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Dimensional regularization is introduced in configuration space by Fourier transforming inn dimensions the
perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no ex
parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regu
ized causal functions inx space haven-dependent moderated singularities at the origin. They can be multiplied
together and Fourier transformed~Bochner! without divergence problems. The usual ultraviolet divergences
appear as poles of the resultant analytic functions ofn. Several examples are discussed.@S0556-
2821~96!03810-6#

PACS number~s!: 11.10.Gh, 11.10.Kk, 11.15.Bt
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I. INTRODUCTION

When using Feynman diagram techniques in perturbat
quantum field theory, the bare propagators are Feynm
causal functionsD(x) ~with or without mass!. For reasons of
simplicity one usually works in momentum space where t
well known convolution theorem takes the form

~2p!nF$D1~x!D2~x!%5F$D1~x!%3F$D2~x!%5P13P2 ,

Pi5E dnxD i~x!eipx, ~1!

wherePi is propagator in momentum space.
In ~1! the singular behavior at the origin ofD1(x)D2(x)

manifests itself as the famous ‘‘ultraviolet divergence
present at high momentum in the convolution integration.

To deal with ~1! in momentum space, use is made o
Feynman parameters@1# or the Bogoliubov-Shirkov method
@2# to get an expression which is spherically symmetric. T
integral is then regularized to obtain sensible results.

We will here use a different method. The propagator w
be regularized in configuration space where no use will
required of extra parameters to get spherically symmet
functions.

The singular character of the convolution in~1! has a
different aspect if we have the number of dimensionsn as a
free regularizing parameter@3,4#. In this case, the Fourier
antitransform of the propagator in momentum space is
analytic function ofn:

F21$Pi%5D i~x;n!, ~2!

F21$P13P2%5~2p!nD1~x;n!D2~x;n!, ~3!

P13P25~2pi !nF$D1~x;n!D2~x;n!%. ~4!

*Deceased.
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The form of the propagators given by Eq.~2! in coordi-
nate space implies that the singularity at the origin has be
‘‘tempered’’ or ‘‘moderated.’’ The usual ultraviolet diver-
gences appear as poles of the analytic function ofn defined
by ~3! or ~4!. @Note that the right hand side of~3! is a product
of distributions.#

The Feynman or Bogoliubov-Shirkov trick is a simple and
elegant way to cast the convolution integration into a sphe
cally symmetric expression, leaving the complications to
final integration over the extra auxiliary parameters.

We want to show that by the use of the regularized ex
pressions in configuration space@right hand side of~2!, ~3!,
and~4!# we can obtain sensible~and correct! results. Further-
more, we have also the possibility of using a simple trea
ment for the case of more than just two propagators~see
below!.

II. FOURIER TRANSFORM OF SPHERICAL FUNCTIONS

First, we want to point out that the quantum causal prop
gators in configuration space are functions oft22r 21 i«.
Their Fourier transforms are functions ofE22r22 i« in mo-
mentum space. Then we can do all calculations in the E
clidean metric. When the final expression is obtained a tim
dilatationKt must be done followed by an analytic continu-
ation in the coefficientK to the valueK5 i6« ~see Ref.@5#!.
In the Euclidean metric, the propagators are spherically sym
metric functions. They depend only on the distance.

For the evaluation of the Fourier transform of sphericall
symmetric functions we will systematically use the wel
known Bochner theorem@6#.

If a function f (x1x2•••xn) depends only on the single
variable

x5~x1
21x2

21•••1xn
2!1/2

then its Fourier transform
5761 © 1996 The American Physical Society
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g~y1y2•••yn!5E dxn f ~x!eiy•x ~5!

depends only on

y5~y1
21y2

21•••1yn
2!1/2

and can be written as a Bessel transform@7#

g~y!5
~2p!2n

yn/221 E
0

`

f ~x!xn/2Jn/221~xy!dx, ~6!

Ja being the Bessel function of the first kind and ordera.
To take advantage of these properties of spherically sy

metric functions we will proceed in the following way: start
ing in momentum space with a causal function ofp we take
its Fourier antitransform with the aid of~6!,

f ~x,n!5
~2p!2n

xn/221 E
0

`

g~p!pn/2Jn/221~xp!dp. ~7!

In ~7! the singularity at the origin depends analytically o
n. For example, using Ref.@8# we get the following results
@note that, when using~6! for F, the factor (2p)n has to be
suppressed forF21#: ~a! a massless propagatorg(p)5p22,

f ~x,n!52n/222GS n

2
21D x22n, ~8!

or, more generally,g(p)5p22a,

f ~x,n!52n/222a

GS n

2
2a D

G~a!
x2a2n ~9!

~Ref. @9#, p. 365!; ~b! a massive propagator

g~p!5~p21m2!21,

f ~x,n!5mn/221x12n/2Kn/221~mx! ~10!

(Ka 5 a Bessel function of the third kind! or, for arbitrary
powersg(p)5(p21m2)2l

f ~x,n!5
212l

G~l!
mn/22lxl2n/2Kn/22l~mx! ~11!

~Ref. @9#, p. 365!.
Equations~9! and ~11! are appropriate for analytically

regularized propagators@5#.
In all these cases, the singularity at the origin in config

ration space is proportional to an-dependent power ofx.
This analytic dependence allows the definition of a produ
in a certain region of then plane and the subsequent exten
sion, by analytic continuation to other regions, according
the method adopted in Ref.@9#.

Let us now take two~causal! functions g1(p) and
g2(p). We can multiply together the Bochner transforms E
~7!:
m-
-

n

u-

ct
-
to

q.

f 3~x,n!5 f 1~x,n! f 2~x,n!

5x22nE
0

`

dp1p1
n/2g1~p1!Jn/2~p1x!

3E
0

`

dp2p2
n/2g2~p2!Jn/221~p2x!. ~12!

This procedure defines directly the distributionf 3(x,n) in
a convenient region of then plane. By analytic continuation
we can definef 3 for other regions.

Sincef 3(x,n) depends only onx we can use Eq.~6! again
to find the convolution ofg1 andg2 in momentum space. In
this way we obtain

g1~p!* g2~p!5
p12n/2

~2p!nE
0

`

dxx22n/2Jn/221~px!

3H E
0

`

dp1p1
n/2g1~p1!Jn/221~p1x!

3E
0

`

dp2p2
n/2g2~p2!Jn/221~p2x!J .

~13!

But in Ref. @8#, p. 696~657-9!, we find that

E
0

`

dxx12aJa~ax!Ja~bx!Ja~cx!

5
2a21D2a21

~abc!aGS a1
1

2DG~a!GS 12D
, ~14!

whereD5D(abc) is the area of the triangle whose sides ar
a, b, andc. Whena, b, andc cannot form a triangle the
integral is zero.~Do not ask us about how the mathemati
cians got this result.! It is not difficult to see that

D5
1

4
~2a2b212b2c212c2a22a42b42c4!1/2. ~15!

Formula~14! allows us to write

g1~p!* g2~p!5
2n/222p21/2p22n

~2p!nG@~n21!/2#
E
0

`

dp1p1

3E
0

`

dp2p2g1~p1!g2~p2!D
n23. ~16!

Equation~16! can be considered an extension of Bochne
theorem to the convolution of two spherically symmetric
functions.

If we choose to integrate first with respect top2 we can
write

D5
1

4
@p2

22~p2p1!
2#1/2@~p1p1!

22p2
2#1/2 ~17!

so that
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g1* g25
2n/222p21/2p22n

~2p!nG@~n21!/2#4n23E
0

`

dp1p1g1~p1!

3E
p2p1

~p1p1!

dp2g2~p2!p2@p2
22~p2p1!

2#1/2

3@~p1p1!
22p2

2#1/2, ~18!

where we took into account thatD50 whenp2<(p2p1),
or p2>p1p1 .

If we take, for example,g25p2
2l we have to evaluate

I5E
a2

b2

dq2q2l~q22a2!~n23!/2~b22q2!~n23!/2.

Or, changing variables tox5q22a2,

I5E
0

b22a2

dxx~n23!/2~x1a2!l~b22a22x!~n23!/2,

whose value can be found in Ref.@8#, p. 287~3.19-8!. Note
that for the evaluation of the convolution@Eqs.~16! or ~18!#
no extra parameter needs to be introduced. Now we have
equivalent ways for the evaluation of the convolution in m
mentum space. One of them operates inp space@Eqs.~16! or
~18!#. The other consists in the use of the Bessel transfo
@Eq. ~6!# of the product of the dimensional regularized@Eq.
~7!# f (x,n) functions in coordinate space. The latter is
better method when there are more than two functions to
multiplied together.

III. SOME APPLICATIONS

Here we shall illustrate how the method works in som
particular cases.

A. Massless propagator

A massless propagator inp space,p22, has the form
given by ~8! in x space. If we have to evaluate the sel
energy of a particle for which a simple loop is to be consi
ered, then in coordinate space the square of~8! is involved.
More generally, if the coupling is such that at the first verte
n massless quanta are produced which are annihilated at
second vertex, then in coordinate space we havef n(x,n) for
the self-energy.

For the simplest case (n52) we get, from~8!,

f 2~x,n!52n24G2S n

2
21D x422n. ~19!

In momentum space, the convolution of the two propag
tors can be found by a Bessel transformation of~19! @cf. Eq.
~6!#:

1

p2
3

1

p2
5
2n24~2p!2n

pn/221 G2S n

2
21D

3E
0

`

dxx422nxn/2Jn/221~px!. ~20!

From Ref.@8#, p. 684, we get
two
o-

rm

a
be

e

f-
d-

x
the

a-

E
0

`

dxxmJr~ax!52ma2m21
G@~11r1m!/2#

G@~11r2m!/2#
. ~21!

So, with appropriate substitutions we obtain

1

p2
3

1

p2
522n/2~2p!2nG2S n

2
21D G~22n/2!

G~n22!
pn24.

~22!

It costs practically the same effort to evaluate the cont
bution in p space ofn massless propagators joining two
vertices,

f n~x,n!52nn/222nGn~n/221!x~22n!n ~23!

whose Fourier transform is

g~p!5
2nn/222nGn~n/221!

~2p!npn/221 E
0

`

dxx~22n!nxn/2Jn/221~xp!.

~24!

And, utilizing ~21!,

g~p!5
2~12n!n/2

~2p!n GnS n

2
21DGS ~12n!

n

2
1nD

3G21F S n

2
21DnGp~n21!n22n. ~25!

Note that this result can also be considered to be a co
sequence of the work of Ref.@10#, where a systematic
method for the computation of multiloop massless diagram
is developed, by using expansions in Gegenbauer polyno
als ~in configuration space@11#!.

B. Massive propagator

A massive propagator (p21m2)21 is given in coordinate
space by Eq.~10! ~see also Ref.@12#!. The second-order
self-energy produced by a massless quantum is obtained
multiplying together~8! and ~10!.

To evaluate the self-energy produced by the simultaneo
emission and reabsorption ofn massless particles, we have
to take thenth power of~8! together with~10!:

f ~x,n!52n/222mn/221x~22n!n112n/2Kn/221~mx!. ~26!

For the Bessel transform of~26! we need the formula~Ref.
@8#, p. 693, 6.576.3!

E
0

`

dxx2lKm~ax!Jr~bx!

5
br

ar2l11

G@~r2l1m11!/2#G@~r2l2m11!/2#

2l11G~11r!

3FS r2l1m11

2
,
r2l2m11

2
;11r;2

b2

a2D . ~27!

For the simple convolution (n51) we get
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1

p2
3

1

p21m2 5
mn2422n/2

~2p!n

G~n/221!G~22n/2!

G~n/2!

3FS 1,22 n

2
;
n

2
;2

p2

m2D . ~28!

For the convolution withn massless particles, we ge
from ~23!, ~26!, and~27!

g~p!5m~n22!n2222n/2
Gn~n/221!

G~n/2!
GS 22~n22!n

2 D
3GS n2~n22!n

2 D
3FXn

2
~12n!1n,S 12

n

2Dn11;
n

2
;2

p2

m2 C. ~29!

In ~27!, ~28!, and~29! F(a,b;c;z) is the Gauss hypergeo-
metric function.

IV. DISCUSSION

In a way, the method adopted above is the most natu
one. It is based on the generalized Fourier transform
causal distributions and the systematic use of Bochne
theorem.
t

ral
of
r’s

Usually, one works in momentum space and the integr
tions needed to evaluate loops in Feynman diagrams a
regularized to get sensible results. Here, all causal functio
in p space are Fourier transformed in an-dimensional space,
so that propagators~causal functions! in configuration space
aren dependent. This is a natural procedure; the form of th
p propagator is kept fixed orn independent, for example,
(p2)21 or (p21m2)21. This means that the equations of
motion are, respectively, the wave equation and the Klei
Gordon equation, whatever the dimensionality of space-tim

The Bochner theorem provides us with a simple tool fo
the n-dimensional Fourier transform of spherically symmet
ric functions; namely, the Bessel transform. We can als
handle, at practically no extra cost, the simultaneous pre
ence, between two vertices, of several massless quanta. F
thermore, no use need be made of auxiliary parameters, su
as those introduced by Feynman or Bogoliubov and Shirko

The principal property of the dimensionally regularized
causal functions inx space is the fact that the singularity a
the origin is reduced or moderated in an-dependent way.
The choice of an appropriate region of then plane allows the
definition of products~or powers! that can be transformed to
p space without divergence problems; of course, the usu
ultraviolet divergences appear as poles of the analytic fun
tions of n, for n54, or, more generally, for integern ~al-
though some diagrams that are divergent withn even are
convergent inn odd!.
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