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Semiclassical interpretation of the topological solutions for canonical quantum gravity
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Ashtekar’s formulation for canonical quantum gravity is known to possess the topological solutions which
have their support only on the moduli space of flat SL(2C) connections. We show that each point on the
moduli space/ " corresponds to a geometric structure, or more precisely the Lorentz group part of a family of
Lorentzian structures, on the fl@+1)-dimensional spacetime. A detailed analysis is given in the case where
the spacetime is homeomorphic RX T. Most of the points on the moduli spacé” yield pathological
spacetimes which suffer from singularities on each spatial hypersurface or which violate the strong causality
condition. There is, however, a subspace. 6f on which each point corresponds to a family of regular
spacetimes.S0556-282(196)02610-0

PACS numbgs): 04.60.Ds, 04.20.Gz, 04.20.Jb

. INTRODUCTION spacetimeM has the topologyRx M) with M) being a

) o ) compact, oriented, three-dimensional manifold without
To quantize gravity is one of the most challenging prob-poyndary.

lems in physics. As one of the various approaches there is a gecayuse the actiof.1) takes the same form as that of
program of canonically quantizing general relativity. The gjay-ThompsonBF) theory[9], Ashtekar’s formalism can
new variables discovered by Ashtekar have simplified thg)e regarded as a particular kind of SLC?,BF theory in
formulation of canonical quantum gravif¢] and this virtue  \yhich the two-form fieldS! is subject to Eq(1.4). As a
of Ashtekar's new variables has served to find many newonsequence the constraint equations which appear in ca-
aspects of nonperturbative canonical quantum graf#y  ponically quantized Ashtekar's formalism can be written in
One of these new aspects is that there exist “topologicathe form of linear combinations of the constraint equations in
solutions™ for canonical quantum gravity in terms of Ash- Br theory. Therefore the solutions to the BF constraints are
tekar's new variableg3,4]. _ ~also solutions to the Ashtekar constraints, which are called
In this paper we will focus on these topological solutions.ipe topological solutions.

For this purpose it is convenient to use the chiral Lagrangian There are two types of topological solutions according to

formulation[5-8] which start with the action whether the cosmological constahtvanishes or not. When
A A #0 canonically quantized BF theory has a unique solution
il ZJ' SIAF— =SIASH (1.1) _[9], wh|ch is promoted to the Chern-Simons solutiof]
M 6 in canonical quantum gravity:
. . iq_ H i
where A is the cosmological constant and'=dA'+ 3 Ved Al =expliScd Aal),
eKAIN\AK is the curvature of the SL(2) connectionA', 3
which is related to the Levi-Civitapin-connectiod w*?} as =i i Al L ik Al A AT A AK
R} ScdAl=inr | (AdA+3 ANAIAAY. (1.5
i _sip(m)i aB_ _ (1 _ijk,  jk_ i 0Oi
A'=—iP gof=—(ze" 0 +i0™). (1.2) When A =0, on the other hand, we have the topological so-

. . lutions with their supports only on flat connectidrs:
3! is an SL(2¢)-valued two-form constructed from the vier-

bein{e®}: ' '
ein{e”} Vopd All=y(AL] T] ]

LU S Fp(x), (1.6
XxeM ’

S'=iP Je*\ef=3elkel Nek+ie®Ne. (1.3
where we can consider the gauge-invariant functional

This equation is equivalent to the algebraic constraint zﬁ[AL] as a function on the moduli spacé’ of flat connec-
o tions modulo identity-connected gauge transformations.
SINSI=56;3k 3K (1.4 We are interested particularly in the geometrical signifi-

cance of these topological solutions, namely, what space-
where the repeated indices are supposed to be contracted. Fones correspond to these solutions. It is known that we can
simplicity we will restrict our analysis to the case where the

2More precisely speaking, there is a freedom of multiplying

“Electronic address: ezawa@funpth.phys.sci.osaka-u.ac.jp \IICS[A‘a] by a topological invariant which is composed of the con-
The definition and properties of the projecléijﬁ)' are listed in  nectionA} [10]. ¥ oJAL] is therefore the unique solution to the
Appendix A. quantum BF theory if we fix a principal SL(@) bundle.
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give a semiclassical interpretation to the Chern-Simons soluaecessary for constructing spacetimes is hidden in the en-
tion [4,11]. More precisely we can rega@cs[Ag] in Eq. larged gauge transformation of the BF theory, i.e., the Kalb-
(1.5 as a Hamilton principal functional which is subject to Ramond symmetry19]. In 2+1 dimensions this is not the
the Hamilton-Jacobi equation, and we regard the WKB orbitcase because the corresponding enlarged gauge transforma-
namely, the family of classical solutions extracted from thetion is almost equivalent to the diffeomorphism transforma-
Hamilton principal functionScs, as corresponding to the tion.
quantum solution¥ { A,]. In the case of the Lorentzian This paper is organized as follows. In Sec. Il, after briefly
signature these WKB orbit yields localljantide Sitter ~reviewing the canonical formulation of BF theory with
spacetimes. A =0, we construct the reduced phase space of S)(BF

As for\ptop({Aia] in Eq. (1.6), we do not know any works theory onRXx T3, Becguse of the noncompactness _of the
discussing the relation to spacetimes, except for the Euclidd@uge group, there exist several sectors, each of which can-
ean casd12]. We consider, however, that a semiclassicalnot be given soI_er by the total space of the cotangent bundle
interpretation can be given also to the topological solutiongVer the moduli space. In Sec. Ill, we explicitly see the re-

Wipd ] in the sense explained below. Formally the fune- &1 ey, 10 T el Lorentzian situctros, In

t(lf rg) l’ll[éa] C%r;];?deerrggdu:; spgé: e]awzt:ge?gg;?;id Ingq{he particular in the case witM )~ T3 we construct spacetimes

' with Lorentzian structures whose projection to the Lorentz

group is provided by a point in the moduli spage. Section
Pny(N)=38(n,no), (1.77 Vs devoted to a summary of the results and a discussion on

the extension to more general cases. We briefly explain that

wherenge./ " and the argument ranges in/". Finding the the extension to the casM(3)%Tg>< St is relatively trac-

spacetimes which correspond to the moawlie./“therefore  table, whereTl, denotes the Riemann surface of gegus

amounts to interpreting the topological solutiobg,,, semi-

classically. Il. REDUCED PHASE SPACE OF SL(2,C) BF THEORY

This situation is similar to that of2+1)-dimensional . . .
In this section we look into the reduced phase space of

gravity in the Chern-Simons forfl.3]. In 2+1 dimensions : S . X
the moduli space of flat connections for some noncompac‘?‘L(.Z'C.) BF theory. Qur starting point is the actiéh.1) with
anishing cosmological constant=0:

gauge group is shown to correspond to the space of geome\f
ric structures[14], and the spacetimes are explicitly con-
structed from the moduli in the cases of relatively simple —il =J' SIAF
topologies with zero cosmological constdhb,16 and with M
a nonzero cosmological constdit7]. In particular, in the
case where the cosmological constant vanishes, the mod
space of flat spin connections yields the Lorentz group par'tng
of the Lorentzian structure. T
Because BF theory is similar to Chern-Simons gauge —i|=f dtf (3)d3x(wa'A;+A'tG'+E{aCI>a'), (2.2
theory, we expect that some of the techniques developed in M
(2+1)-dimensional gravity can be applied also t&-Bdi-  \where we have séFd=1/2¢2"%| . and A:(&/at)A. Note
mensions as far as the topological solutions are concerneghat the temporal componen@é and Eita of the fields have
We will see in this paper that this is indeed the case. g kinetic terms. As a result these temporal components are
partlcular,_after imposing the reality cond|t|ons Class'ca”y’regarded as Lagrange multipliers with respect to which the
the moduli space of flat SL(2) connections turns out 10 yariation of the action yields first class constraints. This sys-

yield the Lorentz group part of th&3+1)-dimensional em involves two types of first class constraints. Gauss’ law
Lorentzian structures on the flat spacetime. In the simplestynstraint

case where the spatial manifold®® has the topology of a _ _

three-torusT2 we will explicitly construct spacetimes from G'=D,7 (2.2
the reduced phase spac& of SL(2,C) BF theory. While )

most of the points on the moduli spacé” correspond to generates under the Poisson brackets SLY2Zjauge trans-

pathological spacetimes which have singularities or whicHormations

S-function-type wave functions

Lﬁanonical formulation of this theory is obtained by perform-
the 3+1 decomposition of this actichThe result is

infringe the strong causality condition, there is a subspace of 5,5=[6,3]
/" (with nonzero codimensiohgach point on which yields ¢ ”
a family of well-behaved spacetimes. Unlike if-2 dimen- S,A=—Do=—do—[A, 6], 2.3

sions the allowed values of the moduli of conjugate momenta _ _ _
(i.e., ") are subject to severe restrictions under the conditionvhere we have s&=3'J; andA=AlJ;.> §=6'J; is an SL
that the point in the reduced phase space should yield spacg2,C)-valued scalar field oM (®). The remaining constraint
times which are as well behaved as possible. Another defi-
nite difference is that some important information which is

“We uset as the temporal coordinate ang®(=(x,y,z) as the

spatial coordinates.
3For a detailed explanation of the geometric structure, see, e.g.,%J; (i=1,2,3) denote SL(&) generators which are subject to the

[18]. commutation relationpJ; ,J;]= €’*Jy.
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Pai= Lgabep! (2.4 The (smalﬁl)1 gauge 3 transformation Aa(x)
—g(X)A(X)g"*(X) +9(x)d,g” (x) on the connection

. . Aa(x) is translated into the conjugation lgyxy) on the ho-
generates thggeneralizell Kalb-Ramond transformations a(X) Jug Yx0)

[19] lonomy
H[a]—g(xo)H[ a]g™*(Xo). (2.9
8,2=—Dop=—dp—ANp— p/\A,
The moduli space/ 7, is therefore identical to the space of
5. A=0 (2.5 equivalence classes of homomorphisms from the fundamen-
¢ ' tal group7;(M®)) to the group SL(Z) modulo conjuga-
tions:

whereg= ¢'J; is an SL(2C)-valued one form. These Kalb-
Ramond transformations are known to include the diffeo- e (3)
A 9=H M), SL(2,C))/ ~. 2.9
morphisms as a special ca€8]. o=Hom(m( ).SU20)) 29
The reduced phase spa@ the physical phase spade | the following we will explicitly construct/, and the

defined as the quotient space of the constraint surfacgquced phase space by exploiting the holonomy in the case
modylo gauge .transformatlons in a broat_ﬂ sense. The CcoRyhere the spatial manifold®) is homeomorphic to the
straint surface is the subspace of the original phase spagg ee-torusrs.
{(AL,7*)} which satisfies the first class constraint equations

'=®a'=0. The gauge transformations in a broad sense are

the transformations generated by the first class constraints. In

our case they consist of the small SLC2,gauge transfor- Let us now consider the case wit®~T3, We first
mations and the Kalb-Ramond transformations. By the argueonstruct the moduli space/5. It follows from
ment in Ref.[9], the reduced phase space is considered inr,(T®)=Z®ZaZ that the holonomies evaluated along the
general to be the total space of the cotangent bulitle”  generatorg e, 8, y} of 7 (T3) commute mutually. By taking
over the moduli space of flat SL@) connections modulo appropriate conjugations we find that the moduli spacg
small gauge transformations, namely, modulo gauge transsonsists of several ““disconnected” sectors:

formations which is homotopic to the identit§.The base i ) PO

space /" and the fibefT} ./ are, respectively, coordinated A=A & AT, (2.10

by the gauge-equivalent classes of connectidhsnd two- M1.Mz-"a<{0.3

formsEiab which are subject to the constraint equations.  The standard sectot s is characterized by
As is mentioned in Ref.9], the moduli space/"in gen-

A. Reduced phase space of®

eral consists of disconnected sectors which are related with H[a]=exd (u+ia)dq],

each other by large gauge transformations, namely, by gauge

transformations which cannot be continuously connected to H[B]l=exd (v+ib)J],

the identity. This fact has an interesting effect in the quantum

BF theory such as, e.g., the appearance sffates which also H[ y]=exd (w+ic)J,], (2.1

appear in the Yang-Mills theory. However, we are now in-
terested in the semiclassical interpretation of the modulivhere u,uv,w are real numbers defined modulor4and
space. The SL(£) connections which are related to eacha b,ce R. The gauge equivalence undg(x,)=exp(ml,)

other by an SL(Z;) gauge transformation are expected tofurther imposes the equivalence condition
yield the same spacetime metric. Thus we will henceforth

concentrate only on the sectadr which is connected to the (a,b,c;u,v,w)~—(a,b,c;u,v,w). (2.12
trivial connectionA} =0.
In order to parametrize/;, it is convenient to use ho- As a consequence the standard sectcg has the topology

lonomies along the noncontractible loops: (T3%R3)/Z,.
The flat sectors/ [*'"2"™ are parametrized by the ho-
; 1 lonomies
H(a)=h,[0,1]=7ex f dsa®(s)A,|, (2.6
’ HLa]=(~1)"exd £(3,+id,)],

where a:[0,1]-M® [a(0)=a(1)=x,] is a loop and”’ HI B = (= 1)"exd n(J,+id )],
stands for the path ordering with smalkerto the left. Be-
cause the connectiofy, is flat, the holonomy depends only H[ y]=(—1)"exg {(J,+idy)] 2.13

on the homotopy clagsx] of the loopa:

where ¢, ,{ are complex numbers which do not vanish si-
H(a)=H(a')=H[a] if [a]=[a’]. (2.7 multaneously. The gauge equivalence unde(x,)
=exp(—ixJ;) with ke C tells us that €,7,{) provide the
homogeneous coordinates on €P
6As is seen in the next subsection, this is not necessarily the case
if the moduli space/ " includes null rotations. (&, n,0)~e“(&€,7,0). (2.19
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Thus we find./ 1+">™~ CP2. Because two flat sectors pointin./ s the fiber coordinateX;,\,,\3) ranges over the
! ! ! 3 A
2N ang M0 ik Sy, 8Ny, dns) whole space'oC . Thu§_the sectar/ s of the reduced phase
F , ; F - space associated withs turns out to be théholomorphig
=(n;—n1,n,—n5,n3—ng)#(0,0,0) are related with ea(_:h cotangent bundfeT* [ (T3X R3)/Z,].
other by the large local Lorentz transformation e generic expression of the two-forms associated with
g(x) = exd 2m(onx+ oy +onsz)Jz], they are considered as Jeis
corresponding to the same set of spacetimes. Thus in the

following we will consider only one flat sector Jo—id3
N e= 200, 3 =(pdyAdz+qdzA\dx+rdx/A\dy) >
Let us next construct the reduced phase space, more pre-
cisely, the sectors of the reduced phase space which are as- Jy+1d5
sociated with the sectors’s and./ = of the moduli space +(Pdy/A\dz+QdzAdx+Rdx\dy) ——,
/" of flat SL(2C) connections.
For this purpose we have to find the SLC2,connection (2.20

which gives the holonomy2.11) or (2.13. This task is rela- where p,q.r and P,Q,R are all complex numbers and

tively easy in the present case. By making an appropriate : .
gauge choice and an adequate choice of periodic coordinat&s®" are subject to the constraint

(x,y,2z) with period 1, we find the desired connections. A pE+qu+ri=0. (2.21)
connection which belongs to"s is given by

The same rigid gauge transformatigiix) =exp(—ixJs) as

Aadx*=[(u+ia)dx+(v+ib)dy+(w+ic)dz]J, that which leads to the equivalence relati@l4) yields in

=(dW, +idW,)J;=dWJ,, (2.15  turn the equivalence relation
and a connection lying in/ & is (p,q,r;P,Q,R)~(e‘“p,e"‘q,e‘“r;eKP,e"Q,eKR()Z, 2
A dx®= (&dx+ »pdy+¢dz)(J,+iJ
? (& 7dy+{d7(Jz+10) which holds at the same time with E(.14. As is easily
=dE(J,+id)=(dE+idE,)(I,+idy). seen this sectorZ of the reduced phase space is not equal

(2.16 to the cotangent bundle ovef = because the complex di-
mension of. /¢ is 2 while that of the space of two-forms
Once we have obtained the explicit forms of the connec{2.20 associated with a point i’ is 5. We can neverthe-
tion, we can construct the whole reduced phase space Hgss see that the symplectic potential of the original phase
solving Gauss’ law constrain®2.2) for the conjugate mo- Space is inherited also to the sectefr. By substituting
menta7®, or equivalently for the two forn®’,, and by E0s.(2.16 and(2.20 into Eq.(2.1) and by taking account of
gauging away the extra degrees of freedom by means of tH€ constrain{2.21), we find the reduced action
Kalb-Ramond symmetry2.5). The calculation is somewhat

tedious and is illustrated in Appendix B. Here we describe —il*. :f [pE+qn+ri—i()(pé+an+ro)].
the result only. TF

The two-form associated with the connectiGh15 is (2.23
given by

The first three terms in the right-hand sitRHS) yield the

S = (A dy/A\dz+ N, dZAdx+ N zdxAdy)d;, (2.17) symplectic potential. Owing to the constrai@t21), this be-
comes the well-defined holomorphic cotangent vector on
whereh;,\,,\5 are complex numbers. By the same reason-/ =CP?. Thus the space which is coordinatized by
ing which lead us to Eq2.12), the rigid gauge transforma- (£,7,¢;p,d,r) is exactly the holomorphic cotangent bundle

tion g(x) =exp(@J,) gives us the equivalence relation * CP? over the moduli space/ . There remains in fact
extra three-dimensional spa¢éP,Q,R)} which is isomor-
(AZ)~—(A3), (2.18  phic toC®. The whole sectar/ of the reduced phase space

] ) ] associated with/ ¢ are considered to be the vector bundle
with A andX given by(2.15 and(2.17), respectively. Thus 5yer CP with the fiber being the direct product

we expect the sector of the reduced phase space in questiE * )n.CPAX C2. Because structure functions for the fiber
to have a cotangent bundle structure. We can see that this js; 7~ © ided by the ratio&' /£ of diff t hol hi
indeed the case by investigating the reduced action which i acrj(_a p:ow t?\' y ? rablosdlgno_ ! efenl (t)tont]ﬁrpd.'c t
obtained by substituting Eq$2.15 and (2.17) into the BF coordina e*s, '25 ve30 or bundle™ 1S equivalent to the direc
action (2.1): product (T%,CP<) X C°.
Before ending this section we briefly investigate the clas-
o o o sical dynamics on the reduced phase space. The a@ib9
—il% -~ f dtfA(u+ia)+Ay(v+ib)+Ag(w+ic)].
(2.19
"Precisely speaking the cotangent bundle structure breaks down at
This is exactly the symplectic potential which takes the formthe pointsA= 27 (n,dx+ n,dy+nzdz)J, in. /s, wheren;,n,,n,
of the holomorphic cotangent vector defined.drs. For a  take their values if0,1}. For a detail see Appendix B.
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implies that the dynamics ans is trivial. Thus the classi- straint (1.4) and classical reality conditions which are
cal solutions are given by the connection and two-formsequivalent to declaring that

which are gauge equivalent to the connectigrly and the . O a o (5)ia

two-form (2.17 with time-independent parameters. On the A'=—iP'" 0, =P e"\eP, 3D
other hand the classical solutions for the acii@r23 appear

to be somewhat nontrivial: with a real spin-connectiom®? and a real vierbeie®; and

(iv) construct the metric from the vierbegf* and give a

spacetime geometrical interpretation to the corresponding

point (A,%) in the reduced phase space.

To carry out this procedure is in principle possible but in
(p.q.r)(t)=e"*V(po,0o,ro)- (2.24  practice difficult. We will therefore take a converse proce-

dure: namely(i) prepare the connectiohe./; (ii) extract

Scrutiny of these equations shows that the above time evahe spin connectiono®? by imposing the classical reality

lution is nothing but the time-dependent gauge transformaeondition(3.1) on A; (iii ) find the vierbeine® with respect to

tion with g(t,x) =exd —ix(t)J;]. We can thus consider the which w?? is torsion free,

classical solutions to be gauge equivalent to the connection

(2.16 and the two-form(2.20 with time-independent pa- de*+ w“ﬁ/\eﬁ=0; (3.2

rameters €,7,{:p,qd,r). We cannot determine the evolution

of the parametersR,Q,R) from the reduced actiof2.23  (iv) investigate the properties of the spacetime obtained from

and so these parameters may appear to be arbitrary functiotise vierbein;(v) construct the two-fornk' by using the sec-

of time t. However, if we use equations of motion ond equation of Eq(3.1); and (vi) transform'J; into a

(D3)1ap=0, (P,Q,R) turns out to be gauge equivalent to a standard form by using the Kalb-Ramond symmémb).

constant vector irC®. Let us now explore the concrete relation between the

moduli space/; and the space of Lorentzian structures. We

first consider the generic casé~Rx M), By combining

the flatness of the SL(€) connection and the reality condi-

tion (3.1), we see that the spin connectiart? is flat. Thus,

on the universal coverinlyl ~Rx M®) which is defined in
Now that we have constructed the moduli spatg, let  a similar manner as that in Appendix B, we can express

us consider what spacetimes correspond to each point an“? in the form of a pure gauge:

4. By analogy with 2-1 dimensiong 15,17, we expect

that the Kalb-Ramond transformatiof2.5) with a time- waﬁ(iﬂ)=[A*1(>Z“)]”‘ydA('i”)7 , 3.3

dependent parametep plays an important role when we

construct nondegenerate spacetime metric from the SO'”“"%hereA(i“)“ E[;?)exp(fg”w(ﬁ”))]“ is the integrated spin

to the constraints which are obtained in the previous section.qnnectior? lfsing this equation, thBe torsion-free condition
There are, however, two essential differences compared t&.z) is cast into the closedness condition

the (2+1)-dimensional case. One is the presence of the alge-

braic constraint1.4), owing to which the allowed values of d[ A (X#)%,eB(X#)]=0.

the parameters in Eq2.17) or (2.20 are considered to be B

restricted. The other comes from the extra symmetries in th%ecauselVl is simply connected by definition, the torsion-

BF theory compared to those in Ashtekar’s formalism. Infree condition is completely solved by '

2+1 dimensions the translation part of the 1SO(2,1) gauge

symmetry corresponds to the Kalb-Ramond symmetry in

(3+1)-dimensional BF theory. This translation part is shown

to be equivalent to diffeomorphisms under on shell and when

the dreibein is nondegenerdtt3|, whereas in 3-1 dimen- where the sefX*(x*)} is considered to be the embedding of

sions the Kalb-Ramond transformation contains extra symM into (the universal covering dfan adequate subspace of

metry other than diffeomorphisni42]. Thus in 3+1 dimen- the(3_+1)-dinlensional Minkowski spack®**. In order for
sions it is possible that a Kalb-Ramond transformatiortn® vierbeine®(x*) to be well defined oM, it must satisfy
relates two spacetimes which are not diffeomorphic withth® “periedicity condition

each other. This implies that some important information on € o T (T v

the spacetime is involved in the Kalb-Ramond transforma- e(y+xk)=et(x") for "[y]em(M) (3.9
tion (2.5. In 2+1 dimensions this was not the case; the - ~ )
translation part of the 1ISO(2,1) gauge transformation at mosPlus some conditions necessary whdnis not contractible
changes the appearance of the singular part of the spacetirf @ Poin). By substituting Eq(3.4) into Eq. (3.5 we find
[16]. ~ ~
By analogy to the(2+1)-dimensional case it would be dX‘“(y+x“)=d(H0[y]"‘ﬁX5(x“)),

standard to take the following recipe for spacetime construc-

tion: (i) prepare the solutionX,%) obtained in the previous

section; (i) take an appropriate time-dependent Kalb- ®we mean byx* and%* the point onM and that onM, respec-
Ramond transformatio(®.5); (iii) impose the algebraic con- tively.

(&n1,0(1)=e"Y(&y,m0,40),

Ill. RELATION TO (3+1)-DIMENSIONAL
LORENTZIAN STRUCTURES

A. General framework

e*(XK) =[ A~ H(X#)]%d XB(xH), (3.9
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whereH,[ y]“; stands for the holonomy of the spin connec- coshW,  —sinhw, 0 0
tion Q“B ev.aluated along the loop. By integrating this we —sintW,  coshiv, 0 0
obtain the important result (A%,)= _ ,
p 0 0 codV; —sinw,
_ _ 0 0 silW,;  cosW;
X (y+%X4)=Hol y]9pXP(X*) + V[ v]*, (3.6) (3.7

with (W ,W,)=(ux+vy+wzax+by+cz). The four
which states that the periodicity condition of the embeddingcases need to be investigated separafely.

functions {X%(x*)} is given by Poincareransformations () For (u,u,w)#0+#(a,b,c), Eq. (3.4 is rewritten as
which are isometries of the Minkowski space. The consis-

tency among the periodicity conditions imposed on all the coshW,e?— siniw,et=dX°,

loops in71(M)=7,(M®) requires that the set of Poincare

transformations {(Ho[ ¥1%.V[ v1?)| y€ m1(M®)} should — sinhW,e%+ coshW,et=dX?, (3.9
give a homomorphism fromz;(M®) to the (3+1)-

dimensional Poincargroup. This is precisely the Lorentzian cosV,e?—sinW,e>=dX?,

structure on the manifold~Rx M) [18]. Thus we can

say that the moduli of the flat SL(@) connections on a sinW,e?+ cosWv,e®=d X3, (3.9

spacetime manifoldM specifies the Lorentz transformation
part of the geometric structures each of which belongs to We choose an adequate s&i*§ by imposing the condition
that the vierbeine® be single valued oM and yield the
metric with a correct signature. A candidate which yields the
Hom(m(M®), (78t H1)/~, most admissible spacetime is

(X*)=(rcoshHW,+ @), — 7sinh(W, + ), Zsin(W; + 8),

where (") denotes the proper orthochronous Poincare —Zcog W, + B)), (3.10
group in 3+1 dimensions and- stands for the equivalence
under the conjugation byproper orthochronousPoincare  \here the time functiorr is single valued oM and« is an
transformations. _ _ arbitrary single-valued function oM. B is such that

I wish to remark here that, in order for a Lorentzian struc-(cog3,sing) is single valued orM andZ is a single-valued
ture to provide a physically permissible spacetime, it muskynction onM which is bounded away from zero. The space-

satisfy several conditions. First, it must act on an appropriat§me metric constructed from the solution to E¢R.9)(3.9
subspace o131 properly discontinuously in order to avoid with (X9) given by (3.10 takes the form

the degeneracy of the spacetime. This can usually be re-

solved by considering the universal covering of the subspace. ds?= p,pe"ef=—d7r?+ r?d(W,o+ a)?+dZ?
Second, in order not to render spatial manifols®) to col- .
lapse, it must be embedded into a subgroup of the Poincare +Z2d(W;+2mn-x+By)?, (3.11)

group which is of rank 3.The third condition, the spacelike

nature of its action on a relevant region Mf*?, is neces- where we have made a decomposit®n 27N X+ Bo, With
i (3) ; i . - - '

sary for the spatial hypersurfadd™ to be spacelike. For » a single-valued function oM and n-x=nx+my-+Iz

example, if the Lorentzian structure contains an element with ' - | €Z). We can easily see that the embeddifgL0

Ltjives the spacetime whose Lorentzian structure is given by
the corresponding holonom§2.11) without any translation
part.

We should note that this Lorentzian structure is singular
because it is embedded into the rank-2 subgroup of the Poin-
caregroup. We therefore expect that the spacetime will also

In this subsection we will apply the procedure explainedpossess singularities. We will see that this is indeed the case.
in the previous subsection to the case whdrié) is homeo-  For simplicity we set WV, ,W,) = ((7/2)x,y), a=B=0 and
morphic to T3. We should bear in mind that, becauseZ=(1/7)(3+cos2rZ). In this case the metri¢3.11) be-
m(T})=ZeZaZ, the Lorentz structure under consider- comes
ation is generated by three Poincadransformations which
mutually commute. ds?=—dr?+ r2dy?+ 4sirf2wzd Z+ 3 (3+ cos2rz)2dx?.

First, we consider the case with=dWJ, ./ 5. After (3.12
imposing the classical reality condition the integrated spin

connection is given by

sality condition. We will see this explicitly in the next sub-
section.

B. Application to M~Rx T3

1%Because SO(3,1)is obtained from SL(Z;) by neglecting the
*The rank here is meant to be the maximal number of mutuallyoverall sign factor+1, we will consider in this section thatv,w
commuting generators in the subgroup. are defined modulo 2.
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x2 %2
FIG. 1. The dr=dW,=0 section of the
spacetimg3.12). By identifying the segmentsr
the arc$ marked by the same symbol {@a), we
3 |o o] x3 obtain the “double covering of the Klein bottle”
0<2<0.5 0.5<z<1 as shown in(b).
(@)

(b)

Obviously the singularities exist at=0 andz=1/2 in which  “double covering of the Klein-bottle” which is homeomor-
the metric degenerates. By looking into the vierbein we findohic to T2. The spacetimes with arbitrary functions
that these two singularities divide the spacetime into two(Z,«,8) and with generical parameters,{,w;a,b,c) also
regions whose local Lorentz frames have the opposite oriersuffer from the same type of singularities and so they cannot
tations. While such spacetime is not permitted physically, weye considered to be physical, at least classically.

can represent this spacetime by using two Minkowski spaces. \we can now construct the two-ford=3'J; from the

We will depict in Fig. 1 how thed7=dW,=0 section of  yjerhein which is obtained by solving Eq.8) (3.9). The
M is realized by the twoX? X%) planes inM3**1. We see  |asuit is

that the resultingl7=dW,=0 section takes the form of the

|
>=D¢, (3.13

¢=3[—i?d(W,+ &)+ Z%d(W, + B)]J; +[i rcoshed(Zsing) — rsinhad(ZcosB) + 7Z(i coshucosB + sinhasind) dW; 1J,
+[ —ircoshwd(ZcosB) — rsinhad(ZsinB) + 7Z(i coshuesinB — sinhecosB)dW, 1Js3;

namely, the two-form in this case takes the form of a purayhere andy are constant vectors iR® and ¢, and i are
Kalb-Ramond transformation. Thus we see that some of thgjngle-valued functions oM. Substituting this into Egs.

information (such asZ and 8) which is necessary to con- (3.8)(3.9), we find
struct the spacetime is hidden in the Kalb-Ramond symmetry '

and that the only allowed values of the fiber coordinates are e®=drcoshr + rsinhad(W,+ a),
)\12)\22)\3:0.
(I For (a,b,c)=5¢(u,v,w), we can embed the Lorent- el= —drsinha— rcostud(W,+ a),
zian structure into a rank-3 subgroup of the Poinagnaup
{Rgs, T%, T}, whereR;; andT*, respectively, denote the ro- e2=dX2=B-dx+dy,,
tation in the ¥',X') plane and the translation in th&* di-
rection. This subgroup, however, includes time translations. e3=dX3=y-dx+dis. (3.14

The corresponding spacetimes thus involve timelike tori and

so they are not considered to be physical. Of course we coul@ihis vierbein gives a physically permissible spacetime
use the Lorentzian structure which is embedded in the rank-&hose only pathology is the initial singularity a&=0:
subgroup{R,3,T!}. But in this case the singularities similar

to that appeared in cas¢) always exist in the resulting ds?=—d7?+ 2d(W,+ a)?+ (dX?) %+ (dX3)2.
spacetime. This case therefore corresponds to a set of space- (3.19
times not allowed in general relativity.

(1) For (u,u,w)=0#(a,b,c), the situation drastically
changes. The Lorentzian structure in this case can be embed- S =dX?/AdX3J;+ D¢, (3.19
ded into the rank-3 subgroufl,,T? T3}, whereL; stands
for the Lorentz boost in theX?,X") plane. Fortunately the

In this case the two-form cannot be gauged away completely:

i . .
action of this subgroup on the regidifX®)2— (X)?>0} ¢:_§7'2d(W2+ @)J1+ (rsinhad X3+ rcoshwd X?) J,
eM3*1 is spacelike. This indicates that this case corre-
sponds to a set of well-behaved spacetimes. — (rsinhad X2—i rcoshwd X3)J;.

More concretely, sinc&V;=0 in this case, Eq(3.9 is 5. )
merely the closedness condition cg?(e3). A choice of the NOW the parameter space {,\,A3) € C” is restricted to

embedding which yields well-behaved spacetimes is R%\{(0,0,0} by the condition that it corresponds to physi-
cally accepted spacetimes. While these paramelg)scon-

X¥) = (rco0SHW,+ @), — 1sinh W, + @), B-X+ i, v- X+1),  tain some information onX2,X3), we cannot extract all the
2 2 2,7 3
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information on K2,X3) from them. The remaining informa- 14155 -2, —-E, - 1==
tion is still hidden in the Kalb-Ramond transformation. ” -

(IV) For (a,b,c)=(u,v,w)=0. In this case also we can (A%)= b : 0 =1
embed the geometric structure into the rank-3 subgroup B -E, 0 1 B, ’
{11, 72,73}, whose action on the whole Minkowski space is = — = 1_1z3

=1= —B1 T2 =1

spacelike. We expect this case to correspond to the space-
times without any singularity. Indeed the well-behaved solu- (320

tions for Egs.(3.8), (3.9) are given by L o .
where the bar denotes complex conjugation. Substituting this

e?=dX°=dT, expression into Eq3.4), we find the equations
el=dX'=a-dx+dy;, e¥—ed=d(X°-X3),
e?=dX?= - dx+diy, el— =, (e9—e)—dXl,
e3=dx3=y.dx+dys, (3.17)

e’—E,(e’—e’)=dX?,

wherea, 3,y € R? are constant vectors ang (i=1,2,3) are o

single-valued functions oM. The metric constructed from e¥+ed-25 et- 25,2+ EE(e’—e®)=d(X°+ X3).
this vierbein is nonsingular: (3.21)

ds’=—dT*+dX'dX. (3.18 We have to solve these equations taking the periodicity con-
As in case(lll) the two-form in this case cannot be gaugeddition (3.5) into account. We consider the two cases sepa-
away completely: rately. ) i
(I") When Reg) and Im(¢) are linearly independent, with
EE(&,n,y), the Lorentzian structure in question is embed-

In addition, we can extract all the important information onded into the subgrougN'",N?*,T"}, where T" is the

the spacetime from the reduced phase space. This is consianslation in the X*(=X°+X®) direction and N'*

ered to be characteristic to the origine0/, in the case (i=1,2) is the null rotation which stabilizeX* and X'.

MEB)=T3, Because this subgroup contains translation in the null direc-
Next we construct spacetimes corresponding tdion, there is a possibility that the closed null curves appear.

A=dE(J,+iJ,) €./ . After imposing the classical reality A candidate for the embedding functiorX{) which

condition, we obtain the integrated spin connection yields the most well-behaved spacetime is given by

S =1ekdXIAAXIJ +d(iTdX J)). (3.19

(X~ XLXZXT)= (€', —e'E + Dy, — Byt Dy, —e '+ Z, + Dyt e EE—25,d,—25,,), (3.22

where®; are arbitrary single-valued functions d#, t is a time function, and@,=a. -X with a being a constant vector in
R3. By substituting this into Eq(3.21), we find

(e”,et,e?e’)=(e'dt,—e'dE,;+dd,,—e'dE,+dd,,e tdt+d(Z, + D3)—2P,dE,— 2d,d=,), (3.23

where we have se“=e’+e2. In order to investigate the ing spacetime is therefore not so desirable in general relativ-

corresponding spacetime it is sufficient to consider the cas#y.

®;=0 (i=1,2,3). As is shown in Appendix C, while the  As for the two-formX constructed from the above vier-

resulting metric bein, we can show that it takes the form of a pure Kalb-
Ramond transformatio® ¢ with ¢ given by a complicated
SL(2,C)-valued one-form involving anddZ, . Thus only

d?= —dt?—e'dtdz, + e?d=dE (3.24  the origin of the fiberT;‘d/l/'FxC3 [cf. Eq. (2.20] is rel-

evant.

(") For Im(&)=0+#Re(é) [or equivalently when Re)
may or may not have closed causal curted, certainly  ang ImE) are linearly dependehtthe Lorentzian structure is
violates the strong causality conditi¢20]. The correspond- empedded into the rank-3 subgrodpl?*, T+, T2}, Also

in this case the spacetime is expected to infringe the
strong causality condition. This is indeed the case. By
Yin fact this metric has at worst closed null curves. substituting the embedding function X, X%, X2 X")



53 SEMICLASSICAL INTERPRETATION OF THE TOPOLOGICAL ... 5659

=, —e'5E,,8-x,—e +Z, +e'(2,)? into Eqg. (3.2  moduli space’, of flat SL(2C) connections which corre-
with E,=0 and by using the resulting solution, we find the SPonds to a family of physically well-behaved spacetimes, at
metric least whenM(®) has the topologyT,x S' with T, being a
two-dimensional Riemann surface of gergis 2. We know
ds?=—dt?—eldtdz, +e?(dE )2+ (B-dx)?, that, in 2+1 dimensions, there exist Lorentzian structures on
(3.25  the spacetim&Xx T, which is well defined on the domain of

. . ) o dependencgl3,21]:
which violates the strong causality condition in the same way

that Eq.(3.24 does. The two-forn® in this case takes the (X9)2—(x1H2—(x?)?>0. (4.

form .. .
Now wl(Tgxsl) is isomorphic to 7,(Tg)®Z and the

S=—id(8-x)AdZ,J, +Dé, 326 (2+1)-dimensional Poincargroup can be naturally embed-
ded into the(3+1)-dimensional Poincargroup. These facts
with ¢ being an SL(Z)-valued one-form involving tell us that there is at least a set of physically well-defined
d(3-x), dZ, andt. Some important information on the LOréntzian structures oRX Ty Sl,. each of which consists
spacetime is hidden in the Kalb-Ramond transformation als@f @ (2+1)-dimensional Lorentzian structure oRxTy
in this case. The allowed region in the fib@xo-/f””FX@ is  Which acts onX®=const hypersurfaces and a translation in

. . the X3 direction which yields the periodicity condition for
3
restricted t0{0}X[(iR)"\{(0,0,0}]. The cotangent space the St direction. Because the moduli space, gives only

therefore does not play an essential role in constructinghe | orentz transformation part, the moduli of the flat spin

spacetimes from a point i . connections which correspond to the above Lorentzian struc-
ture do not have any information on the structure of e
IV. SUMMARY AND DISCUSSION direction. It would be interesting to investigate whether these

In this paper we have made an attempt to give a Semidaé__orentzian structures can be extended into more complicated

sical interpretation to the topological solutions for canonicalStrucr:]turesI or not. htekar's f i
quantum gravity by elucidating the relationship between the _1he refation between Ashtekar's formalism and SO02,

moduli space/ , of flat SL(2C) connections and the space BF thepry can be extended_ =1, .supergravitie$22].
of Lorentzian structures on the fiég+1)-dimensional space- The existence of the topological solutions for these superex-

time with a fixed topologyRx M. We have shown that, tended versions of Ashtekar's formaligid3—25 is under-

after imposing the classical reality condition, a point on theStOOd as a natural consequence of this relation. It is of inter-

moduli space/ |y gives a unique Lorentz transformation part est to. explore_ what spacetimes correspond to these
of the Lorentzian structures. Thus the topological solution oiiopo!qgmal soluuon; fqr supergravities becaL_Jse In super-
the form 8(n.n,) semiclassically corresponds to a family of gravities the nonvanls_hlng torsion in general gives some in-
spacetimes, each of which has a Lorentzian structure whogglence on the spacetime geometry.

projection onto the Lorentz group is specified by the ho-
lonomy group which determines the poinje./ 5. In the
case ofM®=~T23, we have explicitly constructed the space- | would like to thank Professor K. Kikkawa, Professor H.
times corresponding to each point on the moduli spacétoyama, and H. Kunitomo for useful discussions and careful
N o=A"s®.4/ . While most of the points correspond to readings of the manuscript. This work was supported by the
physically undesirable spacetimes which have singularitieSapan Society for the Promotion of Science.

or which violate the strong causality condition, a subspace of ‘

Vs yields spacetimes which are physically well behaved. APPENDIX A: THE PROJECTOR P;;,)'

The sectors 7 and .7 of the reduced phase space are, . _— .
respectively, regarded as the total spaces of the fiber bundles Here we(f))riowdg the deﬁmt,on and the.pro'pertles of the
over the moduli spaced s and./ . More precisely, Zs is prczj)eclc:ﬁ'[qr Pog - First, we define the projection operator
the holomorphic cotangent bundié,. /s and. Z¢ contains Pt 0% into the space of anti-self-dual Lorentz bivectors:
T%./ ¢ as its subbundle. The allowed region of each fiber PaB_L (5058 _ 5458 —je® (A1)
seems to be restricted by requiring that the points in it cor- ve AN TyTe T8y [

respond to spacetimes which are as physical as possible. wthere e*#7? is the totally antisymmetric pseudotensor with
appears that this restriction is relaxed when the rank of the?#=¢'2=1. We use the metric #,z)=(7"")
holonomy group is smaller than its maximal value on each=diag(—1,1,1,1) in raising or lowering the Lorentz indices.
sector. In any case we have seen that some of the importamhis projection operator possesses the properties
information on the spacetime metric is hidden in the Kalb-

ACKNOWLEDGMENTS

Ramond transformation, with the only exception being the p(-laB_ _ '_eag p(-)a’p’
case where the holonomy of the spin connection is trivial. i 2° BT v

In order to establish that these results hold also to the )
cases of more generical topologies, a more profound ac- :_'_P(ﬂaﬁ ' —pHaB p(-)a'p’
quaintance with topology and geometric structures of three- 2 Y 76 a'prtooye
dimensional manifolds is required and thus this problem is (A2)

left to the future investigation. '
We can, however, assert that there exists a subspace of tiiée projectorP(’)a'B is defined as
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P 5= 3(8005— 856, —i €% ,p)=2P )%= —il*P" K Assuming thatH,( M) is trivial the above equation is
(A3) completely solved by
This projector satisfies the identities Si=(A"HIddI=D[(A" Y dI], (B4)
() p(m)iep_ _ p(—)aB ) —_— .
P 5sP P e (A4) where®'(X) is a one-form onM®). In order forS' to be
| 1 well defined (single valued on M), we further have to
nﬁ5p(—ijﬂp(—gjy:§Eiikp(_)aky_i_ Z5ij Nay-  (AB) impose the “periodic condition”

Siy+X)=3(X) for ¥ M® 0 B5
Using this projector we can give the relation between SO (r+%) ® [y]eml ) (B5)

(3,1) representation “; and SO(3C) representatiol' of  and some other conditions necessary in the case where

the (proper orthochronoyd.orentz group: M) is noncontractible to a point. Using E(B4), the con-

Al =— P(_)iBAa AP PIe (ae)  dition (B5) can be rewritten in terms op':
a Y "
This SO(3C) representation is obtained as the adjoint rep- O (y+X)=Ho[y]"®/(X)+ AD'(;X), (B6)
resentation of SL(Z): whereH[ y] is the holonomy ofA” along the loopy and
(eaka)”@jJi=e9k3k<Dije‘ 0%, (A7) {A® (X)} is a set of closed one-forms oM which is
L subject to the relation
where @,)"'= €%l are the SL(Z}) generators in the adjoint _ ) _ _
representation. AD'(y- v X)=Hg[y]! AD(y";X)+ AD'(y;y' +X).
(B7)
APPENDIX B: SOLUTIONS
TO THE CONSTRAINT D,7%=0 Here we make a remark. It appears from Eg¢) that all
the3' can be gauged away by using the Kalb-Ramond trans-
Let us start by providing the formal solution in the genericformation(2.5). But this is not necessarily the case. In order
case. We first notice that the constraint equationfor the solution(B4) to be gauged away, it is necessary for
G'=D,7'=0 is equivalent to the restriction of the follow- the one-form A 1)id! to be well defined orM®). This

ing equation to a spatial hypersurfak®) : cannot follow only from the conditionéB6),(B7). Thus in
general the solutiofB4) cannot be gauged away completely.
DX=dX+ANY-3/\A=0. (B1)  we will explicitly see this in the case witM ®)~T3,
Next we introduce the universal coveringl ) which is 1. Solutions on the three-torus

the space of all the homotopy classes of the curvel! {#

which starts from, say, the origin=0. We will decompose We first investigate the case where the connection belongs

" to the standard secto?’s, namelyA=dWJ, as is seen in
the pointX on M® asX=y+x, where y+x denotes the Eq. (2.15. The integrated connectioh!! is given by

curve which first passes along the logpbeginning at the

origin x=0 and then goes from the origin to the poinbn 1 0 0

M () by way of the shortest path measured by some positive- (A)=| 0 cosV —sinw (B8)
definite background metric oM (). If there is more than . '

one shortest path, we will choose one by some continuous 0 stV cosV
scheme. We will also denote by+X the homotopy class of
the path which first goes along the logmand then goes from
the origin to the poinke M®) along a path representing S1- gl (BY)
We should note that several relations hold such as ’

Equation(B4) is thus rewritten as

. . 2= codN dd 2+ sinW dd 2, B10
Y-y HX=y+(y +X), 2 (B10

Y1t (y4%) =% 3.3= —sinWdd?+ cosV dd>. (B11)
Let us now solve these equations taking account of the con-

[ "+(y+X + (v’ +X). o . . .
but that in generay’ + (y +x)# y+(y'+X) dition (B5). Equation(B9) is easily solved by

Let us now solve Eq(2.9). Because any flat connection

on M® is written as a pure gauge 31=N1dy/\dz+ N dzAdx+ N gdxAdy+d e, ,
Bl
All= e Ak= (A1) kdAN, (B2) (12
where\ ;,\,,\ 5 are constant complex numbers aptlis an
Eq (29) on M(3) is equiva|ent to the equa‘[ion arbitrary one-form onM (3) In order for @2,23) to be
single valued onM®), we must choose the form of
d(AS)=0. (B3) (®%P% as
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®2=Bcog W+ a)dx+ Ccog W+ B)dy+Dcog W+ y)dz

+Ecog W+ 8)dd,
(B13)
®3=Bsin(W+ a)dx+ Csin(W+ B)dy+ Dsin(W+ y)dz
+Esin(W+ 8)dd,

whereB,C,D,E,® are arbitrary single-valued functions on

M® and a,8,7,6 are scalar functions otM® such that
(cosy,sine) and the similar expressions witla replaced by
B,y are single valued oM ®). By substituting these ex-
pressions into EqgB10), (B11), we find

32=dd’'2—dWAD'3,
(B14)
33=dd'3+dWAD'2,

where
(d'?,®'3)=(Bcoswdx+ CcosBdy+ Dcosydz
+ Ecossd®,Bsinadx+ Csingdy

+ Dsinydz+ Esinéd®)

are well-defined one-forms o (®). By putting Eqs.(B12),
(B14) into together, we obtain the final result

3 =31J;= (N dyAdz+ A ,dzA\dx+ A zdx/Ady)J;
+D[ Y+ D'23,+D'3];5]. (B15)

By using the Kalb-Ramond transformation, we see that this

is gauge equivalent to E@2.17).
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S =dd, (B17)
33=d®3-iwdd (B18)
ST=dd" +W2dd  +2iwdd3. (B19)

Equation(B17) tells us that®,~ is an ordinary closed two-
form onM(®):

37 =3,+d¢", (B20)
where 3, =pdy/\dz+qdz\dx+rdx/\dy and ¢~ is an
arbitrary one-form onM®). By substituting this into Eq.
(B18), taking its exterior derivative, and by comparing the
terms appearing in the obtained equation, we find

dWAS, =0, (B21)

33=idWA ¢~ +33+dg?, (B22)
where 33 is a linear combination ofdy/\dz,dz/\dx,dx
Ady} and ¢ is an arbitrary one-form oM ®). In order to
determine the form oE * we substitute all the obtained re-
sults into Eq.(B19) and take the exterior derivative. This
yields the equation

d3 " =2idWAZ3+2id(¢3/A\dW), (B23

whose complete solution is given by
ST=—-2idWA@3+35+do™, (B24)
S3=dWA¢'S, (B25)

A special consideration is needed for the case withwhere3,=Pdy/\dz+Qdz\dx+Rdx/\dy, ¢ is an ar-

W=2m(n;x+nyy+nsz) (ny,n,;,n;{0,1}). In this case
we can set, for exampléV+a=0 by choosinga=—W.
Thus the choiced®'=\idy/Adz+\,dz\dx+\sdx/A\dy
(f=2,3) also yields single-valueﬁf (f=2,3). The resulting

two-forms are gauge equivalent to the conjugation classes of

general SL(Z7)-valued de Rham cohomology classes:
namely,

ezﬂ-(nlx+ noy+ n3z)J12 e*27T(n1X+ nyy+nzz)Jy
=(\jdyAdz+ALdzAdx+\5dxAdy)J;,

where Q) belongs to the quotient space GIC)/SQ(3,C)
with complex dimension &

Next we will solve Egq. (B1) in the case where
A=dE(J,+iJ;) ./ &. In this case Eq(B4) becomes

Sii=e W (dd I, +ddI_+dd3I;) eV,
(B16)

wherel. =3(J,*iJ,) are the “null basis” of the generators
of SL(2,C). In components we find

12We should note that GL(8) here denotes the Lie algebra while
SO(3C) stands for the Lie group.

bitrary one-form orM®, and¢’'3 is a linear combination of
{dx,dy,dz}.

The final result obtained by assembling Eq820),
(B21), (B22), (B24), and(B25) is
313=3,J_+3/J,+Dé, (B26)
where ¢=(¢p~ —i¢'3)I_+ ¢33+ ¢TI, is an SL2,C)-
valued one-form oM (®). This expression accompanied by

the constraint{B21) is indeed gauge equivalent to E8.20.
Thus we have obtained the desired result.

APPENDIX C: METRIC (3.249 VIOLATES
THE STRONG CAUSALITY CONDITION

Here we will see explicitly that the spacetime metric

(3.29,
ds?=—dt?—eldtdZ+ e?d=dE,

violates the strong causality condition even if it does not
have any closed causal curves.

First, we show that this metric at worst has only closed
null curves; namely, it does not contain any closed timelike
curves:
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(t(N),Z(N),E(N)):(tg,Z0,E0)—(tg,Zo+ Pz, Eo+Px2), Thus the metric(3.24 cannot have closed timelike
(C1 curves. There can be, however, the case in which the equality
holds in(C2) all along the closed curve; namely, there exist

which satisfy closed null curves. In this case we must have
ds(\)\?
Z(T)) <0 for "\el, (C2 dt  d=
—=—=0 for YAel.
dx diA

with the inequality holding at least at a poiRtiel. In the
above expressiond( ,P=) denotes a period of coordinates

(2,2) on T°, andl is some closed interval iR. Because  cor this to be the case, it is necessary and sufficient that the
d=/d\ gives only non-negative contributions tdg/d\)7, eriod withP=z=0 exists, which is equivalent to the condi-
Z plays an essential role for the formation of closed causafi;, that3

curves. So we can replaeeby Z. Then a necessary condi-
tion for the existence of closed timelike curves is given by

(m182—81m2,81€2— €182, 61m2— 11€2) < (L, M,N)

(C4

+e@|<0 for YZel,=[Zy,Zo+ P5].

(C3

dt [ dt
~dzldz

for some integer-valued vectorL(N,M)eZ3. In other
Let us assume that the inequality holdsZte|,. Then  words, the ratios between the components of the vector in the
necessar“y(at/dz)(zl)q&o_ Because(z) is by no means a left-hand SIde(LHS) must be rational. This does not neces-
monotonic function, there exist point&,el, such that sarily hold. However, because the elements of the set of ra-
(dt/dZ)(Z,)<0 holds. From the inequalityC3), it follows  tional numbers are dense in the set of real numbers, the null
that, at all these points, the inequality line (t,Z,5)=(to,Zo+N\,Eo) with O<A<\y passes
through any neighborhood of{,Z,,E,) if A\ is taken to
dt be sufficiently large. The spacetini@.24) thus infringes the
el + —(Z,)=<0 strong causality condition, which requires all the poipt&
dz the spacetime to have a neighborhood which no causal curve
intersects more than once.
must hold. This leads to a contradiction because
(dt/dZ)(Z,)<0 can be made as close to zero as one likes—

while e'(?2>0 is bounded away from zero. Bwe have set=& +i&,, n=n1+i7,, andi{={1+iE5.
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