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Soldering chiralities
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We study how to solder two Siegel chiral bosons into one scalar field in a gravitational backgro
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I. INTRODUCTION

The research of chiral scalars in two space-time dime
sions has attracted much attention@1,2#. These objects can be
obtained from the restriction of a scalar field to move in o
direction only, as done by Siegel@3#, or by a first-order La-
grangian theory, as proposed by Floreanini and Jackiw@4#.
The equivalence of these two independent descriptions
chiral scalars has been established both in the context of
Senjanovic@5# formalism of a constrained path integral i
@6#, and later, in the operatorial canonical approach in@7#, by
gauge fixing an existing symmetry in Siegel’s model. Th
procedure will leave behind only one degree of freedom
phase space, corresponding to the chiral excitations, jus
in the Floreanini-Jackiw model.

Scalar fields in two dimensions~2D! can be viewed as
bosonized versions of Dirac fermions and chiral bosons c
be seen to correspond to two-dimensional versions of W
fermions. In a more formal level, it has been shown by So
nenschein@8# and by Tseytlin and West@9# that, in some
sense, the sum of the flat space-time actions of two ch
scalars of opposite chirality does correspond to the action
a single 2D scalar field. This seems correct since the num
of degrees of freedom adds up correctly, and a 2D, conf
mally invariant field theory is known to possess two ind
pendent current algebras associated with each of the ch
components.

In a more detailed study, Stone@10# has shown that one
needs more than the direct sum of two fermionic represen
tions of the Kac-Moody group to describe a Dirac fermio
Stated differently, the action of a bosonized Dirac fermion
not simply the sum of the actions of two bosonized We
fermions, or chiral bosons. Physically, this is connected w
the necessity to abandon the separated right and left sym
tries, and accept that vector gauge symmetry should be
served at all times. This restriction will force the two inde
pendent chiral scalars to belong to the samemultiplet,
effectively soldering them together. The basic idea in@10# to
sew the two dequantized left and right Dirac seas of ea
Weyl component, was to introduce a gauge field to remo
the obstruction to vector gauge invariance. This gauge fie
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being just an auxiliary field, without any dynamics, can b
eliminated in favor of the physically relevant quantities.

In this work we follow the basic physical principles o
@10# to solder together two Siegel chiral bosons of oppos
chiralities to establish the formal equivalence with a sing
scalar field in a gravitational background. In Sec. II w
present the gauge procedure necessary for the solderin
the chiral scalars, obtaining a Lagrangian that is invaria
under vector gauge transformations. In Sec. III we study
symmetry group of the quoted Lagrangian, showing that
can be written in a way where the full diffeomorphism in
variance becomes manifest. In Sec. IV some considerati
regarding truncations, generators of gauge transformatio
and a hidden duality symmetry are discussed. Further g
metrical considerations are done in Sec. V. The last sect
is reserved for some final comments and perspectives.

II. THE GAUGING PROCEDURE

To begin with, let us review a few known facts abou
Siegel’s theory.1 First, one can see this model as the result
gauging the semilocal affine symmetry@11#

dw5e2]2w, ]2e250 ~1!

possessed by the action of a free scalar field. This can
done with the introduction of a gauge fieldl11 , as long as
it transforms as

dl1152]1e21e2]2l112l11]2e2. ~2!

The result of this procedure is a Siegel action for a le
moving chiral boson

L0
~1 !5]1w]2w1l11]2w]2w. ~3!

One can also interpret this theory as describing the action
the coupling of scalar field to a chiralW 2 gravity @11#. The
gauge field is just a Lagrange multiplier imposing the co
straint

T225]2w]2w'0 , ~4!

known to satisfy the conformal algebra. Similarly, one ca
gauge the semilocal affine symmetry

dw5e1]1w, ]1e150 ~5!ss:

ss: 1We are using standard light-front variables:x65(1/
A2)(x06x1).
5810 © 1996 The American Physical Society
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53 5811SOLDERING CHIRALITIES
to obtain the right-moving Siegel chiral boson, by introdu
ing the gauge fieldl22 such that

dl2252]2e11e1]1l222l22]1e1. ~6!

In fact, if we write the right and left chiral boson action
as

L0
~6 !5

1

2
J6~w!]7w ~7!

with

J6~w!52~]6w1l66]7w!, ~8!

it is easy to verify that these models are indeed invaria
under Siegel’s transformations~1,2! and ~5,6!, using that

dJ65e6]7J6 . ~9!

It is worth mentioning at this point that Siegel’s actions fo
left and right chiral bosons can be seen as the action fo
scalar field immersed in a gravitational background who
metric is appropriately truncated. In this sense, Siegel sy
metry for each chirality can be seen as a truncation of
reparametrization symmetry existing for the scalar field a
tion. We should mention that the Noether currentJ1 , de-
fined above, is in fact the nonvanishing component of the
chiral currentJ15J(L)

2 , while J2 is the nonvanishing com-
ponent of the right chiral currentJ25J(R)

1 , with the left and
right currents being defined in terms of the axial vector a
vector currents as

Jm
~L !5Jm

~A!1Jm
~V! ,

Jm
~R!5Jm

~A!2Jm
~V! . ~10!

Let us next consider the question of the vector gauge sy
metry. We can use an iterative Noether procedure to ga
the global U~1! symmetry,

dw5a,

dl1150, ~11!

possessed by Siegel’s model~3!. Under the action of the
group of transformations~11!, written now with a local pa-
rameter, the action~3! changes as

dL0
~1 !5]2aJ1 ~12!

with the Noether currentJ15J1(w) being given as in~8!.
To cancel this piece, we introduce a gauge fieldA2 coupled
to the Noether current, redefining the original Siegel’s L
grangian density as

L0
~1 !→L1

~1 !5L0
~1 !1A2J1 , ~13!

where the variation of the gauge field is defined as

dA252]2a. ~14!

As the variation ofL1
(1) does not vanish modulo total de

rivatives, we introduce a further modification as
c-
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L1
~1 !→L2

~1 !5L1
~1 !1l11A2

2 ~15!

whose variation gives

dL2
~1 !52A2]1a. ~16!

This left-over piece cannot be canceled by a Noether co
terterm, so that a gauge-invariant action forw andA2 does
not exist, at least with the introduction of only one gaug
field. We observe, however, that this action has the virtue
having a variation dependent only onA2 and not onw.
Expression~16! is a reflection of the standard anomaly that
intimately connected with the chiral properties ofw.

Now, if the same gauging procedure is followed for a
opposite chirality Siegel boson, say

L0
~2 !5]1r]2r1l22]1r]1r ~17!

subject to

dr5a,

dl2250 ,

dA152]1a, ~18!

then one finds that the sum of the right- and left-gaug
actionsL2

(1)1L2
(2) can be made gauge invariant if a con

tact term of the form

LC52A1A2 ~19!

is introduced. One can check that indeed the compl
gauged Lagrangian

L tot5]1w]2w1l11]2w]2w1]1r]2r1l22]1r]1r

1A1J2~r!1A2J1~w!1l22A1
2 1l11A2

2

12A2A1 ~20!

with J6 defined in Eq.~8! above, is invariant under the set o
transformations~11!, ~14!, and ~18!. For completeness, we
note that Lagrangian~20! can also be written in the form

L tot5D1wD2w1l11D2wD2w1D1rD2r

1l22D1rD1r1~w2r!E, ~21!

modulo total derivatives. In the above expression, we ha
introduced the covariant derivativesD6w5]6w1A6 , with
a similar expression forD6r, and E[]1A22]2A1 . In
form ~21!, L tot is manifestly gauge invariant.

III. DIFFEOMORPHISM

What may be the most remarkable consequence of
gauging procedure we have presented in the previous sec
is that the two decoupled Siegel’s symmetries, associa
with each sector originally described by the pairsw,l11 and
r,l22 , have now been enlarged to a complete diffeomo
phism, while these quantities have become effective
coupled in a highly nontrivial way to have full diffeomor
phism invariance. To see how these features occur, we
first redefine the fieldsA6 by a shift that would diagonalize
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the Lagrangian in Eq.~20!. Let

Ā65A62
1

D
~J62l66J7!, ~22!

where J15J1(w), J25J2(r), and D52(l11l2221).
Under these redefinitions of the fields, the Lagrangian
comes

L tot5Lg1L Ā , ~23!

where

Lg5
1

2
A2ggab]aF]bF,

L Ā5l22Ā1
2 1l11Ā2

2 12Ā2Ā1 . ~24!

In the above expressions we have introduced the metric
sor density

G225A2gg22524
l11

D
,

G115A2gg11524
l22

D
,

G125A2gg1252
2

D
~11l11l22!, ~25!

as well as the field

F5
1

A2
~r2w!. ~26!

We observe that in two dimensions,A2ggab needs only
two parameters to be defined in a proper way. As it sho
be, det(A2ggab)521. We also note that because of co
formal invariance, we cannot determinegab itself.

Before studying the symmetries of the model given
L tot , we note that in the path-integral approach, the fie

Ā6 can be integrated out, contributing in a trivial way to th
vacuum functional. We could, therefore, think ofLg as an
effective theory, which represents a scalar bosonF in a
gravitational background. Later, we will come back to th
question.

To study the symmetries associated withL tot , in ~23! and
~24!, let us first note that the original vectorial symmet
given by ~11! and ~18! is now hidden. Actually, since the
metric is a function only of thel ’s, it does not transform at
all. The fieldF is also invariant, which can be seen from
~11!, ~18!, and ~26!. Finally, from ~22!, we see that
dĀ650. Collecting all these facts, we see that~23! is trivi-
ally invariant under the local vectorial symmetry.

Under a diffeomorphism

dxa52ea, ~27!

a symmetric tensorial densityGab transforms as

dGab5]g~Gabeg!2Gga]geb2Ggb]gea. ~28!
be-
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From ~25! and ~28!, we derive after some algebraic calcula
tions that under a diffeomorphism

dl1152]1e21l11
2 ]2e1

1~]1e12]2e21e1]11e2]2!l11 ,

dl2252]2e11l22
2 ]1e2

1~]2e22]1e11e1]11e2]2!l22 . ~29!

SinceF transforms as a scalar under diffeomorphism, i.e
dF5ea]aF, Lg in ~24! can be seen to be invariant modulo
total derivatives, whileL Ā can be made invariant once we
choose

dĀ15e2]2Ā11]1~e1Ā1!1Ā2]1e22
1

4
]1e2

dS

dĀ1

,

dĀ25e1]1Ā21]2~e2Ā2!1Ā1]2e12
1

4
]2e1

dS

dĀ2

,

~30!

where

dS

dĀ6

52~Ā71l66Ā
6!. ~31!

We can see that the transformations forĀ6 are just those of
the vectors plus terms that vanish on shell.

After some lengthy algebraic calculations we can sho
that the algebra of diffeomorphism closes on the fieldF as
well as on thel ’s as

@d1 ,d2#F5d3F,

@d1 ,d2#l665d3l66 ~32!

where

e3
a52e1

b]be2
a1e2

b]be1
a , ~33!

while variations onĀ6 satisfy an open algebra@12# of the
form

@d1 ,d2#Ā15d3Ā11V12

dS

dĀ2

,

@d1 ,d2#Ā25d3Ā21V21

dS

dĀ1

, ~34!

where

V1252V215
1

4
~]1e1

2]2e2
12]1e2

2]2e1
1!. ~35!

In other words, the algebra closes on shell for theĀ6 fields.
This, in turn, implies that one can introduce auxiliary field
to close the algebra off shell.
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IV. TRUNCATIONS, DUALITIES, AND GENERATORS

So far we have shown that we can considerLg as an
effective Lagrangian after integrating out theĀ6 fields from
the complete theory, which solders two initially decouple
Siegel bosons of opposite chiralities.

We would like to comment that if we restrict the diffeo
morphism to just one sector, say by requiringe150, we
reproduce the original Siegel symmetry for the sector d
scribed by the pairF,l11 in the same way as it appears i
~1! and~2!. However, under this restriction,l22 transforms
in a nontrivial way as

dl225l22
2 ]1e21~]2e21e2]2!l22 . ~36!

The original Siegel model, therefore, is not a subgroup of
original diffeomorphism group but it is only recovered if w
also make a further truncation, by imposing thatl2250.
The existence of the residual symmetry~36! seems to be
related to a duality symmetry satisfied byLg when the met-
ric is parametrized as in~25!. Under the transformation

l66→
1

l77
, ~37!

we see that~i! the set of variations~29! is invariant and~ii !
Lg goes into2Lg , so that the equations of motion ar
invariant. The duality present in the equations of motion
the theory can also be seen to work in a first-order form
ism. By introducing

P5
]Lg

]~]1F!
~38!

as the momentum canonically conjugated toF, we can re-
write Lg as

LFO5P]1F1
1

2
l11T222

1

2

1

l22
T11 , ~39!

where

T665
1

2
~P7]2F!2 ~40!

are the diffeomorphism generators and satisfy the Viras
algebra. We see from the above equations that the dua
invariance of~39! is achieved not only with~37! but also
with the changeT66→T77 , which is the same as having
x2→2x2, but keepingx1 unchanged. This is obviously
related to the symmetry under the interchange of the rig
and the left-moving sectors of the theory. In the next sect
we will come back to this point by writing in a geometri
manner the original left- and right-moving Siegel models.

V. FURTHER GEOMETRICAL CONSIDERATIONS

The Siegel model as well as the soldering can be
scribed in a geometrical manner also. Let us look at
Siegel model in one sector only and note that we can writ
also as
d
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L0
~1 !5]1w]2w1l11~]2w!25

1

2
A2ggab]aw]bw,

~41!

where

A2ggab[G~1 !
ab 5S 0 1

1 2l11
D . ~42!

From ~41! and~42!, we note that we can think of the Siege
particle as propagating in a background gravitational field
a light cone gauge for which the invariant length has th
form

ds252g12dx
1dx21g11~dx1!2. ~43!

The Siegel invariance of Eq.~41! can be understood as the
residual one-parameter coordinate invariance in this gau
defined by

x2→x22e2~x1,x2!,

dw5ea]aw, ~44!

wheredG(1)
ab is given by Eq.~28! and we assume

e150. ~45!

Similarly, the Siegel Lagrangian in the other sector can al
be written as

L0
~2 !5]1r]2r1l22~]2r!25

1

2
A2g̃g̃ab]aw]bw,

~46!

where

A2g̃g̃ab[G~2 !
ab 5S 2l22 1

1 0D . ~47!

In other words, the Siegel particle in the other sector can al
be thought of as moving in a background gravitational fie
with a light cone metric of the form

ds252g̃12dx
1dx21g̃22~dx2!2. ~48!

The Siegel invariance, in this sector, can again be thought
as a one-parameter residual coordinate invariance of the fo

x1→x12e1~x2,x1!. ~49!

The gauged Lagrangian in one sector, Eq.~15!, cannot be
written in a diffeomorphism-invariant manner. Therefore
gauging in one of the sectors breaks Siegel invariance. Ho
ever, let us note the following from Eq.~15!:
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L2
~1 !5~]2w!~]1w1l11]2w!

12~]1w1l11]2w!1l11A2
2

52~]1w!S ]2w1
1

l11
]1w D

1l11SA21]2w1
1

l11
]1f D 2. ~50!

This shows that if we integrate out theA2 field, the Siegel
theory changes chirality with the identification

l225
1

l11
, ~51!

that again, is related to the duality symmetry discussed in
last section.

Finally, we note that the complete Lagrangian of Eq.~20!
can also be written in form~23!, but we can rewriteLA as

LA5
1

2
MabĀaĀb , ~52!

where

M5~G~1 !1G~2 !!52S l22 1

1 l11
D 52

D

2
~G2s1!,

Ā5S A11
1

2
]1~r1w!

A21
1

2
]2~r1w!

D 1 iA2s2GS ]1F

]2F
D . ~53!

Here,s1 ands2 represent the usual Pauli matrices. We als
note that the Lagrangian in Eq.~52!, with the identifications
in Eq. ~53!, can also be written as

L tot5
1

2
A2ggab]aF]bF2

1

4
A2ggabDĀaĀb1

D

4
Ā1Ā2

5
1

2
A2ggab]aF]bF2A2ggabÂaÂb1Â1Â2 , ~54!

where we have definedÂa5(AD/2)Āa . There are several
things to note here. First, the combination of the scalar field
w1r, has gone into the redefinition of the vector field. Fro
the

o

s,
m

the structure of the Lagrangian, it is obvious that the origin
gauge transformations have disappeared completely, as
saw in the beginning of Sec. III. The diffeomorphism invari
ance of the theory is almost obvious. The presence of the l
term in Eq.~54! suggests thatÂ cannot transform the same
as a vector under a coordinate invariance. In fact,L tot can be
checked to be invariant under the set of transformations~28!,
the already quoted diffeomorphism transformation forF, as
well as

dÂa5Âb]aeb1eb]bÂa1
1

2
Mab

21S Â1]2e1

Â2]1e2D b

. ~55!

The algebra, of course, trivially closes on theF andGab

variables. ForÂa , however, we can show that

@d1 ,d2#Âa5d3Âa1
1

2D2 @~ is2!MÂ#a

3~]1e2
2]2e1

12]1e1
2]2e2

1!. ~56!

As expected, the algebra of the variations closes on shell
the gauge fields.

VI. CONCLUSIONS

In this work we have shown how to solder two initially
decoupled Siegel bosons of different chiralities. This ha
been done through the implementation of a vector gau
symmetry, which has forced the two bosons to belong to t
same multiplet. The complete theory so obtained prese
full diffeomorphism invariance and can be represented in
geometric manner. We have shown, as expected, that
diffeomorphism algebra closes on the fields appearing in t
theory. The way we have parametrized the metric has ma
explicit that the naive sum of two Siegel metrics is not th
metric of a full diffeomorphism-invariant theory. In this
sense, we could reveal the relationship between Siegel sy
metry and diffeomorphism. We have also discovered a su
prising duality in the model, which is related to the symme
try under the exchange between the left and right movers
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