
ex-
sed in
trated

PHYSICAL REVIEW D 15 MAY 1996VOLUME 53, NUMBER 10

0556-282
Vacuum energy in a spherically symmetric background field
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The vacuum energy of a scalar field in a spherically symmetric background field is considered. It is
pressed through the Jost function of the corresponding scattering problem. The renormalization is discus
detail and performed using the uniform asymptotic expansion of the Jost function. The method is demons
in a simple explicit example.@S0556-2821~96!01610-4#
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I. INTRODUCTION

The evaluation of quantum corrections to classical so
tions plays an important role in several areas of modern th
retical physics. The classical solutions involved may
monopoles@1,2#, sphalerons@3#, and electroweak Skyrmions
@4–12#. In general, the classical fields are inhomogeneo
configurations. Thus, as a rule, the effective potential a
proximation to the effective action, where quantum fluctu
tions are integrated out about a constant classical field, is
expected to be adequate. The derivative expansion@13# im-
proves on this by accounting for spatially varying bac
ground fields; being a perturbative approximation it ha
however, its own limitations. Having in mind that even th
classical solutions are often known only numerically, it
clearly desirable to have a numerical procedure to determ
the quantum corrections. Some effort in this direction h
already been undertaken@14–17#.

The aim of the present article is to develop further a reg
lar analytic approach which reduces the evaluation of qu
tum corrections to the corresponding quantum-mechani
scattering problem. This approach has been developed
theories in 111 dimensions@18,19#; however, the difficult
problem of the summation over the angular momentum n
essary in 311 dimensions with spherical symmetry has n
been addressed there. It is thus the aim of the present ar
to develop further the regular analytic approach and apply
to theories in the physically most interesting (311)-
dimensional spacetime. Connected with the angular mom
tum sum, some aspects of the renormalization are also m
complicated here and are discussed in detail.

II. THE MODEL AND ITS RENORMALIZATION

Let us first describe our concrete model and its renorm
ization introducing also various notations used in the follow
ing. We will consider the Lagrangian

L5
1

2
F~h2M22lF2!F1

1

2
w~h2m22l8F2!w. ~1!

Here, the fieldF is a classical background field. By means o
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V~x!5l8F2, ~2!

it defines the potential in~1! for the fieldw(x), which should
be quantized in the background ofV(x). The embedding into
an external system is necessary in order to guarantee
renormalizability of the ground-state energy.

The complete energy

E@F#5Eclass@F#1Ew@F# ~3!

of the system consists of the classical part and the one-lo
contributions resulting from the ground-state energy of th
quantum fieldw in the background of the fieldF. The clas-
sical part reads

Eclass@F#5
1

2
Vg1

1

2
M2V11lV2 , ~4!

with the definitionsVg5*d3x(¹F)2, V15*d3xF2, and
V25*d3xF4. Here, M2 and l are the bare mass and
coupling constant, respectively, which need renormalizatio
as we will explain in the following. For the ground-state
energy one defines@20#

Ew@F#5
1

2(~n!
~l~n!

2 1m2!1/22sm2s, ~5!

wherem is an arbitrary mass parameter ands is a regular-
ization parameter which has to be put to zero after renorm
ization. Furthermore,l (n) are the eigenvalues of the corre
sponding wave equation

@2D1V~x!#f~n!~x!5l~n!
2 f~n!~x!. ~6!

For the moment we assume the space to be a large bal
radiusR as an intermediate step to have discrete eigenvalu
and thus a discrete multi index (n).

It is convenient to express the ground-state energy~5! in
terms of thez function

zV~s!5(
~n!

~l~n!
2 1m2!2s ~7!

of the wave operator with potentialV(x) as defined in~6! by

Ew@F#5
1

2
zV~s21/2!m2s. ~8!
5753 © 1996 The American Physical Society



d

r

cy
a
he

e

e

hat

ted

5754 53MICHAEL BORDAG AND KLAUS KIRSTEN
In general,zV(21/2) will be a divergent quantity and a
renormalization procedure for the definition ofEw@F# is
needed. It is easily discussed in terms of the asympto
t→0 heat-kernel expansion associated with the wave eq
tion ~6!:

K~ t !5(
~n!

exp~2l~n!
2 t ! ;

t→0
S 1

4pt D
3/2

e2tm2

(
j50

`

Ajt
j . ~9!

The heat-kernel expansion in Eq.~9! will also contain
boundary terms which, in addition to the terms written dow
explicitly, will lead to half integer powers int. However,
ultimately we are interested in theR→` limit and we will
subtract the Minkowski space contribution in order to no
malize Ew@F50#50. For the case thatV(r );r222e for
r→`, e.0, these terms will then disappear.

For the renormalization, only the first three terms are r
evant which read explicitlyA05*d3x, A152*d3xV(x),
and A25(1/2)*d3xV2(x). Their contributions to the ultra-
violet divergencies in the ground-state energy read

Ew
div@F#52

m4

64p2 S 1s1 ln
4m2

m2 2
1

2DA0

1
m2

32p2 S 1s1 ln
4m2

m2 21DA1

2
1

32p2 S 1s1 ln
4m2

m2 22DA2 . ~10!

The first term is a constant independent of the backgrou
field F and it can be dropped~especially it will be absent
after subtraction of the Minkowski space contribution!. In a
more general context of a gravitational background field, th
term would yield a renormalization of the cosmological co
stant. The second term can be absorbed in a renormaliza
of the massM of the background field

M2→M21
l8m2

16p2 S 2
1

s
111 ln

m2

4m2D ~11!

and the third one in the coupling constantl by

l→l1
l82

64p2 S 2
1

s
121 ln

m2

4m2D . ~12!

The kinetic termVg in E@F# suffers no renormalization. By
defining

Ew
ren5Ew@F#2Ew

div , ~13!

one obtains the finite ground-state energy, which is norm
ized in a way that the functional dependence onF2 present
in the classical energy is now absent in the quantum corr
tionsEw

ren.
Let us note that this is just the well-known general reno

malization scheme written down here explicitly in the not
tion needed in our case.
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III. SCATTERING THEORY AND JOST FUNCTIONS

Let us now restrict to a spherically symmetric backgroun
field F(r ). Then the multi index (n)→n,l ,m consists of the
main quantum numbern, the angular momentum numbe
l , and the magnetic quantum numberm. In polar coordi-
nates, the ansatz for a solution of the wave equation~6! reads

f~n!~x!5
1

r
fn,l~r !Ylm~u,w!, ~14!

where the radial wave equation takes the form

F d2dr2 2
l ~ l11!

r 2
2V~r !1ln,l

2 Gfn,l~r !50. ~15!

Now, we use the standard scattering theory withinr
P@0,̀ ) and have the momentump instead of the discrete
ln,l . Let fp,l(r ) be the so-called regular solution which is
defined as to have the same behavior atr→0 as the solution
without potential

fp,l~r ! ;
r→0

j l~pr ! ~16!

with the spherical Bessel functionj l @21#. This regular solu-
tion defines the Jost functionf l through its asymptotics as
r→`:

f l ,p~r ! ;
r→`

i

2
@ f l~p!ĥl

2~pr !2 f l* ~p!ĥl
1~pr !#, ~17!

whereĥl
2(pr) and ĥl

1(pr) are the Riccati-Hankel functions
@21#.

Now, we use the Jost function to transform the frequen
sum in Eq.~7! in a contour integral. Let us assume for
moment that the support of the potential is contained in t
cavity of radiusR. Then, the above Eq.~17! gets exact at
r5R and may be interpreted as an implicit equation for th
eigenvaluesp5ln,l . Choosing Dirichlet boundary condi-
tions atr5R, fp,l(R)50, it reads, explicitly,

f l~p!ĥl
2~pR!2 f l* ~p!ĥl

1~pR!50. ~18!

As already mentioned, ultimately we are interested in th
limit R→` and in that limit the results will not depend on
the boundary condition chosen, once we assume t
V(r );r222e for r→`.

Let us now consider the ground-state energy associa
with the eigenvalues determined by~18!. It is convenient to
represent the frequency sum in~18! by a contour integral, the
basic idea being explained in detail, for example, in@22,23#.
Using Eq.~18!, one immediately finds



53 5755VACUUM ENERGY IN A SPHERICALLY SYMMETRIC . . .
Ew@F#5m2s(
l50

`

~ l11/2!E
g

dp

2p i
~p21m2!1/22s

]

]p
ln@ f l~p!ĥl

2~pR!2 f l* ~p!ĥl
1~pR!#1m2s(

l50

`

~ l11/2!(
n

~m22kn,l
2 !1/22s,

~19!
by
di-

te

ion

ed
te,
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.,
with 2kn,l
2 as the energy eigenvalues of the bound sta

with given orbital momentuml . The contourg is chosen
counterclockwise enclosing all real solutions of Eq.~18! on
the positive real axis. The division of the discrete eigenv
ues within the large ball into positive~insideg) and negative
ones (2kn,l

2 ), is determined by the conditions thatV(r )
→0 for r→`. In that way, in the limit of the infinite space
the negative eigenvalues become the usual bound states
theln,l.0 turn into the scattering states.

For the calculation of~19!, as the next step, one deform
the contourg to the imaginary axis. A contour coming from
i`1e, crossing the imaginary axis at some positive val
smaller than the smallestkn and going toi`2e results first.
Shifting the contour over the bound state valueskn which are
the zeros of the Jost function on the imaginary axis, t
bound state contributions in Eq.~19! are canceled and in the
limit R→`, subtracting the Minkowski space contributions
one finds

Ew@F#52
cosps

p
m2s(

l50

`

~ l11/2!E
m

`

dk@k22m2#1/22s

3
]

]k
lnf l~ ik !. ~20!

This is the representation of the ground-state energy@and by
means of~21! as well of thez function# in terms of the Jost
function, which is the starting point of our following analy
sis. It has the nice property that the dependence on the bo
states is not present explicitly; it is however contained in t
Jost function by its properties on the positive imaginary ax
To the authors’ knowledge, this representation of the groun
state energy, respectively, for thez function is not known in
the literature. Its analogue proved to be useful for expli
numerical calculations already in the case of a potential d
pending only on one coordinate@19#. It is connected with the
more conventional representations by means of the anal
properties of the Jost function. Expressing them by the d
persion relation

f l~ ik !5)
n

S 12
kn,l
2

k2 D expS 2
2

pE0
` dqq

q21k2
d l~q! D ,

whered l(q) is the scattering phase, we obtain, from~20!,

Ew@F#5m2s(
l50

` S l1 1

2D H 2(
n

~m122s2Am22kn,l
2 122s!

2
122s

p E
0

`

dq
q

Aq21m2 122s
d l~q!J , ~21!

which gives the expression of the ground-state ener
through the scattering phase. From here, one can pass to
tes

al-
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representation through the mode density by integrating
part. Note, that this representation can be obtained also
rectly from ~19! in the limit R→` by deforming the contour
g.

Let us add a discussion on the sign of the ground-sta
energy. In~21! the first contribution results from the bound
states and is completely negative. The second contribut
which contains the scattering phased l(q) is positive~nega-
tive! for an attractive~repulsive! potential, i.e., forV(r ),0
@V(r ).0# for all1 r . So, the regularized~still not renormal-
ized! ground-state energyEw@F# ~21! is positive for a po-
tential which is repulsive for allr ~there is no bound state in
this case! and it is negative for a potential which is attractive
for all r . Now, if we perform the renormalization in accor-
dance with~11! and ~12!, we obtain

Eren5Ew@F#1
m2

8p S 1s1 ln
4m2

m2 21D E
0

`

drr 2V~r !

1
1

16p S 1s1 ln
4m2

m2 22D E
0

`

drr 2V~r !2. ~22!

The contribution containingA0 had already been subtracted
in Ew@F# ~20!. This expression is finite fors→0, i.e., when
removing the regularization. But because of the subtract
terms, there is no longer any definite result on the sign. No
that this is in contrast with the case of a one-dimension
potential where it had been possible to express the subtrac
terms through the scattering phase@19#.

IV. UNIFORM ASYMPTOTICS OF THE JOST FUNCTION

Let us continue with a detailed analysis of the groun
state energy, Eq.~20!. As we have easily seen using hea
kernel techniques, the nonrenormalized vacuum ener
Ew@F# contains divergencies ins50 @see Eq.~10!#, which
are removed by the renormalization prescription given
Eqs. ~11!–~13! @see Eq.~22!#. The poles present are by no
means obvious in the representation~20! of Ew@F#. How-
ever, in order to actually perform the renormalization, E
~13!, it is necessary to represent the ground-state ene
equation~20! in a form which makes the subtraction of the
divergencies explicit. This will be our first task.

As is known from generalz function theory, as well as
one sees from simply counting the large momentum beha
ior, the representation equation~20! of Ew@F# will be con-
vergent for Res.2. However, for the calculation of the
ground-state energy, we need the value of Eq.~20! in s50,

1This is a well-known fact from potential scattering, see, e.g
@21#.
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thus an analytical continuation to the left has to be co
structed. The basic idea is the same as the one presente
@22,23#: adding and subtracting the leading uniform asym
totics of the integrand in Eq.~20!. Let

Ew@F#5Ef1Easym, ~23!

where

Ef52
cos~ps!

p
m2s(

l50

`

~ l11/2!E
m

`

dk@k22m2#1/22s

3
]

]k
@ lnf l~ ik !2 lnf l

asym~ ik !#, ~24!

and

Easym52
cos~ps!

p
m2s(

l50

`

~ l11/2!E
m

`

dk@k22m2#1/22s

3
]

]k
lnf l

asym~ ik !. ~25!

The idea is that as many asymptotic terms are subtracted
to allow to puts50 in the integrand ofEf . This term will
then~in general! be evaluated numerically. InEasymthe ana-
lytic continuation tos50 can be done explicitly showing
that the pole contributions cancel when subtractin
Ew
div@F#, Eq. ~23!. Note, that the contribution resulting from

A0 has already been dropped in Eq.~20!.
The first task thus is to obtain the asymptotics of the Jo

functions. This may be done by using the integral equati
~Lippmann-Schwinger equation! known from scattering
theory @21#. For the Jost function, one has (n[ l11/2)

f l~ ik !511E
0

`

drrV~r !f l ,ik~r !Kn~kr !, ~26!
n-
d in
p-

as

g

st
on

with the regular solution given by the integral equation

f l ,ik~r !5I n~kr !1E
0

r

dr8r 8@ I n~kr !Kn~kr8!

2I n~kr8!Kn~kr !#V~r 8!f l ,ik~r 8!. ~27!

Generalz function theory tells us that the divergence a
s50 contains at most terms of orderV2. Thus, one might
expand lnfl(ik) in powers ofV and take into account only the
asymptotics of terms up toO(V2). The expansion in powers
of V is easily obtained. Using Eqs.~26! and ~27!, one finds

lnf l~ ik !5E
0

`

drrV~r !Kn~kr !I n~kr !

2E
0

`

drrV~r !Kn
2~kr !E

0

r

dr8r 8V~r 8!I n
2~kr8!

1O~V3!. ~28!

Now, the uniform asymptotics forl→` of lnfl(ik) is essen-
tially reduced to the well-known uniform asymptotics of th
modified Bessel functionsKn and I n @~9.7.7! and ~9.7.8! in
Ref. @24##. With the notation t51/A11(kr/n)2 and
h(k)5A11(kr/n)21 ln$(kr/n)/@11A11(kr/n)2#%, one
finds, forn→`, k→` with k/n fixed,

I n~kr !Kn~kr !;
t

2n
1

t3

16n3
~126t215t4!1O~1/n4!,

I n~kr8!Kn~kr !;
1

2n

e2n@h~k!2h~kr8/r !#

@11~kr/n!2#1/4@11~kr8/n!2#1/4

3 @11O~1/n!#.

Using these terms in the right-hand side~RHS! of Eq. ~28!,
we define
y of
lnf l
asym~ ik !5

1

2nE0
`

dr
rV~r !

F11S krn D 2G1/21
1

16n3E0
`

dr
rV~r !

F11S krn D 2G3/2F 12
6

F11S krn D 2G 1
5

F11S krn D 2G2G
2

1

8n3E0
`

dr
r 3V2~r !

F11S krn D 2G3/2, ~29!

thereby ther 8 integration in the term quadratic inV has been performed by the saddle-point method using the monoton
h(k). Now, by means of~29!, the limit s→0 can be performed in Eq.~24!, and we obtain

Ef52
1

p(
l50

`

~ l11/2!E
m

`

dkAk22m2
]

]k
@ lnf l~ ik !2 lnf l

asym~ ik !#, ~30!

a form which is suited for a numerical evaluation.
For Easymat s50, one might explicitly find the analytical continuation. First of all, thek integrations may be done, using
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E
m

`

dk@k22m2#1/22s
]

]k F11S krn D 2G2 n/2

52

GS s1
n21

2 DGS 322sD
G~n/2!

S n

mrD
n

m122s

S 11S n

mrD
2D s1 ~n21!/2

~31!

to yield Eq. ~A1! in the Appendix A. From this, the renor-
malization, Eq.~26!, can be carried out and we arrive at

Easym2Ew
div5

1

48pE0
`

drV~r !F6m2r 2212zR8 ~21!23ln2

26r 2ln~16m2r 2!Sm21
1

2
V~r ! D

2g@1112m2r 216r 2V~r !#G1Easym
sum .

The complete energyE@F#, Eq. ~16!, consisting of
Eclass@F#, Eq. ~17!, of the background fieldF and of the
renormalized loop contribution~26!,

Ew
ren5Ew@F#2Ew

div5Ef1Easym2Ew
div , ~32!

reads

E@F#5
1

2
Vg1

1

2
M ren

2 V11l renV21
1

48pE0
`

drV~r !$6m2r 2

212zR8 ~21!23 ln226r 2ln~16m2r 2!@m21 1
2V~r !#

2g@1112m2r 216r 2V~r !#%1Ef1Easym
sum . ~33!

The remaining task for the analysis of the ground-state e
ergy in the presence of a spherically symmetric potential
the numerical analysis of the above quantity. To achieve th
a ~as a rule numerical! knowledge of the Jost function
f l( ik) is necessary. Apart from this, only integrals of th
potentials and convergent sums have to be dealt with wh
present no problem.

V. EXAMPLE: SQUARE-WELL POTENTIAL

If the potential has a compact support, there is a form
ism how to obtain the Jost function~at least in principle!.
n-
is
at,

e
ich

al-

Starting point is the observation that one may write the reg
lar solution in the form

f l ,p~r !5ul ,p~r !Q~R2r !1
i

2
@ f l~p!ĥl

2~pr !

2 f l* ~p!ĥl
1~pr !#Q~r2R!, ~34!

whereV(r )50 for r>R is assumed. The matching condi-
tions then read

ul ,p~R!5
i

2
@ f l~p!ĥl

2~pR!2 f l* ~p!ĥl
1~pR!#,

ul ,p8 ~R!5
i

2
p@ f l~p!ĥl

28~pR!2 f l* ~p!ĥl
18~pR!#.

Combining the two equations and using the fact that th
Wronskian determinant ofĥl

6 is 2i , one arrives at

f l~p!52
1

p
@pul ,p~R!ĥl

18~pR!2ul ,p8 ~R!ĥl
1~pR!#, ~35!

which gives the expression of the Jost function for a pote
tial with a compact support through the wave function.

For the square-well potential,V(r )5V0Q(R2r ), it is
easily seen that

ul ,p~r !5S p
q̃
D l11

ĵ l~ q̃r !

with ĵ l the Riccati-Bessel function andq̃5Ap22V0.
So we obtain the well-known formula

f l
SW~ ik !5RS kqD

n

@qIn8~qR!Kn~kR!2kIn~qR!Kn8~kR!#,

~36!

with q5Ak21V0. This has to be used for the numerica
evaluation of Eq.~33!. Because of the simple form of the
potentialV(r ), the r integrals may be done explicitly and
numerically, and easy tractable expressions result. ForEf ,
we obtain
terms,
Ef52
1

p(
l50

`

~ l11/2!E
m

`

dk@k22m2#1/2
]

]k H lnf lSW~ ik !2
V0n

2k2
XF11S kRn D 2G1/221C1 V0

16nk2
XF11S kRn D 2G21/2

22F11S kRn D 2G23/2

1F11S kRn D 2G25/2C1 V0
2

8nk2 F R212~n/k!2

@11~kR/n!2#1/2
22S n

kD
2G J , ~37!

which is, as one might easily check, a finite expression. For the renormalized contributions of the asymptotic
we obtain
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Easym2Ew
div5

V0R

48p F212zR8 ~21!1
10

3
m2R223 ln222m2R2ln~16m2R2!1

2

3
V0R

22V0R
2ln~16m2R2!

2g~114m2R212V0R
2!G1Easym,SW

sum , ~38!

FIG. 1. The complete energy
as a function of the radiusR for
different values of the height of
the potential wallV0 for m51.
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whereEasym,SW
sum is given in Appendix B. It is presented in a

form of quickly convergent series which allow an easy n
merical analysis.

The results forEw
ren@F# are presented in Fig. 1. For sma

values of the radiusR of the support of the potential, it is
seen that even for negative values of the potential,V0,0, a
positive vacuum energy results. The reason is that, for sm
values ofR, the bound state energies are located closely
zero, giving only small negative contributions. For increa
ing R, their number and their values increase, leading ne
essarily to negative vacuum energies.

The behavior described is the one we expected from
one-dimensional results presented in@19#. However, the ab-
solute orders of magnitude are lower by 2 than in the cor
sponding one-dimensional considerations.

VI. CONCLUSIONS

In this article we reduced the task of calculating th
vacuum energy of a scalar field in the presence of a sph
cally symmetric background field to the correspondin
quantum-mechanical scattering problem. We were able
present the renormalized vacuum energy solely in terms
the quantum-mechanical scattering dates summarized by
Jost function. For the example of the square-well potenti
we showed that a direct numerical analysis of the vacuu
energy is possible.

Several extensions of our approach are necessary. F
the physical point of view, the consideration of higher-sp
fields is necessary and envisaged. In addition, in order
u-

ll

all
to
s-
c-

the

re-

e
eri-
g
to
of
the
al,
m

rom
in
to

apply our formalism to classical background fields such a
for example, sphalerons and electroweak Skyrmions, a n
merical analysis of Eq.~30! is necessary for cases when th
Jost function is known only numerically. However, the sca
tering theory developed during the last few decades provid
many techniques and results so that here also progress se
possible.
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APPENDIX A: CONTRIBUTIONS OF THE ASYMPTOTIC
TERMS TO THE z FUNCTION

Here, we calculate the analytic continuation ofEasym

~25! using the asymptotics of the Jost functions lnf l
asym( ik)

~29!. After carrying out thek integration by means of~31!,
we obtain



potential.

53 5759VACUUM ENERGY IN A SPHERICALLY SYMMETRIC . . .
Easym52
G~s!m2s

2Apm2sG~s21/2!
E
0

`

drV~r !(
l50

`

nF11S n

mrD
2G2s

2
m122sm2s

2ApG~s21/2!
E
0

`

drrV~r !(
l50

` H G~s11!

4~mr!3

3nF11S n

mrD
2G2s21

2
G~s12!

~mr!5
n3F11S n

mrD
2G2s22

1
G~s13!

3~mr!7
n5F11S n

mrD
2G2s23J

1
G~s11!m2s

4Apm2s12G~s21/2!
E
0

`

drV2~r !(
l50

`

nF11S n

mrD
2G2s21

. ~A1!

The analytical continuations of the above expressions to the values50 are easily obtained and listed below:

Easym5
1

96pE0
`

drV~r !~1212m2r 2!S 1s1 lnr 2m2D1
1

48pE0
`

drV~r !@21212zR8 ~21!112m2r 2~12g23 ln2!#

2
1

96pE0
`

drV~r !S 1s1 lnr 2m2D1
1

48pE0
`

drV~r !@12g23 ln2#2
1

16pE0
`

drr 2V2~r !S 1s1 lnr 2m2D
1

1

8pE0
`

drr 2V2~r !~12g23 ln2!1Easym
sum1O~s!, ~A2!

where the sums in

Easym
sum5

1

4pE0
`

drV~r !(
l50

`

nF Smr

n D 22 lnS 11Smr

n D 2D G1
1

4pE0
`

drV~r !(
l50

`
1

n H 14 F11Smr

n D 2G21

2F11Smr

n D 2G22

1
2

3 F11Smr

n D 2G23

1
1

12J 2
1

8pE0
`

drr 2V2~r !(
l50

`
1

n S F11Smr

n D 2G21

21D ~A3!

converge.
These expressions have been the basis to give the results for the special example listed in Appendix B.

APPENDIX B: ASYMPTOTIC CONTRIBUTIONS FOR THE SQUARE-WELL POTENTIAL

In this appendix, we give the result forEas,SW
sum which reads

Easym,SW
sum 5

V0R

4p (
l50

`

nH 13 SmR

n D 22 lnF11SmR

n D 2G122
2n

Rm
arctanSRmn D J 1

V0R

4p (
l50

`
1

n H 2
1

4 F11SmR

n D 2G21

1
1

6 F11SmR

n D 2G22

1
1

12J 2
V0
2R3

8p (
l50

`
1

n H S n

mRD
2

2S n

mRD
3

arctanSmR

n D2
1

3 J .
These sums have been used for the numerical analysis of the ground-state energy in the presence of a square-well
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