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From quantum field theory to hydrodynamics: Transport coefficients and effective kinetic theory

Sangyong Jeon* and Laurence G. Yaffe
Department of Physics, University of Washington, Seattle, Washington 98195-1560

~Received 11 December 1995!

The evaluation of hydrodynamic transport coefficients in relativistic field theory, and the emergence of an
effective kinetic theory description, is examined. Even in a weakly coupled scalar field theory, interesting
subtleties arise at high temperatures where thermal renormalization effects are important. In this domain, a
kinetic theory description in terms of the fundamental particles ceases to be valid, but one may derive an
effective kinetic theory describing excitations with temperature dependent properties. While the shear viscosity
depends on the elastic scattering of typical excitations whose kinetic energies are comparable to the tempera-
ture, the bulk viscosity is sensitive to particle nonconserving processes at small energies. As a result, the shear
and the bulk viscosities have very different dependence on the interaction strength and temperature, with the
bulk viscosity providing an especially sensitive test of the validity of an effective kinetic theory description.
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I. INTRODUCTION

In a weakly coupled quantum field theory, one would e
pect to be able to compute most physical observables star
from first principles. However, at sufficiently high tempera
tures, in even the simplest scalar field theory, the corr
evaluation of transport coefficients characterizing long wav
length hydrodynamic behavior is quite subtle. Only recen
has a thorough diagrammatic analysis of the bulk and sh
viscosity appeared@1#, which is valid at temperatures wher
thermal renormalization effects are important. The purpo
of this paper is to discuss the physical interpretation of t
results of@1#, and to describe the formulation of an effectiv
kinetic theory which properly incorporates thermal renorma
ization effects and which generates the correct weak c
pling behavior of both the bulk and shear viscosities.

Existing literature in this area is somewhat sparse, p
ticularly on aspects which are unique to relativistic quantu
field theories. Consequently, we have tried to make the p
sentation reasonably self-contained, and briefly review n
essary background material. For simplicity, nearly all discu
sion will be limited to the case of a real scalar theory wi
cubic and quartic self-interactions,
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with l!1, m0
2 positive, andg25O(lm0

2). Since the theory
is weakly coupled, the physical~zero temperature! mass of
the resulting scalar particles equalsm0 ~after renormaliza-
tion! up to radiative corrections,mphys5m0@11O(l)#.

At nonzero temperature, the equilibrium state of th
theory may be regarded as a fluid~or gas! of interacting
spinless bosons. For fixed values of the coupling consta
the pressure, energy density, and other thermodynamic
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servables depend only on the temperature.1 It will be helpful
to distinguish various ranges of temperature.

~i! 0,T!mphys. The system is nonrelativistic and dilute.
The equilibrium particle density is exponentially small,
n;(mphysT)

3/2e2mphys/T.
~ii ! mphys&T!mphys/Al. The system is relativistic, but

thermal corrections to the effective particle mass~or scatter-
ing amplitudes! are negligible.

~iii ! T'mphys/Al. The thermal correction to the particle
mass, of orderAlT, is comparable to the zero temperature
mass. The system may no longer be regarded as a weak
interacting collection of the underlying fundamental par-
ticles.

~iv! mphys/Al!T!mphys/l. The zero temperature mass
is negligible compared to the thermal mass shift, but the zer
temperature mass still dominates the trace anomaly o
b(l)f4/4! in ^Tm

m&.
~v! T@mphys/l. The zero temperature mass is negligible

even in^Tm
m&.

The most interesting domains, from a theoretical perspec
tive, are the high temperature ranges~iii !–~v! where thermal
renormalization effects are important. Table I summarize
the qualitative behavior of various quantities at these tem
peratures. The scaling behavior of the effective particle mas
and thermal width will be essential ingredients in the follow-
ing discussion. The thermal width is the inverse of the mea
free time between scattering~up to statistical factors! and
equals the displacement of the single particle pole away from
the real frequency axis. The size of the thermal width follows
directly from the imaginary part of the on-shell self energy
divided by the particle energy. For weak coupling, the ther
mal width is small compared to the effective mass becaus
the imaginary part of the on-shell self energy first arises from
two-loop graphs, whereas the real part has one-loop contr

ity

1Since the scalar field is real, particles are their own antiparticle
and there is no conserved number operator or charge to which o
could couple a chemical potential.
5799 © 1996 The American Physical Society
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TABLE I. Scaling behavior of various quantities in high temperature scalar field theory. The estimates
hold in the domainT*mphys/Al where the one-loop thermal contribution dominates the~real part of the!
single particle self-energyS(p). If the scalar field has only quartic interactions, then the last result for the
bulk viscosity acquires an additional factor ofl21/2. See Sec. V for more detailed expressions.

Particle density n5O(T3)
Energy density «5O(T4)
Effective particle mass mth5O(l1/2T)
On-shell self energy S(p)5O(lT2)1 iO(l2T2)
Thermal width@p5O(mth)# Gp5O(l3/2T)
Thermal width@p5O(T)# Gp5O(l2T)
Mean free time @p5O(T)# t f5O(l22T21)
Elastic cross section@p5O(T)# s5O(l2T22)
Speed of sound vs51/A31O(l)
Shear viscosity h5O(l22T3)
Bulk viscosity @T*O(mphys/l)# z5O(lT3ln2l)
Bulk viscosity @T5O(mphys/Al)# z5O(mphys

4T21l25/2ln2l)
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butions. The results displayed for the shear and bulk visc
ties will be discussed in detail in Sec. V.

II. TRANSPORT COEFFICIENTS
AND BASIC KINETIC THEORY

In a fluid with no conserved particle number, the stre
energy tensorTmn is the only locally conserved current, an
fluctuations in the energy and momentum densities are
only hydrodynamic modes.2 Two transport coefficients, the
shear and bulk viscosities,~denotedh and z, respectively!
characterize the resulting hydrodynamic response.3 If the
system is slightly perturbed from equilibrium, then the no
equilibrium expectation ofTmn will satisfy the constitutive
relation ~in a local fluid rest frame!,

^Ti j &5d i j ^P &2
h

^«1P &
~¹ i^T

0
j&1¹ j^T

0
i&2 2

3d i j¹
l^T0l&!

2
z

^«1P &
d i j¹

l^T0l&, ~2.1!

together with the exact conservation law,]m^Tmn&50. Here
Ti j is the spatial part of the stress-energy tensor,«[T00 is
the energy density, and̂P & is the local equilibrium pressure
The constitutive relation~2.1! is valid for small fluctuations
in the limit in which the scale of the variation in̂Tmn& is
arbitrarily large compared to microscopic length scales~such
as the mean free path of excitations!.

The shear viscosityh characterizes the diffusive relax
ation of transverse momentum density fluctuation

2These are fluctuations whose relaxation time diverges as
wavelength of the fluctuation increases. Such fluctuations determ
the behavior of the system at arbitrarily long times and large d
tances.
3Because there is no conserved particle number, thermal con

tivity is not an independent transport coefficient.
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h/^«1P & is the diffusion constant for such shear fluctua
tions. The bulk viscosityz characterizes the departure from
equilibrium during a uniform expansion. If the divergence o
the fluid flow is constant, then the pressure differs from th
local equilibrium value by the bulk viscosity times the ex
pansion rate, orz¹ i^Ti

0&/^«1P &. Both shear and bulk vis-
cosity contribute to the attenuation of sound waves; the d
cay rate of sound waves with wavenumberk is
k2( 43h1z)/^«1P & @2#. The bulk viscosity vanishes identi-
cally in a scale invariant theory@3#. This follows from the
vanishing trace of the stress-energy tensor,Tm

m50, in any
scale invariant theory, and reflects the fact that a unifor
dilation of an equilibrium distribution function remains in
equilibrium ~at a modified temperature! if the dispersion re-
lation is scale invariant.

Transport coefficients are proportional to the mean fr
path of the scattering processes responsible for relaxation
the associated hydrodynamic modes. The shear viscosity
proportional to the two body elastic scattering mean fre
path. In ~scale noninvariant! relativistic theories, the bulk
viscosity is proportional to the mean free path for partic
number changing processes. This may be understood by n
ing that after a uniform expansion, a change in the tot
number of particles is required in order to reequilibrate at
different temperature.4 Note that decreasing the interaction
strength will increase the mean free paths and thus norma
increase transport coefficients. Consequently, the weak c
pling expansion of viscosities typically begins with negativ
powers of the coupling.

Most textbook discussions of the evaluation of transpo
coefficients~such as@2#! begin by assuming the validity of a
kinetic theory description of the interacting fluid. One argue
that the system may be characterized by a distribution fun
tion f (x,p) giving the phase space probability density of th
fundamental particles comprising the fluid. Although writte

the
ine
is-

duc-

4Under uniform expansion, a nonrelativistic gas of molecules r
laxes by converting internal energy~vibrational or rotational! into
kinetic energy. In contrast, a relativistic gas of structureless p
ticles relaxes by converting rest-mass energy into kinetic energy
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as if it depends on an arbitrary four momentum, the distrib
tion function is only defined for on-shell particles, for whic
p05Ep[Ap21mphys

2. The time dependence of the distribu
tion function is governed by a Boltzmann equation,

pm

Ep

]

]xm f ~x,p!5 1
2 E

123
dG12↔3p„f 1f 2~11 f 3!~11 f p!

2~11 f 1!~11 f 2! f 3f p…, ~2.2!

wheredG12↔3p is the differential transition rate for particles
of momentak1 andk2 to scatter into momentak3 andp,

dG12↔3p[
1

2Ep
uT ~p,k3 ;k2 ,k1!u2)

i51

3
d3k i

~2p!3~2Eki
!

3~2p!4d~k11k22k32p!, ~2.3!

and f i[ f (x,ki), f p[ f (x,p). The collision term @or the
right-hand side of~2.2!# vanishes when the distribution func
tion is an equilibrium Bose distribution with an~inverse!
temperatureb and flow velocityum, or

f b
eq~x,p!5n~ uumpmu!, ~2.4!

with n(E) the usual Bose distribution function at invers
temperatureb,

n~E![~ebE21!21. ~2.5!

To extract transport coefficients, it is sufficient to consid
perturbations away from equilibrium which are arbitraril
small and slowly varying. Writing the distribution function
as a local equilibrium piece plus a nonequilibrium correctio

f ~x,p!5 f b~x!
eq ~x,p!$12x~x,p!@11 f b~x!

eq ~x,p!#%,
~2.6!

one may linearize the Boltzmann equation and expand
powers of¹u or ¹b. After using the conservation relation
]mT

mn50, to express time derivatives in terms of spati
gradients,5 one finds that~in the fluid rest frame at a particu-
lar point x) @2#,

x~x,p!5b~x!A~x,p!¹•u~x!

1b~x!B~x,p!@ p̂•¹~u~x!•p̂!2 1
3¹•u~x!#,

~2.7!

where the coefficientB multiplying the shear in the flow
satisfies the linear inhomogeneous integral equation

5And imposing the Landau-Lifshitz conditionTmnun5Teq
mnun to

make the decomposition~2.6! unique.
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2 E123dG12↔3p

3~11n1!~11n2!n3~11np!
21

3@Bi j ~p!1Bi j ~k3!2Bi j ~k2!2Bi j ~k1!#,

~2.8!

with Bi j (p)[B(p)( p̂i p̂ j2
1
3d i j ), and all quantities evaluated

at the pointx. The coefficientA multiplying the divergence
of the flow satisfies an analogous integral equation,

1
3p

22vs
2~p21mphys

2!5
Ep

2 E123dG12↔3p

3~11n1!~11n2!n3~11np!
21

3@A~p!1A~k3!2A~k2!2A~k1!#,

~2.9!

with vs[(]P /]«)1/2 the ~local equilibrium! speed of sound,
together with the constraint

05E d3p

~2p!3
Ep n~Ep! @11n~Ep!# A~p! . ~2.10!

Finally, inserting the distribution function into the kinetic
theory stress-energy tensor,

Tmn~x!5E d3p

~2p!3Ep
pmpn f ~x,p!, ~2.11!

and comparing with the constitutive relation~2.1! yields

h5
b

15E d3p

~2p!3Ep
p2n~Ep!@11n~Ep!#B~p!

~2.12a!

and

z5bE d3p

~2p!3Ep
@ 1
3p

22vs
2~p21mphys

2!#

3n~Ep!@11n~Ep!#A~p!. ~2.12b!

Hence, in this kinetic theory treatment, a quantitative evalu
ation of viscosities requires solving the linear integral equa
tions~2.8! and~2.9! and then computing the final momentum
integrals in~2.12!. These results~2.9–2.12! for the viscosi-
ties can only be trusted within the domain of validity of the
underlying Boltzmann equation~2.2!. Basic assumptions un-
derlying kinetic theory which must hold include the follow-
ing.

~a! The collision time is negligible compared to the the
mean free time between collisions of the fundamental pa
ticles.

~b! Between collisions, particles may be regarded a
propagating classically with definite momentum and energ
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5802 53SANGYONG JEON AND LAURENCE G. YAFFE
~c! The on-shell energy and momentum of particles
between collisions satisfy the zero temperature free part
dispersion relation,Ep5Ap21mphys

2.
When the system is nonrelativistic,T!mphys, the mean

free time is exponentially large~compared to the Compton
time \/mphysc

2) and the above assumptions are well sat
fied. In the relativistic domain,T*mphys, the situation is
more involved. In this regime, the density of particles scal
asT3, a typical two-body elastic scattering cross section
s;l2/T2, and so the mean free time isO(1/l2T) @or
O(1/l3/2T) for soft particles due to Bose-enhanced stim
lated emission#. In contrast, the typical collision time~deter-
mined by the variation of the phase shift with energy! is
O(l2/T); hence condition~a! is satisfied as long as the
theory is weakly coupled. Quantum uncertainties in the e
ergy or momentum of a particle propagating between co
sions are negligible provided the kinetic energy times t
mean free time is large compared to\. For particles with
typical O(T) energies, this condition again merely require
l!1. But since the mean free time becomes arbitrarily sm
as the temperature increases, ‘‘soft’’ particles with mome
tum of order of their rest mass cannot be viewed as pro
gating classically whenT*mphys/l

2. Moreover, standard ki-
netic theory fails long before this temperature is reached d
to condition~c!. The collision term in the Boltzmann equa
tion summarizes the effects of scatterings in which partic
change their momenta in a near-random manner which m
be regarded as destroying phase coherence. It doesnot de-
scribe the coherent change in phase caused by exactly
ward scattering. The amplitude for a soft particle to prop
gate through the surrounding medium will be modified du
to phase shifts arising from forward scattering interaction
and this will change the dispersion relation from the ze
temperature form.6 For a hot scalar theory, this is precisel
the origin of the well-known thermal correction to the effec
tive particle mass,

mth~T!25mphys
21

lT2

24 F11OSmphys

T D G . ~2.13!

For simplicity, contributions arising from the cubic couplin
have not been displayed. Here~and henceforth! l andg2 are
renormalized couplings evaluated at the scaleT.7 The ther-
mal mass correction is negligible whenT&O(mphys), but
whenT*O(mphys/Al) the mass correction is significant an
the standard Boltzmann equation fails to describe correc
the propagation of particles with softO(mphys) momenta. It
is important to note that forward scattering effects will als
change the effective cross sections of soft particles propa
ing through the medium.

WhenT@mphys, one might expect the inapplicability of
the Boltzmann equation for soft particles to be irrelevan
since particles withO(mphys) momenta comprise a smal
O@(mphys/T)

2# fraction of the total. This is true for some

6This, of course, is exactly how the index of refraction for light
generated.
7A renormalization point of orderT is needed to avoid large loga-

rithms in higher order corrections.
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physical observables~including thermodynamic quantities
such as the pressure or energy density, and also the sh
viscosity!. However, as will be seen explicitly below, the
bulk viscosity is predominately sensitive to softO(m phys)
momenta.8

There is an additional problem with the kinetic theor
treatment for the bulk viscosity. The integral equation~2.9!
has no solution. The kernel of the equation has a zero mo
~which is not orthogonal to the source term!. The zero mode
is a consequence of the conservation of particle number. T
originalgf31lf4 theory does not have a conserved partic
number, but the Boltzmann equation~2.2! with only two-
particle scattering terms included obviously does conser
the number of particles. As stated earlier, the bulk viscosi
which characterizes the relaxation of the system after a u
form expansion, is directly sensitive to particle numbe
changing processes since a~scale noninvariant! system un-
dergoing uniform expansion cannot reequilibrate witho
changing the number of particles.9 Consequently, higher or-
der particle number changing terms must be included in t
Boltzmann equation~2.2! even though they are suppresse
by additional powers ofl. This will be described more ex-
plicitly below.

In summary, standard kinetic theory~with number chang-
ing processes included! is adequate for calculating transpor
coefficients in a weakly coupled theory in the temperatu
regimes whereT!mphys/Al, but not in the high temperature
regimes withT*mphys/Al. In order to derive transport co-
efficients in this domain, one should start directly from th
underlying field theory.

III. DIAGRAMMATIC EVALUATION
OF TRANSPORT COEFFICIENTS

The shear and bulk viscosities may be extracted from t
zero momentum, small frequency limit of the spectral de
sity of the equilibrium stress tensor–stress tensor correlat
function. One finds that@1#

h5
1

20
lim
v→0

1

vE d4xeivt^@p lm~ t,x!,p lm~0!#&eq,

~3.1a!

and

is

8This difference between the shear and bulk viscosity is easy
see from Eqs.~2.8!–~2.12!. The factors ofp2 in the shear viscosity
integrand~2.12a! and the inhomogeneous term in~2.8! combine to
suppress the contribution of soft momenta by four powers ofupu
relative to the case of the bulk viscosity.
9If the number of particles is conserved~as in a nonrelativistic

field theory!, equilibrium states will depend on a chemical potentia
as well as the temperature, and the zero mode in~2.9! will be
removed by the additional subsidiary condition onx needed to
make the local chemical potential uniquely defined. In such
theory, a uniform expansion will, of course, produce a change in t
chemical potential.
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z5
1

2
lim
v→0

1

vE d4xeivt^@P̄ ~ t,x!,P̄ ~0!#&eq. ~3.1b!

Here,p lm[¹ lf¹mf2 1
3d lm(¹f)2 is the traceless part of

the stress tensor andP̄[P2vs
2« is the pressure minus the

energy density times the square of the speed of soun10

These Kubo relations provide the natural starting point fo
field theory evaluation. The spectral density equals the d
continuity in the~Fourier transformed! stress-stress correla
tion function and has a perturbative expansion generated
the sum of cut diagrams with two insertions ofTmn @4#. Na-
ively, one would expect the leading weak coupling contrib
tion to arise solely from the single one-loop diagram show
in Fig. 1.

This is correct for generic values of the external fou
momentum, but is completely incorrect in the limit of van
ishing external momentum and frequency. Finite temperat
propagators have poles~in frequency! with both 1 i e and
2 i e prescriptions. When the external four-momentum va
ishes, the product of propagators corresponding to the gr
in Fig. 1 contains terms in which the contour of the fre
quency integration is pinched between coalescing pol
thereby producing an on-shell divergence. As always, su
divergences have a simple physical origin@5#. When a small
momentum is introduced by an insertion ofTmn , an on-shell
~bare! particle in the thermal medium can absorb the extern
momentum and become slightly off-shell. The amplitude
proportional to the length of time the particle can rema
off-shell. As the external momentum vanishes, the virtu
particle moves on-shell and the integral over the propagat
time diverges.

However, at nonzero temperature, no excitation can ac
ally propagate indefinitely through the thermal medium wit
out suffering collisions off other excitations. In a scalar fie
theory, a single particle excitation of momentumk acquires a
finite lifetime tk , or nonzero thermal widthGk[1/tk , due to
the O(l2) imaginary part of the on-shell two-loop self
energy. To examine the limit of vanishing external mome
tum, one must resum the single particle self-energy ins
tions which will shift the poles in the single particle
propagator from 6Ek

06 i e to 6Ek
th6 iGk @where

Ek
th[Ak21m(T)2#. This serves to regulate the apparent o

10The Kubo relation~3.1b! is equally correct if the pressureP is
used in place ofP̄ , since commutators of the energy density vanis
at zero momentum~due to energy conservation!. However, as
shown in@1# and explained below, the particular choice ofP̄ given
is appropriate for deriving an ‘‘effective’’ kinetic theory descrip
tion.

FIG. 1. The cut one-loop diagram contribution to the viscosity
d.
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shell singularity, and makes the one-loop diagram in Fig.
yield a finite result proportional to the single particle life-
time. However, since the lifetime isO(1/l2) @for particles
with O(T) momenta# this means that higher loop diagrams
can be just as important as the one-loop contribution if the
are sufficiently infrared sensitive.

For the shear viscosity, a careful analysis shows that o
must sum all cut ‘‘ladderlike’’ diagrams of the type illus-
trated in Fig. 2. See@1# for details. This is similar to the
situation in nonrelativistic systems@6#, except that instead of
having ladders built from an instantaneous two body intera
tion, one must deal with ladder graphs containing far mor
complicated ‘‘rungs.’’ Nevertheless, one may formally sum
all cut ladderlike graphs by introducing an effective verte
Dp(k,q2k) satisfying a linear equation of the form

Dp~k,q2k!5I p~k,q2k!1E d4p

~2p!4
M~k2p!

3F ~p,q2p!Dp~p,q2p!. ~3.2!

The effective vertex actually has a four components~in order
to represent the four different choices for which legs ar
above and below the cut!, whileM(k2p) andF (p,q2p)
are 434 matrices representing the rungs and siderails of th
ladder, respectively. These matrices have entries consist
of various products of cut and uncut propagators. The inh
mogeneous termI p(k,q2k) represents the vertex factors
corresponding to an insertion of the traceless stress tens
The explicit form of each of these quantities may be found i
@1#. Closing the two legs of the effective vertex with a sec
ond insertion of the traceless stress tensor produces the s
of all ladderlike graphs contributing to the shear viscosity, s
that

h5
b

10
lim
q0→0

lim
q→0

E d4k

~2p!4
I p~k,q2k!•F ~k,q2k!

3Dp~k,q2k!@11O~Al!#. ~3.3!

In the limit of vanishing external momentumq, one may
perform the frequency integration and extract the leading o
der behavior from the nearly pinching-pole contributions@1#.
Moreover, by using the finite temperature optical theore
@1,7# the 434 kernelMF may be shown to equal a rank
one matrix~up to corrections subleading inl), thereby al-
lowing one to reduce the equation to a single componen
three dimensional integral equation. The result is identical

h

-

. FIG. 2. A typical cut ladder diagram for the shear viscosity in
gf31lf4 theory containing O(l2), O(g2l), and O(g4)
‘‘rungs.’’
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5804 53SANGYONG JEON AND LAURENCE G. YAFFE
Eq. ~2.8! for the spin-two part of the Boltzmann distribution
function, and~2.12a! for the kinetic theory shear viscosity
provided one~a! identifies the shear responseB(k) with the
effective vertex divided by the imaginary part of the sing
particle self-energy,~b! uses the thermal massmth(T) instead
of the zero-temperature mass in the dispersion relation de
ing on-shell momenta, and~c! uses an effective temperature
dependent ‘‘scattering amplitude’’ equal to the usual tre
level amplitude but evaluated with finite temperatu
retarded propagators,11

T ~p1 ,p2 ;p3 ,p4![l2ḡ2@GR~p11p2!1GR~p12p4!

1GR~p12p3!#, ~3.4!

where GR(p11p2)5@(p11p2)
21mth

2#21 and ḡ5g
1l^f& is the ‘‘shifted’’ cubic coupling constant that result
when one shifts the field by its thermal expectation value^f&
in order to remove tadpole diagrams.12

The calculation of bulk viscosity requires considerab
more care than the shear viscosity. In addition to ladder d
grams of the type shown in Fig. 2, one must also sum d
grams containing iterations of higher order number-chang
scattering processes, and include thermal ‘‘vertex renorm
ization’’ subgraphs@1#. Examples are shown in Fig. 3.

Nevertheless, one may again sum all the relevant d
grams by introducing an effective vertexDP̄ (k,q2k) satis-
fying a linear equation of the same form as in~3.2!. The
appropriate kernel now contains the previousO(l2) subdia-
grams plusO(g2l2) number changing subdiagrams.13 The
inhomogeneous term receivesO(l) corrections involving

11Since the intermediate propagator in~3.4! cannot go on-shell,
the i e prescription in the retarded propagator is actually irreleva
Note, however, that using the real time Feynman propagator in
scattering amplitude is incorrect as this differs~off-shell! by a
@11n(Ep)# Bose distribution factor.
12Scattering amplitudes, strictly speaking, do not exist at nonz

temperature, since all excitations have finite lifetimes. However,
this weakly coupled theory, the effective scattering amplitude~3.4!
provides a meaningful characterization of scattering proces
which occur on time scales short compared to the single part
lifetime.
13Or, for a purelf4 theory,O(l4) two-to-four particle subdia-

grams.

FIG. 3. A typical graph containingO(g2l2) andO(g6) two-to-
three particle ‘‘rungs,’’ plus ‘‘thermal renormalization’’ of the
stress tensor vertices. Graphs such as this contribute to the lea
order weak coupling behavior of the bulk viscosity.
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the one-loop contributions to the thermal mass and the spe
of sound. These vertex corrections cannot be neglected
high temperatures because the speed of sound~squared! ap-
proaches 1/3, producing a cancellation in the leadin
O(p2) part of the inhomogeneous term~2.9!. Consequently,
an insertion ofP̄ ~or pressure minusvs

2 times the energy
density! is O(mphys

2), even when the loop momentum is of
O(T). Hence vertex corrections which areO(lT2) can be
comparable to the zeroth order term.

Once again, one may perform the frequency integratio
and extract the leading behavior from the nearly pinching
pole contributions,14 show that the resulting kernel is domi-
nated by a rank one matrix, and reduce the equation to
single component, three dimensional integral equation. Th
has the same form as Eq.~2.9! @with A(p) identified with the
effective vertex divided by the imaginary part of the self
energy# except for the following.

~a! In addition to the two particle elastic scattering term
the right-hand side now contains a particle number changi
term proportional to the square of the tree level two-to-thre
particle ‘‘scattering amplitude,’’15

T DN5 ilḡ (
$ i , j %

GT~pi1pj !

2 i ḡ3 (
$ i , j %,$ l ,m%

GR~pi1pj !GR~pl1pm!, ~3.5!

where againḡ is the shifted cubic coupling constant.
~b! The thermal mass is used in the dispersion relation f

on-shell momenta, and in the retarded propagators appear
in the ‘‘effective’’ thermal scattering amplitudes~3.4! and
~3.5!.

~c! The physical mass~squared! appearing in the source
term is replaced by

m̃2[mth
22T2

]mth
2

]T2
. ~3.6!

The ‘‘subtracted’’ massm̃2 is a measure of the departure

nt.
the

ero
in

ses
icle

14Subleading nonpinching pole terms in the kernel can be negle
ing only if the inhomogeneous term is orthogonal to the zero mod
of the reduced pinching-pole kernel~as well as orthogonal to the
zero modes of the full kernel!. Imposing this condition forces the
energy density coefficient in the sourceP̄5P2vs

2« to equal the
speed of sound~including one-loop corrections! @1#.
15Or, for a purelf4 theory, the two-to-four particle amplitude

T DN52 il2($ i , j ,k%GR(pi1pj1pk). Here all 6 momenta involved
in the two-to-four scattering are regarded as incoming, and the su
runs over 10 distinct partitions of the six momenta into two group
of three momenta. Similarly, the sums in Eq.~3.5! run over parti-
tions of the five momenta into sets of 2 and 3 momenta, or 2, 2 a
1 momenta, respectively.

ding
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from scale invariance. The subtraction cancels the lead
temperature dependence inmth

2, so thatm̃2 differs negligi-
bly from mphys

2 when T&mphys/Al, and approaches
mphys

22 1
2g

2/l for mphys/Al!T!mphys/l. At asymptoti-
ingcally large temperatures,T@m phys/l, the running of the
quartic coupling in~2.13! dominates andm̃25b(l)T2/48,
up toO(Al) corrections.

The resulting equation for the spin-0 response is
1
3p

22vs
2~p21m̃2!5

Ep

2 E123dG12↔3p~11n1!~11n2!n3~11np!
21@A~p!1A~k3!2A~k2!2A~k1!#

1
Ep

4 E1234dG12↔34p~11n1!~11n2!n3n4~11np!
21@A~p!1A~k4!1A~k3!2A~k2!2A~k1!#

1
Ep

6 E1234dG123↔4p~11n1!~11n2!~11n3!n4~11np!
21@A~p!1A~k4!2A~k3!2A~k2!2A~k1!#,

~3.7!

with

dG12↔34p[
1

2Ep
U T DN~p,k4 ,k3 ;k2 ,k1!U2 )

i51

4
d3k i

~2p!3~2Eki
!
~2p!4d4~Pin

tot2Pout
tot !, ~3.8!
in
se.

e-
c-

r-
nt
n

etc. In the pure quartic theory, the 2↔3 particle terms are
replaced by the corresponding 2↔4 particle contributions.
Closing the effective vertex with an insertion ofP̄ yields the
bulk viscosity,

z5bE d3p

~2p!3Ep
@ 1
3p

22vs
2~p21m̃2!#

3n~Ep!@11n~Ep!#A~p!, ~3.9!

which differs from~2.12b! by the replacement ofmphys
2 by

m̃2.16

IV. EFFECTIVE KINETIC THEORY

Before discussing the solutions of these linearized eq
tions for the hydrodynamic response, we wish to show ho
one may construct an effective kinetic theory for quasipar

16The solution of~3.7! for A(p) is only unique up to the addition
of a zero mode contribution proportional toEp . This has no effect
on the bulk viscosity~3.9! because the speed of sound satisfies t
identity

05E d3p

~2p!3
@
1
3p

22vs
2~p21m̃2!#n~Ep!@11n~Ep!#. ~3.10!

Nevertheless, the ambiguity inA(p) may be eliminated by impos-
ing the Landau-Lifshitz condition for the effective theory describe
below. This reduces to the constraint

05E d3p

~2p!3Ep
~p21m̃2!n~Ep!@11n~Ep!#A~p!. ~3.11!
ua-
w
ti-

cle excitations which reproduces, at arbitrary temperature
a weakly coupled theory, the correct hydrodynamic respon
As usual, the quasi-particle distribution functionf (x,p) will
depend on an on-shell four-momentump, but now the quasi-
particle energyp0[Ep will be a function of both the spatial
momentump and an effective massm(q), which in turn
depends on a spacetime-dependent auxiliary fieldq(x):

Ep~x![@p21m„q~x!…2#1/2. ~4.1!

The auxiliary fieldq characterizes the effect of the forward
scattering of a quasiparticle off other excitations in the m
dium, and depends self-consistently on the distribution fun
tion,

q~x![E d3p

~2p!3
f ~x,p!

Ep~x!
. ~4.2!

This is just a nonequilibrium generalization of the usual the
mal contribution to the scalar field propagator at coincide
points, ^f(x)2&. The quasiparticle Boltzmann equation ca
be written as

S ]

]t
1

]Ep

]p
•

]

]x
2

]Ep

]x
•

]

]pD f ~x,p!5DG~x,p!. ~4.3!

he

d
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The dispersion relation~4.1! implies that ]Ep /]p5p/Ep
and ]Ep /]x5(m/Ep)¹m. Hence the spatial gradient o
the effective mass acts like an external force whi
changes the momentum of propagating excitations. T
f
ch
he

collision term on the right-hand side is the usu
Boltzmann collision term with both 2↔2 and 2↔3
~or 2↔4 for a pure quartic theory! particle processes in-
cluded,
DG~x,p!5 1
2 E

123
dG12↔3p@ f 1f 2~11 f 3!~11 f p!2~11 f 1!~11 f 2! f 3f p#

1 1
4 E

1234
dG12↔34p@ f 1 f 2 ~11 f 3! ~11 f 4! ~11 f p!2~11 f 1! ~11 f 2! f 3 f 4 f p#

1 1
6 E

1234
dG123↔4p@ f 1 f 2 f 3 ~11 f 4! ~11 f p!2~11 f 1! ~11 f 2! ~11 f 3! f 4 f p#. ~4.4!
sid-
d-

i-

ess

t

e-
y
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-
e.

i-

-

The transition rates~for a given spacetime locationx) are
given by the usual definitions~2.3! and ~3.8!, with effective
scattering amplitudes~3.4! and ~3.5! computed using re-
tarded free propagators containing the effective ma
m(q(x)).

This effective Boltzmann equation is to be combined wi
a modified definition of the kinetic theory stress-energy te
sor,

Tmn~x!5S E d3p

~2p!3Ep
pmpn f ~x,p! D2gmn U„q~x!… .

~4.5!

A short exercise shows that the modified stress-energy ten
~4.5! is conserved provided the interaction energyU(q) sat-
isfies]U/]q52 1

2q(]m
2/]q), or

U~q!5 1
2 E

0

q

dq8@m2~q8!2m2~q!#. ~4.6!

This is also the necessary consistency condition for ensu
that the variation of the total energy density with respect
the quasiparticle density yields the correct quasiparticle
ergy,Ep(x)5dT00(x)/d f (x,p) @8#, and in equilibrium, that
the pressure satisfies the correct thermodynamic iden
T(dP /dT)5«1P .

The final ingredient needed to complete the definition
the effective kinetic theory is the dependence of the effect
mass on the auxiliary fieldq. This is completely determined
by the dependence of the equilibrium thermal massmth on
the one-loop ‘‘bubble’’^f(x)2&. In the pure quartic scalar
theory, the thermal mass has the simple form,

m2~q!5m0
21 1

2lq ~4.7!

~up to corrections suppressed by powers ofl), while if cubic
interactions are present one must first self-consistently
pand the field about its thermal expectation valuec[^f&,
leading to

m2~q!5m0
21gc1 1

2l~c21q!, ~4.8!
ss

th
n-

sor

ring
to
en-

tity

of
ive

ex-

with 05m0
2c1 1

2g(c
21q)1 1

6lc(c
213q). As always, the

coupling constants appearing in~4.7! and ~4.8! should be
evaluated at a scale appropriate to the physics under con
eration; the running of the quartic coupling affects even lea
ing order results whenq*mphys

2/l2. In equilibrium,
q;T2/12 whenT@mphys. Hence, the appropriate general
zation is to regard the coupling as an implicit function ofq
satisfying~whenq@m phys

2)

q
]l

]q
[ 1

2b~l!5 1
2b0l

21O~l3!. ~4.9!

The resulting effective mass in, for example, the massl
pure quartic theory is

m2~q!5
q

b0ln~L2/q!
, ~4.10!

whereL[me1/b0l(m2) is the renormalization group invarian
scale of masslessf4 theory.

This effective kinetic theory provides a consistent d
scription of the nonequilibrium dynamics of a weakl
coupled scalar field theory, including the propagation
slowly moving excitations, even when the effective mass
the excitations differs substantially from the zero
temperature mass, or varies significantly in space or tim
Expanding about a local equilibrium distribution, as in~2.6!,
and evaluating the effective stress energy tensor~4.5! ~care-
fully keeping track of the implicit dependence on the distr
bution function hiding in every factor of energy!, leads to the
fairly simple result

Tmn~x!5Teq
mn~x!2E d3p

~2p!3Ep
n~Ep!@11n~Ep!#x~x,p!

3S pmpn2umunT2
]m2

]T2 D , ~4.11!

where Teq
mn[umun(«1P )1gmnP is the local-equilibrium

contribution. Expressingx(x,p) in terms of the shear and
bulk amplitudes@cf. Eq. ~2.7!#, and linearizing the effective
Boltzmann equation in the hydrodynamic limit, yields ex
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actly the same equations obtained in the previous section
the amplitudesA(x,p) andB(x,p). When inserted into the
stress tensor~4.11! one precisely obtains the previous resu
~2.12a! and ~3.9! for the shear and bulk viscosities.

V. RESULTS FOR VISCOSITIES

Computing the bulk viscosity requires solving the integr
equation~3.7!. Unlike the case of the shear viscosity, solvin
this equation is trivial because the kernel has a single sm
eigenvalue which is only displaced from zero due the inc
sion of number changing processes. Hence, the solutio
dominated by the projection onto the near-zero mode, le
ing to

A~p!5
F

GDN
~12a Ep! , ~5.1!

where

F[E d3p

~2p!3Ep
@11n~Ep!#n~Ep!I P̄~p!, ~5.2!

with I P̄ (p)[
1
3p

22vs
2(p21m̃2) the same source term as i

Eq. ~3.7!, andGDN the total 3→2 particle~or 4→2 for pure
lf4! thermal reaction rate per unit volume,

GDN5
1

12E )
i51

5
d3k i

~2p!32Eki

uT DN~$ki%!u2

3~2p!4d4~k11k21k32k42k5!

3@11n~E1!#@11n~E2!#n~E3!n~E4!n~E5!.

~5.3!

The constanta in ~5.1! is undetermined by~3.7!, but may be
adjusted to satisfy~3.11!. The bulk viscosity obtained by
inserting~5.1! into ~3.9! is simply

z5b
F2

GDN
. ~5.4!

The final evaluation of the shear viscosity requires a n
merical solution of the integral equation~2.8! and the final
integral~2.12a!, while the bulk viscosity requires performing
the rather involved phase space integral~5.3! for the particle
number changing reaction rate. Details of this evaluat
may be found in@1#.

Despite the need to resum self-energy insertions in or
to cut off singularities in the original diagrams, the introdu
tion of thermal corrections in the dispersion relation a
scattering amplitude is actually irrelevant for the leading b
havior of the shear viscosity because the integrals~2.8! and
~2.12a! are dominated by momenta of orderT. This, how-
ever, is not the case for the bulk viscosity. At high tempe
ture, the number changing reaction rate scales
O(g2l2T5/mth

3) for the gf31lf4 theory, and
O(l4T6/mth

2) for the purelf4 theory due to its infrared
sensitivity to the region where all momenta areO(mth). The
factorF appearing in the numerator is a measure of the v
lation of scale invariance of the theory, and behaves
for

lts
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O„m̃2T2ln(T/mth)… whenmphys!T.17 Hence, the shear and
bulk viscosities have very different behaviors throughout t
high temperature region.18 In purelf4 theory,

h5a
T3

l2 3@11O~Al!1O~mphys/T!#, ~5.5!

while

z5b
m̃4mth

2

l4T3
ln2S kmth

T D
3@11O~Al!1O~mphys/T!1O~lT/m phys!#, ~5.6!

whenmphys!T!mphys/l, and

z5cl ln2~gl!T33@11O~Al!1O~mphys/lT!#, ~5.7!

whenT@mphys/l. The forms~5.5! and~5.7! remain valid if
cubic interactions are present, but the bulk viscosity in t
intermediate regimemphys!T!mphys/l acquires depen-
dence on the relative strength of cubic and quartic couplin

z5dS g2

lmth
2D m̃4mth

3

g2l2T2
ln2S kmth

T D
3@11O~Al!1O~mphys/T!1O~lT/m phys!#, ~5.8!

with d(x) a nontrivial dimensionless function.
A numerical evaluation of Eqs.~2.8!, ~2.12a!, ~5.3!, and

~5.4! for the pure quartic theory yields the values@1#:19

a53.043103, ~5.9a!

b55.53104, ~5.9b!

c5b/@6~32p!4#58.931025, ~5.9c!

k5e15z~3!/2p2
/251.2465, ~5.9d!

17One finds vs
25

1
32

5
12 m̃

2/p2T2 and F52(m̃2T2/ 6p2)
@ ln(2T/mth)2

15
2 z(3)/p2], when evaluating~3.10! and ~5.2! for

T@mphys, up to corrections suppressed byAl or mphys/T.
18They are also very different at low temperature. Whe

T!mphys, the shear viscosity behaves like
h;mphys

3(T/mphys)
1/2/l2, but the bulk viscosity diverges exponen

tially as z;e2mphys/Tmphys
6/l4T3 for pure lf4 theory, or

emphys/T(mphys/T)
1/2mphys

6/l2g2T for gf31lf4 theory. This is the
bulk viscosity characterizing asymptotically long wavelength h
drodynamic fluctuations, appropriate for distances large compa
to the mean free path for particle number changing interactio
~which displays the same exponential divergence!. Ordinary nonrel-
ativistic hydrodynamics~with a conserved particle number! is valid
at distances small compared to this number changing mean
path but large compared to the elastic mean free path. It is,
course, this region and not the strict asymptotic domain which h
practical utility.
19The result~5.9c! was not included in@1#. In addition, the evalu-

ation ofGDN in Ref. @1# contained a numerical error which affecte
the plot of z shown in that paper. Recomputed values have be
used in our Fig. 5 and Eq.~5.9b!.
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FIG. 4. Numerical results for
the shear viscosity. The straigh
line shows theO(T3/l2) asymp-
totic behavior ofh.
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g5e15z~3!/p2
/9650.064736. ~5.9e!

Results in the relativistic crossover regionT;mth are plotted
in Figs. 4 and 5. If one ignores the need to sum all ladd
diagrams and only includes the one-loop diagram of Fig.
~after resumming self-energy corrections! then one underes-
timates the shear viscosity by roughly a factor of four. Th
analogous error for the bulk viscosity leads to a
O(mphys

4/l2T) result which scales completely incorrectly
with l.

VI. CONCLUSIONS

The analysis of this simple scalar field theory illustrates
number of points which are applicable to any relativistic fie
theory.

~a! The diagrammatic evaluation of transport coefficien
er
1

e
n

a
ld

ts

is a remarkably inefficient approach. An infinite set of rathe
complicated diagrams must be summed, merely to obtain t
leading weak coupling behavior.

~b! The bulk viscosity depends on particle number chan
ing processes and is sensitive to soft momenta, whereas
shear viscosity is determined by two body elastic scatteri
cross sections at typical momenta. The ratio of the bulk
the shear viscosities varies from very small@O(l3)# to ex-
ponentially large depending on the temperature. Hence cru
estimates such asz;h(vs

22 1
3)
2 which have appeared in the

literature@9,10# cannot generally be trusted.
~c! At high temperature, the existence of an effective k

netic theory adequate for computing transport coefficien
depends crucially on the theory being weakly coupled, s
that mean free paths are large compared to the waveleng
of relevant excitations. In, for example, high temperatur
QCD, it is unclear if the bulk viscosity can be correctly com
FIG. 5. Numerical results for
the bulk viscosity. The solid line
shows the (mth /T)

3ln2(kmth /T)
behavior of Eq.~5.6!.



al
i-
le
i-
r-
-
e
e.
k
at
i-
ak
c-
,
y a

l

53 5809FROM QUANTUM FIELD THEORY TO HYDRODYNAMICS: . . .
puted with any kinetic theory since the effective coupling
excitations with softO(g2T) momenta is not small.

It is tempting to view the derivation of kinetic theory from
the underlying field theory, and the derivation of the hydr
dynamic constitutive equation~1.2! from the effective ki-
netic theory, as two different stages of a ‘‘real time reno
malization group.’’ At each stage, one is eliminatin
irrelevant degrees of freedom from the description of dyna
ics at successively lower frequency or momentum scales.
have little doubt that this notion of a real time renormaliz
tion group is essentially correct. However, we are unaware
any useful framework for defining a real time renormaliz
tion group which will systematically transform the basic d
namical formulation from a quantum field theory to kinet
theory, or ultimately to classical hydrodynamics. In contra
to the situation for equilibrium Euclidean space observab
@11#, how to repackage the cumbersome diagrammatic an
sis of @1# in simple renormalization group terms is poorl
understood. The diagrammatic treatment does not clea
separate different frequency scales, as shown, for exam
by the necessity of resumming both the real and imagin
parts of the on-shell single particle self energy in order
of

o-

r-
g
m-
We
a-
of
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y-
ic
st
les
aly-
y
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ple,
ary
to

regulate individual cut diagrams, even though only the re
part of the self energy appears explicitly in the resulting k
netic theory. The imaginary self energy, or single partic
lifetime, should be viewed as an output of the effective k
netic theory, not an input parameter. A true real time reno
malization group approach should allow one to derive com
pletely the effective kinetic theory before treating any of th
physics for which the kinetic theory description is adequat
Furthermore, a useful renormalization group framewor
should allow one to calculate corrections systematically,
least in weakly coupled theories. Although an effective k
netic theory did emerge in the analysis of the leading we
coupling behavior, it is unclear whether subleading corre
tions can be incorporated within a kinetic theory framework
since quantum coherence effects are only suppressed b
power of l. We hope that future investigations will shed
light on some of these issues.
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