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Vacuum energy in a spherically symmetric background field
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The vacuum energy of a scalar field in a spherically symmetric background field is considered. It is ex-
pressed through the Jost function of the corresponding scattering problem. The renormalization is discussed in
detail and performed using the uniform asymptotic expansion of the Jost function. The method is demonstrated
in a simple explicit exampld.S0556-282(96)01610-4

PACS numbgs): 11.10.Ef, 11.10.Gh

I. INTRODUCTION V(x)=\'d?, 2

The evaluation of quantum corrections to classical soluit defines the potential ifil) for the field¢(x), which should
tions plays an important role in several areas of modern thedse quantized in the background¥é€x). The embedding into
retical physics. The classical solutions involved may bean external system is necessary in order to guarantee the
monopoleg 1,2], sphaleron$3], and electroweak Skyrmions renormalizability of the ground-state energy.

[4-12]. In general, the classical fields are inhomogeneous The complete energy

configurations. Thus, as a rule, the effective potential ap-

proximation to the effective action, where quantum fluctua- E[®P]=Ecasi P]+E[P] 3

tions are integrated out about a constant classical field, is notf

expected to be adequate. The derivative expangighim- of the system consists of the classical part and the one-loop
proves on this by accounting for spatially varying back_contr|but|0ns resulting from the ground-state energy of the

ground fields; being a perturbative approximation it has,quantum fieldp in the background of the fiel®. The clas-

however, its own limitations. Having in mind that even the sical part reads

classical solutions are often known only numerically, it is 1 1

clearly desirable to have a numerical procedure to determine Ecasf 1= 5Vg+ 5 M2V +2\V,, 4

the quantum corrections. Some effort in this direction has 2 2

already been undertakeba—17. - with the definiionsV,=[d*(V®)?, V,=[d%®2, and
The aim of the present article is to develop furtheraregu—vzzfdgxq)zl. Here, M2 and A are the bare mass and

lar analytic approach which reduces the evaluation of quan('ioupling constant, respectively, which need renormalizations

tum cqrrecnons to the' corresponding quantum-mechamcaas we will explain in the following. For the ground-state
scattering problem. This approach has been developed for

theories in #1 dimensiong18,19; however, the difficult energy one define20]

problem of the summation over the angular momentum nec- 1

essary in 3+ 1 dimensions with spherical symmetry has not EJ[P]= EE (NG +m?)H2sy2s, (5)
been addressed there. It is thus the aim of the present article m

to develop further the regular analytic approach and apply i(vvhere,u is an arbitrary mass parameter amds a regular-

to theories in the physically most interesting 3)-  jzation parameter which has to be put to zero after renormal-
dimensional spacetime. Connected W|th.the_ angular momens o+ion. Furthermore) ,y are the eigenvalues of the corre-
tum sum, some aspects of the renormalization are also MO&)onding wave equation

complicated here and are discussed in detail.
[= A+ VOO T () =N bn(X). (6)

] ) ) For the moment we assume the space to be a large ball of
~ Letus first describe our concrete model and its renormalradiusR as an intermediate step to have discrete eigenvalues
ization introducing also various notations used in the follow-ang thus a discrete multi index).
ing. We will consider the Lagrangian It is convenient to express the ground-state eng&yyn

terms of the function

Il. THE MODEL AND ITS RENORMALIZATION

1 1
L= 5(1)([1 —M2=ADP?) D+ z<,o([1—m2—>\'<1>2)<,p. (1)
zv<s>=§ (A +m?) (7)
n
Here, the fieldD is a classical background field. By means of
of the wave operator with potenti®l(x) as defined in6) by
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In general,{y(—1/2) will be a divergent quantity and a Ill. SCATTERING THEORY AND JOST FUNCTIONS
renormalization procedure for the definition & [P] is . . .

: : : ) ¢ . Let us now restrict to a spherically symmetric background
needed. It is easily discussed in terms of the asymptotuﬁel

: . . d ®(r). Then the multi indext)—n,l,m consists of the
t—0 heat-kernel expansion associated with the wave equa-_.
tion (6): main quantum numben, the angular momentum number

I, and the magnetic quantum numbr In polar coordi-
L\ - nates, the ansatz for a solution of the wave equaBpneads
_ N2 = —tm? 4]

K(t) % exp( x(n)t)m(“t) e ,Zo At (9 )

b=+ dni(1NYim(6, ), (14

The heat-kernel expansion in E@9) will also contain

boundary terms which, in addition to the terms written down

explicitly, will lead to half integer powers in. However, \where the radial wave equation takes the form

ultimately we are interested in tHe—« limit and we will

subtract the Minkowski space contribution in orgjer to nor- @ 1041

malize E_[®=0]=0. For the case tha¥(r)~r <" € for +1

r—oo, e>‘pO, these terms will then disappear. drZ 12 _V(r)ﬂ‘ﬁ,' én(r)=0. (15
For the renormalization, only the first three terms are rel-

evant which read explicitlyA,=[d3x, A;=—[d3xV(x),

and A,=(1/2)f d®xV?(x). Their contributions to the ultra- Now, we use the standard scattering theory within

violet divergencies in the ground-state energy read €[0~) and have the momentum instead of the discrete

Nn,i- Let ¢y (r) be the so-called regular solution which is

i m* /1 4u? 1 defined as to have the same behavior-at0 as the solution
Ep [P]=— 642 (g + InW - 5) Ay without potential
m? (1 4u? ,
+W g+|l’]?_l)A1 ¢p,|(r)r:ojl(pr) (16)
1 (1 4u?
- 32m2\s * In? - Z)AZ' (10 with the spherical Bessel functign[21]. This regular solu-

tion defines the Jost functiofy through its asymptotics as

The first term is a constant independent of the backgrount— :
field ® and it can be droppetespecially it will be absent
after subtraction of the Minkowski space contribuiom a i
more general context of a gravitational background field, this o r- fk N
term v%/]ould yield a renormglization of the cogmological con- ¢|,p(r)r_m2[f|(p)h| (pr)—=fr(Ph (pr)], (17
stant. The second term can be absorbed in a renormalization
of the masaM of the background field R R

whereh, (pr) andh, (pr) are the Riccati-Hankel functions
, o MM m? [21].
Mf=MF ez — g T 1+ |n4_,u2 (13) Now, we use the Jost function to transform the frequency

sum in Eq.(7) in a contour integral. Let us assume for a
moment that the support of the potential is contained in the
cavity of radiusR. Then, the above Eq17) gets exact at
r=R and may be interpreted as an implicit equation for the
_ (12) eigenvaluesp=N\, . Choosing Dirichlet boundary condi-

and the third one in the coupling constanby

A=)\ ’ ! 2+1 m”
t——| —=+2+In-—
- S n4,U,2

64 tions atr=R, ¢,,(R)=0, it reads, explicitly,
The kinetic termVy in E[® ] suffers no renormalization. By ~ . n
defining fi(ph (PR~ (p)h; (pR)=0. (18)
_ di
Efn_ E¢[¢]_E¢N' 13 as already mentioned, ultimately we are interested in the

limit R—oc0 and in that limit the results will not depend on

one obtains the finite ground-state energy, which is normalthe boundary condition chosen, once we assume that
ized in a way that the functional dependencedahpresent V(r)~r =27 ¢ for r—oe,
in the classical energy is now absent in the quantum correc- Let us now consider the ground-state energy associated
tions E[f“. with the eigenvalues determined K48). It is convenient to

Let us note that this is just the well-known general renor-represent the frequency sum(it8) by a contour integral, the
malization scheme written down here explicitly in the nota-basic idea being explained in detail, for example]28,23).
tion needed in our case. Using Eq.(18), one immediately finds
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. g ; ) ) -
qu[@]:nzsgo (1+1/2) Lz_:i(p2+ mz)”z‘S%In[fl(p)h.‘(pR)— f|*(|0)h,+(pR)]+,u25|:EO (I +1/2); (m2— K2 )V,
(19

with —KﬁJ as the energy eigenvalues of the bound statesepresentation through the mode density by integrating by
with given orbital momentum. The contoury is chosen part. Note, that this representation can be obtained also di-
counterclockwise enclosing all real solutions of Efg) on  rectly from(19) in the limit R— by deforming the contour
the positive real axis. The division of the discrete eigenval-y.
ues within the large ball into positivénside y) and negative Let us add a discussion on the sign of the ground-state
ones (_Kr21,l)* is determined by the conditions th®f(r) energy. In(21) the first contribution results from the bound
—0 for r—o. In that way, in the limit of the infinite space, States and is completely negative. The second contribution
the negative eigenvalues become the usual bound states afyflich contains the scattering phasg€q) is positive (nega-
the N, ;>0 turn into the scattering states. tive) for an attractive(repulsive potential, i.e., fo’V(r)<O0

For the calculation of19), as the next step, one deforms [V(r)>0] for all* r. So, the regularizedstill not renormal-
the contoury to the imaginary axis. A contour coming from ized ground-state energl [®] (21) is positive for a po-
i+ ¢, crossing the imaginary axis at some positive valuetential which is repulsive for all (there is no bound state in
smaller than the smallest, and going taie — e results first.  this casg¢and it is negative for a potential which is attractive
Shifting the contour over the bound state valagsvhich are ~ for all r. Now, if we perform the renormalization in accor-
the zeros of the Jost function on the imaginary axis, thedance with(11) and(12), we obtain
bound state contributions in E¢L9) are canceled and in the

limit R—, subtracting the Minkowski space contributions, m2 u? %
one finds Ere“=E¢[<I>]+8— —+In—2—1)f drr2v(r)
m\S m 0
coSTS . °° - 1 ({1 442 x
EJ[P]=— 2s |+1/2f dk[k2—m?]t/2-s = Ko 2/(r)2
AP] L uE2 (1112 | dk ] tien|s 2| | arvinn @2
d .
Xﬁ'”fl('k)' (20 The contribution containind\, had already been subtracted

in E,[®] (20). This expression is finite fas—0, i.e., when
This is the representation of the ground-state enfagg by  removing the regularization. But because of the subtracted
means of(21) as well of the function] in terms of the Jost terms, there is no longer any definite result on the sign. Note,
function, which is the starting point of our following analy- that this is in contrast with the case of a one-dimensional
sis. It has the nice property that the dependence on the boumdtential where it had been possible to express the subtracted
states is not present explicitly; it is however contained in theerms through the scattering phd4@].
Jost function by its properties on the positive imaginary axis.
To the authors’ knowledge, this representation of the ground-
state energy, respectively, for ti€function is not known in IV. UNIFORM ASYMPTOTICS OF THE JOST FUNCTION
the literature. Its analogue proved to be useful for explicit ] ] ] )
numerical calculations already in the case of a potential de- L&t us continue with a detailed analysis of the ground-
pending only on one coordinaf&d]. It is connected with the  State energy, Eq20). As we have easily seen using heat-
more conventional representations by means of the analytiemel techniques, the nonrenormalized vacuum energy
properties of the Jost function. Expressing them by the disE¢[®] contains divergencies is=0 [see Eq.(10)], which

persion relation are removed by the renormalization prescription given in
Egs. (11)—(13) [see EQg.(22)]. The poles present are by no
) K2, 2 (= dgq means obvious in the representati@®) of E [®]. How-
fl(|k):1_n[ (1— ?2—) exp( 7l az+—kz5|(<1)), ever, in order to actually perform the renormalization, Eq.

(13), it is necessary to represent the ground-state energy
equation(20) in a form which makes the subtraction of the
divergencies explicit. This will be our first task.
1 As is known from general function theory, as well as
| + _) [ _E (m~25—m?— K?n [ 172s) one sees from simply counting the large momentum behav-
2 n ' ior, the representation equati¢0) of E [P ] will be con-
vergent for Re>2. However, for the calculation of the
(21) ground-state energy, we need the value of ) in s=0,

where §;(q) is the scattering phase, we obtain, fr¢a0),

E[®]=p*>

1—25f°°d q s
- 0 q\/m 1-2s I(q) ’

which gives the expression of the ground-state energy !This is a well-known fact from potential scattering, see, e.g.,
through the scattering phase. From here, one can pass to tf&].
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thus an analytical continuation to the left has to be conwith the regular solution given by the integral equation
structed. The basic idea is the same as the one presented in

[22,23: adding and subtracting the leading uniform asymp- r
totics of the integrand in Eq20). Let érik(r)=1,(kr)+ Jodr’r’[l,,(kr)KV(kr’)

E [ P]=E¢+ Easym: (23) =1, (Kr")K(kD)IV(r) (). (27)
where General ¢ function theory tells us that the divergence at

s=0 contains at most terms of ord¥f. Thus, one might
expand I (ik) in powers ofV and take into account only the

E,—— cog 7s) 1S (141/2) fwdk[ K2—m2]2 s asymptotics of terms up 1©(V2). The expansion in powers
™ =0 m of V is easily obtained. Using Eq&6) and(27), one finds
J
_ i) — [nfasynyi ®
X g LInfiik) =InfPAk) @49 |nf|(ik)=f drrv(nK,(knl,(kr)
0
and ° .
(s 2 —f drrV(r)Kﬁ(kr)f dr'r'V(r')I2kr")
cog s °° 0 0
== 2s [+1/2 f dk k?—m?]1/2-s
asym M I=Eo ( ) " [ 1 +O(V3), 28)
Xilnfasyn“k) (25) Now, the uniform asymptotics fdr—« of Inf(ik) is essen-
ok ! ' tially reduced to the well-known uniform asymptotics of the

) i . modified Bessel functionk, andl, [(9.7.7 and (9.7.8 in
The idea is that as many asymptotic terms are subtracted ag.s [24]]. With the notation t=1/J1+ (kr/v)* and

to allow to puts=0 in the integrand oE;. This term will K) = V1 + (KrT )2+ Ind(kr/ T 1+ 1+ (K )2 one
then(in general be evaluated numerically. 1B, the ana- f?rgdl for Vim Vk)HOO \fv(ith I(()/E fixed (kr/v)1},

lytic continuation tos=0 can be done explicitly showing

that the pole contributions cancel when subtracting ¢ 3

Ei“’[d)], Eqg.(23). Note, that the contribution resulting from I (KNK (K~ 5=+ =

A, has already been dropped in Eg0). 2v - 16v
The first task thus is to obtain the asymptotics of the Jost

functions. This may be done by using the integral equation 1 e Ik —n(kr'/r)]

(Lippmann-Schwinger equatipnknown from scattering |V(kf')KV(kf)~Z[1+(krlv)z]m[“_(kr,/V)z]m

theory[21]. For the Jost function, one has=I+1/2)

(1—6t%+5t%) + O(1/v%),

X [1+0O(1/v)].

fi(ik)=1+ fwdrrV(r)qs, (DK (K, (26) Using these terms in the right-hand sid@HS) of Eq. (28),
0 ‘ we define

asvim - 1 (= rv(r) 1 [~ rv(r) 6 5
Inf, y"tlk)zzfo dr k22t 161/3]0 dr TIEL 1- k21 k1212
1+(—) l+<7) 1+(7 l+<7)
1 (= r3v2(r)
~53), T (29)
14

thereby ther’ integration in the term quadratic M has been performed by the saddle-point method using the monotony of
7(k). Now, by means of29), the limit s—0 can be performed in Eq24), and we obtain

E=— =3 (412 [Cak KT TP [Inf (ik) — Inf>Tik) (30)
p. ) i oK

a form which is suited for a numerical evaluation.
For E.symat s=0, one might explicitly find the analytical continuation. First of all, thentegrations may be done, using
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* P kr\2]~n/2 Starting point is the observation that one may write the regu-
f dk{ k?—m?]* 275& 1+(7 lar solution in the form
m
— n i ~
I'| s+ nTl)F(g—s) (%) mi—2s D1p(r)=u p(r)O(R—1)+ E[f,(p)hI (pr)
. [(n/2) (1+ L)z e —f (P (pN1B(r—R), (34
mr

(3D whereV(r)=0 for r=R is assumed. The matching condi-

to yield Eq.(Al) in the Appendix A. From this, the renor- tions then read

malization, Eq.(26), can be carried out and we arrive at

i . .
u|,p(R)=§[f|(p)h|‘(pR)—fl*(p)hﬁ(pR)],
6m2r2—12¢5(—1)—3In2

. 1 (=
_ pdiv_
Easym™ E, 4&_J0 drv(r)

[ - 4
_6r2n(16mr?) m2+%v(r)) uj (R = 5 PLH(PA (PRI~ FF (PR (PR,
Combining the two equations and using the fact that the
— 2,2 2 sum A
ML+ 12m7rm+BrV () I+ Eagy Wronskian determinant df;” is 2i, one arrives at

The complete energyE[®], Eq. (16), consisting of 1 ) R
Ecast 1, Eq. (17), of the background fieldP and of the f,(p)=- —[pulyp(R)hr’(pR)—u{'p(R)hﬁ(pR)], (35
renormalized loop contributiot26), P

EF"=E[P]- E?D"’: E¢+ Easym— Ei“’, (32)  which gives the expression of the Jost function for a poten-
tial with a compact support through the wave function.
reads For the square-well potential/(r)=V,®(R—r), it is
easily seen that

E[<I>]=EV +1M2 Vi + N erV +i wdrV(r){6m2r2
29 renV' 1 renV 2 487 0

2 1+1
Pl .
—12{}(—1)—3 In2—6r2n(16m?r2)[m?+3V(r)] u"p(r):<ﬁ) htan
—y[1+12m?r?+6r2V(r) ]} + E+ Eqgh, (33

with j, the Riccati-Bessel function argi= \p?— V.
The remaining task for the analysis of the ground-state en- So we obtain the well-known formula

ergy in the presence of a spherically symmetric potential is

the numerical analysis of the above quantity. To achieve that,

a (as a rule numericalknowledge of the Jost function f|SW(ik)=R
fi(ik) is necessary. Apart from this, only integrals of the

potentials and convergent sums have to be dealt with which

present no problem.

k 14
a) [al,(aRIK,(kR)—KI,(qRK (kR)],
(36)

with g=k®+V,. This has to be used for the numerical
evaluation of Eq.(33). Because of the simple form of the
potential V(r), the r integrals may be done explicitly and

If the potential has a compact support, there is a formalnumerically, and easy tractable expressions result.Bzor
ism how to obtain the Jost functiofat least in principle  we obtain

V. EXAMPLE: SQUARE-WELL POTENTIAL

[

1 w P Vo K 21112 ) v ( kR2—1/2
E— 2_ 27127 SW/ipy_ 0 an _ 0 KR
E¢ 7T|=o(|+1/2)jmdk[k m-] &k[lnfl (ik) W( 1+( V) } 1 +W 1+ ”
KR\ 2]~32 KR\ 2
SIS
14 14

which is, as one might easily check, a finite expression. For the renormalized contributions of the asymptotic terms,
we obtain

-2/ 1+

- 5/2) Vg
+
8vk?

R2+2(v/k)? (V)Z
[1+(kR/v)2]1’2_2 k

] , (37
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EGr (@] V=09 Vo=04  Vo=01

0.0001 p

FIG. 1. The complete energy
as a function of the radiuR for
different values of the height of

the potential walV, for m=1.
-0.0001 |

-0.0002

VoR o 2
Easym~ E3"= T —1275(— 1)+ ’R?-3 In2—2m?R?In(16m?R?) + §V0R2—VOR2In(16m2R2)

— y(1+4m?R%+ 2V R?) | + Earm sw (39

whereE; g, swis given in Appendix B. It is presented in a apply our formalism to classical background fields such as,
form of qU|ck|y convergent series which allow an easy nu-for example, sphalerons and electroweak Skyrmions, a nu-
merical analysis. merical analysis of Eq(30) is necessary for cases when the
The results forEre'[@] are presented in Fig. 1. For small Jost function is known only numerically. However, the scat-
values of the radiu® of the support of the potential, it is tering theory developed during the last few decades provides
seen that even for negative values of the potertigk:0, a  Many techniques and results so that here also progress seems
positive vacuum energy results. The reason is that, for smaRossible.
values ofR, the bound state energies are located closely to
zero, giving only small negative contributions. For increas-
ing R, their number and their values increase, leading nec-
essarily to negative vacuum energies. ACKNOWLEDGMENTS
The behavior described is the one we expected from the
one-dimensional results presented 1®9]. However, the ab-
solute orders of magnitude are lower by 2 than in the corre:
sponding one-dimensional considerations.
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cally symmetric background field to the corresponding

guantum-mechanical scattering problem. We were able to

present the renormalized vacuum energy solely in terms of

the quantum-mechanical scattering dates summarized by th&ppeNDIX A: CONTRIBUTIONS OF THE ASYMPTOTIC

Jost function. For th(_e example (_)f the squgre—well potential, TERMS TO THE ¢ FUNCTION
we showed that a direct numerical analysis of the vacuum
energy is possible. Here, we calculate the analytic continuation Bfsym

Several extensions of our approach are necessary. Frof@5) using the asymptotics of the Jost function${f{"(ik)
the physical point of view, the consideration of higher-spin(29). After carrying out thek integration by means af31),
fields is necessary and envisaged. In addition, in order tave obtain
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0

_ I(s)u” ® L)Z}s ml—2s,,2s I(s+1)
Easym_ 2\/;m251“(s—1/2)fo dl’V(l’)g v| 1+ mr —Z\TF(S 1/2f dI‘I’V(I’)E 4(mr)3
v\t I(s+2) | v \?]7%7% T(s+3) V)Z e
Xyl 1+ ﬁ — (mr)s v + W + 3(mr)7 v + m
F(S+l)/.L25 o * v )Tsl
drv2 1+ — . Al
4\/;m25+21“(s—1/2)fo ' (r)g Y1 (A1)

The analytical continuations of the above expressions to the wahie are easily obtained and listed below:

drV(r)[ 1-124(—1)+12m?r3(1— y—3 In2)]

1
Easymsz drV(r)(1—12m?r 2)( +Inr?u?

48m'
1 1
9677[ drVv(r) +Inr2,u2)+48 drV(r)[l y=3In2]— 7 drrzvz(r) +Inr2,u )
1 * 2\ /2 sum
+§ . drroVa(r)(1—y—3 In2) + E gyt O(s), (A2)
where the sums in
1 (= ~ mr) 2 2 °° ” 1 mr\2] -1 mr\ 2] 2
sum __ I _ . - —{ N —_ -
Egami= 7Tfooan(r)lgo v( V) In| 1+ +7 LdrV(r)Zo [4 1+ V) } +( v)
2 mr\2]73% 1 1 (= 1 mr\2]~1
z _ il G 2y/2 - _
+31+ V) +12 87TJ'OdrrV(rZ,V V)} 1) (A3)

converge.
These expressions have been the basis to give the results for the special example listed in Appendix B.

APPENDIX B: ASYMPTOTIC CONTRIBUTIONS FOR THE SQUARE-WELL POTENTIAL

In this appendix, we give the result fé3g"s,,which reads

VoRe [1/mR\? 2v Rm|] VoR< 1( 1 mR|?] ¢
sum _ i _ _ 7 Vo i
asym S 47"'20 V[3( v ) " TR arctaré v )]+ 477|=Eo V[ 4[1+( v)

mR\%]72 1 V§R3§1 v\2 [ v)\® mR| 1
S Y12 8 & v|\mr T lmR @Rt T3

These sums have been used for the numerical analysis of the ground-state energy in the presence of a square-well potential

2
14| —

11
+6 +
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