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Bose-Einstein condensation as symmetry breaking in compact curved spacetimes

John D. Smith and David J. Toms
Physics Department, University of Newcastle upon Tyne, NE1 7RU, United Kingdom
(Received 17 November 1995

We examine Bose-Einstein condensation as a form of symmetry breaking in the specific model of the
Einstein static universe. We show that symmetry breaking never occurs in the sense that the chemical potential
u never reaches its critical value. This leads us to some statements about spaces of finite volume in general. In
an appendix we clarify the relationship between the standard statistical mechanical approaches and the field
theory method using functions.

PACS numbgs): 04.62:+v, 03.70+k, 11.15.Ex, 11.30.Qc

I. INTRODUCTION mechanicq25-33, there appears to be some confusion in

. : d . ¢ lativisti the literature in the context of relativistic field theory, par-
Bose-Einstein condensatiofBEC) for nonrelativistic  jcjarly in the calculation of critical temperatures. After a

spin-0 particles is standard textbook matefigt-3]. In the  prief review of the general theory presented in RE2&,23,
infinite volume limit, there is a critical temperature at which we will specialize to the Einstein static universe. The gener-
a phase transition occurs. For a real system, such as liquiglized ¢ function [34] will be evaluated for this spacetime
helium, the effects of interactions may be importd8ee[4]  and then used to obtain the effective action for a complex
for a recent review.The study of Bose-Einstein condensa- scalar field with a finite charge. Expressions for the pressure
tion for relativistic bosons is more recent. In particular, Refs.and charge are obtained. We then present a detailed analysis
[5—7] applied the methods of relativistic quantum field of whether BEC anq symmetry breaking occur, .and conclude
theory at finite temperature and density to study BEC. Thdhat they cannot, in contrast to the expectations of Refs.
phase transition, which occurs at high temperatures, can tg2:23: The reason for the difference is linked to the fact

: . t the spatial manifold has a finite volume, and we present
interpreted as spontaneous symmetry breaking. Subsequeéf1

K89 ded th Vsis t fint ) ) | discussion of this important point. In Appendix A, we
work [8,9] extended the analysis to self-interactions in scalalsnqy how the generalized function can be used to relate

field theory. _ _ _ the thermodynamic potential directly to the effective action.
The generalization from flat Minkowski spacetime to | Appendix B, we present a short discussion of how the

curved Spacetime has also been considered. The nonrelatidnawsis proceeds for the anisotropic Spacetime obtained by
istic Bose gas in the Einstein static universe was given bydentification of antipodal points o8°.

Al'taie [10]. The extension to relativistic scalar fields was
given for conformal coupling in Ref.11] and for minimal Il. THE EFFECTIVE ACTION AND BEC
coupling in Ref[12]. The higher dimensional version of the
Einstein static universe was studied by Shira{d]. More

recently, the case of hyperbolic universad] and the Taub 3, is a compact Riemannian manifold of dimensdn After

universe[15] have received attention. Anti—de Sitter space, \vick rotation to imaginary time, the configuration space
was studied in Ref.16] were some of the issues of our paper 5tion is

were considered from a different viewpoint.

One advantage of dealing with specific spacetimes of the =~ . [#
type mentioned above is that the eigenvalues of the Laplac- Slel= fo dtLdox
ian are known, and as a consequence the partition function
and the thermodynamic potential can be obtained in closed
form. Another approach to study BEC is to try to keep the
spacetime fairly general, and to calculate the thermodynamic 2.)
potential only in the high temperature limit. This has been B '
done by various authord17-23. In particular, the (Hel‘e,|V(pl|2=g”¢9iq01¢9j(pl with g;; the Reimannian metric
symmetry-breaking interpretation of BEC was given in Refs.on 2. do, is the invariant volume element &) This may
[22,23. The effects of interactions have been given recentlybe found as described by Kapu$# in flat spacetime start-
[24]. ing with the phase space path integral and incorporating the

The purpose of the present paper is to reexamine BEC igonserved charge using a Lagrange multiplierThe parti-
the case where the spatial manifold is compact. We will baion function may be expressed as a path integral over all
particularly concerned with the Einstein static universe forfields periodic in time with periog3=T"* whereT is the
which the spatial manifold i§3. Because the volume is fi- temperature.
nite, the general theory presented in R¢22,23 must be It is straightforward to compute the effective action using
modified since the results tacitly assumed the infinite volumehe background field methd@5]. If we take the background
limit. Although the thermodynamics of finite volume systemsfield to be¢;(x) =¢(X), ¢,(X) =0, then the effective action
has been well studied in classical nonrelativistic statisticals

We will consider a complex scalar field defined on a
(D +1)-dimensional spacetime manifold =RX3, where

1. , 1. )
5(901_'/“»02) +§(¢z+l,wl)
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Mel=8¢l+ 5 ndefi?Slel} 22

using condensed notatid85]. | is a unit of length intro-

duced to keep the argument of the logarithm dimensionless.

Let {on(X)} be a complete set of solutions to

[—VZ+ ER]on(X) = oyen(X) 2.3
normalized by
fzd0x¢N(X)¢N’(X): ONN' - (2.9
If we define a generalized function by
- 27 . \? -s
gg(s)=j;_ % (7+|M +oytm?| | (2.5
then it can be shown th§23]
Te]=S¢]~£(0)+{(0)InI% (2.6

In order for the sum iri2.5) to be well definedy. must be
restricted byo,+m?— u?>0, whereo is the smallest ei-
genvalue of the set.

The background scalar field must satisfy

Mlel_,
S (X)

The differentiation is to be computed wifla, T, V, g;; all
held fixed. This is equivalent to minimizing the Helmholtz
free energy withQ, rather thanu, held fixed[36]. Because
{, has no explicit dependence an using (2.6) in (2.7),
gives

(2.7

—VZ2p+(m?— u?+¢éR)p=0. (2.9
We can expan@ in terms of thepy, which satisfy(2.3) and
(2.9):

¢_<x>=% Cnen(x), (2.9

where the expansion coefficien® are to be determined.

Use of (2.9) in (2.8), leads to
(on+m?—u?)Cy=0. (2.10

If u?<ao+m?, then the only possible solution {@.10 is

Cn=0 for all N. This leads tap(x) =0 as the ground state

and no symmetry breaking. If, however, it is possible for

to reach the critical valug.., defined by

(2.11

,LL§:O'0+ mz,

thenCy in (2.10 is undetermined. In this case, the ground

state in(2.9) is
¢ (X)=Coeo(X) (2.12

and there is symmetry breaking.
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In order to find the relation with BEC, consider the charge
which is given by(in units withe=1)

=— E £ (2.13
- ﬁ (9# . .
From (2.6), it is clear that we can write
Q=Qp+Qy, (2.19
where
Qo:Mf do,@%(x), (2.19
s
_ J ’ 2
Ql—@{ég(o)—&/(o)lnl }- (2.16

Use of the high temperature expansions in R28] shows
that for large enoughTl, it is always possible to have
uw<u ande=0. In this caseQ,=0. When the temperature
drops,u increases. If it is possible fqu to reach the value
e defined in(2.11), ¢#0 andQy,#0. The value ofT at
which u= u, is defined to be the critical temperaturg. It
was shown in Ref[23] that

3Q 1/2
Mcv)

T~ (2.17)

exactly as in flat spacetimig,7] (allowing for a different
value of u.). ForT<T., we have

7|

\Vj 1/2
co=(§) (Te-THM2

(2.18

Qo:Q[l—

(2.19

These results assume that it is possibledgaio reach the
critical valueu at a finite temperature. However, without a
detailed analysis, it is difficult to see if this is possible. For
example, in the nonrelativistic case, wh&nis a flat two-
dimensional spacey never reacheg. and therefore, there
is no BEC.( See Ref[37] for example). Another case where
u never reacheg, is for 3 a flat three-dimensional space
with an externally applied constant magnetic fig38]. More
generally, if3 has a finite volume, extreme care must be
used. In the past, compact spaces have been analyzed using
high temperature expansions. A proper analysis of BEC may
require temperatures outside the range where the high tem-
perature expansion is valid. Use of the high temperature ex-
pansion may give misleading results as we show later. A
recent discussion of the existence of BEC using generalized
¢ functions has recently been give#7].

Ill. THE EINSTEIN UNIVERSE

At this point it is instructive to consider a specific ex-
ample. One space which has received considerable attention
in the past is the Einstein static universe, i%= S® which
has radiusa, with scalar curvatur®=6a"2. We will take
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U,=£R, were ¢ must satisfy the conditiog> 3(1—a2m?)

but is otherwise arbitrary. High temperature expansions for

the caset=0 were first obtained by Parker and Zhdig],

while the caset=3 has been studied by Singh and Pathria
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One immediately notes that
- ] at
2n—an?t_ _ P
n; n%e e 93<0‘| W). (3.9

[11]. Previously, the critical temperature has been calculated

to be

1/2 —-1/4

3q
m

8¢

1+
m?a?

(3.2

!

(see[23] and[12] for the case&=0).q=Q/V=Q/27%a’ is
the charge density.

It is well known[39-41 that the eigenvalues of V2 on
S® are —N(N+2)a 2, with a degeneracy of N+1)2
(N=0,1,2...). Hence, oy=[N(N+2)+6&]/a®> and our
generalized, function is

B S (N+1)?
Zy(S)—j;_m NEO (2_77_+_ >2+N(N+2)+6§+ o
glitin] t——g —+m
(3.2

A slight simplification in the form 0f3.2) is obtained by
completing the square iN in the denominator and then re-
labeling the sumn=N+1. Thus, we consider the analytic
continuation of

r]2

[(aj+ib)?+an®+c]®’

(s)= > >

j=—» n=1

(3.3

where a=21lB, b=pu, a=1/a? and
c=m?+(6&—1)/a%. The techniques which we shall use are
based on those of Elizaldd3—-495.

We start by making use of the identity

1 o
—S_ s—1 _
a s Jo dt t57 “exp(—at), (3.9

and, expanding out thea{+ib)?, to get

o

X X, exp—aj’t—_2iajbt—ct+b?). (3.5

j=—o

(We shall justify interchanging the sums with integrals
shortly) Now, following the notation of Whittaker and Wat-
son[42] for 6 functions,

D e—ajzt—Zajbti:1+22 e—aziztcogzabjt)
. j:1

j=—

“a’t
=05 abt‘l—), (3.6
s
where 65(z| 7) is defined asq=e™")
05(2|7) = 05(2,q)=1+2 >, q"coshz. (3.7
n=1

An important property of the functions is that they are
uniformly convergent for Im>0, as is their derivative.
Thus, the integrand if3.5) is the product of a number mul-
tiplied by two uniformly convergent sums. This justifies our
previous manipulations.

We are now in a position to rewrite our function in
terms of @ functions:

. at)
I —
a

. (3.9

d
J(at)

1 * 2
- s—1,a—(c—bo)t| _
L(s) F(s)fo dt 27 "e { 03(0
a’t

X 04

abt‘

Of course, although apparently much simpler, the integral as
it stands could only be performed numerically since there is
no representation for th@ function, other than in terms of
the infinite sum above. However, progress can be made by
making use of Jacobi’s imaginary transformation fofunc-

tions:
z2 ; z
mir|

T

93(z|r)=(—ir)‘1/2exp( - %) (3.10

Applying this to the second function gives us

12~y
1 @ dt t5-3/2ect

I'(s) a Jo

{(s)

o]

2,
X z n2e—um t
n=1

S

We now split this expression into the sum of two terms as
follows:

©

1+2, e it
=1

b
2]577

. (3.11

L(s)=11+15, (3.12
where
1 1/2 o *° ,
|, = - dt t5~ 3/2e—ct nZe—an t
1"T'(s) a Jo ngl
(3.133
and
277_1/2 *° *© 27ij ©
_ 2 s—3/2
Iz_aF(s)nzl n ]Zl cos)‘( - )fo dtt
j2772
xex;{—(c+an2)t— r (3.13b

If we now differentiate(3.10 with respect taat , we obtain
the useful identity
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® 1/2 1/2 % 2_2
2 —an2t_ T ™ near
n-e = + ex
nzl 4(at)?? " 2(at)’? ngl at
5/2 *® 2_2
T n=ar
=] X n%x (3.14
at n=1 at

which, together with a standard integral representation for

the modified Bessel functiof#6]

1(2\# (= 2
K—P«(Z):§<E) J;) dt t“‘lex%—t—a), (3.15

gives us

2-s

o mc . (2c)% 57 i 1
Y 4(s—1)(s—2)aa’? " aa®?I(s) &L X278
X{K_S+2(Xn)_an—S+3(Xﬂ)}l (316)
where
2nmct/?
xn:72—, (3.17
Similarly,
27t I‘(Zﬂ-jb) =
|,=——— D, cos 2n?(c+ an?)~st12
3T & a | &, 2neran
jw(c+an2)1/2 s—1/2
X[f} Kosi12(Zin), (318
where
(c+an?)t?

[Note that we have not used E8.14) here] It can be shown
that the sums i, andl, are uniformly convergent for all
s [this is becaus& ,(z) falls off exponentially for largez,
andK,=K_,]. Thus, we finally obtain the expansion

7TC27$

(9= 25— 1)(s-2)aa”?

(2¢)> S
+ a3
aa”'°I'(s)

o1
nzl Xﬁfs{KferZ(xn)

_XnK—s+3(Xn)}

27t I‘{Zij) =
+——— >, cos 2n%(c+an?)~st1/2
al'(s) ,Zl a n; (C+an®)

s—1/2

2y1/2
K_s+1/2(Zjn)-

jm(c+an
a

(3.20

Now, for our application, we are only interested 4(0)
and ¢’ (0). At first sight, it looks like our effective action
will be extremely complicated; however,

1
——~s+ys°+0(s®) ass—0,

(s (3.2)
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and so we are only left with the first term {i{0). Similarly,
when we differentiate with respect and then evaluate at
s=0, the result is to differentiate the first term and then
simply to remove the gamma functions from all subsequent
terms. Furthermore, using6]

T 1/2 .
K1/2(2)=<£) e % (3.22

the double sum term i’ (0) becomes

I'{277'jb)
« COSN — ©
a

) [{ 27j(c+an?)l/?
nexpp——m—m—
1

i=1 J n= a
* “ e*l-‘”n++e7jwn—
=2 nZZ _ (3.23a
n=1 j=1 J
=—> n¥In(1—e “n+)+In(1—e “n-)},
n=1
(3.23b
where
_277' on? +271'b 3.3
wni_?(c an )_T’ (3.230

which is the usual statistical mechanical contributi¢Bee
Appendix A)

Putting all of the above together, and rewriting the effec-
tive action in terms of the physical variables, we obtain

- 1 3
— 3,2 2A~\ 3.2
I'=9e¢]+ 16,8a c‘In(1<c) —32,3a (o

- 1
- 2,8a302n§1 W[K2(2Wn aC]'/Z)

—2mnac’K (2mnact®d ]+ >, nAn[(1—e Alontw)
n=1

X(1—e Alen=m)], (3.29

wherew,=[(n/a)?+c]*?, c=m?+(6£—1)/a?, and we ex-
pectS[¢] to be zero forT>T,.

In the above, we have been exclusively concerned with
the temperaturg function. Originally, it was hoped that by
concentrating on the full sum, one may be able to find some
simplification which would not be apparent if the sum was
separated into its zero temperature and finite temperature
contributions. One approach would be to try simplifying the
sum ovem by using(3.14) in (3.13h. Making liberal use of
the summation formulas in the appendix of Refl], one
finally obtains
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~ __ aB 3a%c?B  2ma’c
_ bl o120
I'=S[¢ |+ 16 cIn(l-c) 22 + 3
o COsh Buj) 11
ngl j—sz(ﬂCZJH s
o [ A 2A 2 ()
X 2 {—;In(l—y)Jr ¥92(Y)+?93(y)}, ©
(3.25
*— *— >
where _(E)7 +(b2—c)7
2|22 (e)
A=2m|Cc— ,u,+l7 , (3.26 o
y=exp —aA), (3.2

and theg,(y) are the generalized Bose-Einstein integrals, , )
defined by FIG. 1. Analytic structure off(n) in the complexn plane,

showing the position of branch cuts and singularities for the case

b%>c.
1 (ex"hdx 2.2
gn(Y)— F(I’l) 0 yflex_l ( . , ( p{ 20 i ])
f(n)=n4In| | 1—ex —?[(c+an )~"“—Db]
- % 27
=I=El|—n (3.29 X 1—exp{—?[(c+anz)1’2+b] }

(3.32

(see Appendix D[2] for a discussion of the properties of
these functions Differentiating with respect tq:, gives a

The analytic structure df(n) in the complex plane is shown
conserved charge of

in Fig. 1. There are isolated essential singularities at
n=+[b%2—c/a]'? and a branch cut betweehi(c/a)*2

2malco sinh(Buj) 1o Whenb?<c, the singularities lie on the imaginary axig and
Q= B Z - Ka(Bc ) hence play no role; however, f&w’>c, the singular points
=1 J are real and tend to one &—c+ «, at which point the
241\ 2142 original sum diverges. Use of the Poisson-summation for-
% [C—| pi 7) } mula implicitly assumes thdt(n) is analytic so that its Fou-

(3.30 rier integral decomposition exists and hence cannot be used
for b?>c. Similarly, the approach above also implicitly as-
sumes that the function is analytic along the real line in the

in agreement with[11], where they used the Poisson-

summation formula to derive this result. Examination of this

result shows that it is convergent faf<c; however,(3.249 e

is convergent in the larger range?<c+1/a%. The reason

for this discrepancy is most easily understood by consider-

ation of the statistical mechanical term(Bi24). We can then

see how the use of the Poisson-summation formula results in

a shortened convergence regime.

The Poisson-summation formula essentially replaces the

original sum with a new sum over the Fourier modes of the 1

original. For an even summand, it becomes

g e 31

100

-50—

2» f f(n)e?™" dn,  (3.31)

q=-

N| =

> f(n)=
n=1

-100-

In our case, FIG. 2. Plot of charge& againstu.
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evaluation of the Bessel function integrals. In performing theconsider the vacuum expectation value of the charge. Above

analytic continuations, one should be careful to ensure thahe critical temperature, it is given H2.13:

the domain of convergence of the final result is the same as

that of the originalZ function. % 2
Returning now to the full result of E¢3.24), we can now Q= E n + 2 n

proceed to write down the thermodynamic potentials. Re- iy ePlontrl—1 =) eflon—i—1

membering thal'= —q=— B8PV, and using the volume of

2

S%, V=2m?a3, we can immediately write down the pressure _ 2n?sinh( Bu)e’n (334
(fOI’ T>TC) =1 (eﬁ(‘”n"’l’v)_ 1)(e,3(wn_l/v)_ 1) : .
2
- _ 2|n(12 . . _—
P 32772(: In(I“c)+ 62 The chargeQ is made up of two parts: one contribution from

particles(chemical potential), and a contribution from an-

2 tiparticles(chemical potentiat- u). Its high temperature be-
—22 ———— 5 {K,(27nact’?) havior is examined if12]. The low temperature behavior
T n= qunacl ) (B—) would be trivial to calculate, except that priori
1 one cannot be sure thed.34 still holds.
—2mnact’?Ky(2mwnact/?)} — 27738 If one plots(3.34) as a function ofx, one obtains a graph

similar to Fig. 2. The charge diverges wheneyetends to
one of thew,, and it is multivalued, being divided up into
X >, nAn[(1—e Alentm)(1— g Alen—m))], intervals by these values. Now frof8.34), « and its deriva-
n=1 tives are well defined within each of these intervaisce the
(3.33 sums are absolutely converggnhencew is a continuous
function of T in these regions. Furthermore, within each of
The first few terms in the pressure are essentially unobsenthese regionsQ) takes on all values; hence, after choosing
able renormalization constantsince one can only really one of these regions, one can never evolve out of it by a
measure differences in pressyrand the last term is that one change ofQ or T. Since a change @— —Q (i.e., swapping
would predict from normal statistical mechanics. The Besseparticles with antiparticles must causeu— — u only, the
function term, however, is observable since it varies withfirst region is physical.
volume; it is a contribution to the pressure due to the Casimir Although we cannot solve for analytically, in the case
effect. Notice(as one would expekcthat it is independent of of the Einstein universe, we have done so numerically. The
both the temperature and chemical potential — its origin isresults are shown in Fig. 8vhich uses the charge density
in the vacuum, not in the finite temperature and chemicap=Q/V rather tharQ). From the figure, one can see that in
potential effects. Also, because of the asymptotic form of thdact there is no critical temperaturg:tends towards its criti-
Bessel functions, this term tends towards zero as the volumeal value, only reaching it af=0. This is most marked in
(and thereforea) tends to infinity; it will not survive the the case=0.25. When the volume becomes large, the curve
infinite volume limit. for u starts to look more like the scenario given above and
Equation(3.33 on its own does not completely determine x tends asymptotically to its critical valu@ut it still does
the pressurep is unknown. To rectify this, we must now not reach it untilT=0). This means that th8[¢ | term in
I is always zero: there is no symmetry breaking on the Ein-
stein universe and hence BEC does not occur.

IV. FINITE VOLUME SPACES

In the previous section we examined numerically the Ein-
stein static universe and showed that the critical temperature
N is zero, in contrast to calculations based on high temperature

expansiongwhich implicitly assume that there is a nonzero
critical temperature We now wish to consider the generic
case of a compact spatial manifold.

Usually in statistical mechanics, we are interested in the
limit as both the volume and the number of particles tend to
infinity. It is then meaningless to talk aboQt because if we
imagine starting off at some low temperature, with no anti-
particles, the charge will also become infinite. Thus we now
0 e T restrict our attention tp=Q/V. For a general finite volume
space, this will be given bysee Appendix A of6])

FIG. 3. Plots ofu against temperature. Curves hawé=2 and Bow
B . N 2 sinHBu) — ncer®n
£=1/6. The dotted line corresponds de-0.25, the dashed line is p= 4.2
a=1.0, and the solid line ia=20. Voo i (eflentr -1 (eflenm - 1)
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where thew, satisfy 0<Kwi;<w,<wz=<--- but are other- wrong result because they were based on high temperature

wise arbitrary. expansions. We then generalized our result to arbitrary
The form of p vs w must be similar to Fig. 2p—o0 curved spaces of finite volume and showed that there is no

wheneveru— w,, and, by similar arguments to those in Sec. symmetry breaking on these spaces at finite temperature and

I, w lies in the region u|< w; [the summand behaves like density.

exp(—Bw,) asw, becomes large, which we expect to happen

asn—oo; therefore, the sum is absolutely converdefhus,

we separate off the ground state contribution fram ACKNOWLEDGMENT
2 sinh( Bu)efr J.D.S. would like to acknowledge the financial support of
p= (Pt 1) P 1) +pe(Bip) (4.2 'g]guliélj’D.S.R.C(Engmeenng and Physical Sciences Research

and we consider the situation whenis close to its critical
value. We will defineu=aw,— 8, 8<1. ps(8,) can be in- APPENDIX A: NONINTERACTING SCALAR FIELD
terpreted as the charge de_nS|ty in excited states. AT EINITE TEMPERATURE
Here, (4.2) is to be considered as an equation in the un-
known u; p is @ measurable quantity which here we consider In this appendix, we wish to show in detail how the gen-
as fixed. Furthermore, all the equations which were used teralized{ function techniques reproduce the earlier results of
derive(4.2) are well defined at every point except the critical [6]. Taking the field theory of Sec. Il, we defide,} such
value (i.e., are well defined for alb#0); thus, no matter that
how close to the critical point we are, we must always be
able to solve foru. But this is just the statement that the _— )
limit of the right-hand sideRHS) of (4.2) exists asé—0 [=V+m +U1(X) ]en=enen. (A1)
and is equal t. Now, po(B:,u) tends to some limitpg,
say, asé— 0. (This must be true because the only divergent
part is in the ground state; the sumgg is absolutely con-
vergent and therefore must sum to some valug atw, .)
Let us call the ground state contribution (A.2) py(8,u) ©
and let us also define the constait p— pe,. LA9)=2> > [(aj+iu)?+e2]75, (A2)
Assume that we have a critical point, i.e., a point where noj=-e
p—wq asB— B.. Thus, we must have that

If we let a=27/8, then

W= ) — as 6-0. 43 where the sum ovem in (A2) is over all the eigenvalues of
Po(Brw1=0)=p “3 (Al1). Using (3.4) and the Jacobi identity, we obtain

But by expandingyg in terms of g, it is easy to show that

1 1 L
— - _, ()= s— 312 _.2
Pq /35v+o(v as 6—0. (4.9 £A9)= 315 fo dt t (}n) expl( snt)>
The only way that we can get a finite limit fgr as 6—0 - j2ar? 27w
(and B— B,) is if BV=0(1/5) as5—0. x| 1+ 2121 exp — | cosh —
For a finite volume space, we must hage= O(1/6) as

5—0; thusB—x as u— w; and the critical temperature is (A3)
zero. Since, for all finiteB, u+# w4, this also means that

there can b.e no symmetry brgaklng n such SPaces. Howeve[the integral in(A3) naturally splits up into two parts. In the
as we saw in the Einstein universe, if the volume is large we

expect thaju can be quite close to its critical value for some second part, the integral is easily done using the Bessel func-
P q tion integral(by a change of variabl%sﬁt):

finite temperature; thus, there will be a large number of par-
ticles in the ground state and the physics will look similar to

the infinite volume physics. In this situation the temperature., 12 o 2.2 2]
at which we expect some degree of condensation, is at a_——_> > dt t33’2ex;{ —glt—— ) y( ®
critical temperature obtained by taking the infinite volume al'(s)*v =1 Jo a’t a
limit. Alternatively, one can try to define the onset of con- 12 o .
densation by looking for the maximum of the specific heat _ 4m D cos)’( 2|
since this is the property which is usually searched for ex- al'(s)? =1 a
permentaly X(W_j)s_l/z 12-sc 1 2mje,
€n —s+ (Ad)
V. CONCLUSION a 2\ a

We examined the Einstein static universe numerically, and
showed that the critical temperature defined fy>w, is  Differentiating this, and then evaluating st 0, we obtain
zero in contrary to previous calculations. These gave théremembering3.21)]



5778 JOHN D. SMITH AND DAVID J. TOMS 53

47172 - 2mju) a\? 2mje [ I'(s—1/2) },
=] g2 n V2, (5112
a ; 121 COSI{ a 7TJ Sn K1/2 a m F(S) g n( )
OO 1 27T],LL 27TJ8n ,\,71.1/21" S_E lﬂ S_E A +1T1/2F S_}
=2> 21 Fcos -— 2 2/t 2
n o j=
X(Ag+7y)+0(s) as s—0, (A9)
== 2 {In(1—e Aent#) £ In(1—e~Hent k), where §(2)=T'(2)/T(z). Making use of y(—1/2)
(A5) =—vy+2(1=In2) and then substituting i2.6) (remember-

ing that theS[ ¢ | term never appears, see Sec) Bives
where _We wha\;e used the fact thgB=2m/a and = BA_ N2+ B{(2—2 IN2— )A_1+ Ag+ 7}
IN(1—x)=—=,_x".
The first integral in(A3) is
J +2, In[(1—e Alntry(1—e Alen=r)]. (AL0)
n

f dt t5-32exp(—&2t) By comparison with the result of Haber and Weld@&j, or
from examination ofAl), we note that the are the energy
eigenvalues and identify

aF(S) n
w2 T(s—1/2) 1

= 2 —
a  I(s) F e En‘, en=A_NI2+{(2=2 IN2—y)A_;+A+7}  (ALD)
w2 T (s—1/2) L . . .
= —58 (s—1/2). (AB) which is essentially théregularized Casimir energy.
a I(s Now, because’=o,+m?,
We expect2(s—1/2) to be an analytic function of
n . o . . g :_f dttsl t(on+me)
except for a few simple poles. This implies that it has a n T'(s) Jo
well-defined Laurent expansion abosit 0, which we will L
write as _ _f dt tsflefm2t®(t). (A12)
A I'(s)Jo
-1
Loz~ g TR0+ 2A1s+0(s?). (A7) It may be noted tha®(t) is tr exg —t(—V2+U,)] which has
a known asymptotic expansion &s>0: namely,
Note thatA_; is the residue of the generalizédfunction, o
using as the eigenvalueg, at the points=1/2. This expan- O()=(4mt)"P2 > tkp,. (A13)
k=0,1/2,1 ...

sion, together with(3.21), immediately gives
The 6, are the same coefficients that are used28], and
121 (s—112) 12 depend only on the geometry and the conditions on the fields
™ Wga (8= 1/2)s—o=m""T ) Ay at the boundaries . (Typically, they involve products of
the curvature invariants and the masses of the field¥ 9n
=—2mA_;. D is the dimension of and this is the only place in which
(A8) it enters explicitly. Use of this expansion {A12), together
Also, with expanding the exp{nt), allows one to find

D2
47~ P2y (~1)P27lg, . .mP~2 for D even
=)

A= (D+1)/2
47702 N (—1)(P+DR-lgmP+1=2l for D odd. (A14)
=0

Thus, the residue af, (0) exists and can be written down in contribution can be written down explicitly, one only needs
general. As claimed earher one can see that it depends onf focus on the zero temperatufefunctions.

on the geometry of the space. Unfortunately, the authors are

aware of no similar method for calculatirg, in general, and APPENDIX B: ANTIPODAL IDENTIFICATION

one is reduced to working out the analytic continuation of A simple modification of the Einstein static universe is to
{., case by case. However, since the statistical mechanicadentify antipodal points or8®. Two cases are possible: pe-
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riodic and antiperiodic identifications of the fields. In the case of periodic identification, all the odd modeg “ofmust

vanish. Thus, the generalizé&dfunction in this case is

B z (2N+2)? (B1)
T 2 & [[2m |2 (2NFD(2N+3) 6
7‘“# + a2 prall

At first sight, it appears that we shall have to repeat the entir@n=((2n/a)?+c), andc is as before. The factor of 4 if

calculation for theZ function above. However, if one makes
the change of variablen=N+1, and notes that (2+1)
X(2N+3)=(2n—1)(2n+1)=4n’-1, we can rewrite
(B1) as

” 4n?
ﬁjn:,—:,wn; 277j+_ 2+4n2—1+6§+ ,1°
B Sal BAPCARR PR

© o0 2

4> n

[t le [(aj+ib)°+ an®+c]®’

wherea=27/B, a=4/a?, b=pu, andc=(6¢—1)/a%. This
is the ¢ function that we had before, and

(B2)

3
_ IBa?:CZ _ Ba302

1
_ 3-2|n(|2n)
I'e 32ﬁa cIn(l“c) 64

[}

1
x 3, Genacz Ka(mnac
— mnact/?K4(mnact’?)}
"‘42l n2In[(1—e Alentw)(1—e Alen—m)],

(B3)

appears simply because the space has half the volume that it
originally had. As the volume becomes large, we expect the
log term inT" to also be directly proportional to the volume,
which explains the 4 herfas the sum tends to an integral,
the measure will give a term proportionalad. But in (2.3),
a—a/2 compared to our original effective action, leaving us
with an overall factor of 2 The spacetime gives us an ef-
fective thermodynamic mass, identical to the value on

S®, however, the detailed dependence of the sums at small
volume is now radically different.

Because the expressid8.3) is an absolutely convergent
double sum for all points at which it is defined, we can write

Lodd™ {3 Leven (B4)

which will be true even after analytic continuation.

Previously, it has been remarked that there would be
many interesting properties of this space associated with the
possibility of having anx-dependent charge density. How-
ever, this charge density appeared through §[ep_] term
which we have seen will be absent.
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