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Dimensional regularization in configuration space
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Dimensional regularization is introduced in configuration space by Fourier transformindimensions the
perturbative momentum space Green functions. For this transformation, the Bochner theorem is used; no extra
parameters, such as those of Feynman or Bogoliubov and Shirkov, are needed for convolutions. The regular-
ized causal functions ir space have-dependent moderated singularities at the origin. They can be multiplied
together and Fourier transforméBochnej without divergence problems. The usual ultraviolet divergences
appear as poles of the resultant analytic functions vof Several examples are discuss¢&0556-
2821(96)03810-9

PACS numbgs): 11.10.Gh, 11.10.Kk, 11.15.Bt

I. INTRODUCTION The form of the propagators given by E@®) in coordi-
nate space implies that the singularity at the origin has been
When using Feynman diagram techniques in perturbativétempered” or “moderated.” The usual ultraviolet diver-
guantum field theory, the bare propagators are Feynmagences appear as poles of the analytic functiom difined
causal functiong (x) (with or without mass For reasons of by (3) or (4). [Note that the right hand side ) is a product
simplicity one usually works in momentum space where theof distributions]

well known convolution theorem takes the form The Feynman or Bogoliubov-Shirkov trick is a simple and
elegant way to cast the convolution integration into a spheri-
(2m)"F{A1(X)Ax(X)} =F{A1(X)} X F{Ax(x)} =P X P5, cally symmetric expression, leaving the complications to a

final integration over the extra auxiliary parameters.

We want to show that by the use of the regularized ex-
pressions in configuration spapeght hand side of2), (3),
and(4)] we can obtain sensibl@and corredtresults. Further-
whereP; is propagator in momentum space. more, we have also the possibility of using a simple treat-

In (1) the singular behavior at the origin &f;(x)A,(x) ment for the case of more than just two propagatsee
manifests itself as the famous “ultraviolet divergence” below).
present at high momentum in the convolution integration.

To deal with (1) in momentum space, use is made of
Feynman parametefd] or the Bogoliubov-Shirkov method [I. FOURIER TRANSFORM OF SPHERICAL FUNCTIONS

[2] to get an expression which is spherically symmetric. The First, we want to point out that the quantum causal propa-

integral is then regularized to obtain sensible results. . ) ) . o
; . . gators in configuration space are functionstéfr+ie.
We will here use a different method. The propagator will . . ; 5 s
Their Fourier transforms are functions®f— p2—ie in mo-

be regularized in configuration space where no use will be : :

- ) .mentum space. Then we can do all calculations in the Eu-
required of extra parameters to get spherically symmetric,. . ) o : )
functions ¢lidean metric. When the final expression is obtained a time

The singular character of the convolution i) has a dilatationKt must be done followed by an analytic continu-

different aspect if we have the number of dimensiorss a ation in the_ coefficienl_( to the valueK =i - ¢ (see Re_f[fﬂ)-
free regularizing parametd.4]. In this case, the Fourier In the Euclidean metric, the propagators are spherically sym-

; : .—_metric functions. They depend only on the distance.
antitransform of the propagator in momentum space is an For the evaluation of the Fourier transform of spherically

analytic function ofv: symmetric functions we will systematically use the well

Pizf d”xA;(x)e'PX, (1)

“1fPV1— A (- known Bochner theorerf6].
PP =406, @ If a function f(x,x,---x,) depends only on the single
-1 _ v . . variable
FoH{P1XPo}=(2m)"A1(X;v)Aa(X;v), )
P1XPy=(2pi)"F{A1(X;v)Ax(X;v)}. (4) X=(X2+ x5+ - +x2)2
*Deceased. then its Fourier transform
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I(Y1Ys- - .yv):f dx'f (x) el X ®) fa(x,v)=11(X,v)f2(X,v)

:Xziyf dp;py291(p1)J,(P1X)
depends only on 0

2,2 2\1/2 - v
y=(yityz+---+y;) X fo dp2p5292(P2)J - 1(P2X). (12

and can be written as a Bessel transfgifh _ ) ) S _
This procedure defines directly the distributity{x, v) in

(2m) "7 (= a convenient region of the plane. By analytic continuation
aly)= Wf f(X)x"2J - 1(Xy)dX, (6) we can defind 5 for other regions.
y 0 Sincef3(x,v) depends only or we can use Eq6) again

) . . . to find the convolution ofj; andg, in momentum space. In
J, being the Bessel function of the first kind and order this way we obtain O 92 P

To take advantage of these properties of spherically sym-
metric functions we will proceed in the following way: start- 1-v2 rop
ing in momentum space with a causal functionpofve take 01(p)*02(p)= WJ
its Fourier antitransform with the aid @6), ™

dx¢ 23,5 1(pX)
0

(2m) " (= XU dp1p291(p1)due-1(P1X)
()= | 00", a0prdp. (D o AP1PIGa(P2) (P

“ vI2
In (7) the singularity at the origin depends analytically on X JO dp2P2 °92(P2)Jui2-1(P2X) | -
v. For example, using Ref8] we get the following results
[note that, when usin¢p) for F, the factor (27)” has to be (13

suppressed fof "*]: (a) a massless propagatotp)=p"*, g in Ref [g] p. 696(657-9, we find that

foon =2 2F(§‘1>X2 ’ ® | dod .03,

or, more generallyg(p)=p~ 2, ga—1p2a—1
= 1 T (14
r(f—a) (abo)°T| a+ E)r(a)r(i)
2
f(X,V):ZV/Z_Za X2a—v (9) . . .
I'(a) whereA=A(abc) is the area of the triangle whose sides are
. a, b, andc. Whena, b, andc cannot form a triangle the
(Ref.[9], p. 365; (b) a massive propagator integral is zero(Do not ask us about how the mathemati-
N cians got this result.lt is not difficult to see that
g(p)=(p*+m") "7,
1
_ 22 2.2 2,2 4 4 a4\1/2
f(X,V):mV/zileiylzKV/z_l(mX) (10) A—Z(Za bc+2b“c +2c“a—a*—b*—c ) . (15)
(K, = a Bessel function of the third kindr, for arbitrary Formula(14) allows us to write
powersg(p) = (p?+m?) ~*
V/2—27T—1/2p2—y .
21—\ 91(P)*g2(p)= eI f dp:py
f(x,v)= o mv/Z—)\X)\—v/ZKV/Z_}\(mX) (12) (2m)'T[(v=1)/2] Jo

N v—3
(Ref.[9], p. 365. X fo dp2p291(P1)92(P2)A"". (16)

Equations(9) and (11) are appropriate for analytically
regularized propagatof$]. Equation(16) can be considered an extension of Bochner
In all these cases, the singularity at the origin in configu-theorem to the convolution of two spherically symmetric
ration space is proportional to e&zdependent power of. functions.
This analytic dependence allows the definition of a product If we choose to integrate first with respect e we can
in a certain region of the plane and the subsequent exten-write
sion, by analytic continuation to other regions, according to L
the method adopted in REB]. B 2 2
Let us now take two(causal functions g;(p) and A= 2P (P~ PO (p+py)*—pal* (A7)
0,(p). We can multiply together the Bochner transforms Eq.
(7): so that
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. B 2V/2—277_1/2p2_1/ J>ood ( ) fdeX#J (ax)_z,ua*,uflr[(l—i_p—}_#‘)/Z] (21)
01 92—(27T)ur[(v_1)/2]4u73 o P1P191(P1 o p - T[(1+p—w)i2]
y f(p+pl)dngz(pz)pz[p§—(p— p,)2]12 So, with appropriate substitutions we obtain
P=P1
1 1 v I'2—v/2)
Y[ (D+D.)2— p21t2 T _o—ul2 —p2( 2 4|2 Y g
[(p+p1)*—p2]™, (18) p2 X pz=2 "2m T (2 1) T(v—2) P
where we took into account that=0 whenp,<(p—p,), (22

or p,=p+p;.

If we take, for exampleg,= pgx we have to evaluate It costs practically the same effort to evaluate the contri-

bution in p space ofn massless propagators joining two
b2 o N 2 2\ (r-3)2 2 2\ (v—3)I2 vertices,
I=|.d —ac)r 3 (pe— v=3)12
faz ad (q ) ( q) n — ovn/2-2nTn (2=v)n
fi(x,v)=2 I'"(vl2—1)x (23
Or, changing variables to=q’—a?,
whose Fourier transform is

b27 2
| = f 2 dX)((Vig)lz(X‘F az)}\(bz_ az_ X)(Via)lz, 2vn/272nrn( vI2— 1) %

0 g(p): (27T)va/2—1 fO dXX(Z?V)nXV/ZJV/Z—l(Xp)-
whose value can be found in R¢8], p. 287(3.19-8. Note (24)
that for the evaluation of the convoluti¢iqgs.(16) or (18)]
no extra parameter needs to be introduced. Now we have two And, utilizing (21),
equivalent ways for the evaluation of the convolution in mo-
mentum space. One of them operatep spacq Eqs.(16) or 2(l=nmwiz [, v
(18)]. The other consists in the use of the Bessel transform g(p)= WF”(E— 1)F( (1=n)z+n
[Eq. (6)] of the product of the dimensional regularizgteh.

14
(z‘ 1) "

(7)] f(x,») functions in coordinate space. The latter is a .
better method when there are more than two functions to be xT

Note that this result can also be considered to be a con-
lll. SOME APPLICATIONS sequence of the work of Refl10], where a systematic

multiplied together.
Here we shall illustrate how the method works in somemethOd for the computation of multiloop massless diagrams

particular cases is developed, by using expansions in Gegenbauer polynomi-
' als (in configuration spacgll]).

p(nfl)V72n. (25)

A. Massless propagator )
) > B. Massive propagator
A massless propagator ip space,p” -, has the form

given by (8) in x space. If we have to evaluate the self- A massive propagatompf+m?) ~* is given in coordinate
energy of a particle for which a simple loop is to be consid-SPace by Eq(10) (see also Ref[12]). The second-order
ered, then in coordinate space the squaréSpis involved. self-energy produced by a massless quantum is obtained by
More generally, if the coupling is such that at the first vertexmultiplying together(8) and (10). _

n massless quanta are produced which are annihilated at the 70 evaluate the self-energy produced by the simultaneous
second vertex, then in coordinate space we Haye, v) for emission and reabsorption of massle§s particles, we have
the self-energy. to take thenth power of(8) together with(10):

For the simplest casenE2) we get, from(8), f(x,p)=2"2"2mpi2-1x2=vnt1-v2¢ . (mx). (26)

14
fZ(X,V)=2”_4F2(5—1)X4_2”- (19  For the Bessel transform ¢26) we need the formulédRef.
[8], p. 693, 6.576.8

In momentum space, the convolution of the two propaga-
tors can be found by a Bessel transformatio cf. Eq. ” -
y riis [cf. Eq Jo dxx K ,(ax)J,(bx)

©)]:
1.1 2r7%2m)r v b THp—N+p+1)2IT[(p—A—p+1)/2]
azx 2= T 571 = gp 1 I (14 p)
x p—N+u+l p—A—p+1 b2
xf dxx~2"x"2 1o 1(pX). (20) X F 5 , > A+pi— 2] (27
0

From Ref.[8], p. 684, we get For the simple convolutionn=1) we get
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1 1 m’= 422 T (v/2— 1)T'(2— v/2) Usually, one works in momentum space and the integra-
X g = m tions needed to evaluate loops in Feynman diagrams are
pT pTm (2m) L) regularized to get sensible results. Here, all causal functions
p? in p space are Fourier transformed in-alimensional space,
5; 5;_ W) (28 so that propagator&ausal functionsin configuration space
arev dependent. This is a natural procedure; the form of the
p propagator is kept fixed or independent, for example,
(p?) ! or (p?+m?) 1. This means that the equations of
motion are, respectively, the wave equation and the Klein-
M(vl2—1) (2—(v—2)n Gordon equation, whatever the dimensionality of space-time.
T (o2) ( 5 ) The_Bochrjer theorem provides us with a _S|mple tool for
the v-dimensional Fourier transform of spherically symmet-
v—(v—2)n ric functions; namely, the Bessel transform. We can also
T) handle, at practically no extra cost, the simultaneous pres-
ence, between two vertices, of several massless quanta. Fur-
v vy p? thermore, no use need be made of auxiliary parameters, such
1- > n+1;§;— 2/ (29 as those introduced by Feynman or Bogoliubov and Shirkov.
The principal property of the dimensionally regularized
In (27), (28), and(29) F(a,b:c:2) is the Gauss hypergeo- causal functions ix space is the fact that the singularity at
metric function. the origin is reduced or moderated invadependent way.
The choice of an appropriate region of thelane allows the
definition of productgor powers that can be transformed to
p space without divergence problems; of course, the usual
In a way, the method adopted above is the most naturalltraviolet divergences appear as poles of the analytic func-
one. It is based on the generalized Fourier transform ofions of v, for v=4, or, more generally, for integer (al-
causal distributions and the systematic use of Bochner'though some diagrams that are divergent witfeven are

XF|1,2—

For the convolution withn massless particles, we get
from (23), (26), and(27)

g(p):m(v—Z)n—Zz—V/Z

XTI

(v
xXF E(l—n)+n,

IV. DISCUSSION

theorem. convergent inv odd.
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