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Semiclassical interpretation of the topological solutions for canonical quantum gravity

Kiyoshi Ezawa*
Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan

~Received 21 December 1995!

Ashtekar’s formulation for canonical quantum gravity is known to possess the topological solutions which
have their support only on the moduli spaceN of flat SL(2,C) connections. We show that each point on the
moduli spaceN corresponds to a geometric structure, or more precisely the Lorentz group part of a family of
Lorentzian structures, on the flat~311!-dimensional spacetime. A detailed analysis is given in the case where
the spacetime is homeomorphic toR3T3. Most of the points on the moduli spaceN yield pathological
spacetimes which suffer from singularities on each spatial hypersurface or which violate the strong causality
condition. There is, however, a subspace ofN on which each point corresponds to a family of regular
spacetimes.@S0556-2821~96!02610-0#

PACS number~s!: 04.60.Ds, 04.20.Gz, 04.20.Jb
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I. INTRODUCTION

To quantize gravity is one of the most challenging pro
lems in physics. As one of the various approaches there
program of canonically quantizing general relativity. Th
new variables discovered by Ashtekar have simplified t
formulation of canonical quantum gravity@1# and this virtue
of Ashtekar’s new variables has served to find many n
aspects of nonperturbative canonical quantum gravity@2#.
One of these new aspects is that there exist ‘‘topologi
solutions’’ for canonical quantum gravity in terms of Ash
tekar’s new variables@3,4#.

In this paper we will focus on these topological solution
For this purpose it is convenient to use the chiral Lagrang
formulation @5–8# which start with the action

2 i I5E
M
S S i`Fi2

L

6
S i`S i D , ~1.1!

where L is the cosmological constant andFi5dAi1 1
2

e i jkAj`Ak is the curvature of the SL(2,C) connectionAi ,
which is related to the Levi-Civita` spin-connection$vab% as1

Ai52 iP ab
~2 !ivab52~ 1

2 e i jkv jk1 iv0i !. ~1.2!

S i is an SL(2,C)-valued two-form constructed from the vier
bein $ea%:

S i5 iP ab
~2 !iea`eb5 1

2 e i jkej`ek1 ie0`ei . ~1.3!

This equation is equivalent to the algebraic constraint

S i`S j5 1
3d i jS

k`Sk, ~1.4!

where the repeated indices are supposed to be contracted
simplicity we will restrict our analysis to the case where th

*Electronic address: ezawa@funpth.phys.sci.osaka-u.ac.jp
1The definition and properties of the projectorPab

(2) i are listed in
Appendix A.
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spacetimeM has the topologyR3M (3) with M (3) being a
compact, oriented, three-dimensional manifold witho
boundary.

Because the action~1.1! takes the same form as that o
Blau-Thompson~BF! theory @9#, Ashtekar’s formalism can
be regarded as a particular kind of SL(2,C) BF theory in
which the two-form fieldS i is subject to Eq.~1.4!. As a
consequence the constraint equations which appear in
nonically quantized Ashtekar’s formalism can be written
the form of linear combinations of the constraint equations
BF theory. Therefore the solutions to the BF constraints
also solutions to the Ashtekar constraints, which are cal
the topological solutions.

There are two types of topological solutions according
whether the cosmological constantL vanishes or not. When
LÞ0 canonically quantized BF theory has a unique soluti
@9#, which is promoted to the ‘‘Chern-Simons solution’’@4#
in canonical quantum gravity:2

CCS@Aa
i #5exp~ iSCS@Aa

i # !,

SCS@Aa
i #[ i

3

2LE
M ~3!

~AidAi1 1
3 e i jkAi`Aj`Ak!. ~1.5!

WhenL50, on the other hand, we have the topological s
lutions with their supports only on flat connections@3#:

C topo@Aa
i #5c@Aa

i # )
xPM ~3!

)
i ,a

d„ẽabcFbc
i ~x!…, ~1.6!

where we can consider the gauge-invariant function
c@Aa

i # as a function on the moduli spaceN of flat connec-
tions modulo identity-connected gauge transformations.

We are interested particularly in the geometrical signi
cance of these topological solutions, namely, what spa
times correspond to these solutions. It is known that we c

2More precisely speaking, there is a freedom of multiplyin
CCS@Aa

i # by a topological invariant which is composed of the co
nectionAa

i @10#. C CS@Aa
i # is therefore the unique solution to the

quantum BF theory if we fix a principal SL(2,C) bundle.
5651 © 1996 The American Physical Society
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5652 53KIYOSHI EZAWA
give a semiclassical interpretation to the Chern-Simons so
tion @4,11#. More precisely we can regardSCS@Aa

i # in Eq.
~1.5! as a Hamilton principal functional which is subject to
the Hamilton-Jacobi equation, and we regard the WKB orb
namely, the family of classical solutions extracted from th
Hamilton principal functionSCS, as corresponding to the
quantum solutionCCS@Aa

i #. In the case of the Lorentzian
signature these WKB orbit yields locally~anti–!de Sitter
spacetimes.

As for C topo@Aa
i # in Eq. ~1.6!, we do not know any works

discussing the relation to spacetimes, except for the Euc
ean case@12#. We consider, however, that a semiclassic
interpretation can be given also to the topological solutio
C topo@Aa

i # in the sense explained below. Formally the func
tion c@Aa

i # on the moduli spaceN which appeared in Eq.
~1.6! is considered to be a superposition of th
d-function-type wave functions

cn0
~n!5d~n,n0!, ~1.7!

wheren0PN and the argumentn ranges inN . Finding the
spacetimes which correspond to the modulin0PN therefore
amounts to interpreting the topological solutionsC topo semi-
classically.

This situation is similar to that of~211!-dimensional
gravity in the Chern-Simons form@13#. In 211 dimensions
the moduli space of flat connections for some noncomp
gauge group is shown to correspond to the space of geom
ric structures@14#, and the spacetimes are explicitly con
structed from the moduli in the cases of relatively simp
topologies with zero cosmological constant@15,16# and with
a nonzero cosmological constant@17#. In particular, in the
case where the cosmological constant vanishes, the mo
space of flat spin connections yields the Lorentz group p
of the Lorentzian structure.3

Because BF theory is similar to Chern-Simons gau
theory, we expect that some of the techniques developed
~211!-dimensional gravity can be applied also to 311 di-
mensions as far as the topological solutions are concern
We will see in this paper that this is indeed the case.
particular, after imposing the reality conditions classicall
the moduli space of flat SL(2,C) connections turns out to
yield the Lorentz group part of the~311!-dimensional
Lorentzian structures on the flat spacetime. In the simpl
case where the spatial manifoldM (3) has the topology of a
three-torusT3 we will explicitly construct spacetimes from
the reduced phase spaceM of SL(2,C) BF theory. While
most of the points on the moduli spaceN correspond to
pathological spacetimes which have singularities or whi
infringe the strong causality condition, there is a subspace
N ~with nonzero codimensions! each point on which yields
a family of well-behaved spacetimes. Unlike in 211 dimen-
sions the allowed values of the moduli of conjugate momen
~i.e.,S i) are subject to severe restrictions under the conditi
that the point in the reduced phase space should yield spa
times which are as well behaved as possible. Another de
nite difference is that some important information which

3For a detailed explanation of the geometric structure, see, e
@18#.
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necessary for constructing spacetimes is hidden in the
larged gauge transformation of the BF theory, i.e., the Ka
Ramond symmetry@19#. In 211 dimensions this is not the
case because the corresponding enlarged gauge transfo
tion is almost equivalent to the diffeomorphism transform
tion.

This paper is organized as follows. In Sec. II, after briefl
reviewing the canonical formulation of BF theory with
L50, we construct the reduced phase space of SL(2,C) BF
theory onR3T3. Because of the noncompactness of t
gauge group, there exist several sectors, each of which c
not be given solely by the total space of the cotangent bun
over the moduli space. In Sec. III, we explicitly see the r
lation between the moduli spaceN of flat SL(2,C) connec-
tions and the~311!-dimensional Lorentzian structures. I
particular in the case withM (3)'T3 we construct spacetimes
with Lorentzian structures whose projection to the Loren
group is provided by a point in the moduli spaceN . Section
IV is devoted to a summary of the results and a discussion
the extension to more general cases. We briefly explain t
the extension to the caseM (3)'Tg3S1 is relatively trac-
table, whereTg denotes the Riemann surface of genusg.

II. REDUCED PHASE SPACE OF SL„2,C… BF THEORY

In this section we look into the reduced phase space
SL~2,C! BF theory. Our starting point is the action~1.1! with
vanishing cosmological constantL50:

2 i I5E
M

S i`Fi .

Canonical formulation of this theory is obtained by perform
ing the 311 decomposition of this action.4 The result is

2 i I5E dtE
M ~3!

d3x~p̃aiȦa
i 1At

iGi1S ta
i Fai!, ~2.1!

where we have setp̃ai[1/2ẽabcSbc
i and Ȧ5(]/]t)A. Note

that the temporal componentsAt
i andS ta

i of the fields have
no kinetic terms. As a result these temporal components
regarded as Lagrange multipliers with respect to which t
variation of the action yields first class constraints. This sy
tem involves two types of first class constraints. Gauss’ l
constraint

Gi[Dap̃
ai ~2.2!

generates under the Poisson brackets SL(2,C) gauge trans-
formations

duS5@u,S#,

duA52Du[2du2@A,u#, ~2.3!

where we have setS[S iJi andA[AiJi .
5 u5u iJi is an SL

(2,C)-valued scalar field onM (3). The remaining constraint

.g.,

4We uset as the temporal coordinate and (xa)5(x,y,z) as the
spatial coordinates.
5Ji ( i51,2,3) denote SL(2,C) generators which are subject to th

commutation relations@Ji ,Jj #5e i jkJk .
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Fai[ 1
2 ẽabcFbc

i ~2.4!

generates the~generalized! Kalb-Ramond transformations
@19#

dfS52Df[2df2A`f2f`A,

dfA50, ~2.5!

wheref5f iJi is an SL(2,C)-valued one form. These Kalb
Ramond transformations are known to include the diffe
morphisms as a special case@9,8#.

The reduced phase space~or the physical phase space! is
defined as the quotient space of the constraint surf
modulo gauge transformations in a broad sense. The c
straint surface is the subspace of the original phase sp
$(Aa

i ,p̃ai)% which satisfies the first class constraint equatio
Gi5Fai50. The gauge transformations in a broad sense
the transformations generated by the first class constraints
our case they consist of the small SL(2,C) gauge transfor-
mations and the Kalb-Ramond transformations. By the ar
ment in Ref.@9#, the reduced phase space is considered
general to be the total space of the cotangent bundleT*N
over the moduli space of flat SL(2,C) connections modulo
small gauge transformations, namely, modulo gauge tra
formations which is homotopic to the identity.6 The base
spaceN and the fiberTn0

* N are, respectively, coordinated

by the gauge-equivalent classes of connectionsAa
i and two-

formsSab
i which are subject to the constraint equations.

As is mentioned in Ref.@9#, the moduli spaceN in gen-
eral consists of disconnected sectors which are related w
each other by large gauge transformations, namely, by ga
transformations which cannot be continuously connected
the identity. This fact has an interesting effect in the quant
BF theory such as, e.g., the appearance ofu states which also
appear in the Yang-Mills theory. However, we are now i
terested in the semiclassical interpretation of the mod
space. The SL(2,C) connections which are related to eac
other by an SL(2,C) gauge transformation are expected
yield the same spacetime metric. Thus we will hencefo
concentrate only on the sectorN 0 which is connected to the
trivial connectionAa

i 50.
In order to parametrizeN 0 , it is convenient to use ho-

lonomies along the noncontractible loops:

H~a![ha@0,1#[PexpS E
0

1

dsȧa~s!AaD , ~2.6!

wherea:@0,1#→M (3) @a(0)5a(1)5x0# is a loop andP
stands for the path ordering with smallers to the left. Be-
cause the connectionAa is flat, the holonomy depends onl
on the homotopy class@a# of the loopa:

H~a!5H~a8![H@a# if @a#5@a8#. ~2.7!

6As is seen in the next subsection, this is not necessarily the c
if the moduli spaceN includes null rotations.
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The ~small! gauge transformation Aa(x)
→g(x)Aa(x)g

21(x)1g(x)]ag
21(x) on the connection

Aa(x) is translated into the conjugation byg(x0) on the ho-
lonomy

H@a#→g~x0!H@a#g21~x0!. ~2.8!

The moduli spaceN 0 is therefore identical to the space o
equivalence classes of homomorphisms from the fundam
tal groupp1(M

(3)) to the group SL(2,C) modulo conjuga-
tions:

N 05Hom„p1~M
~3!!,SL~2,C!…/;. ~2.9!

In the following we will explicitly constructN 0 and the
reduced phase space by exploiting the holonomy in the c
where the spatial manifoldM (3) is homeomorphic to the
three-torusT3.

A. Reduced phase space onT3

Let us now consider the case withM (3)'T3. We first
construct the moduli spaceN 0 . It follows from
p1(T

3)>Z%Z%Z that the holonomies evaluated along th
generators$a,b,g% of p1(T

3) commute mutually. By taking
appropriate conjugations we find that the moduli spaceN 0
consists of several ‘‘disconnected’’ sectors:

N 05N S% ~ %
n1 ,n2 ,n3P$0,1%

N F
n1 ,n2 ,n3!. ~2.10!

The standard sectorN S is characterized by

H@a#5exp@~u1 ia !J1#,

H@b#5exp@~v1 ib !J1#,

H@g#5exp@~w1 ic !J1#, ~2.11!

where u,v,w are real numbers defined modulo 4p and
a,b,cPR. The gauge equivalence underg(x0)5exp(pJ2)
further imposes the equivalence condition

~a,b,c;u,v,w!;2~a,b,c;u,v,w!. ~2.12!

As a consequence the standard sectorN S has the topology
(T33R3)/Z2 .

The flat sectorsN F
n1 ,n2 ,n3 are parametrized by the ho

lonomies

H@a#5~21!n1exp@j~J21 iJ1!#,

H@b#5~21!n2exp@h~J21 iJ1!#,

H@g#5~21!n3exp@z~J21 iJ1!#, ~2.13!

wherej,h,z are complex numbers which do not vanish s
multaneously. The gauge equivalence underg(x0)
5exp(2ikJ3) with kPC tells us that (j,h,z) provide the
homogeneous coordinates on CP2:

~j,h,z!;ek~j,h,z!. ~2.14!
ase
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Thus we findN F
n1 ,n2 ,n3' CP2. Because two flat sectors

N F
n1 ,n2 ,n3 and N

F

n18 ,n28 ,n38 with (dn1 ,dn2 ,dn3)
5(n12n18 ,n22n28 ,n32n38)Þ(0,0,0) are related with each
other by the large local Lorentz transformatio
g(x)5exp@2p(dn1x1dn2y1dn3z)J3#, they are considered a
corresponding to the same set of spacetimes. Thus in
following we will consider only one flat sector
N F[N F

0,0,0.
Let us next construct the reduced phase space, more

cisely, the sectors of the reduced phase space which are
sociated with the sectorsN S andN F of the moduli space
N of flat SL(2,C) connections.

For this purpose we have to find the SL(2,C) connection
which gives the holonomy~2.11! or ~2.13!. This task is rela-
tively easy in the present case. By making an appropri
gauge choice and an adequate choice of periodic coordin
(x,y,z) with period 1, we find the desired connections.
connection which belongs toN S is given by

Aadx
a5@~u1 ia !dx1~v1 ib !dy1~w1 ic !dz#J1

[~dW11 idW2!J15dWJ1 , ~2.15!

and a connection lying inN F is

Aadx
a5~jdx1hdy1zdz!~J21 iJ1!

[dJ~J21 iJ1!5~dJ11 idJ2!~J21 iJ1!.

~2.16!

Once we have obtained the explicit forms of the conne
tion, we can construct the whole reduced phase space
solving Gauss’ law constraint~2.2! for the conjugate mo-
mentap̃ai, or equivalently for the two formSab

i , and by
gauging away the extra degrees of freedom by means of
Kalb-Ramond symmetry~2.5!. The calculation is somewha
tedious and is illustrated in Appendix B. Here we descri
the result only.

The two-form associated with the connection~2.15! is
given by

S5~l1dy`dz1l2dz̀ dx1l3dx`dy!J1 , ~2.17!

wherel1 ,l2 ,l3 are complex numbers. By the same reaso
ing which lead us to Eq.~2.12!, the rigid gauge transforma
tion g(x)5exp(pJ2) gives us the equivalence relation

~A,S!;2~A,S!, ~2.18!

with A andS given by~2.15! and~2.17!, respectively. Thus
we expect the sector of the reduced phase space in que
to have a cotangent bundle structure. We can see that th
indeed the case by investigating the reduced action whic
obtained by substituting Eqs.~2.15! and ~2.17! into the BF
action ~2.1!:

2 i I N S
* 5E dt@l1~ u̇1 i ȧ !1l2~ v̇1 i ḃ !1l3~ẇ1 i ċ !#.

~2.19!

This is exactly the symplectic potential which takes the for
of the holomorphic cotangent vector defined onN S . For a
n
s
the

pre-
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ates
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point inN S the fiber coordinate (l1 ,l2 ,l3) ranges over the
whole space ofC3. Thus the sectorMS of the reduced phase
space associated withN S turns out to be the~holomorphic!
cotangent bundle7 TH* @(T33R3)/Z2#.

The generic expression of the two-forms associated w
N F is

S5~pdy`dz1qdz̀ dx1rdx`dy!
J22 iJ3

2

1~Pdy`dz1Qdz̀ dx1Rdx̀ dy!
J21 iJ3

2
,

~2.20!

where p,q,r and P,Q,R are all complex numbers and
p,q,r are subject to the constraint

pj1qh1r z50. ~2.21!

The same rigid gauge transformationg(x)5exp(2ikJ3) as
that which leads to the equivalence relation~2.14! yields in
turn the equivalence relation

~p,q,r ;P,Q,R!;~e2kp,e2kq,e2kr ;ekP,ekQ,ekR!,
~2.22!

which holds at the same time with Eq.~2.14!. As is easily
seen this sectorMF of the reduced phase space is not equ
to the cotangent bundle overN F because the complex di-
mension ofN F is 2 while that of the space of two-forms
~2.20! associated with a point inN F is 5. We can neverthe-
less see that the symplectic potential of the original pha
space is inherited also to the sectorMF . By substituting
Eqs.~2.16! and~2.20! into Eq.~2.1! and by taking account of
the constraint~2.21!, we find the reduced action

2 i I N F
* 5E @pj̇1qḣ1r ż2k̇~ t !~pj1qh1r z!#.

~2.23!

The first three terms in the right-hand side~RHS! yield the
symplectic potential. Owing to the constraint~2.21!, this be-
comes the well-defined holomorphic cotangent vector
N F'CP2. Thus the space which is coordinatized b
(j,h,z;p,q,r ) is exactly the holomorphic cotangent bund
TH* CP

2 over the moduli spaceN F . There remains in fact
extra three-dimensional space$(P,Q,R)% which is isomor-
phic toC3. The whole sectorMF of the reduced phase spac
associated withN F are considered to be the vector bund
over CP2 with the fiber being the direct produc
@(TH* )n0CP

2#3C3. Because structure functions for the fibe

C3 are provided by the ratiosj8/j of different holomorphic
coordinates, this ‘‘vector bundle’’ is equivalent to the dire
product (TH* CP

2)3C3.
Before ending this section we briefly investigate the cla

sical dynamics on the reduced phase space. The action~2.19!

7Precisely speaking the cotangent bundle structure breaks dow
the pointsA52p(n1dx1n2dy1n3dz)J1 in N S , wheren1,n2,n3
take their values in$0,1%. For a detail see Appendix B.
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implies that the dynamics onMS is trivial. Thus the classi-
cal solutions are given by the connection and two-form
which are gauge equivalent to the connection~2.15! and the
two-form ~2.17! with time-independent parameters. On th
other hand the classical solutions for the action~2.23! appear
to be somewhat nontrivial:

~j,h,z!~ t !5ek~ t !~j0 ,h0 ,z0!,

~p,q,r !~ t !5e2k~ t !~p0 ,q0 ,r 0!. ~2.24!

Scrutiny of these equations shows that the above time e
lution is nothing but the time-dependent gauge transform
tion with g(t,x)5exp@2ik(t)J3#. We can thus consider the
classical solutions to be gauge equivalent to the connect
~2.16! and the two-form~2.20! with time-independent pa-
rameters (j,h,z:p,q,r ). We cannot determine the evolution
of the parameters (P,Q,R) from the reduced action~2.23!
and so these parameters may appear to be arbitrary funct
of time t. However, if we use equations of motion
(DS) tab50, (P,Q,R) turns out to be gauge equivalent to
constant vector inC3.

III. RELATION TO „311…-DIMENSIONAL
LORENTZIAN STRUCTURES

A. General framework

Now that we have constructed the moduli spaceN 0 , let
us consider what spacetimes correspond to each point
N 0 . By analogy with 211 dimensions@15,17#, we expect
that the Kalb-Ramond transformation~2.5! with a time-
dependent parameterf plays an important role when we
construct nondegenerate spacetime metric from the soluti
to the constraints which are obtained in the previous secti

There are, however, two essential differences compared
the ~211!-dimensional case. One is the presence of the alg
braic constraint~1.4!, owing to which the allowed values of
the parameters in Eq.~2.17! or ~2.20! are considered to be
restricted. The other comes from the extra symmetries in
BF theory compared to those in Ashtekar’s formalism.
211 dimensions the translation part of the ISO(2,1) gau
symmetry corresponds to the Kalb-Ramond symmetry
~311!-dimensional BF theory. This translation part is show
to be equivalent to diffeomorphisms under on shell and wh
the dreibein is nondegenerate@13#, whereas in 311 dimen-
sions the Kalb-Ramond transformation contains extra sy
metry other than diffeomorphisms@12#. Thus in 311 dimen-
sions it is possible that a Kalb-Ramond transformatio
relates two spacetimes which are not diffeomorphic wi
each other. This implies that some important information o
the spacetime is involved in the Kalb-Ramond transform
tion ~2.5!. In 211 dimensions this was not the case; th
translation part of the ISO(2,1) gauge transformation at mo
changes the appearance of the singular part of the space
@16#.

By analogy to the~211!-dimensional case it would be
standard to take the following recipe for spacetime constru
tion: ~i! prepare the solution (A,S) obtained in the previous
section; ~ii ! take an appropriate time-dependent Kalb
Ramond transformation~2.5!; ~iii ! impose the algebraic con-
s
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straint ~1.4! and classical reality conditions which ar
equivalent to declaring that

Ai52 iP ab
~2 !i vab, S i5 iPab

~2 !iea`eb, ~3.1!

with a real spin-connectionvab and a real vierbeinea; and
~iv! construct the metric from the vierbeinea and give a
spacetime geometrical interpretation to the correspond
point (A,S) in the reduced phase space.

To carry out this procedure is in principle possible but
practice difficult. We will therefore take a converse proc
dure: namely,~i! prepare the connectionAPN 0; ~ii ! extract
the spin connectionvab by imposing the classical reality
condition~3.1! onA; ~iii ! find the vierbeinea with respect to
which vab is torsion free,

dea1v b
a `eb50; ~3.2!

~iv! investigate the properties of the spacetime obtained fr
the vierbein;~v! construct the two-formS i by using the sec-
ond equation of Eq.~3.1!; and ~vi! transformS iJi into a
standard form by using the Kalb-Ramond symmetry~2.5!.

Let us now explore the concrete relation between t
moduli spaceN 0 and the space of Lorentzian structures. W
first consider the generic caseM'R3M (3). By combining
the flatness of the SL(2,C) connection and the reality condi
tion ~3.1!, we see that the spin connectionvab is flat. Thus,

on the universal coveringM̃'R3 M (3)˜ which is defined in
a similar manner as that in Appendix B, we can expre
vab in the form of a pure gauge:

v b
a ~ x̃m!5@L21~ x̃m!# g

a dL~ x̃m! b
g , ~3.3!

whereL( x̃m) b
a [@Pexp„*0

x̃m
v( ỹn)…# b

a is the integrated spin
connection.8 Using this equation, the torsion-free conditio
~3.2! is cast into the closedness condition

d@L~ x̃m! b
a eb~ x̃m!#50.

BecauseM̃ is simply connected by definition, the torsion
free condition is completely solved by

ea~ x̃m!5@L21~ x̃m!# b
a dXb~ x̃m!, ~3.4!

where the set$Xa( x̃m)% is considered to be the embedding o
M̃ into ~the universal covering of! an adequate subspace o
the ~311!-dimensional Minkowski spaceM311. In order for
the vierbeinea( x̃m) to be well defined onM , it must satisfy
the ‘‘periodicity condition’’

ea~g1 x̃m!5ea~ x̃m! for ;@g#Pp1~M ! ~3.5!

~plus some conditions necessary whenM̃ is not contractible
to a point!. By substituting Eq.~3.4! into Eq. ~3.5! we find

dXa~g1 x̃m!5d„H0@g# b
a Xb~ x̃m!…,

8We mean byxm and x̃m the point onM and that onM̃ , respec-
tively.
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whereH0@g# b
a stands for the holonomy of the spin conne

tion v b
a evaluated along the loopg. By integrating this we

obtain the important result

Xa~g1 x̃m!5H0@g# b
a Xb~ x̃m!1V@g#a, ~3.6!

which states that the periodicity condition of the embeddi
functions $Xa(xm)% is given by Poincare´ transformations
which are isometries of the Minkowski space. The cons
tency among the periodicity conditions imposed on all t
loops inp1(M )>p1(M

(3)) requires that the set of Poincar´
transformations $(H0@g# b

a ,V@g#a)ugPp1(M
(3))% should

give a homomorphism fromp1(M
(3)) to the ~311!-

dimensional Poincare´ group. This is precisely the Lorentzia
structure on the manifoldM'R3M (3) @18#. Thus we can
say that the moduli of the flat SL(2,C) connections on a
spacetime manifoldM specifies the Lorentz transformatio
part of the geometric structures each of which belongs to

Hom„p1~M
~3!!,~P 311!1

↑
…/;,

where (P 311)1
↑ denotes the proper orthochronous Poinca´

group in 311 dimensions and; stands for the equivalence
under the conjugation by~proper orthochronous! Poincare´
transformations.

I wish to remark here that, in order for a Lorentzian stru
ture to provide a physically permissible spacetime, it mu
satisfy several conditions. First, it must act on an appropri
subspace ofM311 properly discontinuously in order to avoid
the degeneracy of the spacetime. This can usually be
solved by considering the universal covering of the subspa
Second, in order not to render spatial manifoldsM (3) to col-
lapse, it must be embedded into a subgroup of the Poinc´
group which is of rank 3.9 The third condition, the spacelike
nature of its action on a relevant region ofM311, is neces-
sary for the spatial hypersurfaceM (3) to be spacelike. For
example, if the Lorentzian structure contains an element w
a null action, the resulting spacetime violates the strong c
sality condition. We will see this explicitly in the next sub
section.

B. Application to M'R3T3

In this subsection we will apply the procedure explain
in the previous subsection to the case whereM (3) is homeo-
morphic to T3. We should bear in mind that, becaus
p1(T

3)>Z%Z%Z, the Lorentz structure under conside
ation is generated by three Poincare´ transformations which
mutually commute.

First, we consider the case withA5dWJ1PN S . After
imposing the classical reality condition the integrated sp
connection is given by

9The rank here is meant to be the maximal number of mutua
commuting generators in the subgroup.
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~L b
a !5S coshW2 2sinhW2 0 0

2sinhW2 coshW2 0 0

0 0 cosW1 2sinW1

0 0 sinW1 cosW1

D ,
~3.7!

with (W1 ,W2)[(ux1vy1wz,ax1by1cz). The four
cases need to be investigated separately.10

~I! For (u,v,w)Þ0W Þ(a,b,c), Eq. ~3.4! is rewritten as

coshW2e
02sinhW2e

15dX0,

2sinhW2e
01coshW2e

15dX1, ~3.8!

cosW1e
22sinW1e

35dX2,

sinW1e
21cosW1e

35dX3. ~3.9!

We choose an adequate set (Xa) by imposing the condition
that the vierbeinea be single valued onM and yield the
metric with a correct signature. A candidate which yields th
most admissible spacetime is

~Xa!5„tcosh~W21a!,2tsinh~W21a!,Zsin~W11b!,

2Zcos~W11b!…, ~3.10!

where the time functiont is single valued onM anda is an
arbitrary single-valued function onM . b is such that
(cosb,sinb) is single valued onM andZ is a single-valued
function onM which is bounded away from zero. The space
time metric constructed from the solution to Eqs.~3.8!~3.9!
with (Xa) given by ~3.10! takes the form

ds25habe
aeb52dt21t2d~W21a!21dZ2

1Z2d~W112pnW •xW1b0!
2, ~3.11!

where we have made a decompositionb52pnW •xW1b0 , with
b0 a single-valued function onM and nW •xW[nx1my1 lz
(n,m,lPZ). We can easily see that the embedding~3.10!
gives the spacetime whose Lorentzian structure is given
the corresponding holonomy~2.11! without any translation
part.

We should note that this Lorentzian structure is singul
because it is embedded into the rank-2 subgroup of the Po
carégroup. We therefore expect that the spacetime will als
possess singularities. We will see that this is indeed the ca
For simplicity we set (W1 ,W2)5„(p/2)x,y…, a5b50 and
Z5(1/p)(31cos2pz). In this case the metric~3.11! be-
comes

ds252dt21t2dy214sin22pzdz21 1
4 ~31cos2pz!2dx2.

~3.12!

lly

10Because SO(3,1)↑ is obtained from SL(2,C) by neglecting the
overall sign factor61, we will consider in this section thatu,v,w
are defined modulo 2p.
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FIG. 1. The dt5dW250 section of the
spacetime~3.12!. By identifying the segments~or
the arcs! marked by the same symbol in~a!, we
obtain the ‘‘double covering of the Klein bottle’’
as shown in~b!.
s

not
Obviously the singularities exist atz50 andz51/2 in which
the metric degenerates. By looking into the vierbein we fin
that these two singularities divide the spacetime into tw
regions whose local Lorentz frames have the opposite ori
tations. While such spacetime is not permitted physically, w
can represent this spacetime by using two Minkowski spac
We will depict in Fig. 1 how thedt5dW250 section of
M is realized by the two (X2,X3) planes inM311. We see
that the resultingdt5dW250 section takes the form of the
d
o
en-
e
es.

‘‘double covering of the Klein-bottle’’ which is homeomor-
phic to T2. The spacetimes with arbitrary function
(Z,a,b) and with generical parameters (u,v,w;a,b,c) also
suffer from the same type of singularities and so they can
be considered to be physical, at least classically.

We can now construct the two-formS5S iJi from the
vierbein which is obtained by solving Eqs.~3.8! ~3.9!. The
result is
S5Df, ~3.13!

f5 1
2 @2 i t2d~W21a!1Z2d~W11b!#J11@ i tcoshad~Zsinb!2tsinhad~Zcosb!1tZ~ icoshacosb1sinhasinb!dW1#J2

1@2 i tcoshad~Zcosb!2tsinhad~Zsinb!1tZ~ icoshasinb2sinhacosb!dW1#J3 ;
e

ly:

i-
namely, the two-form in this case takes the form of a pu
Kalb-Ramond transformation. Thus we see that some of
information ~such asZ and b) which is necessary to con
struct the spacetime is hidden in the Kalb-Ramond symme
and that the only allowed values of the fiber coordinates
l15l25l350.

~II ! For (a,b,c)50W Þ(u,v,w), we can embed the Lorent
zian structure into a rank-3 subgroup of the Poincare´ group
$R23,T

0,T1%, whereRi j andT
a, respectively, denote the ro

tation in the (Xi ,Xj ) plane and the translation in theXa di-
rection. This subgroup, however, includes time translatio
The corresponding spacetimes thus involve timelike tori a
so they are not considered to be physical. Of course we co
use the Lorentzian structure which is embedded in the ran
subgroup$R23,T

1%. But in this case the singularities simila
to that appeared in case~I! always exist in the resulting
spacetime. This case therefore corresponds to a set of sp
times not allowed in general relativity.

~III ! For (u,v,w)50W Þ(a,b,c), the situation drastically
changes. The Lorentzian structure in this case can be em
ded into the rank-3 subgroup$L1 ,T

2,T3%, whereLi stands
for the Lorentz boost in the (X0,Xi) plane. Fortunately the
action of this subgroup on the region$(X0)22(X1)2.0%
PM311 is spacelike. This indicates that this case cor
sponds to a set of well-behaved spacetimes.

More concretely, sinceW150 in this case, Eq.~3.9! is
merely the closedness condition on (e2,e3). A choice of the
embedding which yields well-behaved spacetimes is

~Xa!5„tcosh~W21a!,2tsinh~W21a!,bW •xW1c2 ,gW •xW1c3…,
re
the
-
try
are
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ns.
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k-2
r

ace-

bed-

re-

wherebW andgW are constant vectors inR3 andc2 andc3 are
single-valued functions onM . Substituting this into Eqs.
~3.8!~3.9!, we find

e05dtcosha1tsinhad~W21a!,

e152dtsinha2tcoshad~W21a!,

e25dX25bW •dxW1dc2 ,

e35dX35gW •dxW1dc3 . ~3.14!

This vierbein gives a physically permissible spacetim
whose only pathology is the initial singularity att50:

ds252dt21t2d~W21a!21~dX2!21~dX3!2.
~3.15!

In this case the two-form cannot be gauged away complete

S5dX2`dX3J11Df, ~3.16!

f52
i

2
t2d~W21a!J11~tsinhadX31 i tcoshadX2!J2

2~tsinhadX22 i tcoshadX3!J3 .

Now the parameter space (l1 ,l2 ,l3)PC3 is restricted to
R3\$(0,0,0)% by the condition that it corresponds to phys
cally accepted spacetimes. While these parameters (l i) con-
tain some information on (X2,X3), we cannot extract all the
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information on (X2,X3) from them. The remaining informa-
tion is still hidden in the Kalb-Ramond transformation.

~IV ! For (a,b,c)5(u,v,w)50W . In this case also we can
embed the geometric structure into the rank-3 subgro
$T1,T2,T3%, whose action on the whole Minkowski space i
spacelike. We expect this case to correspond to the spa
times without any singularity. Indeed the well-behaved sol
tions for Eqs.~3.8!, ~3.9! are given by

e05dX05dT,

e15dX15aW •dxW1dc1 ,

e25dX25bW •dxW1dc2 ,

e35dX35gW •dxW1dc3 , ~3.17!

whereaW ,bW ,gW PR3 are constant vectors andc i ( i51,2,3) are
single-valued functions onM . The metric constructed from
this vierbein is nonsingular:

ds252dT21dXidXi . ~3.18!

As in case~III ! the two-form in this case cannot be gauge
away completely:

S5 1
2 e i jkdXi`dXjJk1d~ iTdXiJi !. ~3.19!

In addition, we can extract all the important information o
the spacetime from the reduced phase space. This is con
ered to be characteristic to the origin 0PN 0 in the case
M (3)'T3.

Next we construct spacetimes corresponding
A5dJ(J21 iJ1)PN F . After imposing the classical reality
condition, we obtain the integrated spin connection
up
s
ce-
u-

d

n
sid-

to

~L b
a !5S 11 1

2JJ̄ 2J1 2J2 2 1
2JJ̄

2J1 1 0 J1

2J2 0 1 J2

1
2JJ̄ 2J1 2J2 12 1

2JJ̄

D ,
~3.20!

where the bar denotes complex conjugation. Substituting th
expression into Eq.~3.4!, we find the equations

e02e35d~X02X3!,

e12J1~e
02e3!5dX1,

e22J2~e
02e3!5dX2,

e01e322J1e
122J2e

21JJ̄~e02e3!5d~X01X3!.
~3.21!

We have to solve these equations taking the periodicity co
dition ~3.5! into account. We consider the two cases sep
rately.

~I8! When Re(jW ) and Im(jW ) are linearly independent, with
jW[(j,h,g), the Lorentzian structure in question is embed
ded into the subgroup$N11,N21,T1%, where T1 is the
translation in the X1([X01X3) direction and Nî1

( î51,2) is the null rotation which stabilizesX1 and Xî .
Because this subgroup contains translation in the null dire
tion, there is a possibility that the closed null curves appea

A candidate for the embedding function (Xa) which
yields the most well-behaved spacetime is given by
~X2,X1,X2,X1!5~et,2etJ11F1 ,2etJ21F2 ,2e2t1Z11F31etJJ̄22J1F122J2F2!, ~3.22!

whereF i are arbitrary single-valued functions onM , t is a time function, andZ1[aW 1•xW with aW 1 being a constant vector in
R3. By substituting this into Eq.~3.21!, we find

~e2,e1,e2,e1!5„etdt,2etdJ11dF1 ,2etdJ21dF2 ,e
2tdt1d~Z11F3!22F1dJ122F2dJ2…, ~3.23!
iv-

-

e
y

where we have sete6[e06e3. In order to investigate the
corresponding spacetime it is sufficient to consider the ca
F i50 (i51,2,3). As is shown in Appendix C, while the
resulting metric

ds252dt22etdtdZ11e2tdJdJ̄ ~3.24!

may or may not have closed causal curves,11 it certainly
violates the strong causality condition@20#. The correspond-

11In fact this metric has at worst closed null curves.
se
ing spacetime is therefore not so desirable in general relat
ity.

As for the two-formS constructed from the above vier-
bein, we can show that it takes the form of a pure Kalb
Ramond transformationDf with f given by a complicated
SL~2,C)-valued one-form involvingt anddZ1 . Thus only
the origin of the fiberTn0

* N F3C3 @cf. Eq. ~2.20!# is rel-

evant.
~II 8! For Im(jW )50ÞRe(jW ) @or equivalently when Re(jW )

and Im(jW ) are linearly dependent#, the Lorentzian structure is
embedded into the rank-3 subgroup$N21,T1,T2%. Also
in this case the spacetime is expected to infringe th
strong causality condition. This is indeed the case. B
substituting the embedding function (X2,X1,X2,X1)
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5„et,2etJ1 ,bW •xW ,2e2t1Z11et(J1)
2
… into Eq. ~3.21!

with J250 and by using the resulting solution, we find th
metric

ds252dt22etdtdZ11e2t~dJ1!
21~bW •dxW !2,

~3.25!

which violates the strong causality condition in the same w
that Eq.~3.24! does. The two-formS in this case takes the
form

S52 id~bW •xW !`dZ1J11Df, ~3.26!

with f being an SL(2,C)-valued one-form involving
d(bW •xW ), dZ1 and t. Some important information on the
spacetime is hidden in the Kalb-Ramond transformation a
in this case. The allowed region in the fiberTn0

* N F3C3 is

restricted to$0%3@( iR)3\$(0,0,0)%#. The cotangent space
therefore does not play an essential role in construct
spacetimes from a point inMF .

IV. SUMMARY AND DISCUSSION

In this paper we have made an attempt to give a semic
sical interpretation to the topological solutions for canonic
quantum gravity by elucidating the relationship between t
moduli spaceN 0 of flat SL(2,C) connections and the spac
of Lorentzian structures on the flat~311!-dimensional space-
time with a fixed topologyR3M (3). We have shown that,
after imposing the classical reality condition, a point on t
moduli spaceN 0 gives a unique Lorentz transformation pa
of the Lorentzian structures. Thus the topological solution
the formd(n,n0) semiclassically corresponds to a family o
spacetimes, each of which has a Lorentzian structure wh
projection onto the Lorentz group is specified by the h
lonomy group which determines the pointn0PN 0 . In the
case ofM (3)'T3, we have explicitly constructed the spac
times corresponding to each point on the moduli spa
N 05N S%N F . While most of the points correspond t
physically undesirable spacetimes which have singularit
or which violate the strong causality condition, a subspace
N S yields spacetimes which are physically well behave
The sectorsMS andMF of the reduced phase space ar
respectively, regarded as the total spaces of the fiber bun
over the moduli spacesN S andN F . More precisely,MS is
the holomorphic cotangent bundleTH* N S andMF contains
TH* N F as its subbundle. The allowed region of each fib
seems to be restricted by requiring that the points in it c
respond to spacetimes which are as physical as possibl
appears that this restriction is relaxed when the rank of
holonomy group is smaller than its maximal value on ea
sector. In any case we have seen that some of the impor
information on the spacetime metric is hidden in the Kal
Ramond transformation, with the only exception being t
case where the holonomy of the spin connection is trivial

In order to establish that these results hold also to
cases of more generical topologies, a more profound
quaintance with topology and geometric structures of thr
dimensional manifolds is required and thus this problem
left to the future investigation.

We can, however, assert that there exists a subspace o
e
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moduli spaceN 0 of flat SL(2,C) connections which corre-
sponds to a family of physically well-behaved spacetimes,
least whenM (3) has the topologyTg3S1 with Tg being a
two-dimensional Riemann surface of genusg>2. We know
that, in 211 dimensions, there exist Lorentzian structures o
the spacetimeR3Tg which is well defined on the domain of
dependence@13,21#:

~X0!22~X1!22~X2!2.0. ~4.1!

Now p1(Tg3S1) is isomorphic to p1(Tg)%Z and the
~211!-dimensional Poincare´ group can be naturally embed-
ded into the~311!-dimensional Poincare´ group. These facts
tell us that there is at least a set of physically well-define
Lorentzian structures onR3Tg3S1, each of which consists
of a ~211!-dimensional Lorentzian structure onR3Tg
which acts onX35const hypersurfaces and a translation i
the X3 direction which yields the periodicity condition for
the S1 direction. Because the moduli spaceN 0 gives only
the Lorentz transformation part, the moduli of the flat spi
connections which correspond to the above Lorentzian stru
ture do not have any information on the structure of theS1

direction. It would be interesting to investigate whether thes
Lorentzian structures can be extended into more complica
structures or not.

The relation between Ashtekar’s formalism and SL(2,C)
BF theory can be extended toN51,2 supergravities@22#.
The existence of the topological solutions for these supere
tended versions of Ashtekar’s formalism@23–25# is under-
stood as a natural consequence of this relation. It is of inte
est to explore what spacetimes correspond to the
topological solutions for supergravities because in supe
gravities the nonvanishing torsion in general gives some i
fluence on the spacetime geometry.
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APPENDIX A: THE PROJECTOR Pab
„2… i

Here we provide the definition and the properties of th
projector Pab

(2) i . First, we define the projection operato
P gd
(2)ab into the space of anti-self-dual Lorentz bivectors:

P gd
~2 !ab5 1

4 ~dg
add

b2dd
adg

b2 i e gd
ab !, ~A1!

whereeabgd is the totally antisymmetric pseudotensor with
e01235e12351. We use the metric (hab)5(hab)
5diag(21,1,1,1) in raising or lowering the Lorentz indices
This projection operator possesses the properties

P gd
~2 !ab52

i

2
eab

a8b8P gd
~2 !a8b8

52
i

2
P g8d8

~2 !ab eg8d8
gd5P a8b8

~2 !ab P gd
~2 !a8b8 .

~A2!

The projectorP ab
(2) i is defined as
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P ab
~2 !i [ 1

2 ~da
0db

i 2db
0da

i 2 i e0iab!52P ab
~2 !0i52 i e i jkP ab

~2 ! jk .
~A3!

This projector satisfies the identities

P gd
~2 !i P~2 !iab52P gd

~2 !ab , ~A4!

hbdP ab
~2 !i P dg

~2 ! j 5
i

2
e i jkP ag

~2 !k 1
1

4
d i jhag . ~A5!

Using this projector we can give the relation between S
(3,1) representationL b

a and SO(3,C) representationL i j of
the ~proper orthochronous! Lorentz group:

L i j52P ab
~2 !i L g

a L d
b P~2 ! jgd. ~A6!

This SO(3,C) representation is obtained as the adjoint re
resentation of SL(2,C):

~eukJk! i jF j Ji5eukJkF j Jje
2ukJk, ~A7!

where (Jk)
i j5e ik j are the SL(2,C) generators in the adjoint

representation.

APPENDIX B: SOLUTIONS
TO THE CONSTRAINT Dap̃

ai50

Let us start by providing the formal solution in the gener
case. We first notice that the constraint equati
Gi5Dap̃

ai50 is equivalent to the restriction of the follow
ing equation to a spatial hypersurfaceM (3) :

DS5dS1A`S2S`A50. ~B1!

Next we introduce the universal coveringM (3)˜ which is
the space of all the homotopy classes of the curves inM (3)

which starts from, say, the originx50. We will decompose

the point x̃ on M (3)˜ as x̃5g1x, whereg1x denotes the
curve which first passes along the loopg beginning at the
origin x50 and then goes from the origin to the pointx on
M (3) by way of the shortest path measured by some positi
definite background metric onM (3). If there is more than
one shortest path, we will choose one by some continu
scheme. We will also denote byg1 x̃ the homotopy class of
the path which first goes along the loopg and then goes from
the origin to the pointxPM (3) along a path representingx̃.
We should note that several relations hold such as

g•g81 x̃5g1~g81 x̃!,

g211~g1 x̃!5 x̃,

but that in generalg81(g1 x̃)Þg1(g81 x̃).
Let us now solve Eq.~2.9!. Because any flat connectio

on M (3)˜ is written as a pure gauge

Ai j[e ik jAk5~L21! ikdLk j, ~B2!

Eq. ~2.9! on M (3)˜ is equivalent to the equation

d~L i jS j !50. ~B3!
O

p-

ic
on
-

ve-

ous

n

Assuming thatH2( M
(3)˜ ) is trivial the above equation is

completely solved by

S i5~L21! i j dF j5D@~L21! i jF j #, ~B4!

whereF i( x̃) is a one-form onM (3)˜ . In order forS i to be
well defined ~single valued! on M (3), we further have to
impose the ‘‘periodic condition’’

S i~g1 x̃!5S i~ x̃! for ;@g#Pp1~M
~3!,0! ~B5!

and some other conditions necessary in the case whe

M (3)˜ is noncontractible to a point. Using Eq.~B4!, the con-
dition ~B5! can be rewritten in terms ofF i :

F i~g1 x̃!5H0@g# i jF j~ x̃!1 DF i~g; x̃!, ~B6!

whereH0@g# is the holonomy ofAi j along the loopg and

$ DFg
i ( x̃)% is a set of closed one-forms onM (3)˜ which is

subject to the relation

DF i~g•g8; x̃!5H0@g# i j DF j~g8; x̃!1 DF i~g;g81 x̃!.
~B7!

Here we make a remark. It appears from Eq.~B4! that all
theS i can be gauged away by using the Kalb-Ramond tran
formation~2.5!. But this is not necessarily the case. In orde
for the solution~B4! to be gauged away, it is necessary fo
the one-form (L21) i jF j to be well defined onM (3). This
cannot follow only from the conditions~B6!,~B7!. Thus in
general the solution~B4! cannot be gauged away completely
We will explicitly see this in the case withM (3)'T3.

1. Solutions on the three-torus

We first investigate the case where the connection belon
to the standard sectorN S , namelyA5dWJ1 as is seen in
Eq. ~2.15!. The integrated connectionL i j is given by

~L i j !5S 1 0 0

0 cosW 2sinW

0 sinW cosW
D . ~B8!

Equation~B4! is thus rewritten as

S15dF1, ~B9!

S25cosWdF21sinWdF3, ~B10!

S352sinWdF21cosWdF3. ~B11!

Let us now solve these equations taking account of the co
dition ~B5!. Equation~B9! is easily solved by

S15l1dy`dz1l2dz̀ dx1l3dx`dy1df1,
~B12!

wherel1 ,l2 ,l3 are constant complex numbers andf1 is an
arbitrary one-form onM (3). In order for (S2,S3) to be
single valued onM (3), we must choose the form of
(F2,F3) as



e

-
s

y

ic

ot

ed
ke

53 5661SEMICLASSICAL INTERPRETATION OF THE TOPOLOGICAL . . .
F25Bcos~W1a!dx1Ccos~W1b!dy1Dcos~W1g!dz

1Ecos~W1d!dF,
~B13!

F35Bsin~W1a!dx1Csin~W1b!dy1Dsin~W1g!dz

1Esin~W1d!dF,

whereB,C,D,E,F are arbitrary single-valued functions on

M (3) and a,b,g,d are scalar functions onM (3)˜ such that
~cosa,sina! and the similar expressions witha replaced by
b,g,d are single valued onM (3). By substituting these ex-
pressions into Eqs.~B10!, ~B11!, we find

S25dF822dW`F83,
~B14!

S35dF831dW`F82,

where

~F82,F83![~Bcosadx1Ccosbdy1Dcosgdz

1EcosddF,Bsinadx1Csinbdy

1Dsingdz1EsinddF!

are well-defined one-forms onM (3). By putting Eqs.~B12!,
~B14! into together, we obtain the final result

S5S iJi5~l1dy`dz1l2dz̀ dx1l3dx`dy!J1

1D@f1J11F82J21F83J3#. ~B15!

By using the Kalb-Ramond transformation, we see that th
is gauge equivalent to Eq.~2.17!.

A special consideration is needed for the case w
W52p(n1x1n2y1n3z) (n1 ,n2 ,n3P$0,1%). In this case
we can set, for example,W1a50 by choosinga52W.
Thus the choicedF î5l1

î dy`dz1l2
î dz̀ dx1l3

î dx`dy
( î52,3) also yields single-valuedS î ( î52,3). The resulting
two-forms are gauge equivalent to the conjugation classes
general SL(2,C)-valued de Rham cohomology classes
namely,

e2p~n1x1n2y1n3z!J1Se22p~n1x1n2y1n3z!J1

5~l1
i dy`dz1l2

i dz̀ dx1l3
i dx`dy!Ji ,

where (la
i ) belongs to the quotient space GL~3,C!/SO~3,C!

with complex dimension 6.12

Next we will solve Eq. ~B1! in the case where
A5dJ(J21 iJ1)PN F . In this case Eq.~B4! becomes

S iJi5e22WJ1~dF1J11dF2J21dF3J3!e
2WJ1,

~B16!

whereJ6[ 1
2(J26 iJ1) are the ‘‘null basis’’ of the generators

of SL(2,C). In components we find

12We should note that GL(3,C) here denotes the Lie algebra while
SO(3,C) stands for the Lie group.
is

ith

of
:

S25dF2, ~B17!

S35dF32 iWdF2, ~B18!

S15dF11W2dF212iWdF3. ~B19!

Equation~B17! tells us thatS2 is an ordinary closed two-
form onM (3):

S25S0
21df2, ~B20!

where S0
2[pdy`dz1qdz̀ dx1rdx`dy and f2 is an

arbitrary one-form onM (3). By substituting this into Eq.
~B18!, taking its exterior derivative, and by comparing th
terms appearing in the obtained equation, we find

dW`S0
250, ~B21!

S35 idW`f21S0
31df3, ~B22!

where S0
3 is a linear combination of$dy`dz,dz̀ dx,dx

`dy% andf3 is an arbitrary one-form onM (3). In order to
determine the form ofS1 we substitute all the obtained re
sults into Eq.~B19! and take the exterior derivative. Thi
yields the equation

dS152idW`S0
312id~f3`dW!, ~B23!

whose complete solution is given by

S1522idW`f31S0
11df1, ~B24!

S0
35dW`f83, ~B25!

whereS0
1[Pdy`dz1Qdz̀ dx1Rdx̀ dy, f1 is an ar-

bitrary one-form onM (3), andf83 is a linear combination of
$dx,dy,dz%.

The final result obtained by assembling Eqs.~B20!,
~B21!, ~B22!, ~B24!, and~B25! is

S iJi5S0
2J21S0

1J11Df, ~B26!

where f[(f22 if83)J21f3J31f1J1 is an SL~2,C)-
valued one-form onM (3). This expression accompanied b
the constraint~B21! is indeed gauge equivalent to Eq.~2.20!.
Thus we have obtained the desired result.

APPENDIX C: METRIC „3.24… VIOLATES
THE STRONG CAUSALITY CONDITION

Here we will see explicitly that the spacetime metr
~3.24!,

ds252dt22etdtdZ1e2tdJdJ̄,

violates the strong causality condition even if it does n
have any closed causal curves.

First, we show that this metric at worst has only clos
null curves; namely, it does not contain any closed timeli
curves:
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„t~l!,Z~l!,J~l!…:~ t0 ,Z0 ,J0!→~ t0 ,Z01PZ ,J01PJ!,
~C1!

which satisfy

S ds~l!

dl D 2<0 for ;lPI , ~C2!

with the inequality holding at least at a pointl1PI . In the
above expressions (PZ ,PJ) denotes a period of coordinate
(Z,J) on T3, and I is some closed interval inR. Because
dJ/dl gives only non-negative contributions to (ds/dl)2,
Z plays an essential role for the formation of closed caus
curves. So we can replacel by Z. Then a necessary condi-
tion for the existence of closed timelike curves is given by

2
dt

dZ S dtdZ1et~Z!D<0 for ;ZPI Z[@Z0 ,Z01PZ#.

~C3!

Let us assume that the inequality holds atZ1PI Z . Then
necessarily (dt/dZ)(Z1)Þ0. Becauset(Z) is by no means a
monotonic function, there exist pointsZ2PI Z such that
(dt/dZ)(Z2),0 holds. From the inequality~C3!, it follows
that, at all these points, the inequality

et~Z2!1
dt

dZ
~Z2!<0

must hold. This leads to a contradiction becau
(dt/dZ)(Z2),0 can be made as close to zero as one lik
while et(Z2).0 is bounded away from zero.
s

al

se
es

Thus the metric ~3.24! cannot have closed timelike
curves. There can be, however, the case in which the equa
holds in ~C2! all along the closed curve; namely, there exis
closed null curves. In this case we must have

dt

dl
5
dJ

dl
50 for ;lPI .

For this to be the case, it is necessary and sufficient that
period withPJ50 exists, which is equivalent to the condi-
tion that13

~h1z22z1h2 ,z1j22j1z2 ,j1h22h1j2!}~L,M ,N!
~C4!

for some integer-valued vector (L,N,M )PZ3. In other
words, the ratios between the components of the vector in t
left-hand side~LHS! must be rational. This does not neces
sarily hold. However, because the elements of the set of
tional numbers are dense in the set of real numbers, the n
line (t,Z,J)5(t0 ,Z01l,J0) with 0<l<lM passes
through any neighborhood of (t0 ,Z0 ,J0) if lM is taken to
be sufficiently large. The spacetime~3.24! thus infringes the
strong causality condition, which requires all the pointsp in
the spacetime to have a neighborhood which no causal cu
intersects more than once.

13We have setj5j11 i j2 , h5h11 ih2 , andz5z11 i z2 .
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