proven that the OPE is
asymptotic series. Besides that, for demonstration purpos
it was suggested a specific model for the spectral dens
~linear trajectory! and it was found that the vacuum conden
sates~31! get the form^q̄(xmDm)

2nq&;(2n)!.
In this section we essentially follow the steps from th

paper@21# with the only difference being that we start from
theory defined as two-dimensional QCD and derive theQq̄
spectrum from this Lagrangian. We find that we have not
linear spectrum but ratherEn;An in two-dimensional QCD
for a heavy-light quark system. It gives a different behavio
for the vacuum condensates^q̄(xmDm)

2nq&;n!. However,
the main statement that the OPE is an asymptotic series
mains the same.

Before going on, we would like to make the following
remark. In two-dimensional QCD one can calculate the a
propriate vacuum condensates in the chiral limit from firs
principles@28#. Such a calculation~which will be reviewed
in the next section! leads to puzzling results. Roughly speak
ing, the results of direct computation do not agree with ind
rect calculations based on the dispersion relations and sp
trum. We formulate this puzzle as well as its resolution in th
next section. Anticipating the event, we would like to not
here that the origin of the puzzle is the factorial divergen
coefficients in the asymptotic series. If these expansio
were convergent series, we would expect an exact coin
dence of the results, based on these two methods. Howev
the analysis in field theory demonstrates that this is not t
case.

B. Spectrum Q̄q system in two-dimensional QCD„N5`…

As we have discussed in previous sections, if we knew t
spectrum of highly excited states we would calculate~via
dispersion relations! the large order behavior for the corre-
sponding correlation function. As we mentioned above, th
heavy-light quark system is very special in this sense, b
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cause it allows us to identify the corresponding factorial b
havior with specific vacuum condensates. This is the m
motivation for the present section: find the spectrum f
highly excited states. Let us note that the heavy-light qu
system in this model was considered previously in Ref.@29#,
but in a quite different context.

As we discussed in Sec. II, the spectrum of highly excit
states in two-dimensional QCD is linear~4!. This is certainly
true, but only for the finite parametermQ , with n→`. We
are now interested in a different limit, whenmQ→` first,
andn@1 afterwards. These limits do not commute and w
have to start our analysis from exact original Eq.~2!.

In order to perform the limitmQ→` in ‘t Hooft Eq. ~2!,
let us make the following change of variables:

x512
m0

mQ
a, 0<a<

mQ

m0
5`. ~33!

Additionally we would like to rescale the wave function an
redefine the energy scale~from now on, the counting of the
energy starts frommQ) in the following way:

mn
25~mQ1En!

2.mQ
2 12mQEn ,

fn~x!→AmQ

m0
fn~a !̃ . ~34!

Once all these changes have been made we arrive to
following equation, which replaces the ’t Hooft equation, fo
the heavy-light quark system in the limitmQ→`:

2Enfn~a !̃ 5m0Fa1
1

a

mq
22m0

2

m0
2 G

3 fn~a !̃ 2m0
2PE

0`
db

fn~b !̃

~a2b!2
.

~35!

The new set of wave functions in terms of new variables
orthogonal and complete:

(nfn~a !̃fn~b !̃5d~a2b!,

*0
`dafn~a !̃fm~a !̃5dnm . ~36!

For the future analysis we need not only the wave fun
tions, but also some physical matrix elements in terms
these wave functions. It is convenient to separate the co
mon factor, related tomQ , and define the matrix elements i
the following way3:

^0uq̄ig5Qun&5AN

p
Am0mQf n , f n5E

0

`

da fn~a !̃ .

~37!

3We keep the same notationf n for the corresponding matrix ele-
ments. For light quark system they are defined in a different w
~8!. We hope it will not confuse the reader.
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Using the parity relation@2#, which in our notations takes the
form,

E
0

`

dafn~a !̃ 5
mq

m0
E
0

`

da
fn~a !̃

a
, ~38!

one can show that the scalar matrix elements have the sa
expression in terms of wave functions as the pseudosca
ones~37!.

Having these results in mind, and using the standard tec
niques@1–6#, one can calculate@32# the matrix elementsf n
and energiesEn in the quasiclassical approximation for
n@1:

En52m0ApnF11OS lnnn D G , f n
25Ap

n F11OS lnnn D G .
~39!

This is the main result of this section. It will be used in wha
follows for the calculation of large order behavior and hig
dimensional condensates.

Let us conclude this section with a few remarks. First o
all, as was expected, in themQ→` limit, Eqs. ~35!–~39! do
not depend onmQ ~after an appropriate rescaling! in accor-
dance with HQET~see, e.g., review@26#!.

Our second remark is the observation that the chiral lim
mq50 is very peculiar. In particular, one cannot take th
limit mq50 in the identity~38!, because it clearly leads to a
nonsensical result. The reason for that is very simple. T
edge regiona;mq plays a very important role in making the
theory ~and this identity in particular! self-consistent. As a
consequence, one cannot derive the boundary conditions
wave function from the truncated equation~35! where the
limit mQ→` already has been taken. In order to do so w
need to come back to the original ’t Hooft equation~2!. We
shall return to this point in the Conclusion. We believe tha
the situation in four-dimensional QCD is quite similar in tha
the information about edge behavior in the theory cannot
found from the truncated Lagrangian with the limitmQ→`
already taken.

C. High order condensates from duality
and dispersion relations

The starting point, as usual, is the correlation function

P~Q2!5 i E eiqxdx^0uT$q̄Q~x!,Q̄q~0!%u0&

; i E eiqxdx^0uq̄~x!Peig*0
xAmdxmq~0!u0&

1perturb. part. ~40!

We follow @24# and choose the external momentum
q05mQ2E, q150 very close to threshold. For positive
values ofE the correlation function can be written in the
following way:

P~E!5E
0

`

e2Etdt^0uq̄~ t !Peig*0
t A0dtq~0!u0&1perturb. part.

~41!
ay
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Let us note that we could consider the difference of tw
correlation functions@like ~23!#. In that case the perturbative
contribution to~41! would vanish.

For large enoughE@m0 one can expand Eq.~41! in
1/E @21#

P~E!5
1

E F ^q̄q&2
1

E2 ^q̄P0
2q&1

1

E4 ^q̄P0
4q&2••• G

1perturb. part, ~42!

where P05 iD 0 is the time component of the momentum
operator.

Our goal now is to substitute the asymptotic expressi
~39! for the matrix elementsf n and energiesEn into the
dispersion relations@analogous to~18!#. These will deter-
mine the higher order corrections to the correlation functio
as well as the largen behavior of the vacuum condensate
^q̄D2nq&.

The appropriate dispersion relation states that

P~E!5
N

2p
m0Ap(

n

f n
2

E1En
;
N

p(
1

An~An1e!
, ~43!

wheree is external energy measured inm0Ap units. In this
formula we have taken into account the following key obse
vation which we have used earlier in the deriviation of E
~21!: the corrections;1/n to the asymptotic behavior of the
residuesf n and energiesEn ~39! might change the preasymp
totic factor for the large order behavior. However, these co
rections cannot change the main result—the factorial grow
of the coefficients found below. This is the reason why w
cannot calculate the corresponding coefficientsexactly, but
only the leading factorial factor. For the same reason we
not consider the special difference of two correlation fun
tions @like ~23!#, where perturbative contribution is exactly
canceled. In this case if we knewf n ,En exactly, we would
calculate the nonperturbative condensatesexactly. Unfortu-
nately, this is not the case. Thus we ignore all complicatio
related to the separation of pure nonperturbative contribut
from the perturbative one.

Let us note that the sum in Eq.~43! is divergent at large
n. This divergence is related to the necessity of a subtract
in the dispersion integral:P(E)→P(E)2P(0). Besides
that, at large energyE@m0 one can estimate the behavio
P(E→`); lnE, which corresponds to the pure perturbativ
one loop diagram. These same features were present in
analogous previous formula~21!.

With these remarks in mind, our problem is reduced to t
calculation of the coefficientsck at largek in the following
expansion:

P~e!2subtractions;(
n

1

An1e
2subtractions

; lne1(
k

ck
1

ek
. ~44!

We note that the only difference with the previous formu
~21! is the dependence of the sum onAn rather thann itself.
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The way to evaluate the coefficientsck is as follows. We
are going to use the standard idea~see, e.g.,@30#! to present
the sum in terms of the integral:

(
n51

n5`

F~n!5E
0

` f ~x!

ex21
dx, F~x!5E

0

`

f ~x!e2xtdt.

~45!

However, in our case we haveAn rather thann itself. The
corresponding generalization is known as well:

(
n51

n5`

F@g~n!#5E
0

`E
0

`h~x,y! f ~y!

ex21
dx dy,

e2yg~p!5E
0

`

h~x,y!e2xpdx. ~46!

For our particular case this formula gives the following re
resentation for the sum~44!:

P~e!;(
n

1

An1c1e

5
1

2Ap
E
0

`

dxE
0

`

dy
ye2 ~y2/4x! 2cx2ey

x3/2~ex21!
, ~47!

where we have introduced a constantc for the future conve-
nience as an auxiliary parameter. Such a parameter is a
ally present in original formulas~39!; however, we believe
that the main factorial dependence does not depend on
Thus, after differentiating with respect toc, we putc50 at
the very end of calculation. One more remark regarding f
mula ~47!. Only evenn should be taken into account in thi
formula. However, by redefinition of parametersc and en-
ergye, the problem can be reduced to the same integral. T
result is an extra power dependence, which is beyond
scope of interest. Additionally, a subtraction which should
made in this formula to get a convergent result, has no infl
ence onck at largek ~44!.

The integration overx in the formula ~47! can be ex-
ecuted using the following expansion:

x

ex21
5 (

k50

`

Bk

xk

k!
, ~48!

whereBk are Bernoulli numbers. Bearing in mind that th
appropriate integral from~47! is known exactly,

E
0

` e2 ~y2/4x! 2cx

Ax
dx5Ap

c
e2yAc, ~49!

and replacingxk from the formula~48! by (21)k(d/dc)k,
we arrive at the following expression for the sum~47!:

P~e!;
1

2E0
`

dy e2yey(
k52

`
Bk

k!
~21!kS ddcD

kSA1

c
e2yAcD .

~50!

In this formula we ignore the few first terms~proportional to
B0 ,B1) because they~a! do not contribute to large order
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coefficientsck , k@1; and~b! they are divergent and, thus
require some subtractions discussed previously.

The key observation is as follows: The nonperturbativ
part ~which is our main interest! in the expansion~42! is
determined by odd powers of 1/(e)2m11. Such terms can be
easily extracted from the formula~50! by expanding the ex-
ponent

SA1

c
e2yAcD 5(

l

~21! l ylc~ l21!/2

l !
~51!

and executing the integration overy:

E
0

`

dy e2eyy
yl

l !
5
l11

e l12 . ~52!

It is now clear that only oddl52m21 terms in the formula
~51! contribute to the coefficients related to the nonperturb
tive part ~42!. For small parameterc the coefficientsck
can be easily calculated4 by noting that for l52m21
the appropriate terms from ~51! take the form
cl21/2l !;cm21/(2m21)!. The nonzero result in this case
@after differentiating (d/dc)k and taking the limitc50#
comes exclusively from the termk5m21 in Eq. ~50!. Fi-
nally we arrive at the following asymptotic expression fo
the odd coefficientsck from the series~44!:

c2k21

1

e2k21;
~21!kBk

ke2k21 , k@1. ~53!

Comparison with the original series~42! suggests that as
dimension of the operator grows, their vacuum expectati
values grow factorially,

^q̄P0
2nq&;^q̄q&~pm0!

2nn! ~54!

From this formula one could naively think that half of th
VEV’s in ~53! vanish because the odd Bernoulli numbers a
zero. However, we think that this additional ‘‘selection rule
is accidental in its nature and, thus, it should not be cons
ered seriously. We believe that this accidental vanishing
the coefficientsck in the OPE is related to our approximation
~39! for the matrix elementsf n and energiesEn . Thus we
expect that half of the VEV’s which formally vanish in the
leading approximation are actually not zero, but suppress
by a factor;1/n, wheren is dimension of an operator.

Having demonstrated the main result of this section, a fe
comments are in order. First of all, the OPE forP(e) is an
asymptotic series as it must be in agreement with gene
arguments@21#. Besides that, we expect the same behav
for analogous vacuum condensates in four-dimensional Q
@27#. Additionally, the scale for the vacuum condensates
m0 . We shall see in the next section that different calcul
tions of the same condensates give somewhat different

4As we mentioned before the factorial behavior does not depe
on the particular magnitudec. However, forc50 the calculations
are much easier to present. Nonzero values of the parametec
might change the preasymptotic behavior, which is beyond th
method.
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sults. We explain this puzzle later, but note for now thatn!
behavior in~54! plays a crucial role in the explanation.

Finally, as we shall see, then! behavior has very general,
essentially kinematical origin in the largeNc limit. This
property is related to the so-called master field.

V. HIGH-DIMENSIONAL CONDENSATES
FROM THE THEORY. PUZZLE

One can show@28# that the vacuum condensates whic
enter into the formula~42! at N5` in the chiral limit
mq→0 in two dimensions can be reduced to a form whic
contains the field strength tensorigemnGmn only. Indeed, the
covariant derivativeŝq̄DnDmDmq& placed at the very right
and at the very left~near the quark fields! can be transformed
into the operatorigemnGmn using the equation of motion
Dmgmq50. To do the same thing with operatorsDm which is
placed somewhere in the middle of the expression, we ne
to act, for example, on the right until the quark field is
reached. By doing so, step by step, we create many ad
tional terms which are either commutator like
@Dm ,Dn#52 igGmn which is the field strength operator or
commutators like;@Dl ,emnGmn#. Fortunately, in two di-
mensions these terms are related to creation of the qua
antiquark fields and we discard them in the chiral limit be
cause they do not give 1/mq enhancement; see formula~56!.

5

We discuss the exact correspondence in the Appendix, b
for now we emphasize the existence of factorn! in the cor-
responding formula:

^q̄~xmDm!2nq&;~x2!nn! ^q̄~gE!nq&,

n@1, E;elsGls . ~55!

Thus we end up with the vacuum condensate
^q̄(gE)nq& which are expressed exclusively in terms of th
field strength tensor. Such vacuum condensates can be
culatedexactly in the chiral limit @28#. The reason for this
incredible simplification is the observation that in two
dimensional QCD a gluon is not a physical degree of fre
dom, but rather is a constrained auxiliary field which can an
should be expressed in terms of the quark fields. At the sa
time, in the largeN limit, the expectation value of a product
of any invariant operators reduces to their factorized valu
@31#. Exactly this feature of the largeN limit ~based on
analysis of the so-called master field! makes it possible to
calculate the vacuum condensates exactly. Our final expr
sion takes the form@28#

1

2n
^q̄~ igelsGlsg5!

nq&5S 2
g2^q̄q&
2mq

D n^q̄q&. ~56!

We interpret this expression as follows: Each insertion of a
additional factor proportional to field strength tensorgE
gives one and the same numerical factor~56!. This situation
can be interpreted as having aclassicalmaster field@31#

nd

r
is

5Of course this is not the case in four dimensions whe
@Dm

2 ,Gls# is an independent operator which cannot be reduced
quark fields.
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which we insert in place ofgE in the vacuum condensates
Because of its classical nature, it gives one and the sa
numerical factor.

Secondly, it is important to note that the vacuum conde
sate of an arbitrary local operator can be reduced through
equation of motion and constraints to the fundamental qu
condensate~9!.

Finally, we must comment on the effective energy sca
which enters into the expression~56!: This is notm0

2 as one
could naively think, but rathermef f

2 5m0
3/mq@m0

2 . The ob-
vious technical reason for that is related to the fact that in
light cone gauge~where the theory has been quantize!
A251/A2(A02A1)50 we have few constraints: the usua
constraint in the gauge sector~Gauss law!6

]2E
ab;gS q1

†bq1
a 2

1

N
dabq1

†cq1
c D , ~57!

with right moving fermionsq1 considered as dynamical de
grees of freedom. The left-moving fermionsq2 are nondy-
namical degrees of freedom in this gauge. The latter can
eliminated by the following constraint:

1

]2
q1;

1

mq
q2 ~58!

~for more details, see, e.g.,@15#!. This relation explicitly ex-
plains the origin of the factor 1/mq which is present in the
formula ~56! ~see@28# for details!.

Before formulating the puzzle, we would like to paus
here in order to explain the definition of the high
dimensional vacuum condensates. As is known, they are
turbatively strongly ultraviolet~UV! divergent objects.

As usual, all vacuum condensates should be understoo
a sense that the perturbative part is subtracted. The sub
tion is organized by introducing of the so-called normaliz
tion parameterm. In general, vacuum condensates do depe
on this parameterm. The gluon condensates of dimension
four, six, eight, etc. in four-dimensional QCD are perfe
examples where perturbative parts are divergent, but non
turbative parts~the remnants, which are left after subtractio!
are perfectly defined. One could naively think that the insta
tons might spoil this picture, because they give ultravio
divergent contribution to high order condensates. Howev
we do not think this is the case and one can argue that
definition we have formulated remains untouched even w
small size instanton effects taken into account.

The argument is as follows: We should treat the small s
instantons and the small size perturbative contributions
the same basis. So, we should subtract both these di
gences at the same time in order to get the so-called ‘‘n
perturbative’’ condensates which define the large distan
physics. Of course small-distances physics does not dis
pear when we do such a subtraction. According to Wils
OPE the corresponding small distance contribution~pertur-
bative part and small instanton contributions! should be
taken into account separately.

6This formula explicitly demonstrates why a quark condens
appears in~56! each time we insert an extra gluon fieldEab.
.
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In two dimensions this problem of course is much sim
pler. However, the perturbative contributions to the conde
sates are divergent as well. Nevertheless, the hig
dimensional condensates perfectly exist. Indeed, we hav
formula ~56!, with mixed condensates expressed in terms
chiral condensatêq̄q&, where the latter are defined as the
remnant after subtraction of the perturbative contribution~for
the technical details, see@16#!. Thus our formula~56! is un-
derstood as a nonperturbative one, when we treat^q̄q& as the
nonperturbative chiral condensate. Let us note that the glu
condensate in this model is finite and can be calculated e
actly @12# ~see also the recent paper@16# on this subject!. In
two-dimensional QCD it can be expressed in terms of th
chiral condensate.

With this remark in mind, we are now ready to formulate
thepuzzle. The scale which enters into the OPE~42! presum-
ably is determined by the coefficientsck from ~44!. The lead-
ing contribution to these coefficients can be expressed
terms of the vacuum condensates~56!

c2k11;S 2
g2^q̄q&
2mq

D k^q̄q&;~m0
3/mq!

kk!, k@1.

Thus the characteristic scale of the problem ism0
3/mq . We

see an extra factor 1/mq in this scale. It has very clear origin
~58! and might be very big in the chiral limit. At the same
time, the characteristic scale which can be found from th
spectrum~21!, ~42! is much smaller and proportional to
m0
2 . This is the puzzle.
The explanation of this apparent paradox is as follows.

our series~21!, ~42! were convergent ones, we would be in
trouble, but fortunately, our series are asymptotic ones. Th
in order to make sense of these series we have to define th
and here we will use the standard Borell summing prescri
tion @23#.7 Once this prescription has been accepted, we c
write down an expression which reproduces the asympto
coefficients for large numberk and at the same time is well
defined everywhere:

(
k
ckg

k;E dg8

g8~g1g8!
e2 1/g8,

ck;~21!kk!;~21!kE dg8

~g8!k12e
2 1/g8. ~59!

We did not specify the parameterg in this equation on pur-
pose. Suppose we have a large scale in the problem de
mined by the vacuum condensates~56!. In this case dimen-
sionless parameterg has a large factor 1/mq :

g;
~g2Nc!

3

mqE
2 . ~60!

ate

7We already mentioned in the Introduction that the Borel summ
bility or its loss is not the crucial issue@10#. However, for the sake
of definiteness~and for simplification!, we assume in general dis-
cussion which follows that the series is Borel summable.
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The prescription~59! in this case states that the sum of lea
ing terms;(1/mq)

k gives a zero contribution~in the chiral
limit !

(
k
ckg

k;E dg8

g8~g1g8!
e2 1/g8→0 ~at mq→0!,

g;
1

mq
~61!

to the physical correlation function. We would like to no
that the effect~61! does not crucially depend on the facto
ization properties for the condensates~56! as neither on our
assumption of exact factorial dependence of the coefficie
ck5k!(2)k ~59!. Both of these effects presumably lea
~apart tok!) to some mildk dependence which can be easi
implemented into the formula~61! by introducing some
smooth functionf (g) whose moments

ck5
~2 !k

k! E f ~g!g2k22expS 2
1

g Ddg;1

exactly reproduce ak dependence of the coefficients as we
as of the condensates. If this function is mild enough, it w
not destroy the relation~61!, but might change some numer
cal coefficients.

If we could calculate the vacuum condensates~56! exactly
~and not only the leading terms atmq→0), we would find
that the terms of order one give contribution of order one
the correlation function. Thus subleading terms play a mu
more important role in the final formula than the leadin
ones;1/mq . The origin of this mystery of course is th
factorial growth coefficients in the series. This observati
actually resolves the puzzle announced in the beginning
the section.

We would like to make a few more remarks regarding th
subject in the Conclusion which follows.

VI. CONCLUSION

We conclude this manuscript with the following lesson
~a! The OPE is an asymptotic series.
~b! We were lucky in a sense that in two-dimension

QCD the scales for high dimensional condensates;mq
21 and

for the spectrum;1 were parametrically different. This wa
the reason why we noticed the difference very easily. T
lesson we can learn from this example is that numerica
leading terms in the asymptotic expansion may give som
what negligible contribution into the final expression. W
believe that this is not a specific result for two-dimension
physics, but rather is a general property of a field theo
associated with an asymptotic series.

~c! Of course, we do not expect that in the real fou
dimensional QCD the vacuum condensates might exh
some parameters similar to;mq

21 . However, it might hap-
pen that some subseries of condensates possess a larg
merical factor, let us call itL@1. In this case we would
expect that the corresponding contribution into the final fo
mula will be suppressed,L21. At the same time, summing o
a subseries of terms which are order of one, would lead
d-
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the result which is order of one. This observation raises th
following question.

~d! Suppose we have a condensate^Ok& of dimensionk
which has both parts: the enhanced part, proportional toLk

and the ‘‘regular’’ one of order 1k. As we have learned, the
subseries which have big factors likeLk do not contribute
much to the final expression. At the same time they are th
main contributions into the condensate with the given dimen
sion k.

The moral is when we use truncated expansions or ap
proximate approaches~like QCD sum rules!, we inevitably
study not the actual condensates, but rather, someeffective
condensates.8 One simple consequence of this is that the lat-
tice calculation of vacuum condensate might be differen
from QCD sum rules analysis.

~e! One may wonder what is the role of the scale 1/mq in
this model? The answer is very peculiar. Indeed this scal
can not be seen in spectrum however, from exact identitie
like ~38! one can see that the edge region of ordermq plays
a very important role in maintaining self-consistency of the
theory. The calculation of the condensate@12#, where the
regionx;mq gives whole answer is another example of the
same kind. Exactly this infrared region determines the scal
for the condensates~56!, but not the scale for integral char-
acteristics like the spectrum itself. See also the remark afte
~39! on the same subject.

~f! Since OPE is an asymptotic series, it is a good idea t
keep only a few first terms in the expansion~like people do
in the standard QCD sum rules approach,@33#! and to stop at
some point.9 Any hopes to improve the standard QCD sum
rules~like the idea advocated in@34#! by summing up of the
certain subset of the power corrections, and ignoring all th
rest, might lead to the results which are much worse than th
ones which follow from a preimproved version of the ap-
proach. At least in two-dimensional QCD such a procedure
as we learned, gives a parametrically incorrect result.

We would like to make two more remarks which were not
our main subjects, but look like interesting byproducts wor-
thy of mention.

~g! We argued that then! behavior found in two-
dimensional QCD is related toinstantons. Even more, the
action of the instanton in the theory with adjoint matter is a
factor of two less than in the theory with fundamental
quarks. The explicit realization of such a solution is still
lacking.

~h! We analyzed theQq̄ system in two-dimensional QCD.
We found that the edge behavior of the system is very pecu
liar and cannot be found from the truncated theory, where
limit mQ5` is already taken. We believe that the same be
havior is an inevitable feature of the real four-dimensiona
QCD.

8I thank Michael Peskin for the discussion of this subject. Actu-
ally, he raised the question of the effective nature for the conden
sates before this work was presented at the SLAC theory semina
9In asymptotic series with coupling constantl one should stop

with the number of terms of orderl21. In particular, in case of
QCD sum rules, wherel;1/3–1/5 to be determined by the scale
where power corections are 20–30 %, one can estimate the max
mum number of terms in the expansion is about 3–5.
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APPENDIX

The main goal of this Appendix is a demonstration of th
factorn! in formula ~A1! in the chiral limitmq50,

^q̄~xmDm!2nq&;~x2!nn! ^q̄~gE!nq&,

n@1, E;elsGls . ~A1!

We sketch the idea only, ignoring for simplicity all norma
ization factors.

We use the standard representation forgm matrices satis-
fying

$gm,gn%52gmn, g05sx, g152 isy, g55s3,
~A2!

g65g06g1 , D65D06D1 , g2
2 50,

g1
2 50, g7g7;17g5 .

Dirac equations take the following form in the chiral limit:

~g1D21g2D1!q50. ~A3!

By multiplying these equations byg6 , we arrive at the fol-
lowing relations:

~16g5!D6q50, q̄D7~16g5!50. ~A4!

Let us present our original condensate in the followin
form:

^q̄~xmDm!2nq&; K q̄S 11g5

2
1
12g5

2 D
3~x1D21x2D1!2nqL . ~A5!
i-
re-
r

e

l-

g

From Lorentz invariance it is clear that a nonzero resu
;(x2x1)

n comes from terms with equal numbers o
D2 and D1 with all possible permutations. Our problem
is how to count them. First, we pick up the projecto
(11g5) from the expression~A5!. According to ~A4! we
should moveD1 to the right andD2 to the left~to reach the
quark field! using the following commutation relations:

@D1 ,D2#;emnGmn;E. ~A6!

Here the field strengthE can be considered as constant~not
operator!, because acting the operatorsD6 onE leads to the
pair creation. We neglect everywhere such terms in the lim
N→`,mq→0. The contribution with projection (12g5)
gives exactly the same result after relabelingD2⇔D1 and
repeating the procedure described above.

Now one can see that these calculations are very simi
~in the algebraic sense! to the oscillator problem with ladder
operators satisfying the standard relations

@a,a1#51, au0&50, ^0ua150. ~A7!

Our problem is the calculation of mean value of the operat
x2n;(a1a1)2n for the ground state:

^0ux2nu0&;^0u~a1a1!2nu0&;GS n1
1

2D;n!, n@1.

~A8!

This concludes our explanation of the factorn! ~55! which
we heavily used in our previous discussions.

Let us repeat again that all factors from~55!, ~56! have
clear meaning and can be explained without detailed calc
lations. Three steps are involved.~1! The transition from the
operator^q̄(xmDm)

2nq& to the operator̂ q̄(gE)nq& with a
factor n! was explained in this Appendix.~2! The idea of a
master field predicts that each insertion ofE into the expres-
sion for the operator̂ q̄(gE)nq& gives one and the same
constantMeff

n . ~3! The constraints~57!, ~58! explicitly dem-
onstrate thatMeff

2 ;mq
21 .
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