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In this paper we examine the coupling of matter fields to gravity within the framework of the standard model
of particle physics. The coupling is described in terms of Weyl fermions of a definite chirality, and employs
only (anti-)self-dual or left-handed spin connection fields. We review the general framework for introducing
the coupling using these fields, and show that conditions ensuring the cancellation of perturbative chiral gauge
anomalies are not disturbed. We also explore a global anomaly associated with the theory, and argue that its
removal requires that the number of fundamental fermions in the theory must be multiples of 16. In addition,
we investigate the behavior of the theory under discrete transforma®ipis and T, and discuss possible
violations of these discrete symmetries, includi@® T, in the presence of instantons and the Adler-Bell-
Jackiw anomaly.

PACS numbes): 04.62+v, 11.30.Er, 12.10.Dm

I. INTRODUCTION ditions for anomaly cancellations for the standard model
gauge groups remain true in the presence of Ashtekar grav-
Ashtekar[1] has introduced a set of variables to describeity, and that the new fields do not introduce any further per-
gravity, which makes essential use of the chiral decompositurbative anomalies. However, they do introduce global
tion of the connection one-forms of the local Lorentz group.anomalies. Cancellation of these obstructions for grand uni-
What has been shown is that, at least for Einstein manifoldied theoriesS(GUT’s) in the most general context results in
without matter, the full set of field equations of general rela-the rather strong constraint that the total number of funda-
tivity can be recovered by use of only one of the two chiralmental fermions in the theory must be a multiple of 16.
projections of these connection forms. We may either use thgrand unification schemes based upon groups such &) SU
self-dual or the anti-self-dual connections and their respe(‘are therefore inconsistent when Coup|ed to gravity_ As a con-
tive conjugate variables. The constraints and reality condisequence, there is every likelihood that neutrinos must be
tions of the theory then define what the other set has to bemassive when consistency with gravity is taken into account.
Chiral projections are used routinely in particle physics:y particular, the SCL0) GUT with 16 fundamental Wey!
indeed, the fermion fields that define the standard model argymions per generation is singled out as the preeminent and
all chiral Weyl spinor fields. Within the Ashtekar context, simplest choice free from the global anomaly, if one allows
left-handed spinor fields are coupled to one of these connegor generalized spin structures and arbitrary topologies.
tion forms, sayA™, while right-handed ones are coupled to e also discuss how the usual discrete symmetries are
the other. Since only one of these is all one needs to defingnplemented in the presence of Ashtekar gravity. We shall
general relativity, the actual Lagrangian must be expresseghoy that it is possible to posit discrete transformation laws
entirely in terms of either left-handed or right-handed Weylfor the fermion and Ashtekar fields which are consistent both
spinor fields. o with our general notions of what parity, time-reversal, and
That the standard model can be so described is of coursgharge conjugation transformations are, and with the funda-
already known. For example, in $) grand unification  mental canonical commutation relations of all of the fields.
schemes|[2], one employs a single 16-dimensional left- piscrete symmetries for bispinors can be implemented in the
handed Wey! field to describe one generation of fermionse|assical limit modulo certain reality conditions. However,
What is less clear is how the coupling of Ashtekar fieldsyyhat we shall show is that, inevitably, the underlying quan-
affects the resultant physics. tum theory is not invariant under parity due to the occurrence
In what follows, we describe some facets of these conseayjal anomaly in quantum field theory. The question of

quences. Since Ashtekar gravity makes use of only one ot pT jnvariance will also be briefly discussed.
the chirally projected Lorentz connections, there arises the

guestion of whether anomalies which are normally present in

such theories are under control. We show that the usual con- Il THE SAMUEL-JACOBSON-SMOLIN ACTION

AND THE ASHTEKAR VARIABLES
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imply that A~ and A* are the anti-self-dual and self-dual

E an STanS part of the spin connectiow, respectively: i.e.,
* ++ * +
~8nG Fa—'3(16 G) f : .
(1) AaI =Xiwoa— Eeabcwbc- 5)

The (antiself-dual  two-forms 3* which obey It hat th . d he Ashtek
xS 7a_ 7i3 72 are defined as t is easy to see that the action reproduces the Ashtekar

variables and constraints. For convenience, we work in the

_ i . spatial gauge in which the components of the vierbein and its
X8= O/\ea+2 €%pce”/\e° ) (2)  inverse can be written in the form
F™ are the curvature two-forms of the SOC3, Ashtekar | N0 En N~ 0 ®
connections, i.e., CAu= Niey eq)’ AT =(NUN) o',
—dAT + EE beAT AAT 3) The form assumed if6) is compatible with the Arnowitt-
a2 e Deser-MisneADM) [4] decomposition of the metric
apd en ,.A=0,. ..,3 denote .the vjerbein one-forms in four dszzeA#eAVdX,dev
dimensions,e,p= €gape While N is the cosmological con- o o
stant. Latin indices label flat Lorentz indices while spacetime = —N?(dx%)2+g;;(dx'+ N'dx%) (dx + NIdx®)  (7)

indices will be denoted by Greek indices. Lower case Latin

indices run from 1 to 3 while upper case Latin indices rangewith the spatial metriog;; =e%e,;. Thus we see that the

from 0 to 3. choice (6) in no way compromises the values of the lapse
The Ashtekar variableEl] are sometimes referred to as and shift functionsN andN', which have geometrical inter-

(anti-)self-dual variables because the equations of motion opretations in hypersurface deformations. With this decompo-

the Samuel-Jacobson-Smolin action with respe@to sition, it is straightforward to rewrite

1
/SJS—16 Gf dx{+ 2iF3A + 2IAS,D 72+ 2INIT 7?Fija}

1 N S
—mf d4x[N(e be0 2T IPF [+ 3eabc§ijka'aalbak°) +boundary terms, (8
|
with o andN defined as H,=2i/2F;;,~0,
(12)
E‘aEE'E”keabce e _ miamip[pc . M ~ke
2 jbkes H=e€apc0 0 Fij+§§ijk0 ~0,
N=dete,) 'N. (9)  respectively. Ashtekar showed that these constraints and

their algebra, despite their remarkable simplicity, are equiva-
The tildes above and below the variables indicate that theyent in content to the constraints and constraint algebra of

are tensor densities of weight 1 andL, respectively. There- general relativity{1]. Note that both the self-dual and anti-

fore, +(2i'*/16wG) are readily identified as the conjugate selt-dual versionsys;s, describepure gravity equally well.
variables toA;;, and we have the commutation relations

_~a = Il. COUPLING TO MATTER FIELDS
[a2(x,1),Ajp(Y,1)]=*(87G) 8;5,8%(x~y). (10
The coupling of matter fields to gravity described by the
The variablesAg,, N', andN are clearly Lagrange mul- (anti-)self-dual Ashtekar variables have been considered by
tipliers for the Ashtekar constraints, which can be identifiedothers beford5-7], and will be examined closely in this

as Gauss’ law generating $8) gauge invariance, work. It should be emphasized that besides self-interactions
_ in pure gravity, only fermions couple directly to the Ashtekar
G?=2iD0"?~0, (1)  connections. They are hence direct sources for the Ashtekar

connection. Conventional scalars and Yang-Mills fields have
and the supermomentum and super-Hamiltonian constraintslirect couplings only to the metridhence, too) rather than
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to the Ashtekar-Sen connection. Thus when one substitutes o i™
the conventional gravitational action with the Samuel- P=lr= o (16)
Jacobson-Smolin action, complications can come from the !

fermionic sector, primarily because one has to make a choice _
between the actions described By andA~ and once the Where 7%=—7% (a=123 are Pauli matrices, and
choice is made, it is permissible to couple only right or left-7 =7 = —12. We also have
handed fermiongbut not both to the theory* Y5 =i70yty23
We first look at the conventional Dirac action, with cou-
plings to ordinary spin connections. We then describe cou- I, O
plings of Ashtekar fields to fermions, and explore the physi- “lo —1,
cal implications in the following sections.
Consider the conventional Dirac action for an electron orand the Dirac bispinor is expressed in terms of two-
a single quark of a particular color in the presence of only thecomponent left and right-handed Weyl spingfs i as
conventional gravitational field. The action can be written as

17

Pr
| v=| g | (18)
& :__j *1)WyAEAD, ¥ +H. C., 13
D 2 M( YWY En 13 The contractions irf13) are defined by
ENDY=E*,7, V. (19

where the covariant derivative with respect to the spin CONjyote that the vierbein vector fields and one-forms,

nection,w, is defined by EA=E*ad, andeA:eAMpr,’ satisfyE €B= 5,8 .
In the chiral representation, the covariant derivative can
be written as

D,¥=dx*(d,+ 5 ®,pc’ )W (14)
a
r
+
— 0
| A2 b
with the generator/*B= %[ 1" yB]. We adopt the conven- DW=dx*{ d,ls—i a 6.
. — L
tion 0 A,ua?
(20)
A . Bl _— AB
=2y 15 and in conventional coupling of fermions to spin connec-
tions, A™ are, precisely,
with »™*=diag( 1_,+ 1,+1,+1). _ Al =*iwga— 3 LI (21)
We use the chiral representation henceforth for conve-
nience and clarity. In the chiral representation Written in terms of the Weyl spinors, the Dirac action is
(1) (2)
(22)

i i -
7= [ e0f -5 |dimEan o [ 0| lEa0 a0,

! + + ! + =
+fM(*I)<——2_>¢RAEAlD ¢R+J'M(*l)(-2—\)EAl(D )T b

v

(3) (4)

where

we shall choose the- action. There is an ambiguity in the conventions of the Dirac matrig&swhich allows one to couple either
A" or A™ to left-handed Weyl spinors. We have adopted a choice which couples anti-self-dual spin connectidis taniéft-handed
spinors. To the extent that there are no right-handed neutrinos in nature, we should describe nature with only left-handed Weyl spinors. So
once the initial choice of couplind™ to the neutrino is made, the theory cannot be described bwandright-handedweyl spinors.
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a a . o —i2y*(p-L ; N -1
sz(d_ma%)(ﬁb D+¢R5(d_iA;%>¢R, P LX) —ixt (P, e, [0 dp(P ()],

C:p (X)=xL(X), i.e., (Pe=CPT),

a

T . —_
(D~ g0 =d¢ "+ AL =, (23) T ()= —i T (T H(X)). (28)
a A set of discrete transformations for the gravity variables
(D+¢R)Tzd¢RT+i¢RTA;T—. consistent with the ones described above for fermion fields
2 can then be defined as follows:

Notice that in(22), terms (1) and (4) contain A~ but not P:(02(x,1), A5 (X, 1) (T3P~ 1(x,1)), AL (P L(X,1))),
A", while (2) and(3) involve A* but notA~. Furthermore,
it is well known that right-handed spinors can be written in C:(@3(x,1), AL (X, D))= (@F3(X, 1), AL(X, 1),  (29)
terms of left-handed ones through the relation
L(iafy Flw (T Y% (1 1ly
PR 24 T:(@3(x,t), Al (X, 1))~ (2(TH(x, 1)), AL(TH(x,1))).
These transformations are consistent with the commutation

and vice versa, so the terfd) which involvesA™ can be relations(10). In dealing with curved spacetimes , it is more
written in terms of totallyleft-handed(anti-self-dual spin ~ convenient to rewrite these transformations in terms of their

connections and Weyl spinors as action on the one-formse(,A). These give
i P:(e%e%A])—>(e% —e%A]),
fM(*1)<_§)XITAEAlDXL- (25) e e
Ci(eA )= (e5A,), (30)
Similar remarks apply to the terif2) with regard to right- T:(e%e%A7 )—(—e%e®Al).

handed spinors and the fiekd".

In order to couple spinors to Ashtekar connections of only P and T transformations for the Ashtekar variables for
one chirality, we can now define modified “chiral” Dirac pure gravity have been discussed previoysly However,
actions that discussion did not cove€L and CPT, nor take into

account the effect of coupling to fermions. Note also that

So=2{(1)+(4)} P andT are orientation-reversing transformations. Wtile

andC are to be implemented by unitary transformationss
_ *1V(_iv( AT - T - to be implemented anti-unitarily, so that underc numbers
_J’M( D(=D(SLPEND” b+ XL EAD X0, are comzlex conjugated.

We emphasize that the Ashtekar variables are however
not necessarily orientation-reversal invariant. In fact there
are four-manifolds with no orientation reversing diffeomor-
s5=2{(2)+(3)} phisms. The signature invariant, of a four-manifold is odd

under orientation reversal. Therefore a manifold with nonva-
:J' (*1)(_i)[¢1|:{7AEA[D+¢R+ EA[(D7¢L)T7'A¢L]- nishing =~ cannot possess an orientation reversing diffeomor-
M phism. One can show that for the Ashtekar variables,
27) JmFL/AF 2= [yFX/\F*%«7 [10]. Thus for manifolds
with nonvanishingr’'s, A* can neither be diffeomorphic nor

Next, we make the identification that the quantit®s, as SO(3C). gauge equivalent té". . . .
anticipated by the notation, are precisely the connections in- TO_ discuss the effe_ct of the discrete transformations in a
troduced by Ashtekar in his simplification of the constraintsCONCiSe manner, we first defikeg= —Aga such that

of general relativity, and the very same variables in the

(26)

Samuel-Jacobson-Smolin action of HG). Instead of the Ao Ei_(A*—AU
. . . . .. . a 2| a a’?
conventional sum of the Einstein-Hilbert-Palatini action and
the full Dirac action,”p , the total action is now taken to be (32)
(Y5 +-s;9. Remarkably, it is possible to shoffor in- A E_}éa (A +AD)
stance, by using E¢37)] that this total action reproduces the be 2" bclMa T Ma s

correct classical equations of motion for general relativity o ) )
with spinors[5,8]. and keep in mind the effect of the discrete transformations

displayed in(30).
The curvature

IV. DISCRETE TRANSFORMATIONS AND SPINORS c
FABEdAAB+ AA/\ACB (32)

The usual discrete transformations for the second quan-
tized spinor fields are then has components



5686 LAY NAM CHANG AND CHOPIN SOO 53

1 1 and the change of the total action is then
FOaZE(F;_F;): Fbc=—§6abc(F;+F§), (33
B B AT o= DT 535t AD
and the “torsion” To(A™), which depends oi\™, is de-

fined as :if d{— eAAT
TA=deM+ ARg/\eB. (34) M (87G) A
With all this, it can be shown that the “chiral” gravita- i BA AC A oD
tional and Dirac actions are related to the conventional ones HET (nncoy/e™/\ee )]
by |
. _ A
V85 167Gy | &N/ Fae " <8we)f A0 (49
¥ ! f [—d(e*NATp) +TAATA] It should be noted that for spacetimes with Lorentzian
(167G) Ju signature, the Ashtekar variables are not real but rather may
2\ be required to satisfy reality conditions which are supposed
0 1 2 3 i i
———1 e'NelNe’Ne (35)  to be enforced by a suitable inner product for quantum grav-
167G Jw ity [1]. Moreover, the actions are not explicitly real and their
hermiticity could be tied to the inner product for the yet
and unavailable quantum theory of gravity.
- i However, if we are interested in examining second quan-
SH=Spt fM ingAeABCDeC/\eD/\TB tized matter in a gravitational backgrouffdr that matter, in

flat spacetimg we may enforce the reality conditions on
i A~ by hand. We assume for our present purposes, that even
Iﬁd(gl/*eABCDeB/\eC/\eD) , (36)  though we do not at the moment have an inner product for
(3 quantum gravity that will enforce these reality conditions, we
can pass over to the second order formulation whereby we
eliminate the Ashtekar connections in terms of the vierbein
and spinors through the equations of motion Aor and en-
force the reality conditions by inspection.
= ot S e So, varying the total first order actior/; +.775;5, With
respect toA~ yields

where A= ¢! A+ x P x0 .
The combined fermionic and gravitational total action is,
therefore,

S feA/\eBA*F
777 (16mG) )y AB

D3 2=(47G) Ee J2ePN\et/\ed+ Ee"" PP Net/\e
3 bcd 2 bc 0

_i q 1 AN
3 fM T (876)¢ A

1
+ g(fABcolﬂAeB/\eC/\eD)]

+iyPe?/\e,/\e° (41)

which implies that the Ashtekar connection is

il—f /\@A—z—)\ ePNetN\e?/\ed
(167G)Jy A 167G ’ L
(37 A; =i Woa— Eeabcwbc_ (27G) €apq EebcAB'ﬁAeB_ [ ‘#bec}-
where (42)
@AETA+(27TG)€ABCD¢BGC/\eD. (38)

) ) o Upon imposing the usual Hermiticity requirements on the
Observe that the sum of the conventional Einstein-Hilbertspinors (which  implies that ¢* is Hermitian,

Palatini and Dirac actions is given by the first two terms in(o—)t= A*and the requirement that the spin connectiors

the second line of37). real, one finds tha® =0, which for the case of pure gravity,
We then find that undeP (and alsoCP andCPT), the  reduces to the torsionless condition. Thus passing over to the
change is second order formulation where the Ashtekar connection has
ANSp=PspP =g been eliminated and reality conditions have been imposed,

1 we find that the change in the action undefand alsoCP
=iJ gd(eABCDMeB/\eC/\eD) andCPT) is
MO
. EEABCDlpAeC/\eD/\TB (39) %Recall that pure imaginary local Lorentz invariant pieces of the

2 action areCPT odd
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i present in the theory will be examined in the following sec-
A fota= — 1_2f d{eapcoy/e®/\e“/\eP} tion. _
M We shall label collectively by, T' the gauge connection
i one-forms of the standard model. Thés denote generators
=— EJM d,[defe)j£]d*x of the standard model gauge group, and there should not be
any confusion between this indéxand spatial indices. The
i covariant derivative in/", in the action is then replaced by
=— EJM(V”J £)dete)d*x the total covariant derivative

a

d_iAa%) Su—iWi(Ths |, (46)

=—|§AQ5, (43 D é,=

where the index associated WitthLI denotes internal “fla-

vor” and/or “color.” In this modified model, the right-
AL ANB handed Weyl fields of the conventional standard model are to
J§=VERY y’¥ i . . ;

be written as left-handed Weyl fermions via the relation

br=—i7XE, (47)

where

= —EL(${ b~ dETbR)

= —EA(¢ P d+x(x0) (44)
_ _ _ _ _ So an electron or a single quark of a particular color is rep-
is precisely the chiral current, aniQs is the change in the resented as a pair of left-handed Weyl fermiors (and

chiral (axial) charge. Therefore, it would appear that if the y, ), and a left-handed neutrino is represented by a single
chiral current is not conserved, the action fails toHEmit-  |eft-handed Weyl fermion.

ian and invariant undelP, CP, andCPT. In this respect, the The total action is still to be/g,s+.77, with the total
Adler-Bell-Jackiw(ABJ) anomaly or the axial anoma[Ll]  covariant derivative 0f46) but summed over all left-handed
induced by global instanton effects may lead to violations ofmyltiplets, including “right-handed” multiplets which are
CPT through chirality changing transitions. Chirality- \yritten as left-handed ones. Using E@7), right-handed

changing transitions due to QCD instantons have been invegyrrents can be written in terms of left-handed currents
tigated by others beforgl2], including 't Hooft[13] in his  through

resolution of the U(1) problem. We shall postpone the dis-

cussion on the physical implications and bounds on the ap- I =k (TR bR,
parent non-Hermiticity of the action and the implied viola- ! A
tions of discrete symmetries to a separate report. A related =X[|¢M(T,’_')|JX,_J, (48)

discussion on the effects of discrete transformations on ac-
tions which utilize self-dual variables in the description of yith
four-dimensional gravity can be found in R¢L4].

Although the expressions and discussions above are for a T'=—(TR)". (49
single quark or electron, it is easy to incorporate more matter
fields into the theory simply by replacing’® with Notice however that terms containing the ordinary gauge

connectionsW are Hermitian, so the factor 2 multiplying
terms denoted byl) and (4) in (22) takes care of the con-
¢AEE (DITA@'-’ (45) tributions from terms withw in (2) and (3) which would
have been present had we used the conventional Dirac ac-
where the sum is over all Weyl fermions, including right- tion. Similarly, this holds also for the left-handed neutrino
handed fermions which are to be written as left-handed oneg&lthough it is now described by only the tef® (summed
Conventional standard model Yukawa mass couplings an@ver the specigsnstead of(1) and(2). The net result of all

Higgs fields can be introduced without modifications. this is that the difference between the “modified standard
model” with gravity described by, +.75;5with couplings
V. THE STANDARD MODEL WITH ASHTEKAR EIELDS only to left-handed fermions and the conventional action is

still as described by37).

We next examine how the quark and lepton fields of the
St-andard model al:e to be _Coupled to the Ashtekar fields. VI. CANCELLATION OF PERTURBATIVE GAUGE
Since we are allowing couplings #o rather than the whole ANOMALIES
spin connection, only left-handed fermions can be coupled to
the theory. By writing all right-handed fields in terms of ~ We shall first demonstrate that the standard model defined
left-handed ones, it is possible to couple all the standar@ntirely in terms of left-handed fermions, and the anti-self-
model quark and lepton fields to Ashtekar gravity in a con-dual Ashtekar field@\~, is free of perturbative chiral gauge
sistent manner. We shall show in the next section that thighomalies.
coupling will not disturb the cancellations of all perturbative  Recall that the anomalies can be determined via Fujika-
anomalies, given the multiplets of the standard model. Thava's Euclidean path integral method. We can expand the
guestion of how to deal with the global anomaly that may bdeft-handed multiplet,‘IfLI = (%LI), and\IfLI, in terms of the
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complete orthonormal sgtx’, xR} (see, for instance, Ref.

[15]) with u%‘(><)=aII ] Xa'(x) Y°T'Xn(x)dete)
P T TG, G (56
Xn(X): \/E Xn(X), )\n>0, - 167T2 r 26 aBCPuv(

and is proportional to TA'{T/,T¥}). Here,G|,, is the field

strength associated WiW:u. So, the condition for cancella-

tion of perturbative gauge anomalies is that (T, T*})
(500 when summed over all fields coupled\Wg T' vanishes. But

5
( 2 )XO(X)l )\nzoy

=
|
=<

14 5 as we have seen, if “right-handed” spinors in the standard
XR(x)= 4 Xn(X), Ay>0, model coupled toW, T are written as left-handed spinors
2 coupled to W,T{' such that the representation¥;
1445 =—(TR)", then
B A T YT T = - TTRTL TS, (657)

There can be more than one chiral zero modes with theiand, the condition for the perturbative chiral gauge anoma-
fies of left and “right”-handed fermions to cancel is

left-right asymmetry governed by the Atiyah-Patodi-Singer
index theorem. In our present instance, the curved space TH(THTL, T+ (T T, T =0, (58)
Dirac operator contains the full set & connections be-

sidesW, and remains Hermitian provide,=0; andX,’s  which is precisely equivalent to the well-known condition
are the eigenvectors with eigenvaluesof the full Euclid-  [17]

ean Dirac operator. The chiral projections(B0) and (51)

serve the purposes of defining a chiral fermion determinant TrTYTL TED =Tr(TR{Tk, TED. (59

for the effective action as well as selecting only #e Ash- ] ] ] .
tekar fields in the actionf(*l)‘l_'Li y“D W, . This is The Ashtekar fields do not give rise to perturbative
achieved by using the Euclidean expansigrs:l anomalies because the generators of Ashtekar gauge group

belong to s(?), and SU2) is a “safe group” where Tr
(TYT,T})=0 for any representation. The introduction of
P (x)= E anxh(x), the Ashtekar fields therefore does not disturb the usual per-
n:Ap=0 turbative anomaly cancellation conditions. But the theory
(51)  can still be afflicted with global anomalies, which is the issue

— — we shall address next.
V()= 2 L oaXT (0.

n:N,=

VII. GLOBAL ANOMALY AND FERMION CONTENT

The diffeomorphism invariant Euclidean measure for each \wjitten[18] showed that in four dimensions, theories with
left-handed multiplet, an odd number of Weyl fermion doublets coupled to gauge
fields of the SW2) group are inconsistent. Without gravity,
the standard model has four SU(R),doublets in each gen-
eration, and so it is not troubled by such a global anomaly.
But what about the Ashtekar gauge fields? Strictly speaking

_ ; : for manifolds of Lorentzian rather than Euclidean signature,
\[/\g]a)ree—det(e), 's (up to a phaseequivalent to(see Ref. the group is complexified S@) and isomorphic to SL
(2,C). But both these groups have the homotopy group
I14(G)=2,, and the nontrivial transformations of the com-
du=]1 da,]I db,. (53  Plexified SU2) group inIl,(G) are associated with the ro-
n n tation group. As Witten[18] has argued, the presence of
nontrivial elements of this homotopy group can produce glo-

1:[D[em(x)ﬁ(x)]o[el’%x)wx)], (52

Under a gauge transformation with generafar bal SU?2) anomalies. So it would appear that in four dimen-
sions there could be further constraints on the particle con-
\PL(X)*}e—ia(x)T'\I,L(X) (54) tent in order to ensure that the theory be free of the global

anomaly associated with the Ashtekar gauge group. How-

ever, unlike the pure gauge case, gravitational instantons are

strongly correlated with the topology of spacetime, and ar-

guments based oH,4(G) cannot be carried over straightfor-

d,u—>d,uexp{ _if a(x)ﬁ/éi(x)dx]_ (55) wardly. In_ what follows, we present a unified treatment of

both gravitational and pure gauge instanton contributions to
the global anomaly for Weyl fermions.

The anomaly can be computed as in Ra&6]. This gives We review the essential points of the global anomaly

the measure transforms as
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[18,19. To begin with, consider a suitable Wick rotation of  Consider next a chiral transformation by which maps
the background spacetime into a Riemannian manifold. Notach  two-component  left-handed Weyl fermion
all manifolds with Lorentzian signature have straightforwardW¥ (x)—exp(mys)V (X)=exp(—=im)V (X)=—¥ (X). Obvi-
continuations to Euclidean signature and vice versa. A moreusly such a map is a symmetry of the action. However, the
general setting for this section is the scenario of mattemeasure is not necessarily invariant under such a chiral
coupled to gravity in the context of path integral Euclideantransformation because of the ABJ anomaly. Instead, for
quantum gravityf 20]. The Dirac operator is then Hermitian each left-handed fermion, the measure transforms as

with respect to the Euclidean inner produgiX|Y)

= [d*x det(e)XT(x)Y(x) [15]. The fermions can then be ex-

i 4 t
panded in terms of the complete set of the eigenfunctions o(?'“Hd'u exp( 'Trf,\,.d X de(e); Xa(x) y6Xn(X) | (6D)
the Dirac operator. The expansions will be the st as

in Eg. (51) with the eigenfunctions normalized so that The expressionf yd*x=,, det(e)Xl(x) vsXn(X) is formally
equal to 6, —n_), wheren.. are the number of normaliz-
f d*x de(e)XL(x)Xn(x)z Sorn- (60) able positive and negative chirality zero modes of the Dirac
M operator. Upon regularization, the expression works out to be

> de(e)X(x) ysXa(x)= lm > dete)X(x)yse™*n" "X, (x)
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As a result, the index n.—n.) manifold backgrounds only, then under a chiral rotation of

=3,/ md*x det(e)XE(x) ysXn(X)=—17/8, where 7=(1/  m the measure is invariant regardless\ofOtherwise, if we
4872) [ yR* REYOT is the signature invariant of the allow for all manifol_ds with s_ignature invariants which are
closed foulrL—Vr;;nifoId\/l. (In this report, we restrict our at- multiples of 8, consistency with the global anomaly cancel-

tention to compact orientable manifolds without boundar lation requires thall must be even. In either instance, the net
F fold pe h boundaries. bound . g'index summed over all fermion fields is even.
or manifolds with boundaries, boundary corrections to the i ot presently clear what the integration range for

Atiyah-Patodi-Singer index theorem must be taken into aca - ghoyid be. But, it is quite likely that it should extend over

count) Consequently, the change in the measuredach  ; yiger class of manifolds than those which admit ordinary
left-handed Weyl fermion under a chiral rotation efis  gpin structure§23]. The considerations outlined above sug-
precisely exd@r78). If there are altogetheN left-handed gest that in order to do this, we would have to allow for
Weyl fermions in the theory, the total measure changes byouplings among the various fermion fields, for example via
exp(Nw7/8). But, as emphasized in Réfl9], the transfor- Yukawa couplings to spin-0 fields, and particularly via cou-
mation of —1 on the fermions can also be considered to beplings to gauge fields, which is what occurs in grand unifi-
an ordinary SW2) rotation of 2. Since SUW2) is a safe cation theoriesGUT's). The reason can be stated as follows.
group with no perturbative chiral anomali¢there are no When 7 is not a multiple of 8, it is not possible to lift the
Lorentz anomalies in four dimensionshe measure must be SO4) bundle to its double cover Sgi) bundle since the
invariant under all S(2) transformations. Thus there is an second Stiefel-Whitney classy,, is nontrivial. However,
inconsistency unless this phase factor, @Xp¢/8), is al-  given a general grand unificatigeimple) simply connected
ways unity. gauge groufis with aZ,={e,c} in its center, it is possible to

It is known that for consistency of parallel transport of construct generalized spin structuresvith gauge group
spinors fortopological four-manifoldsT must be a multiple  Sping(4)={Spin(4)x G}/Z, where theZ, equivalence rela-
of 8 for spin structures to exi$21]. This result also follows tion is defined by x,9)=(—x,cg) for all (x,9)
from n,.—n_=—17/8, since the index must always be an eSpin4)XG [23]. Note that Spig(4) is the double cover
integer. However, a theorem due to Roh[22] states the of SO(4)x(G/Z,). Such spinors then transform according
signature invariant of amoothsimply connected closed spin to double cover Spig(4) group, and the parallel transport of
four-manifold is divisible by 16. If one restricts to four- fermions does not give rise to any inconsistency. However,
manifolds with signature invariants which are multiples of the additional quantum field theoretic global anomaly cancel-
16 in quantum gravity, or in semiclassical quantum fieldlation condition must still be satisfied if the theory is to be
theory with left-handed spinors, one allows for these four-consistent.
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Now, in a scenario where all of the fermions are coupledfor neutrinos, thereby giving rise to neutrino oscillations, and
to one another via gauge fields, the index theorem should b@ay also play a significant role in the cosmological issue of
applied to the trace current involving the sum over all the*dark matter.”

fermion fields. The resultant restriction dhis the condition A more mathematical treatment of the perturbative and
that the index for the total Dirac operator with global anomaly cancellation conditions we have discussed
Sping(4) connections,N.—N_, is even. Otherwise, can be given. It is based on the fact that the chiral fermion

Green’s functions which contairN(, —N_) more ¥, than  determinant is actually @ection of the determinant line
W variables in the odd index sector will be inconsistent.pundle[24—27. In order for the functional integral over the
The relevgnt index of the thal _Dirac operator in the presencgemaining fields to make sense, there must not be any ob-
of an additional grand unification gauge field other than thestryction to the existence of a global section. It is therefore
Spin connection is necessary for the first Chern class of the determinant line
bundle to vanish24,25. This gives the result for perturba-
1 tive anomaly cancellation. However, a vanishing first Chern
- _zf Tr(FAF), (63  class does not necessarily imply a trivial connection for the
8 87 Jm determinant line bundle. There can be a further obstruction
to a consistent definition of the chiral fermion determinant
. due to nontrivial parallel transport around a closed loop. In-
whereF=F'7] is the curvature of the internal grand unifi- geed, it can be shown that under suitable assumptions, the
cation gauge connection. The global anomaly consistenciolonomy of the Quillen-Bismut-Freed connection of the de-
condition given above then implies that for arbitrarfs  terminant line bundle is given by —(1)ndeXDiracM.A)]
there can only be I6fermions in total in the theory, where exp(—2irg). Here ¢= 1/2 (5+h), with » andh being the
k is an integer; and the gauge group should be selected sugpectral asymmetry and number of zero modes, respectively,
that the instanton numbet1/8?) [y Tr(F/\F), is aways  of the Dirac operator on the five-dimensional manifold
even for nonsingular configurations. _ MxS! endowed with a suitably scaled metric 8h[26,27.

If one counts the number of left-handed Weyl fermions|n order to evaluatg, one can viewM x S* as the boundary
that are coupled to the Ashtekar connection for the standarg 5 six-dimensional manifoldl, with a product metric on
model, one finds that the number is 15 per generation, givinghe poundary, and apply the Atiyah-Patodi-Singer index
a total of 45 for 3 generations. This comes about becausgeorem to obtain
each bispinor is coupled twice to the Ashtekar connection
while each Weyl spinor is coupled once.g., for the first
generation, the number is 2 for each electron and each up or )
down quark of a particular color, and 1 for each left-handed index Dirac)Msz —f A/\Ch(F)— &M XSY).  (64)
neutrino) Thus even if one restricts te=8k, the global Me
anomaly with respect to the Ashtekar gauge group seems to
imply that there should be additional partide For ex- o ) S
ample, there could be a partner for each neutrino, makingf IS instructive to work out the terms and their implications
N to be 16 per generation, or a partner for just theeutrino, ~ €xplicitly. For the case relevant to ud, is four-dimensional
or even four generations. As a result, even with8k, grand  and we pick out the six-forms in the integrand in the first
unification schemes based upon groups such a)Sand term on the rlght-hziréd side. These are o_f the forml_——rr(
odd number of Weyl fermions would be inconsistent when/\F/\F) andR,g/AR®/ATr(F). The former is the Abelian
coupled to gravity. anomaly |nD+2_ d|menS|ons_(hereD=4) which gives rise

The net conclusion is therefore that inclusion of manifoldstO the perturbative non-Abelian gauge anomalyirdimen-
with arbitrary 7's in the integration range is possible, pro- Sions[24,25,28. It vanishes when the perturbative anomaly-
vided we allow for generalized spin structures, with a total offfee condition Tr(7i{.7;,7,})=0 is satisfied. The latter,

N =16k fermions, in order that the global anomaly is absentWhich is the gravitational-gauge cross term, is required to
In the event that the structures are defined by simple Gu¥anish[Tr(F)=0] for the absence of mixed Lorentz-gauge
groups, the simplest choice would be @0). It is easy to anomalies when there are couplings to Abelian fi¢2i].
check that the 16 left-handed Weyl fermions in the(8®  These terms occur in the holonomy theorem of Bismut and
=Spin(10)Z, GUT indeed belong to the 16-dimensional Freed because the holonomy measures the nontriviality of

chiral representation of Spin(10) and satisfy the generalizef’® connection of the determinant line bundle, and pertuba-
spin  structure equivalence relation for{Spin(4) tive anomalies which correspond to the nontriviality of the

X Spin(10}/Z,. first Chern class must necessarily contribute. In this spirit,

It is worth emphasizing that this generalized spin structureliscussions of global anomalies make sense only if perturba-
implies an additional “isospin-spin” relation in that fermi- t|v_e anoma!lgs cancel. With the perturbative anomgly cancel-
ons must belong to Spin(10) representations, while bosorfgtion conditions, we therefore conclude tiais an integer
must belong to SCLO) representations of the GUT. This has Since indexDirac)  is an integer. Thus the holomony theo-
implications for spontaneous symmetry breaking via funda+rem tells us that the remaining obstruction, i.e., the global
mental bosonic Higgs fields, which cannot belong to theanomaly is due to  1)"eX[PracM.A)] " gnd the consistency
spinorial representations of $0) if one allows for arbitrary ~ condition is again the requirement that the index of the total
7's. More generally, the presence of the extra partglam-  chiral Dirac operator in four dimensions with generalized
plied by global anomaly considerations can generate massepin structure is even.

T

N,—N_=—N
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