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Bose-Einstein condensation as symmetry breaking in compact curved spacetime

John D. Smith and David J. Toms
Physics Department, University of Newcastle upon Tyne, NE1 7RU, United Kingdom

~Received 17 November 1995!

We examine Bose-Einstein condensation as a form of symmetry breaking in the specific model of
Einstein static universe. We show that symmetry breaking never occurs in the sense that the chemical pot
m never reaches its critical value. This leads us to some statements about spaces of finite volume in gener
an appendix we clarify the relationship between the standard statistical mechanical approaches and the
theory method usingz functions.

PACS number~s!: 04.62.1v, 03.70.1k, 11.15.Ex, 11.30.Qc
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I. INTRODUCTION

Bose-Einstein condensation~BEC! for nonrelativistic
spin-0 particles is standard textbook material@1–3#. In the
infinite volume limit, there is a critical temperature at whic
a phase transition occurs. For a real system, such as liq
helium, the effects of interactions may be important.~See@4#
for a recent review.! The study of Bose-Einstein condensa
tion for relativistic bosons is more recent. In particular, Re
@5–7# applied the methods of relativistic quantum fiel
theory at finite temperature and density to study BEC. T
phase transition, which occurs at high temperatures, can
interpreted as spontaneous symmetry breaking. Subseq
work @8,9# extended the analysis to self-interactions in sca
field theory.

The generalization from flat Minkowski spacetime t
curved spacetime has also been considered. The nonrel
istic Bose gas in the Einstein static universe was given
Al’taie @10#. The extension to relativistic scalar fields wa
given for conformal coupling in Ref.@11# and for minimal
coupling in Ref.@12#. The higher dimensional version of the
Einstein static universe was studied by Shiraishi@13#. More
recently, the case of hyperbolic universes@14# and the Taub
universe@15# have received attention. Anti–de Sitter spac
was studied in Ref.@16# were some of the issues of our pape
were considered from a different viewpoint.

One advantage of dealing with specific spacetimes of
type mentioned above is that the eigenvalues of the Lapl
ian are known, and as a consequence the partition func
and the thermodynamic potential can be obtained in clos
form. Another approach to study BEC is to try to keep th
spacetime fairly general, and to calculate the thermodynam
potential only in the high temperature limit. This has bee
done by various authors@17–23#. In particular, the
symmetry-breaking interpretation of BEC was given in Re
@22,23#. The effects of interactions have been given recen
@24#.

The purpose of the present paper is to reexamine BEC
the case where the spatial manifold is compact. We will
particularly concerned with the Einstein static universe f
which the spatial manifold isS3. Because the volume is fi-
nite, the general theory presented in Refs.@22,23# must be
modified since the results tacitly assumed the infinite volum
limit. Although the thermodynamics of finite volume system
has been well studied in classical nonrelativistic statistic
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mechanics@25–33#, there appears to be some confusion
the literature in the context of relativistic field theory, par
ticularly in the calculation of critical temperatures. After a
brief review of the general theory presented in Refs.@22,23#,
we will specialize to the Einstein static universe. The gene
alized z function @34# will be evaluated for this spacetime
and then used to obtain the effective action for a compl
scalar field with a finite charge. Expressions for the pressu
and charge are obtained. We then present a detailed anal
of whether BEC and symmetry breaking occur, and conclu
that they cannot, in contrast to the expectations of Re
@22,23#. The reason for the difference is linked to the fac
that the spatial manifold has a finite volume, and we prese
a discussion of this important point. In Appendix A, we
show how the generalizedz function can be used to relate
the thermodynamic potential directly to the effective actio
In Appendix B, we present a short discussion of how th
analysis proceeds for the anisotropic spacetime obtained
identification of antipodal points onS3.

II. THE EFFECTIVE ACTION AND BEC

We will consider a complex scalar field defined on
(D11)-dimensional spacetime manifoldM.R3S where
S is a compact Riemannian manifold of dimensionD. After
a Wick rotation to imaginary time, the configuration spac
action is

S̃@w#5E
0

b

dtE
S
dsxH 12 ~ ẇ12 imw2!

21
1

2
~ ẇ21 imw1!

2

1
1

2
u¹w1u21

1

2
u¹w2u21

1

2
~m21jR!~w1

21w2
2!J .
~2.1!

~Here,u¹w1u25gi j ] iw1] jw1 with gi j the Reimannian metric
onS. dsx is the invariant volume element onS.) This may
be found as described by Kapusta@7# in flat spacetime start-
ing with the phase space path integral and incorporating
conserved charge using a Lagrange multiplierm. The parti-
tion function may be expressed as a path integral over
fields periodic in time with periodb5T21 whereT is the
temperature.

It is straightforward to compute the effective action usin
the background field method@35#. If we take the background
field to bew̄1(x)5 w̄ (x), w̄2(x)50, then the effective action
is
5771 © 1996 The American Physical Society
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5772 53JOHN D. SMITH AND DAVID J. TOMS
G@ w̄ #5 S̃@ w̄ #1
1

2
ln det$ l 2S̃,i j @w#% ~2.2!

using condensed notation@35#. l is a unit of length intro-
duced to keep the argument of the logarithm dimensionle

Let $wN(x)% be a complete set of solutions to

@2¹21jR#wN~x!5sNwN~x! ~2.3!

normalized by

E
S
dsxwN~x!wN8~x!5dNN8. ~2.4!

If we define a generalizedz function by

zD~s!5 (
j52`

`

(
N

F S 2p j

b
1 im D 21sN1m2G2s

, ~2.5!

then it can be shown that@23#

G@w̄#5S̃@w̄#2zD8 ~0!1zD~0!lnl 2. ~2.6!

In order for the sum in~2.5! to be well defined,m must be
restricted bys01m22m2.0, wheres0 is the smallest ei-
genvalue of the set.

The background scalar field must satisfy

dG@w̄#

dw̄~x!
50. ~2.7!

The differentiation is to be computed withm, T, V, gi j all
held fixed. This is equivalent to minimizing the Helmholt
free energy withQ, rather thanm, held fixed@36#. Because
zD has no explicit dependence onw̄, using ~2.6! in ~2.7!,
gives

2¹2w̄1~m22m21jR!w̄50. ~2.8!

We can expandw̄ in terms of thewN , which satisfy~2.3! and
~2.4!:

w ~̄x!5(
N

CNwN~x!, ~2.9!

where the expansion coefficientsCN are to be determined.
Use of ~2.9! in ~2.8!, leads to

~sN1m22m2!CN50. ~2.10!

If m2,s01m2, then the only possible solution to~2.10! is
CN50 for all N. This leads tow̄(x)50 as the ground state
and no symmetry breaking. If, however, it is possible form
to reach the critical valuemc , defined by

mc
25s01m2, ~2.11!

thenC0 in ~2.10! is undetermined. In this case, the groun
state in~2.9! is

w ~̄x!5C0w0~x! ~2.12!

and there is symmetry breaking.
ss.

z

d

In order to find the relation with BEC, consider the charg
which is given by~in units withe51)

Q52
1

b

]G

]m
. ~2.13!

From ~2.6!, it is clear that we can write

Q5Q01Q1, ~2.14!

where

Q05mE
S
dsxw̄

2~x!, ~2.15!

Q15
]

]m
$zD8 ~0!2zD~0!lnl 2%. ~2.16!

Use of the high temperature expansions in Ref.@23# shows
that for large enoughT, it is always possible to have
m,mc andw̄50. In this caseQ050. When the temperature
drops,m increases. If it is possible form to reach the value
mc defined in~2.11!, w̄Þ0 andQ0Þ0. The value ofT at
whichm5mc , is defined to be the critical temperatureTc . It
was shown in Ref.@23# that

Tc'S 3QmcV
D 1/2 ~2.17!

exactly as in flat spacetime@6,7# ~allowing for a different
value ofmc). For T,Tc , we have

Q05QF12S TTcD
2G , ~2.18!

C05SV3 D 1/2~Tc22T2!1/2. ~2.19!

These results assume that it is possible form to reach the
critical valuemc at a finite temperature. However, without a
detailed analysis, it is difficult to see if this is possible. Fo
example, in the nonrelativistic case, whenS is a flat two-
dimensional space,m never reachesmc and therefore, there
is no BEC.~ See Ref.@37# for example.! Another case where
m never reachesmc , is for S a flat three-dimensional space
with an externally applied constant magnetic field@38#. More
generally, ifS has a finite volume, extreme care must b
used. In the past, compact spaces have been analyzed u
high temperature expansions. A proper analysis of BEC m
require temperatures outside the range where the high te
perature expansion is valid. Use of the high temperature e
pansion may give misleading results as we show later.
recent discussion of the existence of BEC using generaliz
z functions has recently been given@47#.

III. THE EINSTEIN UNIVERSE

At this point it is instructive to consider a specific ex-
ample. One space which has received considerable attent
in the past is the Einstein static universe, i.e.,S5S3 which
has radiusa, with scalar curvatureR56a22. We will take
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U15jR, werej must satisfy the conditionj. 1
6(12a2m2)

but is otherwise arbitrary. High temperature expansions
the casej50 were first obtained by Parker and Zhang@12#,
while the casej5 1

6 has been studied by Singh and Pathr
@11#. Previously, the critical temperature has been calcula
to be

Tc5F3qm G1/2F11
6j

m2a2G
21/4

~3.1!

~see@23# and@12# for the casej50). q5Q/V5Q/2p2a3 is
the charge density.

It is well known @39–41# that the eigenvalues of2¹2 on
S3 are 2N(N12)a22, with a degeneracy of (N11)2

(N50,1,2, . . . ). Hence,sN5@N(N12)16j#/a2 and our
generalizedz function is

zD~s!5 (
j52`

`

(
N50

`
~N11!2

F S 2p

b
j1 im D 21 N~N12!16j

a2
1m2Gs .

~3.2!

A slight simplification in the form of~3.2! is obtained by
completing the square inN in the denominator and then re
labeling the sum,n5N11. Thus, we consider the analytic
continuation of

z~s!5 (
j52`

`

(
n51

`
n2

@~a j1 ib !21an21c#s
, ~3.3!

where a52p/b, b5m, a51/a2, and
c5m21(6j21)/a2. The techniques which we shall use ar
based on those of Elizalde@43–45#.

We start by making use of the identity

a2s5
1

G~s!
E
0

`

dt ts21exp~2at!, ~3.4!

and, expanding out the (a j1 ib)2, to get

z~s!5
1

G~s!
E
0

`

dt ts21(
n51

`

n2exp~2an2t !

3 (
j52`

`

exp~2a j2t22ia jbt2ct1b2t !. ~3.5!

~We shall justify interchanging the sums with integra
shortly.! Now, following the notation of Whittaker and Wat-
son @42# for u functions,

(
j52`

`

e2a j2t22a jbti5112(
j51

`

e2a2 j 2tcos~2ab jt!

5u3S abtU i a2tp D , ~3.6!

whereu3(zut) is defined as (q5ep i t)

u3~zut!5u3~z,q!5112(
n51

`

qn
2
cos2nz. ~3.7!
for

ia
ted

-

e

ls

One immediately notes that

(
n51

`

n2e2an2t52
]

]~at !
u3S 0U i at

p D . ~3.8!

An important property of theu functions is that they are
uniformly convergent for Imt.0, as is their derivative.
Thus, the integrand in~3.5! is the product of a number mul-
tiplied by two uniformly convergent sums. This justifies ou
previous manipulations.

We are now in a position to rewrite ourz function in
terms ofu functions:

z~s!5
1

G~s!
E
0

`

dt ts21e2~c2b2!tF2
]

]~at !
u3S 0U i at

p D G
3u3S abtU i a2tp D . ~3.9!

Of course, although apparently much simpler, the integral
it stands could only be performed numerically since there
no representation for theu function, other than in terms of
the infinite sum above. However, progress can be made
making use of Jacobi’s imaginary transformation foru func-
tions:

u3~zut!5~2 i t!21/2expS z2

p i t D u3S ztU2 1

t D . ~3.10!

Applying this to the secondu function gives us

z~s!5
1

G~s!

p1/2

a E
0

`

dt ts23/2e2ct

3 (
n51

`

n2e2an2tF112(
j51

`

e2 j 2p2/a2t

3coshS 2 j bap D G . ~3.11!

We now split this expression into the sum of two terms a
follows:

z~s!5I 11I 2 , ~3.12!

where

I 15
1

G~s!

p1/2

a E
0

`

dt ts2 3/2e2ct(
n51

`

n2e2an2t

~3.13a!

and

I 25
2p1/2

aG~s! (n51

`

n2(
j51

`

coshS 2p jb

a D E
0

`

dt ts23/2

3expF2~c1an2!t2
j 2p2

a2t G ~3.13b!

If we now differentiate~3.10! with respect toat , we obtain
the useful identity
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(
n51

`

n2e2an2t5
p1/2

4~at !3/2
1

p1/2

2~at !3/2 (
n51

`

expS n2p2

at D
2S p

at D
5/2

(
n51

`

n2expS n2p2

at D ~3.14!

which, together with a standard integral representation
the modified Bessel function@46#

K2m~z!5
1

2 S 2zD
mE

0

`

dt tm21expS 2t2
z2

4t D , ~3.15!

gives us

I 15
pc22s

4~s21!~s22!aa3/21
~2c!22sp

aa3/2G~s! (
n51

`
1

Xn
22s

3$K2s12~Xn!2XnK2s13~Xn!%, ~3.16!

where

Xn5
2npc1/2

a1/2 . ~3.17!

Similarly,

I 25
2p1/2

aG~s! (
j51

`

coshS 2p jb

a D (
n51

`

2n2~c1an2!2s11/2

3F jp~c1an2!1/2

a Gs21/2

K2s1 1/2~Zjn!, ~3.18!

where

Zjn52p j
~c1an2!1/2

a
. ~3.19!

@Note that we have not used Eq.~3.14! here.# It can be shown
that the sums inI 1 and I 2 are uniformly convergent for all
s @this is becauseKm(z) falls off exponentially for largez,
andKm5K2m#. Thus, we finally obtain the expansion

z~s!5
pc22s

4~s21!~s22!aa3/2

1
~2c!22sp

aa3/2G~s! (
n51

`
1

Xn
22s $K2s12~Xn!

2XnK2s13~Xn!%

1
2p1/2

aG~s! (
j51

`

coshS 2p jb

a D (
n51

`

2n2~c1an2!2s11/2

3F jp~c1an2!1/2

a Gs21/2

K2s11/2~Zjn!. ~3.20!

Now, for our application, we are only interested inz(0)
and z8(0). At first sight, it looks like our effective action
will be extremely complicated; however,

1

G~s!
;s1gs21O~s3! as s→0, ~3.21!
for

and so we are only left with the first term inz(0). Similarly,
when we differentiate with respect tos and then evaluate at
s50, the result is to differentiate the first term and the
simply to remove the gamma functions from all subseque
terms. Furthermore, using@46#

K1/2~z!5S p

2zD
1/2

e2z, ~3.22!

the double sum term inz8(0) becomes

2(
j51

` coshS 2p jb

a D
j (

n51

`

n2expH 2
2p j ~c1an2!1/2

a J
5 (

n51

`

n2(
j51

`
e2 jvn11e2 jvn2

j
~3.23a!

52 (
n51

`

n2$ ln~12e2vn1!1 ln~12e2vn2!%,

~3.23b!

where

vn65
2p

a
~c1an2!6

2pb

a
, ~3.23c!

which is the usual statistical mechanical contribution.~See
Appendix A.!

Putting all of the above together, and rewriting the effec
tive action in terms of the physical variables, we obtain

G5S̃@w̄#1
1

16
ba3c2ln~ l 2c!2

3

32
ba3c2

22ba3c2(
n51

`
1

~2pnac1/2!2
@K2~2pnac1/2!

22pnac1/2K3~2pnac1/2!#1 (
n51

`

n2ln@~12e2b~vn1m!!

3~12e2b~vn2m!!#, ~3.24!

wherevn5@(n/a)21c#1/2, c5m21(6j21)/a2, and we ex-
pect S̃@ w̄ # to be zero forT.Tc .

In the above, we have been exclusively concerned wi
the temperaturez function. Originally, it was hoped that by
concentrating on the full sum, one may be able to find som
simplification which would not be apparent if the sum wa
separated into its zero temperature and finite temperatu
contributions. One approach would be to try simplifying the
sum overn by using~3.14! in ~3.13b!. Making liberal use of
the summation formulas in the appendix of Ref.@11#, one
finally obtains
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G5S̃ @w̄ #1
a3b

16
c2ln~ l 2c!2

3a3c2b

32
1
2pa3c

b

3(
j51

`
cosh~bm j !

j 2
K2~bc

1
2 j !1

1

4p2

3 (
l52`

` H 2
A2

a
ln~12y!1

2A

a2
g2~y!1

2

a3
g3~y!J ,

~3.25!

where

A52pFc2S m1 i
2p l

b D 2G1/2, ~3.26!

y5exp~2aA!, ~3.27!

and thegn(y) are the generalized Bose-Einstein integra
defined by

gn~y!5
1

G~n!
E
0

` xn21 dx

y21ex21
~3.28!

5(
l51

`
yl

l n
~3.29!

~see Appendix D@2# for a discussion of the properties o
these functions!. Differentiating with respect tom, gives a
conserved charge of

Q5
2pa3c

b (
j51

`
sinh~bm j !

j
K2~bc1/2j !

22a3 (
l52`

` Fc2S m1 i
2p l

b D 2G1/2
e2aA21

~3.30!

in agreement with@11#, where they used the Poisson
summation formula to derive this result. Examination of th
result shows that it is convergent form2,c; however,~3.24!
is convergent in the larger rangem2,c11/a2. The reason
for this discrepancy is most easily understood by consid
ation of the statistical mechanical term in~3.24!. We can then
see how the use of the Poisson-summation formula result
a shortened convergence regime.

The Poisson-summation formula essentially replaces
original sum with a new sum over the Fourier modes of t
original. For an even summand, it becomes

(
n51

`

f ~n!5
1

2 (
q52`

` E
2`

`

f ~n!e2p iqn dn. ~3.31!

In our case,
ls,

f

-
is

er-

s in

the
he

f ~n!5n2lnF S 12expH 2
2p

a
@~c1an2!1/22b#J D

3S 12expH 2
2p

a
@~c1an2!1/21b#J D G .

~3.32!

The analytic structure off (n) in the complex plane is shown
in Fig. 1. There are isolated essential singularities
n56@b22c/a#1/2, and a branch cut between6 i (c/a)1/2.
Whenb2,c, the singularities lie on the imaginary axis and
hence play no role; however, forb2.c, the singular points
are real and tend to one asb2→c1a, at which point the
original sum diverges. Use of the Poisson-summation fo
mula implicitly assumes thatf (n) is analytic so that its Fou-
rier integral decomposition exists and hence cannot be us
for b2.c. Similarly, the approach above also implicitly as-
sumes that the function is analytic along the real line in th

FIG. 1. Analytic structure off (n) in the complexn plane,
showing the position of branch cuts and singularities for the ca
b2.c.

FIG. 2. Plot of chargeQ againstm.
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5776 53JOHN D. SMITH AND DAVID J. TOMS
evaluation of the Bessel function integrals. In performing t
analytic continuations, one should be careful to ensure t
the domain of convergence of the final result is the same
that of the originalz function.

Returning now to the full result of Eq.~3.24!, we can now
proceed to write down the thermodynamic potentials. R
membering thatG52q52bPV, and using the volume of
S3, V52p2a3, we can immediately write down the pressur
~for T.Tc)

P52
1

32p2 c
2ln~ l 2c!1

3c2

64p2

1
c2

p2(
n51

`
1

~2pnac1/2!2
$K2~2pnac1/2!

22pnac1/2K3~2pnac1/2!%2
1

2p2a3b

3 (
n51

`

n2ln@~12e2b~vn1m!!~12e2b~vn2m!!#.

~3.33!

The first few terms in the pressure are essentially unobse
able renormalization constants~since one can only really
measure differences in pressure!, and the last term is that one
would predict from normal statistical mechanics. The Bes
function term, however, is observable since it varies wi
volume; it is a contribution to the pressure due to the Casim
effect. Notice~as one would expect! that it is independent of
both the temperature and chemical potential — its origin
in the vacuum, not in the finite temperature and chemic
potential effects. Also, because of the asymptotic form of t
Bessel functions, this term tends towards zero as the volu
~and thereforea) tends to infinity; it will not survive the
infinite volume limit.

Equation~3.33! on its own does not completely determin
the pressure:m is unknown. To rectify this, we must now

FIG. 3. Plots ofm against temperature. Curves havem252 and
j51/6. The dotted line corresponds toa50.25, the dashed line is
a51.0, and the solid line isa520.
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consider the vacuum expectation value of the charge. Abov
the critical temperature, it is given by~2.13!:

Q5 (
n51

`
n2

eb~vn1m!21
1 (

n51

`
n2

eb~vn2m!21

5 (
n51

`
2n2sinh~bm!ebvn

~eb~vn1m!21!~eb~vn2m!21!
. ~3.34!

The chargeQ is made up of two parts: one contribution from
particles~chemical potentialm), and a contribution from an-
tiparticles~chemical potential2m). Its high temperature be-
havior is examined in@12#. The low temperature behavior
(b→`) would be trivial to calculate, except thata priori
one cannot be sure that~3.34! still holds.

If one plots~3.34! as a function ofm, one obtains a graph
similar to Fig. 2. The charge diverges wheneverm tends to
one of thevn , and it is multivalued, being divided up into
intervals by these values. Now from~3.34!, m and its deriva-
tives are well defined within each of these intervals~since the
sums are absolutely convergent!, hencem is a continuous
function of T in these regions. Furthermore, within each of
these regions,Q takes on all values; hence, after choosing
one of these regions, one can never evolve out of it by
change ofQ or T. Since a change ofQ→2Q ~i.e., swapping
particles with antiparticles!, must causem→2m only, the
first region is physical.

Although we cannot solve form analytically, in the case
of the Einstein universe, we have done so numerically. Th
results are shown in Fig. 3~which uses the charge density
r5Q/V rather thanQ). From the figure, one can see that in
fact there is no critical temperature:m tends towards its criti-
cal value, only reaching it atT50. This is most marked in
the casea50.25. When the volume becomes large, the curv
for m starts to look more like the scenario given above an
m tends asymptotically to its critical value~but it still does
not reach it untilT50). This means that theS̃ @w̄ # term in
G is always zero: there is no symmetry breaking on the Ein
stein universe and hence BEC does not occur.

IV. FINITE VOLUME SPACES

In the previous section we examined numerically the Ein
stein static universe and showed that the critical temperatu
is zero, in contrast to calculations based on high temperatu
expansions~which implicitly assume that there is a nonzero
critical temperature!. We now wish to consider the generic
case of a compact spatial manifold.

Usually in statistical mechanics, we are interested in th
limit as both the volume and the number of particles tend t
infinity. It is then meaningless to talk aboutQ, because if we
imagine starting off at some low temperature, with no anti
particles, the charge will also become infinite. Thus we now
restrict our attention tor5Q/V. For a general finite volume
space, this will be given by~see Appendix A or@6#!

r5
2 sinh~bm!

V (
n51

`
n2ebvn

~eb~vn1m!21!~eb~vn2m!21!
, ~4.1!
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where thevn satisfy 0,v1,v2<v3<••• but are other-
wise arbitrary.

The form of r vs m must be similar to Fig. 2:r→`
wheneverm→vn and, by similar arguments to those in Se
III, m lies in the regionumu,v1 @the summand behaves like
exp(2bvn) asvn becomes large, which we expect to happe
asn→`; therefore, the sum is absolutely convergent#. Thus,
we separate off the ground state contribution fromr:

r5
2 sinh~bm!ebv1

~eb~v11m!21!~eb~v12m!21!
1re~b,m! ~4.2!

and we consider the situation whenm is close to its critical
value. We will definem5v12d, d!1. re(b,m) can be in-
terpreted as the charge density in excited states.

Here, ~4.2! is to be considered as an equation in the u
knownm; r is a measurable quantity which here we consid
as fixed. Furthermore, all the equations which were used
derive~4.2! are well defined at every point except the critica
value ~i.e., are well defined for alldÞ0); thus, no matter
how close to the critical point we are, we must always
able to solve form. But this is just the statement that th
limit of the right-hand side~RHS! of ~4.2! exists asd→0
and is equal tor. Now, re(bc ,m) tends to some limit,rel
say, asd→0. ~This must be true because the only diverge
part is in the ground state; the sum inre is absolutely con-
vergent and therefore must sum to some value atm5v1 .)
Let us call the ground state contribution in~4.2! rg(b,m)
and let us also define the constantr l5r2rel .

Assume that we have a critical point, i.e., a point whe
m→v1 asb→bc . Thus, we must have that

rg~b,v12d!→r l as d→0. ~4.3!

But by expandingrg in terms ofd, it is easy to show that

rg;
1

bdV
1OS 1VD as d→0. ~4.4!

The only way that we can get a finite limit forr as d→0
~andb→bc) is if bV5O(1/d) asd→0.

For a finite volume space, we must haveb5O(1/d) as
d→0; thusb→` asm→v1 and the critical temperature is
zero. Since, for all finiteb, mÞv1 , this also means that
there can be no symmetry breaking in such spaces. Howe
as we saw in the Einstein universe, if the volume is large
expect thatm can be quite close to its critical value for som
finite temperature; thus, there will be a large number of p
ticles in the ground state and the physics will look similar
the infinite volume physics. In this situation the temperatu
at which we expect some degree of condensation, is a
critical temperature obtained by taking the infinite volum
limit. Alternatively, one can try to define the onset of con
densation by looking for the maximum of the specific he
since this is the property which is usually searched for e
perimentally.

V. CONCLUSION

We examined the Einstein static universe numerically, a
showed that the critical temperature defined bym→v1 is
zero in contrary to previous calculations. These gave
c.

n

n-
er
to
l

be
e

nt

re

ver,
we
e
ar-
to
re
t a
e
-
at
x-

nd

the

wrong result because they were based on high tempera
expansions. We then generalized our result to arbitra
curved spaces of finite volume and showed that there is
symmetry breaking on these spaces at finite temperature
density.
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APPENDIX A: NONINTERACTING SCALAR FIELD
AT FINITE TEMPERATURE

In this appendix, we wish to show in detail how the gen
eralizedz function techniques reproduce the earlier results
@6#. Taking the field theory of Sec. II, we define$wn% such
that

@2¹21m21U1~x!#wn5«n
2wn . ~A1!

If we let a52p/b, then

zG ~s!5(
n

(
j52`

`

@~a j1 im!21«n
2#2s, ~A2!

where the sum overn in ~A2! is over all the eigenvalues of
~A1!. Using ~3.4! and the Jacobi identity, we obtain

zG ~s!5
p1/2

aG~s!
E
0

`

dt ts2 3/2S (
n

exp~2«n
2t !D

3F112(
j51

`

expS 2
j 2p2

a2t D coshS 2p jm

a D G .
~A3!

The integral in~A3! naturally splits up into two parts. In the
second part, the integral is easily done using the Bessel fu
tion integral~by a change of variablet→«n

2t):

2p1/2

aG~s!(n (
j51

` E
0

`

dt ts23/2expS 2«n
2t2

j 2p2

a2t D coshS 2p jm

a D
5
4p1/2

aG~s!(n (
j51

`

coshS 2p jm

a D
3S p j

a D s21/2

«n
1/22sK2s1

1
2
S 2p j«n

a D . ~A4!

Differentiating this, and then evaluating ats50, we obtain
@remembering~3.21!#
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4p1/2

a (
n

(
j51

`

coshS 2p jm

a D S a

p j D
1/2

«n
1/2K1/2S 2p j«n

a D
52(

n
(
j51

`
1

j
coshS 2p jm

a DexpS 2
2p j«n
a D

52(
n

$ ln~12e2b~«n1m!!1 ln~12e2b~«n1m!!%,

~A5!

where we have used the fact thatb52p/a and
ln(12x)52(n51

` xn.
The first integral in~A3! is

p1/2

aG~s!(n E
0

`

dt ts23/2exp~2«n
2t !

5
p1/2

a

G~s21/2!

G~s! (
n

1

«n
2s21

5
p1/2

a

G~s21/2!

G~s!
z«

n
2~s21/2!. ~A6!

We expectz«
n
2(s21/2) to be an analytic function ofs

except for a few simple poles. This implies that it has
well-defined Laurent expansion abouts50, which we will
write as

z«
n
2;

A21

2s
1A012A1s1O~s2!. ~A7!

Note thatA21 is the residue of the generalizedz function,
using as the eigenvalues«n

2 , at the points51/2. This expan-
sion, together with~3.21!, immediately gives

p1/2
G~s21/2!

G~s!
z«n

~s21/2!s505p1/2GS 2
1

2DA21

522pA21 .
~A8!

Also,
a

Fp1/2
G~s21/2!

G~s!
z«n

~s21/2!G8
;p1/2GS s2

1

2DcS s2
1

2DA211p1/2GS s2
1

2D
3~A01g!1O~s! as s→0, ~A9!

where c(z)5G8(z)/G(z). Making use of c(21/2)
52g12(12 ln2) and then substituting in~2.6! ~remember-
ing that theS̃ @w̄ # term never appears, see Sec. IV! gives

G5bA21lnl
21b$~222 ln22g!A211A01g%

1(
n

ln@~12e2b~«n1m!!~12e2b~«n2m!!#. ~A10!

By comparison with the result of Haber and Weldon@6#, or
from examination of~A1!, we note that the« are the energy
eigenvalues and identify

(
n

«n5A21lnl
21$~222 ln22g!A211A01g% ~A11!

which is essentially the~regularized! Casimir energy.
Now, because«n

25sn1m2,

z«n
5

1

G~s!
E
0

`

dt ts21e2t~sn1m2!

5
1

G~s!
E
0

`

dt ts21e2m2tQ~ t !. ~A12!

It may be noted thatQ(t) is tr exp@2t(2¹21U1)# which has
a known asymptotic expansion ast→0: namely,

Q~ t !.~4pt !2D/2 (
k50,1/2,1, . . .

`

tkuk . ~A13!

The uk are the same coefficients that are used in@23#, and
depend only on the geometry and the conditions on the field
at the boundaries ofS. ~Typically, they involve products of
the curvature invariants and the masses of the fields onS.)
D is the dimension ofS and this is the only place in which
it enters explicitly. Use of this expansion in~A12!, together
with expanding the exp(2m2t), allows one to find
A2155 4p2D/2(
l50

D/2

~21!D/22 lu1/21 lm
D22l for D even

4p2D/2 (
l50

~D11!/2

~21!~D11!/22 lu lm
D1122l for D odd. ~A14!
s
Thus, the residue ofz«n
(0) exists and can be written down in

general. As claimed earlier, one can see that it depends o
on the geometry of the space. Unfortunately, the authors
aware of no similar method for calculatingA0 in general, and
one is reduced to working out the analytic continuation
z«n

case by case. However, since the statistical mechan
nly
are

of
ical

contribution can be written down explicitly, one only need
to focus on the zero temperaturez functions.

APPENDIX B: ANTIPODAL IDENTIFICATION
A simple modification of the Einstein static universe is to

identify antipodal points onS3. Two cases are possible: pe-
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riodic and antiperiodic identifications of the fields. In the case of periodic identification, all the odd modes of2¹2 must
vanish. Thus, the generalizedz function in this case is

zl j ,N
5 (

j52`

`

(
N50

`
~2N12!2

F S 2p j

b
1 im D 21 ~2N11!~2N13!

a2
1
6j

a2
1m2Gs . ~B1!
t it
e

s

all

e
he
At first sight, it appears that we shall have to repeat the en
calculation for thez function above. However, if one make
the change of variable,n5N11, and notes that (2N11)
3(2N13)5(2n21)(2n11)54n221, we can rewrite
~B1! as

zl j ,n
5 (

j52`

`

(
n51

`
4n2

F S 2p j

b
1 im D 21 4n221

a2
1
6j

a2
1m2Gs

54 (
j52`

`

(
n51

`
n2

@~a j1 ib !21an21c#s
, ~B2!

wherea52p/b, a54/a2, b5m, andc5(6j21)/a2. This
is thez function that we had before, and

Ge5
1

32
ba3c2ln~ l 2c!2

3

64
ba3c22ba3c2

3 (
n51

`
1

~pnac1/2!2
$K2~pnac1/2!

2pnac1/2K3~pnac1/2!%

14(
n51

`

n2ln@~12e2b~vn1m!!(12e2b~vn2m!!],

~B3!
tire
s

vn5„(2n/a)21c…, andc is as before. The factor of 4 inz
appears simply because the space has half the volume tha
originally had. As the volume becomes large, we expect th
log term inG to also be directly proportional to the volume,
which explains the 4 here@as the sum tends to an integral,
the measure will give a term proportional toa3. But in ~2.3!,
a→a/2 compared to our original effective action, leaving u
with an overall factor of 2#. The spacetime gives us an ef-
fective thermodynamic massc, identical to the value on
S3, however, the detailed dependence of the sums at sm
volume is now radically different.

Because the expression~3.3! is an absolutely convergent
double sum for all points at which it is defined, we can write

zodd5zS32zeven ~B4!

which will be true even after analytic continuation.

Previously, it has been remarked that there would b
many interesting properties of this space associated with t
possibility of having anx-dependent charge density. How-
ever, this charge density appeared through theS̃ @w̄ # term
which we have seen will be absent.
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