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In this paper we examine the coupling of matter fields to gravity within the framework of the standard mod
of particle physics. The coupling is described in terms of Weyl fermions of a definite chirality, and emplo
only ~anti-!self-dual or left-handed spin connection fields. We review the general framework for introducin
the coupling using these fields, and show that conditions ensuring the cancellation of perturbative chiral ga
anomalies are not disturbed. We also explore a global anomaly associated with the theory, and argue th
removal requires that the number of fundamental fermions in the theory must be multiples of 16. In additi
we investigate the behavior of the theory under discrete transformationsP, C, andT, and discuss possible
violations of these discrete symmetries, includingCPT, in the presence of instantons and the Adler-Bell-
Jackiw anomaly.
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I. INTRODUCTION

Ashtekar@1# has introduced a set of variables to descri
gravity, which makes essential use of the chiral decompo
tion of the connection one-forms of the local Lorentz grou
What has been shown is that, at least for Einstein manifo
without matter, the full set of field equations of general re
tivity can be recovered by use of only one of the two chir
projections of these connection forms. We may either use
self-dual or the anti-self-dual connections and their resp
tive conjugate variables. The constraints and reality con
tions of the theory then define what the other set has to

Chiral projections are used routinely in particle physic
indeed, the fermion fields that define the standard model
all chiral Weyl spinor fields. Within the Ashtekar contex
left-handed spinor fields are coupled to one of these conn
tion forms, sayA2, while right-handed ones are coupled
the other. Since only one of these is all one needs to de
general relativity, the actual Lagrangian must be expres
entirely in terms of either left-handed or right-handed We
spinor fields.

That the standard model can be so described is of cou
already known. For example, in SO~10! grand unification
schemes@2#, one employs a single 16-dimensional lef
handed Weyl field to describe one generation of fermio
What is less clear is how the coupling of Ashtekar fiel
affects the resultant physics.

In what follows, we describe some facets of these con
quences. Since Ashtekar gravity makes use of only one
the chirally projected Lorentz connections, there arises
question of whether anomalies which are normally presen
such theories are under control. We show that the usual c
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ditions for anomaly cancellations for the standard mod
gauge groups remain true in the presence of Ashtekar gr
ity, and that the new fields do not introduce any further pe
turbative anomalies. However, they do introduce glob
anomalies. Cancellation of these obstructions for grand u
fied theories~GUT’s! in the most general context results in
the rather strong constraint that the total number of fund
mental fermions in the theory must be a multiple of 16
Grand unification schemes based upon groups such as SU~5!
are therefore inconsistent when coupled to gravity. As a co
sequence, there is every likelihood that neutrinos must
massive when consistency with gravity is taken into accoun
In particular, the SO~10! GUT with 16 fundamental Weyl
fermions per generation is singled out as the preeminent a
simplest choice free from the global anomaly, if one allow
for generalized spin structures and arbitrary topologies.

We also discuss how the usual discrete symmetries a
implemented in the presence of Ashtekar gravity. We sha
show that it is possible to posit discrete transformation law
for the fermion and Ashtekar fields which are consistent bo
with our general notions of what parity, time-reversal, an
charge conjugation transformations are, and with the fund
mental canonical commutation relations of all of the fields
Discrete symmetries for bispinors can be implemented in t
classical limit modulo certain reality conditions. However
what we shall show is that, inevitably, the underlying quan
tum theory is not invariant under parity due to the occurren
axial anomaly in quantum field theory. The question o
CPT invariance will also be briefly discussed.

II. THE SAMUEL-JACOBSON-SMOLIN ACTION
AND THE ASHTEKAR VARIABLES

We first consider spacetimes of Lorentzian signatu
(2,1,1,1) and start with the gravitational action propose
by Samuel, and Jacobson and Smolin@3#

ck-
du
5682 © 1996 The American Physical Society



l

kar
the
its

se

o-

53 5683STANDARD MODEL WITH GRAVITY COUPLINGS
S SJS
7 5E

M
LG

7

5
1

8pGEMS7a`Fa
76 i

l

3~16pG!
E
M

S7a`Sa
7.

~1!

The ~anti-!self-dual two-forms S7 which obey
*S7a57 iS7a are defined as

S7a[S 2e0`ea6
i

2
eabce

b`ecD . ~2!

F7 are the curvature two-forms of the SO(3,C) Ashtekar
connections, i.e.,

Fa
75dAa

71
1

2
ea

bcAb
7`Ac

7 , ~3!

and eA ,A50, . . . ,3 denote the vierbein one-forms in fou
dimensions,eabc[e0abc, while l is the cosmological con-
stant. Latin indices label flat Lorentz indices while spacetim
indices will be denoted by Greek indices. Lower case La
indices run from 1 to 3 while upper case Latin indices ran
from 0 to 3.

The Ashtekar variables@1# are sometimes referred to a
~anti-!self-dual variables because the equations of motion
the Samuel-Jacobson-Smolin action with respect toA7,
r

e
tin
ge

s
of

D7S7a50, ~4!

imply that A2 and A1 are the anti-self-dual and self-dua
part of the spin connectionv, respectively: i.e.,

Aa
756 ivoa2

1

2
ea

bcvbc . ~5!

It is easy to see that the action reproduces the Ashte
variables and constraints. For convenience, we work in
spatial gauge in which the components of the vierbein and
inverse can be written in the form

eAm5F N 0

Njea j eai
G , Em

A5F N21 0

2~Ni /N! s i
a
G . ~6!

The form assumed in~6! is compatible with the Arnowitt-
Deser-Misner~ADM ! @4# decomposition of the metric

ds25eAme
A

ndx
mdxn

52N2~dx0!21gi j ~dx
i1Nidx0!~dxj1Njdx0! ~7!

with the spatial metricgi j5eaiea j . Thus we see that the
choice ~6! in no way compromises the values of the lap
and shift functions,N andNi , which have geometrical inter-
pretations in hypersurface deformations. With this decomp
sition, it is straightforward to rewrite
S SJS
7 5

1

16pGE d4x$62i s̃ iaȦia
762iA0a

7 Di s̃
ia62iN j s̃ iaFi ja

7 %

2
1

16pGE d4xHN> S eabcs̃
ias̃ jbFi j

7c1
l

3
eabce> i jk s̃

ias̃ jbs̃kcD J 1boundary terms, ~8!
and
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with s̃ andN> defined as

s̃ ia[
1

2
ẽ i jkeabcejbekc ,

N> [det~eai!
21N. ~9!

The tildes above and below the variables indicate that th
are tensor densities of weight 1 and21, respectively. There-
fore,6(2i s̃ ia/16pG) are readily identified as the conjugat
variables toAia

7 , and we have the commutation relations

@s̃ ia~xW ,t !,Ajb
7 ~yW ,t !#56~8pG!d j

idb
ad3~xW2yW !. ~10!

The variablesA0a
7 , Ni , andN> are clearly Lagrange mul-

tipliers for the Ashtekar constraints, which can be identifi
as Gauss’ law generating SO~3! gauge invariance,

Ga[2iD i s̃
ia'0, ~11!

and the supermomentum and super-Hamiltonian constrai
ey

e

ed

nts

Hi[2i s̃ jaFi ja'0,
~12!

H[eabcs̃
ias̃ jbS Fi j

c 1
l

3
e> i jk s̃

kcD'0,

respectively. Ashtekar showed that these constraints
their algebra, despite their remarkable simplicity, are equiv
lent in content to the constraints and constraint algebra
general relativity@1#. Note that both the self-dual and ant
self-dual versions,S SJS

6 , describepuregravity equally well.

III. COUPLING TO MATTER FIELDS

The coupling of matter fields to gravity described by th
~anti-!self-dual Ashtekar variables have been considered
others before@5–7#, and will be examined closely in this
work. It should be emphasized that besides self-interacti
in pure gravity, only fermions couple directly to the Ashtek
connections. They are hence direct sources for the Ashte
connection. Conventional scalars and Yang-Mills fields ha
direct couplings only to the metric~hence, tos̃) rather than
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to the Ashtekar-Sen connection. Thus when one substitu
the conventional gravitational action with the Samue
Jacobson-Smolin action, complications can come from
fermionic sector, primarily because one has to make a cho
between the actions described byA1 andA2 and once the
choice is made, it is permissible to couple only right or le
handed fermions~but not both! to the theory.1

We first look at the conventional Dirac action, with cou
plings to ordinary spin connections. We then describe c
plings of Ashtekar fields to fermions, and explore the phy
cal implications in the following sections.

Consider the conventional Dirac action for an electron
a single quark of a particular color in the presence of only t
conventional gravitational field. The action can be written

S D52
i

2EM ~*1 !C̄gAEAbDvC1H. c., ~13!

where the covariant derivative with respect to the spin co
nection,v, is defined by

DvC5dxm~]m1 1
2 vmBCS

BC!C ~14!

with the generatorS AB5 1
4 @gA,gB#. We adopt the conven-

tion

$gA,gB%52hAB ~15!

with hAB5diag(21,11,11,11).
We use the chiral representation henceforth for con

nience and clarity. In the chiral representation
tes
l-
the
ice

ft-

-
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as
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gA5S 0 i tA

i t̄A 0 D , ~16!

where ta52 t̄a (a51,2,3! are Pauli matrices, and
t05 t̄052I 2 . We also have

g55 ig0g1g2g3

5S I 2 0

0 2I 2
D ~17!

and the Dirac bispinor is expressed in terms of two
component left and right-handed Weyl spinorsfL,R as

C5S fR

fLD . ~18!

The contractions in~13! are defined by

EAbDC[Em
ADmC. ~19!

Note that the vierbein vector fields and one-forms
EA5Em

A]m andeA5eAmdx
m, satisfyEAbeB5dA

B .
In the chiral representation, the covariant derivative ca

be written as

DC[dxmH ]mI 42 iS Ama
1

ta

2
0

0 Ama
2

ta

2

D J S fR

fL
D ,

~20!

and in conventional coupling of fermions to spin connec
tions,A7 are, precisely,

Aa
756 iv0a2

1
2 ea

bcvbc . ~21!

Written in terms of the Weyl spinors, the Dirac action is
inors. So
~22!

where

1We shall choose the2 action. There is an ambiguity in the conventions of the Dirac matrices,gA, which allows one to couple either
A1 or A2 to left-handed Weyl spinors. We have adopted a choice which couples anti-self-dual spin connections andA2 to left-handed
spinors. To the extent that there are no right-handed neutrinos in nature, we should describe nature with only left-handed Weyl sp
once the initial choice of couplingA2 to the neutrino is made, the theory cannot be described byA1 and right-handedWeyl spinors.
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D2fL[S d2 iAa
2

ta

2 DfL , D1fR[S d2 iAa
1

ta

2 DfR ,

~D2fL!†[dfL
†1 ifL

†Aa
1

ta

2
, ~23!

~D1fR!†[dfR
†1 ifR

†Aa
2

ta

2
.

Notice that in ~22!, terms ~1! and ~4! containA2 but not
A1, while ~2! and~3! involve A1 but notA2. Furthermore,
it is well known that right-handed spinors can be written
terms of left-handed ones through the relation

fR52 i t2xL* ~24!

and vice versa, so the term~4! which involvesA2 can be
written in terms of totallyleft-handed~anti-self-dual! spin
connections and Weyl spinors as

E
M

~*1 !S 2
i

2DxL
†tAEAbD

2xL . ~25!

Similar remarks apply to the term~2! with regard to right-
handed spinors and the fieldA1.

In order to couple spinors to Ashtekar connections of on
one chirality, we can now define modified ‘‘chiral’’ Dirac
actions

S D
2[2$~1!1~4!%

5E
M

~*1 !~2 i !~fL
†tAEAbD

2fL1xL
†tAEAbD

2xL!,

~26!

S D
1[2$~2!1~3!%

5E
M

~*1 !~2 i !@fR
† t̄ AEAbD

1fR1EAb~D
2fL!†tAfL#.

~27!

Next, we make the identification that the quantitiesA7, as
anticipated by the notation, are precisely the connections
troduced by Ashtekar in his simplification of the constrain
of general relativity, and the very same variables in th
Samuel-Jacobson-Smolin action of Eq.~1!. Instead of the
conventional sum of the Einstein-Hilbert-Palatini action an
the full Dirac action,S D , the total action is now taken to be
(S D

21S SJS
2 ). Remarkably, it is possible to show@for in-

stance, by using Eq.~37!# that this total action reproduces the
correct classical equations of motion for general relativi
with spinors@5,8#.

IV. DISCRETE TRANSFORMATIONS AND SPINORS

The usual discrete transformations for the second qu
tized spinor fields are
in

ly

in-
ts
e

d

ty

an-

P:fL~x!↔2 i t2xL* „P
21~x!…, i.e., @fL~x!↔fR„P

21~x!…#,

C:fL~x!↔xL~x!, i.e., ~Cc5CC̄T!,

T:fL~x!°2 i t2fL„T
21~x!…. ~28!

A set of discrete transformations for the gravity variable
consistent with the ones described above for fermion fiel
can then be defined as follows:

P:„s̃ ia~xW ,t !,Aia
7~xW ,t !…°~ s̃ ia

„P21~xW ,t !…,Aia
6
„P21~xW ,t !…!,

C:„s̃ ia~xW ,t !,Aia
7~xW ,t !…°„s̃ ia~xW ,t !,Aia

7~xW ,t !…, ~29!

T:„s̃ ia~xW ,t !,Aia
7~xW ,t !…°~ s̃ ia

„T21~xW ,t !…,Aia
7
„T21~xW ,t !…!.

These transformations are consistent with the commutati
relations~10!. In dealing with curved spacetimes , it is more
convenient to rewrite these transformations in terms of the
action on the one-forms (eA,Aa

7). These give

P:~e0,ea;Aa
7!°~e0,2ea;Aa

6!,

C:~eA;Aa
7!°~eA;Aa

7!, ~30!

T:~e0,ea;Aa
7!°~2e0,ea;Aa

7!.

P and T transformations for the Ashtekar variables fo
pure gravity have been discussed previously@9#. However,
that discussion did not coverC and CPT, nor take into
account the effect of coupling to fermions. Note also tha
P andT are orientation-reversing transformations. WhileP
andC are to be implemented by unitary transformations,T is
to be implemented anti-unitarily, so that underT, c numbers
are complex conjugated.

We emphasize that the Ashtekar variables are howev
not necessarily orientation-reversal invariant. In fact the
are four-manifolds with no orientation reversing diffeomor
phisms. The signature invariant,t, of a four-manifold is odd
under orientation reversal. Therefore a manifold with nonv
nishingt cannot possess an orientation reversing diffeomo
phism. One can show that for the Ashtekar variable
*MFa

2`F2a2* M̄Fa
1`F1a}t @10#. Thus for manifolds

with nonvanishingt ’s, A1 can neither be diffeomorphic nor
SO(3,C) gauge equivalent toA2.

To discuss the effect of the discrete transformations in
concise manner, we first defineAAB52ABA such that

A0a[
1

2i
~Aa

22Aa
1!,

~31!

Abc[2
1

2
eabc~Aa

21Aa
1!,

and keep in mind the effect of the discrete transformatio
displayed in~30!.

The curvature

FAB[dAAB1AA
C`ACB ~32!

then has components
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F0a5
1

2i
~Fa

22Fa
1!, Fbc52

1

2
eabc~Fa

21Fa
1!, ~33!

and the ‘‘torsion’’ TA(A
7), which depends onA7, is de-

fined as
TA[deA1AA

B`eB. ~34!

With all this, it can be shown that the ‘‘chiral’’ gravita-
tional and Dirac actions are related to the conventional o
by

S SJS
7 5

1

~16pG!
E
M
eA`eB`* FAB

7
i

~16pG!
E
M

@2d~eA`TA!1TA`TA#

2
2l

16pGEMe0`e1`e2`e3 ~35!

and

S D
75S D1E

M
F6

i

4
cAeABCDe

C`eD`TB

7
i

2~3! !
d~cAeABCDe

B`eC`eD!G , ~36!

wherecA[fL
†tAfL1xL

†tAxL .
The combined fermionic and gravitational total action

therefore,

S total
7 5S D

71S SJS
7

5S D1
1

~16pG!
E
M
eA`eB`* FAB

7
i

2 E
M
dH 2

1

~8pG!
eA`TA

1
1

3!
~eABCDc

AeB`eC`eD!J
7

i

~16pG!
E
M

QA`QA2
2l

16pGEMe0`e1`e2`e3,

~37!

where
QA[TA1~2pG!eABCDc

BeC`eD. ~38!

Observe that the sum of the conventional Einstein-Hilbe
Palatini and Dirac actions is given by the first two terms
the second line of~37!.

We then find that underP ~and alsoCP andCPT), the
change is

nS D
25PS D

2P212S D
2

5 i E
M

1

3!
d~eABCDc

AeB`eC`eD!

2
1

2
eABCDc

AeC`eD`TB ~39!
nes

is,

rt-
in

and the change of the total action is then

nS total
2 5nS SJS

2 1nS D
2

5 i E
M
dH 2

1

~8pG!
eA`TA

1
1

3!
~eABCDc

AeB`eC`eD!J
1

i

~8pG!
E
M

QA`QA. ~40!

It should be noted that for spacetimes with Lorentzia
signature, the Ashtekar variables are not real but rather m
be required to satisfy reality conditions which are suppos
to be enforced by a suitable inner product for quantum gra
ity @1#. Moreover, the actions are not explicitly real and the
hermiticity could be tied to the inner product for the ye
unavailable quantum theory of gravity.2

However, if we are interested in examining second qua
tized matter in a gravitational background~for that matter, in
flat spacetime!, we may enforce the reality conditions on
A2 by hand. We assume for our present purposes, that ev
though we do not at the moment have an inner product f
quantum gravity that will enforce these reality conditions, w
can pass over to the second order formulation whereby
eliminate the Ashtekar connections in terms of the vierbe
and spinors through the equations of motion forA2 and en-
force the reality conditions by inspection.

So, varying the total first order action,S D
21S SJS

2 , with
respect toA2 yields

DS2a5~4pG!F13 ebcdc
aeb`ec`ed1

1

2
eabcc

0eb`ec`e0

1 icbea`eb`e0G ~41!

which implies that the Ashtekar connection is

Aa
25 iv0a2

1

2
ea

bcvbc2~2pG!eabcF12 ebcABc
AeB2 icbecG .

~42!

Upon imposing the usual Hermiticity requirements on th
spinors ~which implies that cA is Hermitian!,
(A2)†5A1and the requirement that the spin connectionv is
real, one finds thatQ50, which for the case of pure gravity,
reduces to the torsionless condition. Thus passing over to
second order formulation where the Ashtekar connection h
been eliminated and reality conditions have been impose
we find that the change in the action underP ~and alsoCP
andCPT) is

2Recall that pure imaginary local Lorentz invariant pieces of th
action areCPT odd.
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nS total
2 52

i

12EMd$eABCDc
AeB`eC`eD%

52
i

2EM]m@det~e! j 5
m#d4x

52
i

2EM ~¹m j 5
m!det~e!d4x

52
i

2
nQ5 , ~43!

where

j 5
m5C̄EA

mgAg5C

52EA
m~fL

†tAfL2fR
† t̄AfR!

52EA
m~fL

†tAfL1xL
†tAxL! ~44!

is precisely the chiral current, andnQ5 is the change in the
chiral ~axial! charge. Therefore, it would appear that if th
chiral current is not conserved, the action fails to beHermit-
ian and invariant underP, CP, andCPT. In this respect, the
Adler-Bell-Jackiw~ABJ! anomaly or the axial anomaly@11#
induced by global instanton effects may lead to violations
CPT through chirality changing transitions. Chirality
changing transitions due to QCD instantons have been inv
tigated by others before@12#, including ’t Hooft @13# in his
resolution of the U(1)A problem. We shall postpone the dis
cussion on the physical implications and bounds on the
parent non-Hermiticity of the action and the implied viola
tions of discrete symmetries to a separate report. A rela
discussion on the effects of discrete transformations on
tions which utilize self-dual variables in the description
four-dimensional gravity can be found in Ref.@14#.

Although the expressions and discussions above are f
single quark or electron, it is easy to incorporate more ma
fields into the theory simply by replacingcA with

cA[( FL
†tAFL , ~45!

where the sum is over all Weyl fermions, including righ
handed fermions which are to be written as left-handed on
Conventional standard model Yukawa mass couplings a
Higgs fields can be introduced without modifications.

V. THE STANDARD MODEL WITH ASHTEKAR FIELDS

We next examine how the quark and lepton fields of t
standard model are to be coupled to the Ashtekar fie
Since we are allowing couplings toA2 rather than the whole
spin connection, only left-handed fermions can be coupled
the theory. By writing all right-handed fields in terms o
left-handed ones, it is possible to couple all the stand
model quark and lepton fields to Ashtekar gravity in a co
sistent manner. We shall show in the next section that t
coupling will not disturb the cancellations of all perturbativ
anomalies, given the multiplets of the standard model. T
question of how to deal with the global anomaly that may
e
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present in the theory will be examined in the following sec
tion.

We shall label collectively byWiT
i the gauge connection

one-forms of the standard model. TheTi ’s denote generators
of the standard model gauge group, and there should not
any confusion between this indexi and spatial indices. The
covariant derivative inS D

2 in the action is then replaced by
the total covariant derivative

D2fLI
5F S d2 iAa

2
ta

2 D d IJ2 iWi~T
i ! IJGfLJ

, ~46!

where the indexI associated withfLI
denotes internal ‘‘fla-

vor’’ and/or ‘‘color.’’ In this modified model, the right-
handed Weyl fields of the conventional standard model are
be written as left-handed Weyl fermions via the relation

fRI
52 i t2xLI

* . ~47!

So an electron or a single quark of a particular color is re
resented as a pair of left-handed Weyl fermions (fL and
xL), and a left-handed neutrino is represented by a sing
left-handed Weyl fermion.

The total action is still to beS SJS
2 1S D

2 with the total
covariant derivative of~46! but summed over all left-handed
multiplets, including ‘‘right-handed’’ multiplets which are
written as left-handed ones. Using Eq.~47!, right-handed
currents can be written in terms of left-handed curren
through

JR
m i5fRI

† t̄m~TR
i ! IJfRJ

5xLI
† tm~TL8

i ! IJxLJ
, ~48!

with

TL8
i52~TR

i !T. ~49!

Notice however that terms containing the ordinary gaug
connectionsW are Hermitian, so the factor 2 multiplying
terms denoted by~1! and ~4! in ~22! takes care of the con-
tributions from terms withW in ~2! and ~3! which would
have been present had we used the conventional Dirac
tion. Similarly, this holds also for the left-handed neutrin
although it is now described by only the term~1! ~summed
over the species! instead of~1! and~2!. The net result of all
this is that the difference between the ‘‘modified standa
model’’ with gravity described byS D

21S SJS
2 with couplings

only to left-handed fermions and the conventional action
still as described by~37!.

VI. CANCELLATION OF PERTURBATIVE GAUGE
ANOMALIES

We shall first demonstrate that the standard model defin
entirely in terms of left-handed fermions, and the anti-sel
dual Ashtekar fieldsA2, is free of perturbative chiral gauge
anomalies.

Recall that the anomalies can be determined via Fujik
wa’s Euclidean path integral method. We can expand t
left-handed multiplet,CLI

5(fLI

0 ), andC̄LI
, in terms of the
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complete orthonormal set$Xn
L ,Xn

R% ~see, for instance, Ref.
@15#! with

Xn
L~x!5S 12g5

A2 DXn~x!, ln.0,

5S 12g5

2 DX0~x!, ln50,

~50!

Xn
R~x!5S 11g5

A2 DXn~x!, ln.0,

5S 11g5

2 DX0~x!, ln50.

There can be more than one chiral zero modes with th
left-right asymmetry governed by the Atiyah-Patodi-Sing
index theorem. In our present instance, the curved sp
Dirac operator contains the full set ofA6 connections be-
sidesW, and remains Hermitian providedTA50; andXn’s
are the eigenvectors with eigenvaluesln of the full Euclid-
ean Dirac operator. The chiral projections in~50! and ~51!
serve the purposes of defining a chiral fermion determina
for the effective action as well as selecting only theA2 Ash-
tekar fields in the action*(*1) C̄Lig

mDmCL . This is
achieved by using the Euclidean expansions@16#

CL~x!5 (
n:ln>0

anXn
L~x!,

~51!

C̄L~x!5 (
n:ln>0

b̄nXn
R†~x!.

The diffeomorphism invariant Euclidean measure for ea
left-handed multiplet,

)
x
D@e1/2~x!C̄L~x!#D@e1/2~x!CL~x!#, ~52!

wheree[det(e), is ~up to a phase! equivalent to~see Ref.
@15#!

dm5)
n

dan)
n

db̄n . ~53!

Under a gauge transformation with generatorTi ,

CL~x!→e2 ia~x!TiCL~x! ~54!

the measure transforms as

dm→dmexpH 2 i E a~x!Ai~x!dxJ . ~55!

The anomaly can be computed as in Ref.@15#. This gives
eir
er
ace

nt

ch

Ai~x!5 (
all n

Xn
†~x!g5TiXn~x!det~e!

52
1

16p2TrHTi 12 ẽmnabGabGmnJ , ~56!

and is proportional to Tr(Ti$Tj ,Tk%). Here,Gmn
i is the field

strength associated withWm
i . So, the condition for cancella-

tion of perturbative gauge anomalies is that Tr(Ti$Tj ,Tk%)
when summed over all fields coupled toWiT

i vanishes. But
as we have seen, if ‘‘right-handed’’ spinors in the standa
model coupled toWiTR

i are written as left-handed spinors
coupled to WiTL8

i such that the representationsTL8
52(TR)

T, then

Tr~T8L
i $T8L

j ,T8L
k%!52Tr~TR

i $TR
j ,TR

k %!, ~57!

and, the condition for the perturbative chiral gauge anom
lies of left and ‘‘right’’-handed fermions to cancel is

Tr~TL
i $TL

j ,TL
k%!1Tr~T8L

i $T8L
j ,T8L

k%!50, ~58!

which is precisely equivalent to the well-known condition
@17#

Tr~TL
i $TL

j ,TL
k%!5Tr~TR

i $TR
j ,TR

k %!. ~59!

The Ashtekar fields do not give rise to perturbativ
anomalies because the generators of Ashtekar gauge gr
belong to su~2!, and SU~2! is a ‘‘safe group’’ where Tr
(Ti$Tj ,Tk%)50 for any representation. The introduction o
the Ashtekar fields therefore does not disturb the usual p
turbative anomaly cancellation conditions. But the theor
can still be afflicted with global anomalies, which is the issu
we shall address next.

VII. GLOBAL ANOMALY AND FERMION CONTENT

Witten @18# showed that in four dimensions, theories with
an odd number of Weyl fermion doublets coupled to gaug
fields of the SU~2! group are inconsistent. Without gravity,
the standard model has four SU(2)weakdoublets in each gen-
eration, and so it is not troubled by such a global anoma
But what about the Ashtekar gauge fields? Strictly speaki
for manifolds of Lorentzian rather than Euclidean signatur
the group is complexified SU~2! and isomorphic to SL
(2,C). But both these groups have the homotopy grou
P4(G)5Z2 , and the nontrivial transformations of the com
plexified SU~2! group inP4(G) are associated with the ro-
tation group. As Witten@18# has argued, the presence o
nontrivial elements of this homotopy group can produce gl
bal SU~2! anomalies. So it would appear that in four dimen
sions there could be further constraints on the particle co
tent in order to ensure that the theory be free of the glob
anomaly associated with the Ashtekar gauge group. Ho
ever, unlike the pure gauge case, gravitational instantons
strongly correlated with the topology of spacetime, and a
guments based onP4(G) cannot be carried over straightfor-
wardly. In what follows, we present a unified treatment o
both gravitational and pure gauge instanton contributions
the global anomaly for Weyl fermions.

We review the essential points of the global anoma
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@18,19#. To begin with, consider a suitable Wick rotation o
the background spacetime into a Riemannian manifold. N
all manifolds with Lorentzian signature have straightforwa
continuations to Euclidean signature and vice versa. A m
general setting for this section is the scenario of mat
coupled to gravity in the context of path integral Euclidea
quantum gravity@20#. The Dirac operator is then Hermitian
with respect to the Euclidean inner product^XuY&
5*d4x det(e)X†(x)Y(x) @15#. The fermions can then be ex
panded in terms of the complete set of the eigenfunctions
the Dirac operator. The expansions will be the same@16# as
in Eq. ~51! with the eigenfunctions normalized so that

E
M
d4x det~e!Xm

† ~x!Xn~x!5dmn . ~60!
f
ot
rd
ore
ter
n

-
of

Consider next a chiral transformation byp which maps
each two-component left-handed Weyl fermio
CL(x)°exp(ipg5)CL(x)5exp(2ip)CL(x)52CL(x). Obvi-
ously such a map is a symmetry of the action. However,
measure is not necessarily invariant under such a ch
transformation because of the ABJ anomaly. Instead,
each left-handed fermion, the measure transforms as

dm°dm expS 2 ipE
M
d4x det~e!(

n
Xn
†~x!g5Xn~x! D . ~61!

The expression*Md
4x(n det(e)Xn

†(x)g5Xn(x) is formally
equal to (n12n2), wheren6 are the number of normaliz-
able positive and negative chirality zero modes of the Dir
operator. Upon regularization, the expression works out to
(
n

det~e!Xn
†~x!g5Xn~x![ lim

M→`
(
n

det~e!Xn
†~x!g5e

2~ln /M!2Xn~x!

5 lim
M→`

lim
x8→x

Trg5 det~e!e2~ igmDm /M!2(
n

Xn~x!X†~x8!n

52
1

384p2Rmnst* Rmnst. ~62!
f
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As a result, the index (n12n2)
5(n*Md

4x det(e)Xn
†(x)g5Xn(x)52t/8, where t5(1/

48p2)*MRmnst* Rmnst, is the signature invariant of the
closed four-manifoldM . ~In this report, we restrict our at-
tention to compact orientable manifolds without bounda
For manifolds with boundaries, boundary corrections to t
Atiyah-Patodi-Singer index theorem must be taken into a
count.! Consequently, the change in the measure foreach
left-handed Weyl fermion under a chiral rotation ofp is
precisely exp(ipt/8). If there are altogetherN left-handed
Weyl fermions in the theory, the total measure changes
exp(iNpt/8). But, as emphasized in Ref.@19#, the transfor-
mation of21 on the fermions can also be considered to
an ordinary SU~2! rotation of 2p. Since SU~2! is a safe
group with no perturbative chiral anomalies~there are no
Lorentz anomalies in four dimensions!, the measure must be
invariant under all SU~2! transformations. Thus there is a
inconsistency unless this phase factor, exp(iNpt/8), is al-
ways unity.

It is known that for consistency of parallel transport o
spinors fortopological four-manifolds, t must be a multiple
of 8 for spin structures to exist@21#. This result also follows
from n12n252t/8, since the index must always be a
integer. However, a theorem due to Rohlin@22# states the
signature invariant of asmoothsimply connected closed spin
four-manifold is divisible by 16. If one restricts to four
manifolds with signature invariants which are multiples
16 in quantum gravity, or in semiclassical quantum fie
theory with left-handed spinors, one allows for these fou
ry.
he
c-

by

be

n

f

n

-
of
ld
r-

manifold backgrounds only, then under a chiral rotation o
p the measure is invariant regardless ofN. Otherwise, if we
allow for all manifolds with signature invariants which are
multiples of 8, consistency with the global anomaly cance
lation requires thatN must be even. In either instance, the ne
index summed over all fermion fields is even.

It is not presently clear what the integration range fo
A2 should be. But, it is quite likely that it should extend ove
a wider class of manifolds than those which admit ordina
spin structures@23#. The considerations outlined above sug
gest that in order to do this, we would have to allow fo
couplings among the various fermion fields, for example v
Yukawa couplings to spin-0 fields, and particularly via cou
plings to gauge fields, which is what occurs in grand unifi
cation theories~GUT’s!. The reason can be stated as follows
When t is not a multiple of 8, it is not possible to lift the
SO~4! bundle to its double cover Spin~4! bundle since the
second Stiefel-Whitney class,w2 , is nontrivial. However,
given a general grand unification~simple! simply connected
gauge groupG with aZ25$e,c% in its center, it is possible to
construct generalized spin structureswith gauge group
SpinG(4)5$Spin(4)3G%/Z2 where theZ2 equivalence rela-
tion is defined by (x,g)[(2x,cg) for all (x,g)
PSpin~4!3G @23#. Note that SpinG(4) is the double cover
of SO(4)3(G/Z2). Such spinors then transform according
to double cover SpinG(4) group, and the parallel transport of
fermions does not give rise to any inconsistency. Howeve
the additional quantum field theoretic global anomaly cance
lation condition must still be satisfied if the theory is to b
consistent.
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Now, in a scenario where all of the fermions are coupl
to one another via gauge fields, the index theorem should
applied to the trace current involving the sum over all t
fermion fields. The resultant restriction onN is the condition
that the index for the total Dirac operator with
SpinG(4) connections, N12N2 , is even. Otherwise,
Green’s functions which contain (N12N2) more C̄L than
CL variables in the odd index sector will be inconsisten
The relevant index of the total Dirac operator in the presen
of an additional grand unification gauge field other than t
spin connection is

N12N252N
t

8
2

1

8p2E
M
Tr~F`F !, ~63!

whereF5FiT i is the curvature of the internal grand unifi
cation gauge connection. The global anomaly consiste
condition given above then implies that for arbitraryt ’s
there can only be 16k fermions in total in the theory, where
k is an integer; and the gauge group should be selected s
that the instanton number,(1/8p2) *MTr(F`F), is always
even for nonsingular configurations.

If one counts the number of left-handed Weyl fermion
that are coupled to the Ashtekar connection for the stand
model, one finds that the number is 15 per generation, giv
a total of 45 for 3 generations. This comes about beca
each bispinor is coupled twice to the Ashtekar connect
while each Weyl spinor is coupled once~e.g., for the first
generation, the number is 2 for each electron and each u
down quark of a particular color, and 1 for each left-hand
neutrino.! Thus even if one restricts tot58k, the global
anomaly with respect to the Ashtekar gauge group seem
imply that there should be additional particle~s!. For ex-
ample, there could be a partner for each neutrino, mak
N to be 16 per generation, or a partner for just thet neutrino,
or even four generations. As a result, even witht58k, grand
unification schemes based upon groups such as SU~5! and
odd number of Weyl fermions would be inconsistent wh
coupled to gravity.

The net conclusion is therefore that inclusion of manifol
with arbitrary t ’s in the integration range is possible, pro
vided we allow for generalized spin structures, with a total
N516k fermions, in order that the global anomaly is abse
In the event that the structures are defined by simple G
groups, the simplest choice would be SO~10!. It is easy to
check that the 16 left-handed Weyl fermions in the SO~10!
5Spin(10)/Z2 GUT indeed belong to the 16-dimensiona
chiral representation of Spin(10) and satisfy the generaliz
spin structure equivalence relation for$Spin(4)
3Spin(10)%/Z2 .

It is worth emphasizing that this generalized spin structu
implies an additional ‘‘isospin-spin’’ relation in that fermi
ons must belong to Spin(10) representations, while bos
must belong to SO~10! representations of the GUT. This ha
implications for spontaneous symmetry breaking via fund
mental bosonic Higgs fields, which cannot belong to t
spinorial representations of SO~10! if one allows for arbitrary
t ’s. More generally, the presence of the extra particle~s! im-
plied by global anomaly considerations can generate mas
ed
be
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for neutrinos, thereby giving rise to neutrino oscillations, an
may also play a significant role in the cosmological issue
‘‘dark matter.’’

A more mathematical treatment of the perturbative an
global anomaly cancellation conditions we have discuss
can be given. It is based on the fact that the chiral fermio
determinant is actually asection of the determinant line
bundle@24–27#. In order for the functional integral over the
remaining fields to make sense, there must not be any o
struction to the existence of a global section. It is therefo
necessary for the first Chern class of the determinant li
bundle to vanish@24,25#. This gives the result for perturba-
tive anomaly cancellation. However, a vanishing first Che
class does not necessarily imply a trivial connection for th
determinant line bundle. There can be a further obstructi
to a consistent definition of the chiral fermion determinan
due to nontrivial parallel transport around a closed loop. In
deed, it can be shown that under suitable assumptions,
holonomy of the Quillen-Bismut-Freed connection of the de
terminant line bundle is given by (21)index@Dirac(M ,A)#

exp(22ipj). Herej5 1/2 (h1h), with h andh being the
spectral asymmetry and number of zero modes, respective
of the Dirac operator on the five-dimensional manifol
M3S1 endowed with a suitably scaled metric onS1 @26,27#.
In order to evaluatej, one can viewM3S1 as the boundary
of a six-dimensional manifold,M6 , with a product metric on
the boundary, and apply the Atiyah-Patodi-Singer inde
theorem to obtain

index~Dirac!M6
52E

M6

Â`ch~F !2j~M3S1!. ~64!

It is instructive to work out the terms and their implication
explicitly. For the case relevant to us,M is four-dimensional
and we pick out the six-forms in the integrand in the firs
term on the right-hand side. These are of the form Tr(F
`F`F) andRAB`RAB`Tr(F). The former is the Abelian
anomaly inD12 dimensions~hereD54) which gives rise
to the perturbative non-Abelian gauge anomaly inD dimen-
sions@24,25,28#. It vanishes when the perturbative anomaly
free condition Tr(T i$T j ,T k%)50 is satisfied. The latter,
which is the gravitational-gauge cross term, is required
vanish@Tr(F)50# for the absence of mixed Lorentz-gauge
anomalies when there are couplings to Abelian fields@29#.
These terms occur in the holonomy theorem of Bismut an
Freed because the holonomy measures the nontriviality
the connection of the determinant line bundle, and pertub
tive anomalies which correspond to the nontriviality of th
first Chern class must necessarily contribute. In this spir
discussions of global anomalies make sense only if perturb
tive anomalies cancel. With the perturbative anomaly canc
lation conditions, we therefore conclude thatj is an integer
since index~Dirac!M6

is an integer. Thus the holomony theo
rem tells us that the remaining obstruction, i.e., the glob
anomaly is due to (21)index@Dirac(M ,A)#, and the consistency
condition is again the requirement that the index of the tot
chiral Dirac operator in four dimensions with generalize
spin structure is even.
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We have presented our arguments of the global anom
in terms of the Ashtekar variables for definiteness. We wo
like to end by emphasizing that our results would also obt
in the setting of Weyl fermions coupled to convention
gravity and ordinary spin connections instead of the As
tekar connections@30#. This is essentially because th
anomaly can be understood as coming from the inconsis
change in the fermionic measure or the chiral fermion det
minant, and for both schemes, the change
exp@2ip(N12N2)# 5(21)index (Dirac).
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