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From quantum field theory to hydrodynamics: Transport coefficients and effective kinetic theory
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The evaluation of hydrodynamic transport coefficients in relativistic field theory, and the emergence of an
effective kinetic theory description, is examined. Even in a weakly coupled scalar field theory, interesting
subtleties arise at high temperatures where thermal renormalization effects are important. In this domain, a
kinetic theory description in terms of the fundamental particles ceases to be valid, but one may derive an
effective kinetic theory describing excitations with temperature dependent properties. While the shear viscosity
depends on the elastic scattering of typical excitations whose kinetic energies are comparable to the tempera-
ture, the bulk viscosity is sensitive to particle nonconserving processes at small energies. As a result, the shear
and the bulk viscosities have very different dependence on the interaction strength and temperature, with the
bulk viscosity providing an especially sensitive test of the validity of an effective kinetic theory description.
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I. INTRODUCTION servables depend only on the temperatutewill be helpful
to distinguish various ranges of temperature.

In a weakly coupled quantum field theory, one would ex- (i) 0<T<my,s. The system is nonrelativistic and dilute.
pect to be able to compute most physical observables startinthe equilibrium particle density is exponentially small,
from fir_st principles. However, at sufficiently high tempera- n~(mphysT)3/2e_mphys/T_
tures, in even the simplest scalar field theory, the correct jj) Mpnyss T< mphys/\/x- The system is relativistic, but

evaluation of transport coefficients characterizing long wavesnermal corrections to the effective particle méssscatter-
length hydrodynamic behavior is quite subtle. Only recentlymg amplitudes are negligible.

has a thorough diagrammatic analysis of the bulk and shear
viscosity appearefll], which is valid at temperatures where
thermal renormalization effects are important. The purpos
of this paper is to discuss the physical interpretation of th"@SS- The system may no longer be regarded as a weakly
results of( 1], and to describe the formulation of an effective INtéracting collection of the underlying fundamental par-
kinetic theory which properly incorporates thermal renormal-ticles.
ization effects and which generates the correct weak cou- (V) Mpnys/ VN<<T<mgp./X. The zero temperature mass
pling behavior of both the bulk and shear viscosities. is negligible compared to the thermal mass shift, but the zero
Existing literature in this area is somewhat sparse, partemperature mass still dominates the trace anomaly of
ticularly on aspects which are unique to relativistic quantumg(\) ¢*/4! in (T
field theories. Consequently, we have tried to make the pre- (v) T>my, /N. The zero temperature mass is negligible
sentation reasonably self-contained, and briefly review neceven in(T,").
essary background material. For simplicity, nearly all discus- The most interesting domains, from a theoretical perspec-
sion will be limited to the case of a real scalar theory withtive, are the high temperature randég—(v) where thermal
cubic and quartic self-interactions, renormalization effects are important. Table | summarizes
the qualitative behavior of various quantities at these tem-
1 g A peratures. The scaling behavior of the effective particle mass
(9¢)>+ §m§¢2+ §¢3+ 4—|¢>4, (1.)  and thermal width will be essential ingredients in the follow-
' ’ ing discussion. The thermal width is the inverse of the mean
free time between scatteringp to statistical factoysand
with A <1, mé positive, and92=0()\m§). Since the theory equals the displacement of the single particle pole away from
is weakly coupled, the physicétero temperatujemass of the real frequency axis. The size of the thermal width follows
the resulting scalar particles equaty, (after renormaliza- directly from the imaginary part of the on-shell self energy
tion) up to radiative correctionsngn,s=mg[1+O(N)]. divided by the particle energy. For weak coupling, the ther-
At nonzero temperature, the equilibrium state of thismal width is small compared to the effective mass because
theory may be regarded as a fluidr gag of interacting the imaginary part of the on-shell self energy first arises from
spinless bosons. For fixed values of the coupling constant$wo-loop graphs, whereas the real part has one-loop contri-
the pressure, energy density, and other thermodynamic ob-

(iii) T~mppys/ J\. The thermal correction to the particle
fnass, of order/\T, is comparable to the zero temperature

- =

N -

1Since the scalar field is real, particles are their own antiparticles
" Current address: School of Physics and Astronomy, Universityand there is no conserved number operator or charge to which one
of Minnesota, Minneapolis, Minnesota 55455. could couple a chemical potential.
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TABLE |. Scaling behavior of various quantities in high temperature scalar field theory. The estimates
hold in the domainT= mphyS/\/X where the one-loop thermal contribution dominates (tieal part of the
single particle self-energ¥ (p). If the scalar field has only quartic interactions, then the last result for the
bulk viscosity acquires an additional factor ot *2. See Sec. V for more detailed expressions.

Particle density n=0(T?%)

Energy density e=0(T%

Effective particle mass my=O0(\Y2T)

On-shell self energy 3 (p)=0(AT?)+iO(A2T?)
Thermal width[ p=0O(my,)] I',=0(\*?T)

Thermal width[p=0O(T)] I'p=0(\?T)

Mean free time [p=0(T)] =0\ 2T

Elastic cross sectiopp=0(T)] o=0(\?T7?)

Speed of sound v=1//3+0()\)

Shear viscosity 7=0(\"2T3)

Bulk viscosity[ T=O(Mgpys/\)] {=0(AT3In%\)

Bulk viscosity [ T=O(Mypys/ VN)] {=0(Mypyd TN "%2n2))

butions. The results displayed for the shear and bulk viscosiy/(s +7 is the diffusion constant for such shear fluctua-
ties will be discussed in detail in Sec. V. tions. The bulk viscosity’ characterizes the departure from
equilibrium during a uniform expansion. If the divergence of
the fluid flow is constant, then the pressure differs from the
II. TRANSPORT COEFFICIENTS local equilibrium value by the bulk viscosity times the ex-
AND BASIC KINETIC THEORY pansion rate, ot V(T®)/(s+ 7). Both shear and bulk vis-
cosity contribute to the attenuation of sound waves; the de-
In a fluid with no conserved particle number, the stresstay rate of sound waves with wavenumbér is
energy tensofl ,, is the only locally conserved current, and k2(‘—§77+ OI{e+7) [2]. The bulk viscosity vanishes identi-
fluctuations in the energy and momentum densities are theally in a scale invariant theor}8]. This follows from the
only hydrodynamic modesTwo transport coefficients, the vanishing trace of the stress-energy tendgr“=0, in any
shear and bulk viscositiegdenoted and {, respectively  scale invariant theory, and reflects the fact that a uniform
characterize the resulting hydrodynamic respchsiethe  dilation of an equilibrium distribution function remains in
system is slightly perturbed from equilibrium, then the non-equilibrium (at a modified temperaturéf the dispersion re-
equilibrium expectation off ,, will satisfy the constitutive Ilation is scale invariant.
relation (in a local fluid rest framg Transport coefficients are proportional to the mean free
path of the scattering processes responsible for relaxation of
) 7 the associated hydrodynamic modes. The shear viscosity is
(Ti)= {7 — = (V(TO)+V(T%) - 55, V(T%)) proportional to the two body elastic scattering mean free
(e+7) ) ) astic |
path. In (scale noninvariantrelativistic theories, the bulk
¢ viscosity is proportional to the mean free path for particle
— —gﬁijv'(TOQ, (2.2 number changing processes. This may be understood by not-
(e+7) ing that after a uniform expansion, a change in the total
number of particles is required in order to reequilibrate at a
together with the exact conservation lawy,(T“")=0. Here  different temperatur&.Note that decreasing the interaction
Tj; is the spatial part of the stress-energy tenseeToyis  strength will increase the mean free paths and thus normally
the energy density, and”) is the local equilibrium pressure. increase transport coefficients. Consequently, the weak cou-
The constitutive relatiori2.1) is valid for small fluctuations pling expansion of viscosities typically begins with negative
in the limit in which the scale of the variation KT ,,) is  powers of the coupling.
arbitrarily large compared to microscopic length scagh Most textbook discussions of the evaluation of transport
as the mean free path of excitatipns coefficients(such ag2]) begin by assuming the validity of a
The shear viscosityy characterizes the diffusive relax- kinetic theory description of the interacting fluid. One argues
ation of transverse momentum density fluctuationsithat the system may be characterized by a distribution func-
tion f(x,p) giving the phase space probability density of the
fundamental particles comprising the fluid. Although written
’These are fluctuations whose relaxation time diverges as the
wavelength of the fluctuation increases. Such fluctuations determine
the behavior of the system at arbitrarily long times and large dis- “Under uniform expansion, a nonrelativistic gas of molecules re-
tances. laxes by converting internal enerdyibrational or rotational into
3Because there is no conserved particle number, thermal condukinetic energy. In contrast, a relativistic gas of structureless par-
tivity is not an independent transport coefficient. ticles relaxes by converting rest-mass energy into kinetic energy.
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as if it depends on an arbitrary four momentum, the distribu-
tion function is only defined for on-shell particles, for which
=p%+ mphysz. The time dependence of the distribu-

0_
p'=E
tion function is governed by a Boltzmann equation,

P
B 0p=} [ dlia (a1 g1y

—(1+f)(1+ 1) f5f)), (2.2

wheredI' 1,3, is the differential transition rate for particles
of momentak; andk, to scatter into momentks andp,

3 3
013 3p= o} 7Pk ik ok) 2LT oo
12-3p= 5 o P.K3.K2,K1 i=1 (2m) (ZEki)

X (2m)48(ky+ky—k3—p), (2.3

and fi=f(x,kj), f,=f(x,p). The collision term[or the
right-hand side of2.2)] vanishes when the distribution func-
tion is an equilibrium Bose distribution with atinverse
temperatureg3 and flow velocityu”, or

fglx.p)=n(|up,)), 2.4

with n(E) the usual Bose distribution function at inverse

temperatures,

n(E)=(effF—1)"1 (2.5
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E
Pip;—3P%8 = f JUICLEERC

«(L+ny)(1+ny)ng(1+np) 1
X[Bjj(p)+Bij(ks) = Bij(ko) = Bjj (k1) ],
(2.8

with Bj;(p)=B(p)(Pip;— 35;). and all quantities evaluated
at the pointx. The coefficientA multiplying the divergence
of the flow satisfies an analogous integral equation,

S J dr
2 123 12-3p

X(1+ng)(1+ny)ng(1+n,)t
X[A(p) +A(ks) —A(kz) = A(ky) ],
(2.9

1.2 202 2\ —
3p°—vg(p +mphys)_

with v = (071 9¢)*'? the (local equilibrium) speed of sound,
together with the constraint

d3p
OZJ (23 v NEp) [1+0(EYT A(p) . (210

Finally, inserting the distribution function into the kinetic
theory stress-energy tensor,

i ke x)—fi “p¥f(x (2.1
( - (277)3Epp p ( lp)i .

and comparing with the constitutive relati¢p.1) yields

To extract transport coefficients, it is sufficient to consider

perturbations away from equilibrium which are arbitrarily

small and slowly varying. Writing the distribution function

as a local equilibrium piece plus a nonequilibrium correction,

f(xip) = fe(x)(x p {1_X(X1p)[1+ f;?x)(xvp)]},
(2.6

one may linearize the Boltzmann equation and expand in

powers ofVu or V3. After using the conservation relation,

4, T#"=0, to express time derivatives in terms of spatial

gradlent§’ one finds thatin the fluid rest frame at a particu-
lar pointx) [2],
x(X,p)=BX)AX,P)V - u(x)
+B(x)B(x,p)[P- V(u(x)-p)—3V-u(x)],
(2.7

where the coefficienB multiplying the shear in the flow
satisfies the linear inhomogeneous integral equation

SAnd imposing the Landau-Lifshitz conditioh*”u »=TeqU, to
make the decompositiof2.6) unique.

n= 15f 2 ) = ——3=p?N(E,)[1+n(E,)]B(p)
(2.123
and
o o 2
Z=,3f m[ﬁp —vs(P™+ Mppys) |
XN(Ep)[1+n(Ep)]A(p). (212

Hence, in this kinetic theory treatment, a quantitative evalu-
ation of viscosities requires solving the linear integral equa-
tions(2.8) and(2.9) and then computing the final momentum
integrals in(2.12. These result$2.9—2.12 for the viscosi-
ties can only be trusted within the domain of validity of the
underlying Boltzmann equatiof2.2). Basic assumptions un-
derlying kinetic theory which must hold include the follow-
ing.

(&) The collision time is negligible compared to the the
mean free time between collisions of the fundamental par-
ticles.

(b) Between collisions, particles may be regarded as
propagating classically with definite momentum and energy.
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(c) The on-shell energy and momentum of particles inphysical observablegincluding thermodynamic quantities
between collisions satisfy the zero temperature free particlsuch as the pressure or energy density, and also the shear
dispersion relationf,= Jp?+ mphysz. viscosity). However, as will be seen explicitly below, the

When the system is nonrelativistif,<m,,, the mean bulk viscosity is predominately sensitive to s@(m 9
free time is exponentially largcompared to the Compton momenté
time ﬁ/mphyscz) and the above assumptions are well satis- There is an additional problem with the kinetic theory
fied. In the relativistic domainT=my, the situation is treatment for the bulk viscosity. The integral equati@r®)
more involved. In this regime, the density of particles scaledias no solution. The kernel of the equation has a zero mode
as T3, a typical two-body elastic scattering cross section is(which is not orthogonal to the source terriithe zero mode
o~\?/T?, and so the mean free time B(1/\°T) [or is aconsequence of the conservation of particle number. The
O(1/\%2T) for soft particles due to Bose-enhanced stimu-originalgeé>+ X ¢* theory does not have a conserved particle
lated emissioh In contrast, the typical collision tim@eter- ~ number, but the Boltzmann equati¢@.2) with only two-
mined by the variation of the phase shift with energy  particle scattering terms included obviously does conserve
O(N?/T); hence condition(a) is satisfied as long as the the number of particles. As stated earlier, the bulk viscosity,
theory is weakly coupled. Quantum uncertainties in the enwhich characterizes the relaxation of the system after a uni-
ergy or momentum of a particle propagating between colliform expansion, is directly sensitive to particle number
sions are negligible provided the kinetic energy times thechanging processes since(scale noninvariantsystem un-
mean free time is large compared fio For particles with ~dergoing uniform expansion cannot reequilibrate without
typical O(T) energies, this condition again merely requireschanging the number of particl@onsequently, higher or-
A< 1. But since the mean free time becomes arbitrarily smalfler particle number changing terms must be included in the
as the temperature increases, “soft” particles with momenBoltzmann equatiori2.2) even though they are suppressed
tum of order of their rest mass cannot be viewed as propaby additional powers ok. This will be described more ex-
gating classically whefi = my;,,/A2. Moreover, standard ki-  Plicitly below. o _
netic theory fails long before this temperature is reached due [N summary, standard kinetic theofwith number chang-
to condition(c). The collision term in the Boltzmann equa- iNg processes includgds adequate for calculating transport
tion summarizes the effects of scatterings in which particlegoefficients in a weakly coupled theory in the temperature
change their momenta in a near-random manner which maiggimes wher@ <mg,.¢/ VX, but not in the high temperature
be regarded as destroying phase coherence. It doede-  regimes withT=mgp,¢/ V. In order to derive transport co-
scribe the coherent change in phase caused by exactly foefficients in this domain, one should start directly from the
ward scattering. The amplitude for a soft particle to propa-underlying field theory.
gate through the surrounding medium will be modified due
to phase shifts arising from forward scattering interactions,
and this will change the dispersion relation from the zero ll. DIAGRAMMATIC EVALUATION
temperature formi.For a hot scalar theory, this is precisely OF TRANSPORT COEFFICIENTS
the origin of the well-known thermal correction to the effec-

tive particle mass, The shear and bulk viscosities may be extracted from the

zero momentum, small frequency limit of the spectral den-
sity of the equilibrium stress tensor—stress tensor correlation

T2 m . .

B phys function. One finds thdtl]

mth(T)z—mphySZ—Fﬁ 1+0 T )} (213)

For simplicity, contributions arising from the cubic coupling _ 1 4 ot

have not been displayed. Hef@nd henceforthn andg? are = X)J}'TO; d*x €[ mm(t,X), Tim(0) ]eqs
renormalized couplings evaluated at the scalé The ther- (3.13

mal mass correction is negligible whéins O(m,p,g, but

whenT=O(Mgpys/ J\) the mass correction is significant and

the standard Boltzmann equation fails to describe correcthand

the propagation of particles with sa®(my,,J momenta. It

is important to note that forward scattering effects will also

change the effective cross sections of soft particles propagatThis difference between the shear and bulk viscosity is easy to

ing through the medium. see from Eqs(2.8)—(2.12. The factors op? in the shear viscosity

When T>m,,,s, one might expect the inapplicability of integrand(2.124 and the inhomogeneous term (@.8) combine to

the Boltzmann equation for soft particles to be irrelevantsuppress the contribution of soft momenta by four power$pbf

since particles withO(mp,,9 momenta comprise a small relative to the case of the bulk viscosity.

O[(mphyS/T)z] fraction of the total. This is true for some 9f the number of particles is conserveds in a nonrelativistic
field theory, equilibrium states will depend on a chemical potential
as well as the temperature, and the zero mod€2if) will be

5This, of course, is exactly how the index of refraction for light is removed by the additional subsidiary condition gnneeded to

generated. make the local chemical potential uniquely defined. In such a

A renormalization point of ordeF is needed to avoid large loga- theory, a uniform expansion will, of course, produce a change in the
rithms in higher order corrections. chemical potential.
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FIG. 1. The cut one-loop diagram contribution to the viscosity. FIG. 2. A typical cut ladder diagram for the shear viscosity in
gp+Np* theory containing O(A2), O(g®\), and O(g*
“rungs.”
1 1 L — —
{=—=lim —f d4xe'“’t<[.’%(t,x),.'%(O)])eq. (3.1b
2,0 shell singularity, and makes the one-loop diagram in Fig. 1

yield a finite result proportional to the single particle life-

Here, mm=V,pV mnd— 38m(V ¢)? is the traceless part of time. However, since the lifetime i©(1/\?) [for particles
the stress tensor and=7—uv2¢ is the pressure minus the With O(T) momenta this means that higher loop diagrams
energy density times the square of the speed of sund.can be Just as important as t.he one-loop contribution if they
These Kubo relations provide the natural starting point for are sufficiently infrared sensitive. .
field theory evaluation. The spectral density equals the dis- For the shear viscosity, a careful analysis shows that one
continuity in the(Fourier transformexstress-stress correla- Must sum all cut “ladderlike” diagrams of the type illus-
tion function and has a perturbative expansion generated byated in Fig. 2. Se¢1] for details. This is similar to the
the sum of cut diagrams with two insertions ®f, [4]. Na- Situation in nonrelativistic systenﬁ@], except that instead of
ively, one would expect the leading weak coupling contribu-having ladders built from an instantaneous two body interac-
tion to arise solely from the single one-loop diagram showrfion, one must deal with ladder graphs containing far more
in Fig. 1. complicated “rungs.” Nevertheless, one may formally sum

This is correct for generic values of the external four-all cut ladderlike graphs by introducing an effective vertex
momentum, but is completely incorrect in the limit of van- Z(k.q—k) satisfying a linear equation of the form
ishing external momentum and frequency. Finite temperature
propagators have poldn frequency with both +ie and d*p
—ie prescriptions. When the external four-momentum van- Dr(K,q=K)=7(k,q—k)+ f (ZT)A'%(I(_ p)
ishes, the product of propagators corresponding to the graph
in Fig. 1. contains terms in which the contour ofi the fre- X.7(p,a—p)Z.(p,q—p). (3.2
guency integration is pinched between coalescing poles,
thereby producing an on-shell divergence. As always, suc

divergences have a simple physical oriffi). When a small to represent the four different choices for which legs are

momentum is introduced by an insertionf,, an on-shell e P =
(bare particle in the thermal medium can absorb the externaiﬁjlbove and be_low the c)utvvh_|le ~2(K=p) and./(p,q . P)
are 4<4 matrices representing the rungs and siderails of the

momentum and become slightly off-shell. The amplitude is : . . .
. : . .“ladder, respectively. These matrices have entries consisting
proportional to the length of time the particle can remain

off-shell. As the external momentum vanishes, the virtualOf various products of cut and uncut propagators. The inho-

particle moves on-shell and the integral over the propagatiormogeneousf term?,T(k_,q—k)_ represents the vertex factors
time diverges. corresponding to an insertion of the traceless stress tensor.

However, at nonzero temperature, no excitation can actLE-_he explicit form of each of these quantities may be found in
L e ! : . |1]. Closing the two legs of the effective vertex with a sec-
ally propagate indefinitely through the thermal medium Wlth'on]d insertigc])n of the tra%:eless stress tensor produces the sum
out suffering collisions off other excitations. In a scalar field . s : .
theory, a single particle excitation of momentiracquires a of all ladderlike graphs contributing to the shear viscosity, so

finite lifetime 7., or nonzero thermal width',=1/7,, due to that

the O(\?) imaginary part of the on-shell two-loop self-

energy. To examine the limit of vanishing external momen- B . d*k p .

tum, one must resum the single particle self-energy inser- 7~ 10 I;m I'mof (277)4.77,(k,q—k)-./(k,q—k)
tions which will shift the poles in the single particle Ao
propagator from *ER*ie to =*Ep=il, [where x 7. (k,q—K)[1+O0(YV)]. 3.3
Eih= kZ+ m(T)?]. This serves to regulate the apparent on- "

tf’he effective vertex actually has a four compondimtrder

In the limit of vanishing external momentuq) one may
perform the frequency integration and extract the leading or-

°The Kubo relation(3.10 is equally correct if the pressur€is  der behavior from the nearly pinching-pole contributiphk
used in place af#, since commutators of the energy density vanishMoreover, by using the finite temperature optical theorem

at zero momentum(due to energy conservatipnHowever, as [1,7] the 4X4 kernel 7.7 may be shown to equal a rank

shown in[1] and explained below, the particular choicefgiven ~ one matrix(up to corrections subleading i), thereby al-
is appropriate for deriving an “effective” kinetic theory descrip- lowing one to reduce the equation to a single component,
tion. three dimensional integral equation. The result is identical to
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------------- ! the one-loop contributions to the thermal mass and the speed

of sound. These vertex corrections cannot be neglected at
A n high temperatures because the speed of sdsaqaared ap-
. proaches 1/3, producing a cancellation in the leading
v ' O(p?) part of the inhomogeneous terf®.9). Consequently,
; an insertion of>’ (or pressure minus§ times the energy
density is O(mphysz), even when the loop momentum is of
FIG. 3. A typical graph containin®(g®\?) andO(g®) two-to-  O(T). Hence vertex corrections which a@\T?) can be
three particle “rungs,” plus “thermal renormalization” of the comparable to the zeroth order term.
stress tensor vertices. Graphs such as this contribute to the leading Once again, one may perform the frequency integrations
order weak coupling behavior of the bulk viscosity. and extract the leading behavior from the nearly pinching-
pole contributiong show that the resulting kernel is domi-
nated by a rank one matrix, and reduce the equation to a
Eq. (2.8 for the spin-two part of the Boltzmann distribution single component, three dimensional integral equation. This
function, and(2.123 for the kinetic theory shear viscosity has the same form as EQ.9) [with A(p) identified with the
provided one(a) identifies the shear responBgk) with the  effective vertex divided by the imaginary part of the self-
effective vertex divided by the imaginary part of the singleenergy except for the following.
particle self-energy(b) uses the thermal mass,(T) instead (a) In addition to the two particle elastic scattering term,
of the zero-temperature mass in the dispersion relation definhe right-hand side now contains a particle number changing
ing on-shell momenta, an@) uses an effective temperature- term proportional to the square of the tree level two-to-three
dependent “scattering amplitude” equal to the usual treeparticle “scattering amplitude
level amplitude but evaluated with finite temperature
retarded propagatofs,

9

T(P1,P2:P3.P4) =N —0g%[Gr(P1+P2) + Gr(P1—Ps) ZANTING {lzl} Gr(pitpy)

+Gr(P1—Pa)], (3.4 —@3{ ; | Gr(Pi+P))Cr(PI+Pm). (35
iLjih{l,m

where  Gr(p1+p2) =[(P1+p2)?+my’]™* and g=g
+\(¢) is the “shifted” cubic coupling constant that results where agairg is the shifted cubic coupling constant.
when one shifts the field by its thermal expectation valge (b) The thermal mass is used in the dispersion relation for
in order to remove tadpole diagrarifs. on-shell momenta, and in the retarded propagators appearing
The calculation of bulk viscosity requires considerablyin the “effective” thermal scattering amplitude@®.4) and
more care than the shear viscosity. In addition to ladder dia¢3.5).
grams of the type shown in Fig. 2, one must also sum dia- (c) The physical mas$squared appearing in the source
grams containing iterations of higher order number-changingerm is replaced by
scattering processes, and include thermal “vertex renormal-
ization” subgraphg1]. Examples are shown in Fig. 3.
Nevertheless, one may again sum all the relevant dia-
grams by introducing an effective vertex {k,q—k) satis- 5 2ﬁmth2
fying a linear equation of the same form as (2. The m =my =T —=7 - 3.6
appropriate kernel now contains the previ@\ ?) subdia-
grams plusO(g®\?) number changing subdiagrarsThe
inhomogeneous term receiv&3(\) corrections involving The “subtracted” mas$n? is a measure of the departure

HSince the intermediate propagator (®.4) cannot go on-shell, Hsubleading nonpinching pole terms in the kernel can be neglect-
theie prescription in the retarded propagator is actually irrelevanting only if the inhomogeneous term is orthogonal to the zero modes
Note, however, that using the real time Feynman propagator in thef the reduced pinching-pole kern@s well as orthogonal to the
scattering amplitude is incorrect as this diffeiaff-shel) by a  zero modes of the full kernellmposing this condition forces the
[1+n(Ep)] Bose distribution factor. energy density coefficient in the soureé=7—v2e to equal the

2scattering amplitudes, strictly speaking, do not exist at nonzerspeed of soundincluding one-loop correctiong1].
temperature, since all excitations have finite lifetimes. However, in °Or, for a pure\ ¢* theory, the two-to-four particle amplitude
this weakly coupled theory, the effective scattering amplit(&ié) TAN= *i)\ZE{i’jyk}GR(pi+ p;+pi). Here all 6 momenta involved
provides a meaningful characterization of scattering processes the two-to-four scattering are regarded as incoming, and the sum
which occur on time scales short compared to the single particleuns over 10 distinct partitions of the six momenta into two groups
lifetime. of three momenta. Similarly, the sums in E.5 run over parti-

130, for a puren ¢* theory, O(A*) two-to-four particle subdia- tions of the five momenta into sets of 2 and 3 momenta, or 2, 2 and
grams. 1 momenta, respectively.
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from scale invariance. The subtraction cancels the leadingally large temperatures[>m /A, the running of the
temperature dependencerim,?, so thatm? differs negligi-  quartic coupling in(2.13 dominates andi?= B(\)T2/48,
bly from mphys2 when T=mg,./ J\, and approaches up to O(y/\) corrections.

mphysz—%gzl)\ for mphys/\/X<T< Mphys/A. At asymptoti- The resulting equation for the spin-0 response is

E
12— vi(p?+ M) = ?pflzsdrlz_»sp(l"' Ny)(1+ny)n3(1+ny) " [A(p) +A(Ks) —A(ky) —A(ky)]
E
+ ZpJ1234dF12H34p(1+ Np)(1+n2)Nang(1+n,) " A(P) +A(Ky) + A(Ks) — A(K) — A(Ky) ]

E
+ gpf1234dflz%4p(l+ N1)(1+n,)(1+n3)ng(1+ny) " A(p) +A(ky) — A(ks) — A(Ka) — A(kq)],
(3.7
with

2 4 3

1 d°k;
dl' 150, 34= 2E. Tan(P.Kg K3 ko, Kq) |H1 m(Zﬂ)454(Pitgt_ P (3.9
p = i

etc. In the pure quartic theory, the-23 particle terms are cle excitations which reproduces, at arbitrary temperature in

replaced by the corresponding-24 particle contributions. a weakly coupled theory, the correct hydrodynamic response.

Closing the effective vertex with an insertion#@fyields the  As usual, the quasi-particle distribution functibfx,p) will

bulk viscosity, depend on an on-shell four-momentygmbut now the quasi-
particle energypOEEp will be a function of both the spatial

d%p momentump and an effective masm(q), which in turn
§=,8f m[%pz—vﬁ(p%—ﬁz)] depends on a spacetime-dependent auxiliary fi¢lJ:
p
Xn(Ep)[1+n(Ep)]A(p), 3.9
Ep(x)=[p*+m(a(x))*]"> (4.9

which differs from(2.12h by the replacement cmphys2 by
=2 16
m<.
The auxiliary fieldq characterizes the effect of the forward
IV. EFFECTIVE KINETIC THEORY scattering of a quasiparticle off other excitations in the me-
Before discussing the solutions of these linearized equa@'um’ and depends self-consistently on the distribution func-

tions for the hydrodynamic response, we wish to show howon:
one may construct an effective kinetic theory for quasiparti-

d’p  f(x,p)
16The solution of(3.7) for A(p) is only unique up to the addition q(x)= 3 = o - 4.2
o : ; (2m)° Ep(x)
of a zero mode contribution proportional g, . This has no effect P
on the bulk viscosity3.9) because the speed of sound satisfies the
identity
dp s 2o~ This is just a nonequilibrium generalization of the usual ther-
= | @t aP T us(PT M) IN(B) [+ n(Ey)]. (310 mal contribution to the scalar field propagator at coincident

points, { ¢(x)?). The quasiparticle Boltzmann equation can

Nevertheless, the ambiguity i(p) may be eliminated by impos- be written as

ing the Landau-Lifshitz condition for the effective theory described
below. This reduces to the constraint

d*p ~
O_f(Zw)_3Ep_(p2+mz)n(Ep)[l+n(Ep)]A(p)' 319 9, B 9 &

0
E—l—&—p 5_W (9_p f(X,p)ZAF(X,p). (43)
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The dispersion relatior{4.1) implies that JE,/dp=p/E,  collision term on the right-hand side is the usual
and dE,/9x=(m/E,)Vm. Hence the spatial gradient of Boltzmann collision term with both 22 and 2-3

the effective mass acts like an external force which(or 2—4 for a pure quartic theojyparticle processes in-
changes the momentum of propagating excitations. Theluded,

AF(X,p):%flzsdrlegp[flfz(l'i-f3)(1+fp)—(1+f1)(l+f2)f3fp]
+%f1234dF12H34p[f1 fo (14f3) (1+F,) (1+f,)—(1+Fy) (1+fy) f5fyfp]

+%f1234dF123H4p[f1 fo f3 (1+1f,) (1+f)—(1+fy) (1+fy) (1+f3) fyfp]. (4.9

The transition rategfor a given spacetime locatiox) are  with 0=mac+ 3g(c?+q)+ 2xc(c?+3q). As always, the
given by the usual definitiong.3) and(3.8), with effective  coupling constants appearing {#.7) and (4.8) should be
scattering amplitude$3.4) and (3.5 computed using re- evaluated at a scale appropriate to the physics under consid-
tarded free propagators containing the effective masegration; the running of the quartic coupling affects even lead-
m(q(x)). ing order results whengq=my,,Z/\2. In equilibrium,

This effective Boltzmann equation is to be combined withq~T?/12 whenT> Mpnys. Hence, the appropriate generali-
a modified definition of the kinetic theory stress-energy tenzation is to regard the coupling as an implicit functioncpf

sor, satisfying(whengsm ;&)
d°p N
T (x)= fm P“Pvf(x,P)) —g*" u(q(x)) . Q£E%B(?\)=%bo)\2+ O(\3). (4.9
(4.9

The resulting effective mass in, for example, the massless
A short exercise shows that the modified stress-energy tensptire quartic theory is
(4.5 is conserved provided the interaction enetgfq) sat-

isfies 3U/aq= — iq(am?/dq), or 20\ q
MDD = Boin(AZ7g) (4.10
_1 4 ’ 2(~! 2
U(q)_ifo dg’[m(q")—m“(a)]. (4.8 \whereA = e\ s the renormalization group invariant

scale of masslesg¢” theory.

This is also the necessary consistency condition for ensurin '_I'h!s effective kinetic t_h_eo_ry prowdes_ a consistent de-
cription of the nonequilibrium dynamics of a weakly

that the variation of the total energy density with respect t
varal gy Wi P coupled scalar field theory, including the propagation of

the quasiparticle density yields the correct quasiparticle en= : . X
ergy, Ep(x) = 5T%(x)/ 6f (x,p) [8], and in equilibrium, that slowly moving excitations, even when the effective mass of

the pressure satisfies the correct thermodynamic identit e excitations _differs .subs.tan_ti'ally frp m the zero-
T(dAdT) =& +7 emperature mass, or varies significantly in space or time.
i . fExpanding about a local equilibrium distribution, as(#),
nd evaluating the effective stress energy teriéd) (care-
ully keeping track of the implicit dependence on the distri-
bution function hiding in every factor of energyeads to the
fairly simple result

The final ingredient needed to complete the definition o
the effective kinetic theory is the dependence of the effectivi
mass on the auxiliary field. This is completely determined
by the dependence of the equilibrium thermal magson
the one-loop “bubble”(#(x)?). In the pure quartic scalar
theory, the thermal mass has the simple form, R

T’”(X)=T§J(X)—f—3n(Ep)[1+n(Ep)]x(x.p)
m?(q)=mg+ 3\q 4.7) (2m)°Ey
m2
Gk (4.1)

(up to corrections suppressed by powers npfwhile if cubic X| ptp’—utu'T?

interactions are present one must first self-consistently ex-
pand the field about its thermal expectation vatze(¢),  \here T=uru"(s+7)+g*"7 is the local-equilibrium
leading to contribution. Expressing(x,p) in terms of the shear and

) ) o bulk amplitudeqcf. Eq. (2.7)], and linearizing the effective
m*(q)=mz+gc+3zA(c+Qq), (4.8 Boltzmann equation in the hydrodynamic limit, yields ex-
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actly the same equations obtained in the previous section fap(m?T?In(T/my)) when mphys<T-17 Hence, the shear and
the amplitudesA(x,p) and B(x,p). When inserted into the bulk viscosities have very different behaviors throughout the
stress tenso@.11) one precisely obtains the previous resultshigh temperature regiolf.In pure\ ¢* theory,

(2.123 and (3.9 for the shear and bulk viscosities. .

T

V. RESULTS FOR VISCOSITIES n=a\? X[1+0(M) + O(Mahys/ )], (5.5
Computing the bulk viscosity requires solving the integralyyhile

equation(3.7). Unlike the case of the shear viscosity, solving

this equation is trivial because the kernel has a single small ~ W*my? ( kmy,

eigenvalue which is only displaced from zero due the inclu-§:bW n ( T )

sion of number changing processes. Hence, the solution is

dominated by the projection onto the near-zero mode, lead- ><[1+O(\/X)+O(mphyS/T)+O()\T/mphys)], (5.9

ing to

whenmgp, < T<my, /A, and
F
A(p)= Ton (1-a Ep), (5.1) {=cNIN2(y\)T3X[1+O(VN) +O(my,/AT)], (5.7

whenT>mg,,/\. The forms(5.5 and(5.7) remain valid if
cubic interactions are present, but the bulk viscosity in the
d3p intermediate regimem,, << T<my,, /A acquires depen-
FEJ m[lJr n(E,)In(Ex)IAp), (5.2  dence on the relative strength of cubic and quartic couplings,

where

2 4

~ 3
with 1 {p)=3p?—v2(p?+m™?) the same source term as in  ¢=d g 5 mz ”chz n2<Kmth)
Eq. (3.7), andIyy the total 3—2 particle(or 4—2 for pure N[O !
: , :
A ¢*) thermal reaction rate per unit volume, X[1+O(VN) +O(Myyy/ T)+OAT/M ], (5.8

$ with d(x) a nontrivial dimensionless function.

5
1 — ,
FAN_l_ZJ iﬂl (277)32Ek_|'/AN({k‘})| A numerical evaluation of Eqg2.8), (2.123, (5.3), and
' (5.4) for the pure quartic theory yields the valugg:®
X(27T)454(k1+ k2+ kg_k4_k5)

a=3.04x 10°, (5.9a
X[1+n(Eq)][1+n(Ey) In(E3)n(E4)N(Es).
(5.3 b=5.5x 10¢, (5.9
The constantr in (5.1) is undetermined by3.7), but may be c=b/[6(327)4]=8.9x10"°, (5.99
adjusted to satisfy(3.11). The bulk viscosity obtained by
inserting(5.1) into (3.9 is simply k=el5327 1 2465, (5.90
F2
t=8 Tan’ 64 Y0ne finds v2=3i-5mM¥7*T? and F=—(MT% 6172

[In(2T/my) — 2£(3)/7?], when evaluating(3.10 and (5.2 for

The final evaluation of the shear viscosity requires a nuTsm,, up to corrections suppressed ki or myp/T.
merical solution of the integral equatid@.8) and the final BThey are also very different at low temperature. When
integral(2.123, while the bulk viscosity requires performing T< Mphys: the shear viscosity behaves like
the rather involved phase space intedfaB) for the particle  ~my,, 3(T/myn,d Y4\?, but the bulk viscosity diverges exponen-
number changing reaction rate. Details of this evaluationially as ¢~e*™ns/Tm,, S/\*T® for pure A¢* theory, or
may be found ir{1]. o' (Ml T) YoMy, IN2G?T for g+ N ¢* theory. This is the

Despite the need to resum self-energy insertions in ordeulk viscosity characterizing asymptotically long wavelength hy-
to cut off singularities in the original diagrams, the introduc- drodynamic fluctuations, appropriate for distances large compared
tion of thermal corrections in the dispersion relation andio the mean free path for particle number changing interactions
scattering amplitude is actually irrelevant for the leading be{which displays the same exponential divergén@edinary nonrel-
havior of the shear viscosity because the integf2l8 and ativistic hydrodynamicgwith a conserved particle numbés valid
(2.123 are dominated by momenta of ordér This, how-  at distances small compared to this number changing mean free
ever, is not the case for the bulk viscosity. At high tempera-path but large compared to the elastic mean free path. It is, of
ture, the number changing reaction rate scales asourse, this region and not the strict asymptotic domain which has
O(g2\?Tmy%) for the g¢i+Ag* theory, and practical utility.
O(N*T®my2) for the pure\ ¢* theory due to its infrared  °The result(5.99 was not included ifi1]. In addition, the evalu-
sensitivity to the region where all momenta &émy,). The  ation of ", in Ref.[1] contained a numerical error which affected
factor F appearing in the numerator is a measure of the viothe plot of { shown in that paper. Recomputed values have been
lation of scale invariance of the theory, and behaves assed in our Fig. 5 and Eq5.90).
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y=el%(/7196=0.064736. (5.90 is a remarkably inefficient approach. An infinite set of rather

complicated diagrams must be summed, merely to obtain the
Results in the relativistic crossover regisn my, are plotted ~ leading weak coupling behavior. .
in Figs. 4 and 5. If one ignores the need to sum all ladder (D) The bulk viscosity depends on particle number chang-
diagrams and only includes the one-loop diagram of Fig. iNg processes and is sensitive to soft momenta, whereas the
(after resumming self-energy correctiprisen one underes- Shear viscosity is determined by two body elastic scattering
timates the shear viscosity by roughly a factor of four. TheCross sections at typical momenta. The ratio of the bulk to
analogous error for the bulk viscosity leads to anthe shear viscosities varies from very snfa@i(1%)] to ex-
O(Mpry</N2T) result which scales completely incorrectly Ponentially large depending on the temperature. Hence crude
with \. estimates such as~ 7(v2— 3)? which have appeared in the
literature[9,10] cannot generally be trusted.
VI. CONCLUSIONS (c) At high temperature, the existence of an effective ki-
netic theory adequate for computing transport coefficients
The analysis of this simple scalar field theory illustrates adepends crucially on the theory being weakly coupled, so
number of points which are applicable to any relativistic fieldthat mean free paths are large compared to the wavelengths
theory. of relevant excitations. In, for example, high temperature
(a) The diagrammatic evaluation of transport coefficientsQCD, it is unclear if the bulk viscosity can be correctly com-
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puted with any kinetic theory since the effective coupling ofregulate individual cut diagrams, even though only the real
excitations with sofO(g2T) momenta is not small. part of the self energy appears explicitly in the resulting ki-

It is tempting to view the derivation of kinetic theory from netic theory. The imaginary self energy, or single particle
the underlying field theory, and the derivation of the hydro-lifetime, should be viewed as an output of the effective ki-
dynamic constitutive equatiofiL.2) from the effective ki- netic theory, not an input parameter. A true real time renor-
netic theory, as two different stages of a “real time renor-malization group approach should allow one to derive com-
malization group.” At each stage, one is eliminating pletely the effective kinetic theory before treating any of the
irrelevant degrees of freedom from the description of dynamphysics for which the kinetic theory description is adequate.
ics at successively lower frequency or momentum scales. WEurthermore, a useful renormalization group framework
have little doubt that this notion of a real time renormaliza-should allow one to calculate corrections systematically, at
tion group is essentially correct. However, we are unaware ofeast in weakly coupled theories. Although an effective ki-
any useful framework for defining a real time renormaliza-netic theory did emerge in the analysis of the leading weak
tion group which will systematically transform the basic dy- coupling behavior, it is unclear whether subleading correc-
namical formulation from a quantum field theory to kinetic tions can be incorporated within a kinetic theory framework,
theory, or ultimately to classical hydrodynamics. In contrastsince quantum coherence effects are only suppressed by a
to the situation for equilibrium Euclidean space observablepower of A\. We hope that future investigations will shed
[11], how to repackage the cumbersome diagrammatic analylight on some of these issues.
sis of [1] in simple renormalization group terms is poorly
understood. The diagrammatic treatment does not cleanly
separate different frequency scales, as shown, for example,
by the necessity of resumming both the real and imaginary Helpful conversations with Peter Arnold and Lowell
parts of the on-shell single particle self energy in order toBrown are gratefully acknowledged.
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