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The Hamiltonian structure of spacetimes with two commuting Killing vector fields is analyzed for the
purpose of addressing the various problems of time that arise in canonical gravity. Two specific models are
considered(i) cylindrically symmetric spacetimes afid) toroidally symmetric spacetimes, which respectively
involve open and closed universe boundary conditions. For each model, canonical variables which can be used
to identify points of space and instants of time, i.e., internally defined spacetime coordinates, are identified. To
do this it is necessary to extend the usual ADM phase space by a finite number of degrees of freedom.
Canonical transformations are exhibited that identify each of these models with harmonic maps in the param-
etrized field theory formalism. The identifications made between the gravitational models and harmonic map
field theories are completely gauge invariant; that is, no coordinate conditions are needed. The degree to which
the problems of time are resolved in these models is discugS6856-282196)02510-9

PACS numbd(s): 04.60.Ds, 04.20.Ex, 04.60.Kz

I. INTRODUCTION proach to the initial value problerf#]. From such work it
seems that the ADM approach is quite adequate for address-
Throughout a large part of the history of general relativ-ing many problems in classical relativity. However, the price
ity, much effort has been expended toward disentangling thpaid for obtaining technical control over the true degrees of
true degrees of freedom of the gravitational field from thefreedom is that general covariance is lost in the sense that
“pure gauge” degrees of freedom brought into the theoryone is obliged to view dynamics from the point of view of a
via the principle of general covariance. In the Hamiltoniangiven set of observers. In quantum theory this provides a first
form of the theory, this problem involves understanding theinstance of a problem of time, which might be called the
solution space of the initial value constraints and the approproblem of general covariance: how to give the state of the
priate free data for the Cauchy problem. Classically, a chargravitational field on an arbitrary hypersurface, that is, with
acterization of the true degrees of freedom is relevant forespect to arbitrary observers. In the ADM approach one is
analyzing the dynamical evolution of strongly gravitating prohibited from even asking this question.
systems, e.g., binary black hole systems, as well as for un- An alternative approach to describing the true degrees of
derstanding fundamental issues in relativity, e.g., cosmidreedom of the gravitational field that preserves general co-
censorship. The intertwining of gauge degrees of freedonvariance is available. This approach still relies upon the pos-
and dynamical degrees of freedom is especially vexing irsibility of extracting “many-fingered time” degrees of
quantum gravity, where it leads to many of the “problems offreedom—or, more precisely, spacelike embeddings of
time” [1]. Evidently, canonical quantization of the gravita- Cauchy surfaces—from the gravitational phase space, but
tional field would be expediated by a sufficiently explicit does not fix the foliation with coordinate conditions. Instead,
characterization of the true degrees of freedom. For the mosine describes evolution of the true degrees of freedom rela-
part, the strategy for doing this stems from the originaltive to an arbitrary foliation; i.e., one casts the Einstein equa-
Hamiltonian description of gravitation provided by Arnowitt, tions in the form of a parametrized field thedry]. This
Deser, and MisnefADM) [2] and Dirac[3]. The philosophy point of view was developed in considerable detail by Ku-
adopted there is that the Einstein field equations define achar[6], who called it the “bubble time” dynamics of the
“already parametrized field theory” in which certain nondy- gravitational field. Many of the problems of time are miti-
namical canonical variables represent points of space angated using this approadi], which is now known as the
instants of time, relative to which the true degrees of free<internal time formalism.” Implementation of the internal
dom evolve. In the ADM approach, the dynamical content oftime formalism hinges upon the possibility 6§ finding a
relativity is exposed by coordinate conditions which fix the canonical transformation on the gravitational phase space
nondynamical gauge variables. This leads to a description ahich separates four canonical variables to play the role of
gravitational dynamics relative to a fixed foliation of space-spacelike embeddings of a Cauchy surface into spacetime
time, that is, relative to a fixed family of observers. A promi- and (ii) eliminating the momenta conjugate to the embed-
nent example of this approach appears in the conformal aglings by the initial value constraints. If this can be done, the
remaining variables represent the true degrees of freedom,
whose dynamical evolution occurs via correlation with the
*Current address. arbitrary spacelike slices provided by the embedding vari-
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ables. So far, the internal time approach to gravitational dyvector models, which differ in the choice of isometry group,
namics has been implemented in lower-dimensional modelspacetime topology, etc., can be treated in much the same
typically symmetry reductions of the full theory. There is away as we do here. As mentioned above, these results lead to
plethora of homogeneous cosmological models in which it issubstantial simplifications in the problems of time that occur
possible, at least locally, to isolate a canonical variable repin canonical quantum gravity. We discuss these problems
resenting time and then solve the constraints for the momernd the general structure of the quantum theory based on the
tum conjugate to time. These models possess a finite numb#épernal time formulation of the two Killing vector models in

of degrees of freedom. Relatively few field theoretic models S€C- V. In the cylindrically symmetric model, it is necessary
i.e., models possessing an infinity of degrees of freedom® k€€p track of the behavior of fields on the axis of symme-
try and at infinity. We summarize our boundary and falloff

exist in which one can implement the internal time program. diti in the A di hich is referred to th hout
Such models are, to our knowledge, always two-dimensionat Oe? plalggrs In the Appendix, which 1S referred to throughou

field theories, most notably Einstein-Rosen wayv8splane-
gravitational wave$8], spherically symmetric vacuum grav-
ity [9], the bosonic string10,11], and related modelg12]. Il. SPACETIMES WITH TWO COMMUTING KILLING
For the most part, these models are generally covariant theo- VECTORS

ries of one or more free fields; e.g., the dynamics of the \ye are going to study the Hamiltonian structure of space-
Einstein-Rosen wave is that of a single free scalar field réPmes(.#,g) which admit two linearly independent spacelike

resenting the metric amplitude of the wave. _ Killing vector fieldsK &, A=1,2. The Killing vector fields
Our goal in this paper is to establish an internal timeg e assumed to commute

formalism for the reduction of the vacuum Einstein equa-
tions obtained by assuming the existence of two commuting [Ka,Kg]*=0, (2.1
spacelike Killing vector fields. We consider models involv-

ing both open universe and closed universe boundary cond@nd to generate a two-dimensional “orthogonally transitive”
tions. Our work generalizes previous models, in particula@group-s of isometries. This latter requirement means that the
the Einstein-Rosen wavdd], in two key ways. First, the distribution of two-dimensional vector spaces spanned by
reduced system of equations describes a paintefacting KA at each point is orthogonal to a foliation of by sur-
fields. To our knowledge, this is the only symmetry reduc-facesM—.7. Our assumptions amount to demanding that
tion of the vacuum Einstein equations known that admits arthe integral curves of the Killing vector fields provide a fi-
internal time formulation and in which the true degrees ofbrationz: .ZZ—M of the spacetime manifold by spacelike
freedom constitute a nonlinear field theory. Second, in termsurfaces. The two-dimensional manifdl is the “space of

of the two Killing vector model, we illustrate in detail the orbits” of the Killing vector fields.

fact that, strictly speaking, general relativity is not an already The spacetime metrig,; defines three functions
parametrized field theory. In order to extract canonical vari- o B

ables representing embeddings from the ADM phase space, Mag=0apKaKs,

it is necessary to extend that phase space by a finite nume
of degrees of freedom. For open universes, the addition
nongravitational variables represent the asymptotic Iocatiorﬂ

of a spacelike hypersurface relative to an inertial frame at il have a symmetric inversk”E. We can usa*E to define

iqfinity” [13_]. For closed universes, the intrinsic and ex_trin-a projection operato? into the (cojtangent space to each
sic geometries of a hypersurface are inadequate to define tf[’_l)%int of M: A

embedding of that hypersurface in spacet[h4]; additional
nongravitational variables are needed to accomplish this. yh= z—?\ABKXKB;;- 2.3
Given the extensions of the phase space, the resulting dy-
namical system is in each case a generally covafaram-  The associated tensor field
etrized formulation of harmonic maps from a flat three-
dimensional spacetime to a two-dimensional target space of Yap=9ap— N PKaKpp 2.4
constant negative curvature. -

In the next section we define the models. Our open uni-SatISers
verse model is obtained by imposing cylindrical symmetr & _ a,  _
on spacetime. Our closed uyniverr)se m%dgl, first congidered )k/)y ZkyYap=0  aNdKLy;=0. 29

Gowdy [15], defines the uni;/grse to be a three-torus whichrpere is a one-to-one correspondence between tensor fields
admits a two-torus group of isometries. We do not impos&,, v and tensor fields onvZ with vanishing Lie derivatives
hypersurface orthogonalityreflection symmetry on the along K ¢ and which are completely “orthogonal” t& &

Killing vectors, and the resulting dynamical theory is in eachr; 7 18. This correspondence means tha; uniquely de-
case intrinsically nonlinear, in contrast to the Elnstem-Rosen%meS a Lorentz metric oM.

waves[7] or “polarized” Gowdy models[16]. In the lan- Coordinates<*= (x* x%), A=1,2, a=3,4, can be chosen
guage of the linearized theory, both gravitational polariza~,c, that o o Y

tions propagate and interact. In Sec. Il we exhibit canonicaf

transformations, inspired Hy’] and[10], which allow us to K= 6%, (2.6)
extract the embeddings, solve the constraints, and reveal the

true degrees of freedom in each model. Other two Killingand the spacetime metric takes the form

(2.2

presenting the lengths and inner products of the Killing
ector fields. Because the Killing vectors are spacelike and
nearly independent at each point, this symmetric matrix
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00X AXP= N pgd X dXE+ y,,dx2dX°, (2.7

whereh \g=Nap(X%) and y,p=vap(X%).

There are only six independent Einstein equations be-

cause the orthogonal transitivity requirement forces
Y3K5G,5=0. (2.9
Thus the nontrivial Einstein equations can be taken to be

KAKEG,z=0,
(2.9
575G 5=0.
Setting\=det\5p), these equations can be put into the fol-
lowing form in the coordinatesx(*,x?):
_ %)\1/2Da()\ _1/2Da)\AB) + )\AB( _ %//2_{_ AT 1/2DaDa)\l/2
+3DA\ YD A= 3D\ PD N p) =0, (2.10
%DCAABDd)\AB_ DC()\_llde)\llz)+ ,ycd()\—l/ZDaDa)\l/Z
+ 3D\ VDN FDANABD N pp) =0. (2.10)

HereD, is the derivative operator dd compatible withy,,
and.7 is the scalar curvature &, . Indices for tensor fields
on M (Latin lowercasgare lowered and raised witp,, and
its inversey2?. It will be useful later to note that Eq2.11)
implies

D2D, (A2 =0. (2.12

All of our considerations will be formulated on the space of

orbits M. The Einstein equation$2.10 and (2.11) are
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chart when the Einstein equations hold; that is, in these co-
ordinates the metric oM is given by
ds’=02(—-dT?+dR?), (2.14
whereQ)=Q(T,R) is a positive-definite function. _
We parametrize\,g in terms of scalar fieldsR, ¢, ) via
M agdxPdxB=R%e~Ydgp?+e¥(dz+ gdg)2.  (2.15
In preparation for the Hamiltonian formulation of the Ein-

stein equation$2.10 and(2.11), we foliateM with space-
like curvest=const and parametrize the metric bhvia

YapdX@dXP=[ — (N*)2+e? ¥(N")?]dt?+ 2e” N'dt dr

+e?¥dr2. (2.16
As tensor fields on the curves-const,N* is a scalar field
called the “lapse function,”N" is a vector field called the
“shift vector” (equivalent to a density of weight minus one
onR™), andy is the natural logarithm of a covariant rank-2
tensor field (equivalent to the logarithm of a density of
weight twg. The functions R,¢,¢) are scalar fields on
t=const. All the fields N",N",y,R,#,¢) are functions of
the coordinatest(r) only; see the Appendix for the bound-
ary and falloff conditions we use for these fields. In terms of
this parametrization, the conformal factOr arising in the
coordinatesx?=(T,R) [see(2.14] is given by
Q=elr="P2 (2.17

It is worth noting some special cases of the parametriza-

tion given above. If the Killing vectors are each hypersurface

viewed as a generally covariant system of partial differentiaPrthogonal, it follows thaty=0 i.e., the matrixAg is diag-

equations for “matter fields'’\pg and Lorentz metricy,, on
the two-dimensional manifoli1.

A. Cylindrical symmetry

onal, indicating orthogonality of the Killing vectors. This
special case of cylindrical symmetry in which eag€lf is
hypersurface orthogonal will be calledhole cylindrical
symmetry The solutions to the field equations possessing
whole cylindrical symmetry are the well-known Einstein-

Our_model for open universes is defined by takingRosen waves. Kuchassumes whole cylindrical symmetry

7#=R3xS! and ¥=S'XR. Note that # is diffeomorphic

in his analysig 7], and, withy»=0, our parametrization of the

to the manifold obtained by removing a timelike two-plane spacetime metric is identical to his. When

(swept out by, say, the axis) from R*. The Killing coordi-
nates are denoted by“=(¢,z), where ¢<(0,27) and z
e(—»,2). The space of orbits i =RXR*, whereR" is

$=0, ¥=0,
(2.18

N‘=1, N'=0, y=0, R=r,

the manifold of positive-definite real numbers. We define

R:=AY? and demand tha¥ R is everywhere spacelike. We
will call spacetimes with these propertieglindrically sym-
metric. In what follows it will be useful to employ coordi-

the spacetime is flat and the metric is expressed in cylindrical
coordinates.
Let an overdot denote differentiation with respecttto

nates orM that are adapted to a foliation by spacelike curvesThe field equation$2.10 and(2.11) in the parametrization

R*—M. These coordinates will be denoted B§=(t,r)
wheret e (—o,%) andr €(0,). The radial variable will be
restricted by the requirement thaR/dr>0. R itself can
serve as a radial coordinate B . Because 0f2.12), R will

(2.15 and(2.16 can be obtained from the following Hamil-
tonian form of the action:

S:NLIN"!F),lRll!/l’lZqu'ylﬂ-Rvﬂ-{/jlwl]

be a harmonic coordinate when the Einstein equations hold.

The harmonic conjugate to R is defined by
D,T=¢,"DyR, (2.13

where €., is the volume form onM defined byy,,. The
coordinatest=T and r=R form a conformal coordinate

t % ) : . t
fzdtf dr(m,y+ mrR+ i+ W.,/;l//)—f 2dt H,

t, Jo ty
(2.19

where the Hamiltonian is
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® allows us to add constant multiples Nf (=) to the surface
HZZNL(OO)(l—eW(m)IZ)JFJ dr(N*7, +N".7,), term without spoiling the differentiability of the action or
0 (2.20 Hamiltonian. We have used this freedom to normalize the
' Hamiltonian so that it vanishes when spacetime is flat, which
and we have denoted the limits Nf-(r) and y(r) asr—o  0ccurs wheny(=)=0. The energy associated with time trans-
by N*(x) and y(=). The super-Hamiltonian and supermo- lations described by unit lapse function at infinity is

mentum are given by E=2(1—e "7 (2.25

T, =el” 7)/2[ —m,mr+2R"—R"y’ It follows from the field equations thag(>), known as the
“ C energy,” is conserved and non-negatigee, e.g.;19)).
1 s g o 1 Ly 2 HenceE is bounded from below and is minimized on flat
+5 (RY“+R7my)+ 5 (Re ‘bﬂ'@ spacetime. Note also thEtis bounded from above, which is
due to the geometric interpretation Bf as a deficit angle

oy (divided by ) at infinity. See[20] for a detailed discussion
+R™ey'?) |, (2.2 of this interesting behavior of the energy of cylindrically
symmetric spacetimes.
T, = _277;+ 7y TR+ W?f"/v’" To summarize, cylindrically symmetric spacetimes consti-

(2.22 tute a constrained Hamiltonian system. The phase spase
the space of fields¥,R, ¢, ¢, 7, , mg, 7, m;) on R™ with

where a prime indicates a derivative with respect td-or  boundary conditions as specified in the Appendix and with

eacht the momentum variablesn(,, 7,7, ,77) are scalar the restriction2.24). The action functional2.19 defines the

densities of weight one oR . The Hamiltonian action func- symplectic two-form() onI". () maps a pair of tangent vec-

tional (2.19 can be obtained byi) expressing the ADM tors

action in terms of the parametrizatid®d.15 and (2.16), (ii)

integrating out the Killing coordinatesand ¢ (the range of X=(0v,6R,0¢,6¢,6m,, 6mg,6my,6my)  (2.26
z should be made finije and (iii ) dividing the result by the
range ofz and the range of. and
Extremizing the actiori2.19 with respect to variations of A A A A amon - - -
7, mg, m,, andmy produces the definitions of the momenta X=(07y,6R,6¢,6¢,6m,,6mg,6m,,6my) (2.27)

in'terms of the “velocities”y, R, , and. Extremizing the
action (2.19 with respect to variations df*, N', 5, R, #,
and ¢, where the asymptotic values df- andN'" are held "
fixed, yields six equations, which, given the definitions of the  ((x,X) = f dr(8m,8y+ dmgdR+ 81,8+ 813y
momenta, are equivalent to the six field equati¢h40 and 0

(2.17) in the parametrizatiof2.15 and(2.16). In particular,
the field equations arising from varying the lapse and shift

are the constraints From (2.28 it follows that (y,R,#,¢) and
J/,~0 and 7%,~0, (2.23 (m,,mr,my,my) are, respectively, canonical coordinates
and momenta fof" and hence satisfy the canonical Poisson
which correspond to the normal-normal and normal-brackets relations, e.g.,
tangential projections of the field equatiof@s12) relative to

to the real number

—[6< ). (2.28

the curvet=const. The remaining four equations are evolu- {y(r),7,(r)}=8(r,r). (2.29
tion equations for the spatial metric variabtend the “mat- ) ) )
ter fields” R, ¢, and . In terms of the Poisson brackgt-}, the time evolution of a

Let us make two remarks on the Hamiltonian variationalfunction F:I'—R is given by
principle we have describedi) It is important to note that

the canonical variables are restricted by the assumption that F={F H}. (2.30
V R is spacelike on#, which implies thaD ;R is spacelike ) _ ) )
on M. In Hamiltonian form, this restriction is For any choice of lapse and shift, dynamical evolution takes
place entirely on the constraint surface-I" defined by the
R'>|m,)|. (2.24  constraints(2.23. This follows from the fact that the con-

straints are “first class.” More precisely, the Poisson algebra
(i) The boundary term at infinity that appears in the Hamil-of the super-Hamiltonian and supermomentum is the algebra
tonian is needed to render the action and Hamiltonian funcef deformations of spacelike curves i [21].
tionally differentiable with the boundary conditions given in  In two-dimensional spacetimes, such as we have here, it is
the Appendix. On solutions to the field equations, the Hamil-convenient to work with a rescaled super-Hamiltonian which
tonian is given by the boundary term, which we identify asis a scalar density of weight two. We define the weight-two
the energy that generates time evolution at infinity charactersuper-Hamiltonian via
ized by N*(). Note that our boundary conditions are such
that N* () is fixed, that is, not subject to variation. This H=er" W2y (2.31)
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Of course, the super-Hamiltonian constrain¥, ~0 is B. Toroidal symmetry

equivalent to7~0, and we can write Our model for closed universes is obtained by setting
_#=R*xT? and choosing the isometry group to be=T?2
with coordinates/,ze (0,2m). The space of orbits is a cylin-
der, M=R"XS!. We are considering one of the Gowdy
models[15], and we shall call spacetimes with the above
propertiestoroidally symmetric In these spacetimes we de-
fine 7:=\Y2 It can be shown that toroidally symmetric
vacuum spacetimes are foliated by spacelike surfaces whose
leaves are defined by=const[15,23. Hence the gradient of

7 is timelike, which we will assume in all that follows. Ac-
cording to observers “at rest” relative to the slicesconst,

N7, =N77, (2.32

whereN is a scalar density of weight minus one, which is
equivalent to a vector in one dimension, obtained by

N=el?=M2NL, (2.33

We can now vary the action

SINNNL Y. Ry ey ] the toroidally symmetric spacetimes expand forever from a
. “big bang” at 7=0. Coordinates oM that are adapted to a
I R : : . ~7 o foliation by spacelike circles will be denoted,X), where
= —N# : . e
ftl dtfo dr(myy+ mRtmy gt mig—N7 te(00) and x e (—o,») with the identificationx~x+ 2.

t We will demand that a time coordinateon M satisfy d7/dt
. 2 >0. For any solution of the Einstein equationsis a har-
—N"7%,)— . S ) X ) ;
N'.7) ftl dt N(o) y(>) (234 monic time coordinate. The harmonic conjugaterts de-
noted byX, which satisfies
with respect to its arguments and obtain equations still

equivalent to(2.10 and (2.11) once the correspondence D.X= €a"Dp7 (2.39
(2.33 is made. In this variational principle we hold fixed the é 1 b '
asymptotic value olN. When using the weight-two super- o Jds®e" Dy

Hamiltonian and associated lapse density, the Hamiltonian is

given by whereds? is the oriented line element on a spacelike circle.
BecauseD 7 is timelike, the denominator i92.39 never
— @ vanishes. By virtue 0€2.12), the integral in the denominator
H=N(°°)7(°°)+J'O dr(NZ+N"7,), (239 s independent of the choice of spacelike circle, i.e., is a
constant of motion. This integral is introduced so that on any

where the surface term is again chosen to makand H circle t=const we have that

differentiable with our boundary conditions and to yield X(X+27) = X(X) = 2. (2.40
H=0 when y(«)=0. Evidently, theC energy is associated
with time translations defined by unit lapgensityat infin- ~ With the identification X~X+ 2, the coordinatest=r,
ity. x=X are adapted to a spacelike foliation bf; in these
The advantage of the weight-two super-Hamiltonian iscoordinates, the metric oM is of the form
that the Poisson algebra of constraints is now a Lie algebra A2 2 5
[22]. In detall, define the smeared constraints ds’=0%(—d7*+dX?). (247
The Hamiltonian formulation of toroidally symmetric
USRS ) ] N [ oy spacetimes closely parallels that obtained for cylindrically
AN = J; dr N7 and 7 (N')= fo dr N7, symmetric spacetimes. Essentially, the toroidally symmetric
(2.39 case differs by the change of notatiBra- 7~ and the fact that
the Cauchy surfaces iN are now compact circles param-
where N' is a given vector field andN is a given scalar etrized byx instead of honcompact half-lines parametrized
density of weight minus one. Direct computation then showsy r. We parametriza g in terms of scalar fieldér,,¢) via

that ~
A apdXAdxB=r2e Ydy?+ e¥(dz+ ydy)?.  (2.42
{#(N), (M)} =737, The metric onM is parametrized relative to an arbitrary
- , - foliation by spacelike circles exactly as (8.16:
{ZN), (M)} = ZA(K), (2.3) .
Yapdx@dxP=[ — (N+)2+e?” ¥(N¥)?]dt?+2e” YN*dt dx
{7 (N), 7, (M)} = 7, (L"), L er Uyl (2.43
where In the coordinates®=(7,X) the conformal factor in2.41)
is
r_— r_ ’
T NME= MR, Q=er=¥72 (2.44
K=NM""—M'N’, (2.39 When =0 our parametrization corresponds to a “polar-

ized Gowdy model”[16], which can be considered the
L'=N'"M"—-M"'N"". closed universe analog of the Einstein-Rosen waves. When
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= =0,
(2.45
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where a prime denotes differentiation with respect.tés in
the cylindrically symmetric case, the action functiof@k9
can be obtained by expressing the usual ADM action in the

the spacetime is flat. This spacetime can be obtained frorfield parametrization2.42) and (2.43, integrating out the

four-dimensional Minkowski spacetimié* as follows. Let
(1.%,y,2) be inertial coordinates oM*. Denote byl the
submanifold ofM* in which t>—y?>0 andt>0. Let| de-
note the manifold obtained froinby the identifications

X~X+ 277,

arctan?{ %) ~ arctan?{ %) + 27,

Z~72+2.

(2.49

The Minkowski metricz,; projects to a flat metric oh The
mapping¢:..7#—I, defined by

t=t coshy,
X=X,
(2.4
y=t sinhy,
5=

Z,

is a diffeomorphism which identifies the metric ot de-
fined by (2.45,

ds?=—dt?+dx?+t?dy?+d 7, (2.48
with the flat metric induced oh.

In terms of a spacelike foliation d¥l with adapted coor-
dinates {,x), the Hamiltonian form of the action is

S[NlaNry’)/vT!l/’ylrljawvarawlyljaw;’z]

27

%)
- [ Zat
t, Jo

where the Hamiltonian is

. . t

dX(ﬂ'y'y-i- T T+ b+ W@lﬂ)—f 2d'[ H,
ty

(2.49

H

2
dx(N*.77, +N*7,).
0

(2.50
The super-Hamiltonian and supermomentum are given by

T =e="2 _ Tyt 27— 7'y + (T %+ T_17T2¢)

(2.5)

1 ~
+ > (Teizwﬂ'fz-F Tlezd’l[f'z)} ~0,

T==2m 4wy + .+ + gy ~0,

(2.52

coordinatesy and z, and dividing by the ranges of these
coordinates. Extremizin(2.49 with respect to variations of
its arguments leads to the Einstein field equati@h&0 and
(2.1)) in our chosen parametrization.

To summarize, points in the phase spacef toroidally
symmetric spacetimes are defined by the smooth tensor fields
on the circle ¢, 7,4, ¢, 7, ,m.,m,,m;). These fields are re-
stricted by the requirement that,r be timelike on.Z,
which meansD, 7 is timelike onM; in Hamiltonian form,
this requirement is

(2.53

The action(2.49 defines the symplectic structure dbnThe
symplectic two-form acting on a pair of tangent vectorg'to
is given by

m,<—|7].

~ 27 -~ N - A~
Q(X,X)= dx(om,8y+ 6w, 67+ S S+ STy
0

—[6+4]), (2.59

so that, withR«< 7, the canonical coordinates and momenta
are as before. The weight-two super-Hamiltonian is defined
via (2.31), and the Poisson-algebraic properties of the con-
straint functions are as in the cylindrically symmetric_case.
Dynamical evolution takes place on the constraint surface
defined by the constraint®.51) and(2.52), and is generated
by the Hamiltonian2.50.

Ill. CANONICAL TRANSFORMATIONS

In this section we will exhibit canonical transformations
from slight extensions of the gravitational phase spaces of
Sec. Il to phase spaces for parametrized field theories on a
fixed background spacetime. The extensions are needed be-
cause the gravitational phase space is not quite adequate to
define embeddings of hypersurfaces into Ricci-flat space-
times. This difficulty arises for the full theory in both closed
universeqd 14] and open universgd 3], and can be consid-
ered a “global problem of time’[1]. While it is possible to
phrase all of our results directly on the four-dimensional
spacetime manifold/, it is far more convenient to express
our results on the space of orbls, and we will present our
analysis on this effective two-dimensional spacetime mani-
fold.

Before specializing to our two Killing vector models, let
us outline the basic strategy for the full the¢y1]. Denote
the usual gravitational phase space variablesdy,§"') and
the super-Hamiltonian and super-momentum(b¥, ,.7%,).

We seek a canonical transformation

(qu !pIJ)H(xalHaiinpA)v (31)
where ¢=0,1,2,3 andA=1,2 such that, on solutions to the
equations of motion and constrain¥;:>—. 7 represents a
spacelike embedding of a Cauchy surfacénto the space-
time manifold. 7. The transformation must allow the con-
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straints. 7| ~0~.7; to be resolved for the momenta conju- grees of freedom are identified as spacelike embeddings. The
gate to the embeddings; i.e., in the new variables theesulting Hamiltonian structure of the model is then inter-

constraints are equivalent to preted as a generally covariant form of a theory of harmonic
R maps by a sequence of canonical transformations on the ap-
H,:=II,+h,(X%q"%pa)~0. (3.2  propriate harmonic map phase space. We begin by finding

) ) ) the appropriate extended phase space for cylindrically sym-
This formulation of the canonical theory has the following metric spacetimes.
interpretation. The gravitational variables encode& fnare From the definition of the lapse densifand the timeT
used to identify instants of time and points of space at whichyy equivalently, from the equations of motion &y it fol-
the true degrees of freedofy*,p,) are being measured. The |ows that the rate of change @) with respect tat is the
embeddings are “pure gauge,” i.e., arbitrary; their conjugateasymptotic value of the lapse denshy=). This motivates
momenta are completely determined in terms of the embedhe following constructiori24]. We introduce a new degree
dings and true degrees of freedom by the constrd®®.  of freedom, 7., which is the time displayed by a clock at

The constraint functionsl,,, when integrated against func- infinity that measures time. The lapse density at infinity is
tions N“, generate the dynamical evolution of the true de-expressed as

grees of freedomig®,p,) as the embedding they are on is
deformed, viadX*=N¢?, through the Ricci-flat spacetime for

which (g*,p,) are Cauchy data. The densities of weight-one
h,(X% 9" pa) represent the energy-momentum current of
(qA,pA) through the hypersurface embeddedXfy Gravita-  If we insist on keeping fixed the asymptotic value of the

tional dynamics on phase space is thus cast into the form dépse density, then we also keep fixed, and nothing is
a “parametrized field theory” on#. changed except notation. However, we can treas a new

dynamical variable which is to be varied in the action. This
is the usual logic of the parametrization process as applied to
the “point at infinity.” If we parametrize at infinity, the

As we saw in Sec. Il A, the metric variabR and its  Hamiltonian form of the actiori2.34) can be written as
harmonic conjugat& define a conformal coordinate chart on

cylindrically symmetric spacetimgseduced toM). We can  ~ ; ~ ~

thus define a spacelike cur®® —M by giving its paramet- SINNL Y R,y Ry 717,70

ric description(T(r),R(r)). In the canonical formalism we

can therefore view the phase space vari&{le) as one part t o ] ) ) .

of an embedding oR ™ into M. To complete the definition of = f dtf dr(m,y+mgR+m i+ 75— NI

the embedding, we must exprebsas a function on the phase g 0

space, which will be again denotddr). Using the pullback t,

of (2.13 to a spacelike curvé=const and the Hamilton —Nr-%r)—f dt 7. y(%). (3.9
equations, we find g

N(®)=1,. (3.5

A. Open universes: Cylindrical symmetry

T=-m,. (3.3 By adding the new variable,, to the Hamiltonian action

) ) ) _ principle, we get additional equations, which, however, are
This equation can be integrated to give equivalent to the original equations. In detail, by varying
: we obtain conservation of th@ energy,y()=0, which al-

T(r):T(oo)—J’ dr_a-ry(r_). (3.4) ready followed from the other equ_auons of mot|on and so

o does not alter the content of the field equations. The other

new equation comes from varying Prior to parametrizing
Because of the restrictiof2.24), the variableqT(r),R(r))  at infinity, the variation ofy led to one of the field equations
define a spacelike embedding on solutions of the equation®.10 and (2.11), and a potential boundary equation was
of motion. Unfortunately, given a point in the gravitational eliminated by the boundary term in the Hamiltonian. After
phase spacf, the embedding is not uniquely specified be- parametrization, the boundary equation survives and yields
cause the gravitational data do not fix the value of the inteEq. (3.5), which recovers the desired definition of.
gration constanT (), which represents the asymptotic loca- To summarize, we can enlarge the phase spaoé cy-
tion of the embedded curve. This difficulty is not a lindrically symmetric spacetimes by adding a single variable
consequence of our use of the conformal coordinafeR)  7.. The extended phase space will be dendiédThe ex-
to specify an embedding, but is a general feature of generdatema of the action functiondB.6) still define cylindrically
relativity of open universes. For example [it8] the Hamil-  symmetric vacuum spacetimes, but now in terms of the ex-
tonian formulation of general relativity in asymptotically flat tended set of variables. By enlarging the phase space in this
universes is considered, and it is shown that the geometrgnanner, we are able to define the asymptotic_location of
dynamical data must be supplemented by a finite number ddpatial curves using dynamical variables. The ac8phow-
additional degrees of freedom in order to determine a spacever, is not in Hamiltonian form because the surface term
like hypersurface. To implement this idea in the context ofnow enters as a “kinetic term” and destroys the canonical
cylindrically symmetric spacetimes, we will extend the phasenature of the phase space coordinajeand m,. We still
spacel’ of Sec. Il A. We then make a canonical change ofmust find canonical coordinates and momentd trindeed,
variables on the extended phase space in which certain dese must show thaf™ is a symplectic manifold. We will take



53 INTERNAL TIME FORMALISM FOR SPACETIMES WITH TVWO . .. 5641

care of these issues, while at the same time providing the m,==T, (3.16
cylindrically symmetric version of the canonical transforma-
tion (3.1), in the following. R +T'\]’

Let us define the phase spatdor a field theory orM as mr=Ilg—|In ﬁ” (3.17)

follows. A point in phase space is defined by the functions

(T.R ¢, 4,11 Ilg,m,,my) on RY, where T,R,4,4) are  The transformatiori3.11)—(3.13 is a diffeomorphism which
scalar functions andl{+,I1g,m,,77) are scalar densities of identifiesI'™* andY. In particular, the inequality3.7) is pre-
weight one. Boundary and fall off conditions on these scalagisely the restrictiori2.24 onI™ and is needed for the trans-
fields and scalar densities are as indicated in the Appendiformation to be well defined. We can use this diffeomor-

We will need some restrictions on the functiofiér) and  phism to express the actiof2.34 as a functionalS* of
R(r) so that they can be interpreted as spacelike embeddingsirves inY:

of R* into M. For reasons which will be clearer in a mo- _
ment, we demand S IN,N"T,R, o, ¢, 117 g, 7y, 7]

R'>|T'|, (3.7 t, (= : : : .
=J dtf dr(II;T+HgR+ 7+ myp— NH—N"H,),

and we include this inequality in the definition af. We 1 0
define a symplectic two-forniE(X,X) onY by its action on (3.18
a pair of vectors where

X=(5T,5R,5(//,5’l:/;,5n'r,5HR,57T¢/,5’7T’,Z) (38) H:HTRI+HRT,+%(R¢/2+R_17T2¢)

and +3(Re 2/n+R 1e?y'2)~0, (319
X=(3T,8R, 8,59, 311,011, 6m,,0m7) (3.9 ”
( b, 64,6111 R, Oy, 0my) (3.9 H,=II;T' +gR’ + 4 + 754 ~0. (3.20

at a point ofY. The symplectic form is defined by o ]
Note that the surface term contribution to the action has

- o A - . ~~— dropped out. Indeed, from this action we see that the vari-
E(X,X):f dr(Sll76T+ SRR+ om0+ Sy oY ables T,R,4,4) and (1 ,Ilg,m,,77) are canonical coor-
0 dinates and momenta for the phase spRteWe have(i)
—[6< ). (3.10  shown thatl™ is a symplectic manifold by exhibiting a dif-

feomorphism fronT™ to the symplectic manifoldY,=) and
For the moment, the symplectic manifol@,Z) is to be (i)  exhibited a canonical  coordinate  chart
viewed as logically independent of the gravitational phasdT,R,,¢,11;,1lg, 7, ,77) on |
space; that isY is being thought of as simply a space of The actionS* has a nice mathematical interpretation in
functions (T,R, 4,111 ,Ig,m,,7}) upon which we have terms of a parametrized f_ield theory formulation of harmor]ic
defined a symplectic structure. The symplectic structure ignaps on a flat on spacetime, and we shall now spend a little
defined so that T,R,4,) and (11 Iz, m,,m;) are, re- time diveloping this interpretation. Recall that harmonic
spectively, canonical coordinates and momenta. maps¢™:M—L are fields on a spacetini,g) taking val-

Now consider the following map frori* to Y. As sug-  ues in a Riemannian manifoldl o) and which extremize the

gested by our notation, we will identify the variables “energy integral™:
R,¢,¢,m,, 7y in I’ and Y. The remaining portion of the

map is defined by I[e”]= _%fM /_ggaﬁgAB(gD)@’AagD%, (3.21)

r
T(r)=r7.— Ldf T (), (31D whereg,g is the metric onM and oxg is the metric onl.
Note that we are using capital Latin indices to label the har-
monic maps; in this discussion, these indices should not be
confused with those labeling the Killing vectors used to de-
fine the gravitational model. Also, the spacetime manifdid
(3.13 and metricg,;z for the harmonic map theory should not be

confused with the gravitational” andg,,.
Introduce a spacelike foliatiod:RX%=—M characterized

Note that this transformation is consistent with and1llz by JapseN* and shiftN'. The Hamiltonian form of the action
being scalar densities of weight one. This map can be in¢327) s

verted; the relevant formulas are

Ir=—y'+[IN(R2=73)7", (3.12

!

’
Y

In| =&——
R+7Ty

HR: 7TR+

7, =T(%), (3.14 I[o* 7al= JRXZ(WA(;DA_ N‘h, —N'h), (3.22
y(r)=In(R"2=T'2)— jrdr_HT(r_), (3.15 where lowercase Latin indice_s_ denote tensorspmand the
0 energy and momentum densities are
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1 1 . a a _ ) (@ a
hLzz \/_a O-ABWAWB—f_\/aq”O-AB(P',Ai(P% ' (323) I[N X vnai(PA!ﬂ-A]_ fo2(WA¢A+HaX —N Ha)-
(3.32
- A
hi=ma¢g’;. (824 The extrema of this action, obtained by varying it with re-

: . . spect to its arguments, are defined by a system of equations
Hereg; is the induced metric on each hypersur{&cef the  equivalent to those obtained by extremizi@@?. Note that
fql|at|on. Var!atlon ofl_[c,o ,ma] with respect tog and _ the Hamiltonian can be expressed as

yields equations equivalent to those obtained by varying

(3.27). At this point the spacetime metric and foliation, while ,

arbitrary, are fixed. This is reflected by the fact that the lapse Hi:f N“Ha=f (N*H, +N'Hy), (3.33
and shift are fixed fields oR X2, i.e., not subject to varia- > >

tion in the action principle. Because of this, the field theory,,yhere

in either the Lagrangian or Hamiltonian formulation, is not

“generally covariant.” General covariance can be intro- H, =n*ll,+h,, (3.39
duced into the field theory by keeping the spacetime metric
fixed and adding the foliation itself to the space of dependent Hi=XSI,+h;, (3.35

variables to be varied in the action principle. This is conve- .
niently done in the Hamiltonian formulation, where the newand we can equally well vari){* and N' instead ofN* in
dynamical variables are spacelike embeddings, which wé3.32.
shall denote byxX®. We must still introduce momentH,, The resulting formalism, in which the embeddings and
conjugate to the embeddings. To do this we need the uniheir conjugate momenta are adjoined to the phase dpace
normal n® to the hypersurface embedded By. The unit the expense of the constrairt3.31)], is the “parametrized
normal is defined by formalism” for the harmonic map field theory. The central
feature of the parametrized formalism is that it provides a
gaﬁ(X)n”Xﬁ=0 and g,g(X)n“nf=—1, (3.25  generally covariant formulation of any field theory. This is
what makes possible the identification of the gravitational
whereg,,4(X) is the metric orM restricted to the embedding models, which are generally covariant field theorieshdn
X% The unit normal is a fixed local function of the embed- with the theory of harmonic maps on a fixed background
ding and its first spatial derivatives. The foliation is a one-spacetime.
parameter family of spacelike embeddings, which we shall  Now we are ready to make contact with the Hamiltonian
denote byX“(t). It is straightforward to show that formulation of cylindrically symmetric spacetimes. This is
) _ accomplished in three steps.
X*()=N"n*+N'X]. (3.2
1. Fix the spacetime and target space

The action(3.22 can thus be written as We fix the spacetime to bl =R?xS! equipped with a

. flat metric, which is defined in polar coordinates by the line
I[(pA,wA]=f (ma@™—X%h,), (3.27  element
RXS

Uapdx*dxP= —d T2+ dR?+ R?dd2. (3.36
where
_ Here T e(—»,%), Re(0,%), and ®<(0,27). The harmonic
h,=—n.h, +X.h;, (3.28  maps are defined to take valued.ir-R? with the metrico,g
_ chosen to be of constant negative curvature. In coordinates
and we have introduced fields',, which are fixed local e (—%,) and ¢e(—»,%), the metric onL is determined
functions of the embeddings and their first spatial derivativesy the line element
defined by
_ ‘ _ oapdedeB=dy?+ e 2Ydp2. 3.39
X Xj=46; andn“X,=0. (3.29
The scalar curvature of this metric is2.
From this form of the action we see that the momenta con-

jugate to the embeddings are given by 2. Impose azimuthal symmetry
Of coursed/o® is a Killing vector field of the metrig,,;.
,=—h,; (330 We now demand that the fields® be invariant along the

o ) flow generated by this Killing vector field: i.e.,
these definitions represent constraints
Z, A=0. .
H.:=TI,+h,~0. (3.3 =0 (339
In the coordinatesT,R,®) on M, this means we assume the

We can take the constraint63.31) into account with fields are independent @b:
Lagrange multipliersN® and obtain the final form for the
Hamiltonian action describing the parametrized field theory: Yy=¥(T,R) and ¢=¢(T,R). (3.39
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In the parametrized formalism for the field theory, we alsoand variation of this action with respect to its arguments
assume that the foliation is compatible with the azimuthalields field equations equivalent to those obtained from
symmetry in the sense that we only consider spacelike suf3.42. Note the close similarity between the super-
faces to whichy/o® is everywhere tangent. The embeddingsHamiltonian (3.46 for the harmonic map theory and the
can be registered in the coordinat@sR,®); that is, we have super-Hamiltoniar(3.19 for cylindrically symmetric space-
times.
X(r,®)=(T(r),R(r),P), (3.40
3. Canonical transformation

wherer €(0,,). Thus, to specify an embedding, we must
specify two functions of one variabl&(r) andR(r). On the
symmetry-compatible foliation the shift vector takes the

In the last step, we perform a canonical transformation
that interchanges the roles gfand 7, and puts the super-
Hamiltonian and supermomentum of the parametrized field

f X .
orm theory of harmonic maps into the forf3.19 and (3.20.
Ni=(N',0). (3.41)  This transformation is given by
We can now formulate the parametrized harmonic map e :frdr_ ) 3.4
field theory on the two-dimensional space of orbits v(r) " mo(r), (349

M=RXR™" of the Killing vector. By working in polar coor-

dinates orM, this amounts to simply ignoring th& coordi- T=¢' . (3.49
nate. The Hamiltonian form of the action can be obtained by

substituting the choices made in the first two steps into thd he inverse transformation is

action(3.32 and integrating out the angular coordinate. We

obtain H(r)= fordr_a-r;(r_), (3.50
I[N NG TR I TR, i, b,y 4]

With the boundary conditions given in the Appendix, this is
. a canonical transformation provided we impose the boundary
+mgp—N"H, —NH)), (3.42  condition ¢(r=0)=0. It follows immediately from(3.50
and (3.5)) that, in the new variables, the super-Hamiltonian
where and supermomentum for the parametrized harmonic map
field theory are precisely3.19 and(3.20.

t © . . .
=f 2oltf dr(IT;T+ R+ 7,
t, Jo

1 As indicated by the equival t trized field
_ / ry1 12, o—1_2 y quivalence to a parametrized fie
H = W [ILR +HRT + 2 (Ry' "+ R ) theory, the constraint3.19 and(3.20),
+3(Re" ¢/ 2+ R *e?'73)], (3.43 H~0~H,, (3.52
Ho=TI;T' + TIgR’ + 7y’ + 74" (3.44) can be solved for the momenta conjugate to the embeddings.

Indeed, it is straightforward to show that these constraints are

Variation of this action with respect to its arguments yieldsequivalent to
field equations equivalent to those obtained fr@@B2 in
the special case of azimuthal symmetry. An equivalent varia-

tional principle is obtained by defining a lapse density where TT,=(Il7,I1g) and h,=(h;,hg) is defined as in
a 1 a ]

H,:=I,+h,~0, (353

1 (3.28 with
N:=———=N* (3.45
JR2—T72 o R T
Na=(N1,NR)=| — 12 12’ 12 2]
and weight-two super-Hamiltonian JRZ-T'2" JRZ-T
(3.59
H=II{R' +IIgT' +3(Ry'?+R 7)) , ,
r__ r rN_ |
+3(Re 2/¢'2+R te?7?). (3.46 Xa= (X7, R)_( RZ_T72" R,z_T,z>- (359
In terms of these quantities we have Explicitly, the constraint$3.53 take the form

1[N,N', TR Iy g 4, ¢, 7, L
[ TolR o @y o) o+ mrrrs (RTARYZR )+ H(Re 2V

t o : ) ) :
- ftl i Tt FRTIE ] =T (g + 7)) =0 (356

~NH-NH,), (3.47  and
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1 ) - ) edy this situation by adding a new degree of freedpta the
lg— g7 (T'[3(Ry"?+ R ) +3(Re”2Vmr phase spacg24]. Unlike the cylindrically symmetric case,
this new degree of freedom has no role to play in gravita-
—1.207702\1 _ B! P ~TTNY tional dynamics; i.e., it is pure gauge. We therefore introduce
TR R (g’ + my))~0. (3.59 a momentunp conjugate tog and adjoin a new constraint,
A standard argumerisee, e.g.[25]) establishes that the con-
straints(3.56) and (3.57) have an Abelian Poisson bracket p~0, (3.6
algebra:
. to the Hamiltonian formulation. We denote by the phase
{Ha(r),Hp(r)}=0. (3.58 space extended by the variablgsand p. Our strategy is to
formulate the gravitational system as a parametrized field

To summarize, the Hamiltonian structure of cylindrically theory onT* and then reduce the system by the constraint

symmetric gravitational fields is mathematically identical to (3.61). When we reducé™ by the constraint3.61, we ar-

a pgrametrlzed field theory .Of az'f““tha”y symme_tnc har'rive at the original gravitational phase spdcend the dy-
monic maps from a three-dimensional flat spacetime to a

. ; ; . : : namics thereon.
two-dimensional manifold equipped with a metric of con- . :
) 1 We are now ready to extract embedding variables from
stant negative curvature. It is important to note that all of

. . . the gravitational system formulated dif. Let w(x) be a
these results are fully gauge invariant in the sense that ng . LT z ;
rescribed measure on the circle; ig.is a positive density

coordinate conditions are needed to be imposed on the gra\}?— . . : ! .
) f weight one on the circle and is normalized via

tational theory. In any of the forms that we have presenteéa

the Hamiltonian formulation, the field theory retains the full )

two-_dlmer1_§|onal dlff_eom_orph|sm invariance compatible with dx w(x)=1. (3.62

the imposition of cylindrical symmetry.

B. Closed universes: Toroidal symmetry We define a transformation

We now repeat the analysis of Sec. Ill A under the as- ~
sumption of toroidal symmetry. The procedure is very simi-(7,y,¢,4,d,7,,7,,7,,7;,p)
lar to that used in the cylindrical symmetry case; the key
difference is the way in which the missing degree of freedom ~ 5 ~ G
is introduced. / 9 e = (X ¢ ¢ O llr Ik, g m5,.7) (369
Again, the strategy is to use the conformal coordinates
andX to define embeddings of a circle inkb=R* xS, The y
variable 7 already appears as a canonical coordinate on the
phase space, but we must still expregsas a function on T—_ i (3.64
phase space. This can be achieved starting f(@m39. o ™ :
Choosing the spacelike circle on which the integral is per-
formed to be & =const slice, we have that

27 X 1
X(x)=q+ dx” ,u(x”)J dx’ — m(x'),
0 x" )

1
X'= 7o T (3.59 (3.65
where M= o= 3.6
1 o T= — To| Tr n T,+7Ty ’ ( . @
WO;ZE . dx m,(X). (3.60

Mx=pu+mo(y —[In(w5—73])  (3.67

Note that, because @2.53, , is negative definite, and so
the denominator never vanishes(8159 andX(x) is mono-  and
tonic.

Before completing the phase space definitionr@nd X N
into a canonical transformation, we have to contend with the ¢ o, (3.69
fact that(3.59 does not defin& as a function on the gravi-
tational phase spacE. The reason is the same as in the ~
cylindrically symmetric case: There is an integration con- o= == (3.69

g . . . . — 1T

stant left unspecified if3.59, which is not fixed by the 0
gravitational phase space data. In Sec. Il A the integration
constant represented the asymptotic location of a spacelike 1
slice; here, it represents the relation between the origin of the 7T¢:\/? T 3.70
coordinatex on St and the origin of the conformal coordinate o
X. This information is coordinate dependent and not in-
cluded in the gravitational phase space. As before, we rem- Ty=N— ToTy, 3.7)
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1 (2« tum vanish becaus@.76) generates constant shiftsXfwith
o=— f dX[[)’— In(m2—7'2)]m, respect to whictH andH, are invariant.
00 Let us make one further remark about the canonical trans-
To—\ formation (3.63. First, we emphasize that the identification
—| m+|In T,7+ - )T of I'™* with Y depends on the nongravitational datag, «).
Y

However, upon passing 0 using the constraint3.76), this
dependence necessarily disappears. To see this, recall that
, (3.72  the reduction fromT™* to I is obtained by(i) restricting the
phase space to the constraint surface defined3bge and

(i) identifying points on the constraint surface which lie on
an orbit of the canonical transformations generated by

Here we have made some convenient rescalings. In particdst!Ix; that is, embeddingX and X+const are identified.

lar, the scaling by 4, used in the definition oK guarantees | he dependence diy onp andu is eliminated upon pass-
that ing to the constraint surface defined (8/76). Restricting to

the constraint surface of3.76, we must identifyX and
X(2m)—X(0)= 2. (3.74  X+const. For a fixed choice gt this eliminates the depen-
dence of the phase space gnNow suppose we use a dif-

We mention that the requirement thig 7 be timelike, given ~ ferent measur@ to define a new embedding variabigx).

+amyp— 3y

P= 0. (373)

by (2.53), is equivalent to BecauseX'=,/m, we have thatX—X)'=0, that is, X=X
+const, which is precisely the transformation generated by
X'>|T'|. (3.79  [qlly, and so onl’ the phase space is independent of the

choice of measurg. Put differently, changing is equiva-
The inequalities2.53 and (3.75 guarantee that the above |ent to holdingu fixed and changing), which has no effect
transformation is well defined and that the slices embeddedn points ofl". Thus the nongravitational data,p,u) are
by (T(x),X(x)) are spacelike. Let us also note that the con-eliminated upon passing frolii* to the original phase space
straint(3.6)) is, in the new variables, the constraint .
, Once again we can interpret the resulting formalism in
H - terms of a parametrized field theory of harmonic maps. How-
dx Hx(x) =0 3.79 ever, it must be kept in mind that there is a “point particle”
degree of freedom represented fyand 7 along with an
It is not too hard to show, e.g., by expanding in Fourierextra constrain{3.76). Because? is cyclic in the Hamil-
series, that the above transformation is a bijection fidnto  tonian, we can reduce the phase spBtdy the integral of
the phase spaceY for a field theory of motion 2 to a phase spacE*. OnT'* we view 7’ as a
(¢,’(Z,/",7T¢ VTG 7)) in the parametrized formalism. Our no- parameter, which will appear in the metric for the spacetime
tation here is thal’ is the product of the cotangent bundle upon which the harmonic maps_are defined. To express the
over the space of embeddings of a circle iléo and the gravitational theory formulated oh* as a parametrized har-
phase space of the canonical variablés,¢,”) and monic map field theory, we repeat the three steps of Sec.
(74, 73.7). By computing Poisson brackets, or by comput- Il A.
ing the symplectic form in the new variables, it is straight-
forward to verify that the transformation is canonical, i.e., 1. Fix the spacetime and target space

identifies the respective symplectic structures, and that the The spacetime is now taken to Me=R™ X T2 with metric
variables (T,X,(}S,(ﬁ,Q) and (HT ,Hx ,’7T¢,7T;5 ,f) are ca- given by the line element
nonical coordinates and momenta.

Modulo the constraint(3.76, the weight-two super- d?=12(—dT2+d X2+ T2dY?), 3.79
Hamiltonian and supermomentum take the following form

when expressed in terms of the new canonical variables: whereX andY are coordinates ofi2, T>0, and! is a posi-

1 tive constant. Using an analogous construction to that found
Hi=I X'+, T + = (T¢'2+ T‘lwf,)) in Sec. Il B, this metric can be viewed as a flat metric on a
2 compactification of a submanifoltl of three-dimensional
Minkowski spacetimeM?®. Let us spell this out in detail.
(Te 20N=772 4 T 1e26\=74'2)~0 Let t,X,y denote inertial coordinates dvi 3. Definel as the
¢ submanifold for whicht?—y?>0 andt>0. On| make the
(3.77 identification

+

N[ -

and
+27 (3.80

o o y y
B X~x+2ml, arctanl = | ~arctanh -
Hy: =TT + X' + 740" + 154" ~0.  (3.78 t t

The constraints of the theory ai@®.76—(3.78; they are and denote the resulting manifoldrﬁﬂhe Minkowski met-
“first class.” In particular, the Poisson brackets of the con-ric on M? projects to a flat metric oh. Define coordinates
straint(3.76) with the super-Hamiltonian and supermomen-(T,X,Y) on R*xT?, where Te(0,%), Xe(—%,%), and Y
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e (=), with X~X+27 andY~Y+ 2. The diffeomor- o= _|1/277¢+|x', (3.88
phism ¢:R* X T?—1, defined by
—1-12_~
t=IT coshy, o=l (389
A mr=1+ 12T 17, —1(2T) X, (3.90
x=IX, (3.81
i my=TIx+12¢"—1(2T) " 1T". (3.92)
y=IT sinhY,

Note that the embedding coordinatdsX) retain their origi-
identifies the metrig3.79 on R* X T2 with the Minkowski  nal meaning and the embedding momenta, while redefined,
metric onl. are still scalar densities of weight one on the circle. By using

As in the cylindrically symmetric case, the harmonic the transformation(3.86—(3.91), it follows that the super-
maps ¢*:=(a,B) take values inL=R?, which is equipped Hamiltonian and supermomentu(B.84) and (3.85 of the
with a metric of constant negative curvature given by the lineparametrized field theory become those found in the gravita-
element tional theory formulated o' [(3.77) and(3.78], provided

we make the identification

oapde”depB=da?+e 2d B2 (3.82
|=—-2. (3.92

2. Impose azimuthal symmetr . —_ .
P Y Y As in the cylindrically symmetric case, we now know that

The vector field?/dY is a Killing vector field for the met-  the constraint¢3.77 and (3.78),
ric on M. We now demand that all the fields of the param-
etrized harmonic map field theory are likewise invariant un- H~0~H,, (3.93
der the one-parameter family of isometries generated by
aldY. Thus we can formulate the theory on the space of orcan be reexpressed as
bits, M=R* xS, of the Killing vector field. On the space of
orbits of /Y, the Hamiltonian form of the action is given by Ha:=Ila+ha~0, (3.94

EN,NX,T,X,WT,’FX,a,,B,Wa,WB] where II,=(II;,IIx) and h,=(hy,hy) is defined as in

(3.28 with
J‘tz 2 B ) . X X, T,
=] dt dxX(m T+ 7y X+ 7+ 758 _ _
|51 0 na_(nTanX)_ _\/X,Z—T'Z, \/X'Z—T’z )
—NH-N"H,), (3.83 (3.99
where . o ' ’
Xa= (X7, Xx)= T2 X212/ (3.99
H=mX'+ 7y T + 3[(IT) *72+1Ta’?]
Explicitly, the constraint$3.94) take the form
+%[(IT)‘lez‘*w%HTe‘z“ﬁ’Z] (384} p y $ 4)
1 — _ —» 2
and M+ sz [T 2T o)+ 5(Te 247y
Hy=mT' + 7 X'+ w0’ + 7’ (3.895

+T 1279 )~ T (w4’ +750'))~0 (3.97)
Note the similarity between the super-Hamiltoni@:84) for
the harmonic map theory and the super-Hamiltor@77?  and

for toroidally symmetric spacetimes.
2

1 —
mIy— ———— (T'T&(T r2+-|-*1 2 41 Te*2¢/\s“*./’ <

3. Canonical transformation *oX2-T2 (M[2(T4 o)+ o

In this last step we make a canonical transformation
which puts the super-Hamiltonian and supermomentum
(3.84 and (3.89 of the parametrized field theory into the A pefore, the constraint8.97) and(3.98 have an Abelian
form (3.77 and(3.78 found in the gravitational theory. It is Poisson bracket algebra:
possible to adapt the transformati¢®48—(3.49 used for
the cylindrically symmetric case, but this leads to additional, {Ha(x),Hp(X)}=0. (3.99
and unnecessary, constraints on the harmonic maps. In the _
toroidal symmetry case the following canonical transforma- To summarize, the Hamiltonian formulation &1 of to-

+T—1e2¢/\s‘——,/’5/2)] —X’(7T¢¢’,+ 77’(;5’))%0. (3.98

tion accomplishes our go@26|: roidally symmetric gravitational fields is equivalent to that of
/ a parametrized field theory of harmonic maps from a flat
a=—1""2p+In(IT), (3.869  three-dimensional spacetime to a two-dimensional manifold

_ of constant negative curvature. Of course, to recover the
B=112¢, (3.87)  original gravitational field theory ofi the degrees of free-
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dom (£,7’) must be reinstated, but more importantly, the In each of the models we have studied, the resulting
constraint(3.76) must be imposed on the harmonic map field Hamiltonian structure involves embedding variab¥sand
theory. This constraint sets to zero the homogeneous modeeir conjugate momentd, , along with dynamical variables

of the embedding momentufil, and, by virtue of(3.98, is  (q* pa), which are ¢,i,m,,77) in the cylindrical symme-
equivalent to the constraint try case or {,¢,¢,7,m,,73) in the toroidal symmetry
case. The constraints include diffeomorphism constraints
(3.53, (3.94 and, in the case of toroidal symmetry, an ad-
ditional constraint(3.76). Ignoring its origins, the param-
etrized field theory defined by these constraints is, at least

This constraint can be viewed as setting to zero the totalormally, relatively straightforward to “quantize.” Note,
momentum of the fieldg and ¢ (or @ and B). Because the however, that in each of the models the effective two-
constraint(3.100 is first class, we are obliged to identify ~ dimensional field theory has a complicating feature not usu-
andX+const. The equivalence class of embeddings thus otally found in more familiar two-dimensional field theories.
tained is independent of the value of the nongravitationaNamely, the super-Hamiltonian is an explicit function of
variables (,p,u). On the other hand, the extra constraint R(r) in the cylindrical symmetry case afidx) in the toroi-
means that, strictly speaking, the Hamiltonian formulation ofdal symmetry case. This will modify the quantum theories
toroidally symmetric spacetimes is not quite identical to arelative to what we might find, e.g., for a conformal field
parametrized field theory of harmonic maps. However, as wéheory. In any case, we promote the canonical variables

shall see, the correspondence is sufficiently close to allow &1".Pa) to operators on statg¥). One way to do this would
formal construction of the quantum theory. be, using the Heisenberg picture, to quantize the variables

(g”,pa) on the privileged foliationT=t andR=r or X=x.
The states are embedding independent in the Heisenberg pic-
IV. IMPLICATIONS FOR QUANTUM THEORY ture, while the operators are evolved by the embedding mo-
Issues which arise in canonical quantum gravity, the probmenta[27]. Of course, it may be necessary to use perturba-

lems of time in particulaf1], can be investigated in the tion theory to define the operators and states. Formally,
models we have been studying. In the last section we exhiebservables are self-adjoint operators representing classical
ited canonical transformations that identify certain phasdunctionals of(q*,p,). Note that in the toroidal symmetry
spaces for these models with phase spaces for harmonfgodel observables must commute with the constr@nto.
maps from flat three-dimensional spacetimes into a target In the Schrainger picture, dynamical evolution corre-
space of constant negative curvature. This mathematic&POnds to considering statgk,X?) which are parametrized
identification is fully gauge invariant, i.e., preserves the two-Py the embeddings. The states are evolved from one embed-
dimensional diffeomorphism symmetry exhibited by the twoding to the next by the energy-momentum currept More
Killing vector models. It should be emphasized, however precisely, the stategl,X®) are defined as solutions to the
that the extraction of the embedding variables was not withfunctional Schrdinger equation
out its complications. We encountered a “global problem of s
time,” which was resolved by adding a finite number of i ——z | ¥, X3 =h,| ¥ X3). (4.1)
nongravitational degrees of freedom to the usual ADM phase oX
space. Given the extended phase spaces, each event in the . . . .
effective two-dimensional spacetime is uniquely labeled by Is equation ca‘r) be _con5|dered an |mplemer_1t€_;1t|on of the
the values of the canonical variabl¥8 on a spacelike slice demand 'f,r_‘at phyi'ca' states are ~annihilated by
at the point where the spacelike slice passes through thgonstraints™ _Ha|\lf,X )=0. In the tor0|d_al symmetry case
event. The identification of spacetime points provided@y W& must also impose the quantum versionf76:
is independent of the choice of slice and the ‘“spacetime (fzﬁ

f *7 a4 hy(x)~0. (3.100
0

o
dX ——

problem” [1] is avoided. Given these results, the obvious XX

strategy for quantization is to view the dynamics of the mod-
els as a generally covariafite., parametrizedformulation
of nonlinear fields on a fixed background. The quantu
theory of fields on a fixed spacetime is quite well studied |W,T,X+consy=|¥,T,X), 4.3
and, at least superficially, presents no overwhelming concep-

tual difficulties, although the quantum theory of interactingbut in light of (4.1) is also equivalent to

fields is always technically challenging. A simplifying fea- ,

ture of these models is that, while they can be viewed as field ( f dxhx(x)) W, X2 =0. (4.4)

¥, X2)=0. (4.2

mThis requirement is equivalent to

theories on a three-dimensional flat spacetime, the Killing

vector structure is such that the final result is in each case a

two-dimensional field theory and in two dimensions quantumGiven an initial statgW¥,,X3) on an initial embeddingj,
field theory is typically more manageable than in higher di-the functional Schidinger equation(4.1) is solved[subject
mensions. Our purpose in this section is to discuss certaito the subsidiary conditiofd.2)] and the solution is matched
broad features of the quantization of these models basei the initial data. Note that4.2) can be implemented by
upon the classical structures elucidated in Sec. Ill. We hopémposing(4.3) on the initial statg¥,,X§) and then solving
to return to a more detailed examination of the resulting(4.1). If (4.2) is satisfied initially, it will be satisfied on any
guantum theories in future work. embedding provided the state is evolved accordin¢Ata).
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The resulting embedding-dependent vedirX®) is to be  variablesg andu. The observers also measure a complete set
interpreted as the state of the system on the embeddingf commuting observables built from{( ¢,¢,7,7,,77),
X3(x), and one can go on to predict outcomes of measurewhich are defined in terms of the spacetime geometry in
ments of observables constructed from the quantum field&3.68—(3.73. Different choices ofj and u simply redefine
[and X?(x) if desired on various hypersurfaces in the usual X(x) by addition of a constant. Because the states of a tor-
way. oidally symmetric spacetime must be invariant under this
For this quantization strategy to be feasible, one mustransformatiorisee(4.3)], the quantum stat@,X®) is unam-
check that the operator representatives of the curteptse biguously determined by measurements of gravitational data
well-defined operator-valued distributions. Furthermore, oné@nly.
must guarantee that the infinite number of differential equa- There is one remaining problem that should be discussed
tions contained in(4.1) and (4.2) are mutually consistent. When quantizing general relativity as a parametrized field
The integrability conditions for this are the quantum commu-theory. Kucharalls this problem the “multiple choice prob-
tator analogs of the Abelian algebi@59 and(3.99, which  lem” [1]. The quantization we have outlined apparently de-
guarantee that quantum dynamics does not depend on tiends quite heavily on the way in which the canonical vari-
choice of observer. More precisely, the integrability condi-ablesX? are used to identify points of space and instants of
tions for (4.1) imply that the statel¥, X3) obtained by time. To be sure, the embeddings we have constructed are, in
evolving an initial statd¥,,X3) along a specific foliation SOmMe sense, geometrically natural. But it is conceivable that
connecting the slices defined by andX  does not depend other, equally valid, embedding variables could be con-
on the choice of the foliation. For these integrability condi-Structed. In this case it is not at all clear that when using
tions to be satisfied, it is essential that the commutators ofome other embedding variables the resulting quantum
the Components of the energy_momentum current be’ up to t@eory will coincide with the one we have outlined here. If
factor ofi, the same as their classical Poisson brackets. It i1e quantum theories based on different choices of embed-
very likely that this will not happen; i.e., anomalieeor ~ ding variables do not coincide, i.e., are not physically
“Schwinger terms”) terms will arise. This is the “functional €quivalent, then we have an “embarassment of rich-
evolution problem™[1]. It would be very interesting to com- €s”:  Which quantum theory describes the real world? This
pute these Schwinger terms. If they depend only on the enissue can be examined in the context of the parametrized
bedding and are finite, then one can use techniques devdPrmalism for a relativistic particle moving in a curved
oped by Kuchafor free fields in two dimensions, where the spacetime, and it is found that the multiple choice problem
anomalous terms are finite and depend only on the embedan be quite severgl]. In many ways it is the multiple
dings [27]. If the anomalous terms are operator valued orchoice problem which most deeply reflects the conflict be-
infinite, it is not at all clear how to proceed. Note that if we tween general relativity and quantum mechanics. In order to
turn off one of the polarizations of the gravitational field by €xamine this problem in the models we have considered,
setting =0, then the resulting field theory is linear. In this New sets of embedding variables are required. For example,
case it would seem that all operators can be defined by nofne relatively simple way to obtain other embedding vari-
mal ordering and that the Schwinger terms are finite andbles is to take the embeddings we have constructed here
depend only on the embeddings, but to our knowledge n@nd perform the point transformation
one has computed the Schwinger terms for this interesting _
special case. In many ways, the functional evolution problem X2 =F3&(X). (4.5
is the most important issue to address in studying the quan-
tization of the two Killing vector models, for it is here that AssumingF? is smooth and admits a smooth inverse, this
one verifies the compatibility of the method of quantizationtransformation can be easily completed to a canonical trans-
with the principle of general covariance. formation. These new embeddings can be interpreted as fol-
Given a successful resolution of the functional evolutionlows. Fix an embeddini? of a hypersurfac& in spacetime.
problem, we should relate the elements of the quantum paisplaceX. by letting the diffeomorphisnF? act on it point-
rametrized theory with geometrical elements of spacetime. Ivise. The resulting hypersurface is embeddedXy Is it
particular, what does it mean to “know the state on the empossible to construct a quantum theory of the parametrized
beddingX®(x)"? Let us treat each of the models in turn. To field theories representing the classical two Killing vector
fix the state|¥,X?) of a cylindrically symmetric spacetime, models so that transformations such(ds) lead to physi-
we imagine a family of observers and the associated spaceally equivalent theories? Of course, we cannot answer this
like foliation of spacetime. On a given slice of the foliation question here since we have only outlined the most basic
the observers measure the gravitational varialifes,) and  features to be expected in the putative quantum theory. Let
the “laboratory variabler, ; this fixes the embedding of the us, however, suggest that the multiple choice problem is
slice, X3(r)=(T(r),R(r)), via (3.11). The observers also closely allied with a familiar issue that arises in quantization
measure a complete set of commuting observables built frorof a gauge theory using gauge-fixing conditions. There, the
the operator representatives af,¢, 7, , 7). All together,  question is whether or not the predictions of quantum field
these measurements fix the quantum state on a spacelike hjreories based on different gauge-fixing conditions agree.
persurface in terms of measurement of geometrical quantitiebhe connection of this issue with the multiple choice prob-
and the reading of a clock at infinity. In the toroidal symme-lem stems from the fact that, at least in the models consid-
try case the family of observers measuver, and 7. /m; ered here, the classical gravitational theory can be obtained
this determines the embedding®(x)=(T(x),X(x)) via by (i) choosing the gaug&=t and R=r or X=x and (ii)
(3.64 and(3.69 up to specification of the nongravitational “parametrizing” the resulting field theory to regain general
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covariance. Likewise, we quantize the fie(d]sA,pA) on the mr=0(r), (A5)
foliation T=t andR=r or X=x and then reinstate general

covariance by constructing states parametrized by the em- w7=0(r2), (AB6)
beddingsxX® which satisfy(4.1). Whether general covariance

is in fact realized in the quantum theory is determined by the m,=0(r), (A7)
outcome of the problem of functional evolution. Let us as-

sume that this problem can be solved. The remaining ques- my=my(0)+O(r). (A8)

tion is how the quantum theory depends on the initial choice ) )
of gauge. In gauge theories, this issue is fruitfully analyzed! "€ 1apse and shift are assumed to have the following be-

using Becchi-Rouet-Stora-TyutifBRST) methods [28],  havior asr—0:

which, at least formally, guarantee the independence of the L_n\L 2
predictions of the quantum theory from the underlying N"=N"(0)+0(r), (A9)
choice of gauge. It remains to be seen whether the multiple N'=0(r?). (A10)
choice problem in generally covariant theories can be re-
solved in a similar way. The lapse density inherits its behaviorras0 from the lapse
function:
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APPENDIX: BOUNDARY CONDITIONS FOR
CYLINDRICALLY SYMMETRIC SPACETIMES I[T+=0(r) (A13)

In this appendix we summarize the boundary conditionssnd
used in the analysis of cylindrically symmetric spacetimes.
These boundary conditions guarantee existence and differen- Hg=0(r). (A14)
tiability of the various action and Hamiltonian functionals . ) _
that are used in the paper, as well as the canonical nature &Ur boundary conditions at=0 imply that there are no sin-
the various transformations considered. The boundary condfularities on the axis of symmetry. ,
tions are also such that they are preserved under the dynami- AS —, we assume the following behavior of the ca-
cal evolution generated by the Hamiltonian functionals. It ishonical coordinates and momenta bn

conceivable that weaker boundary conditions can be used, R=r+0(r" (A15)

but those used here allow for a reasonably large class of '

solut!qns to the field equations. In particular, the_ boundary y= () +O(r 9, (A16)

conditions include the Einstein-Rosen wave solutions which

arise when one assumes whole cylindrical symmetry. Yy=0(r"9), (A17)
It is important to note that the asymptotic valugs—~)

of the lapse and lapse density, while arbitrary, are held fixed PY=0(r"9), (A18)

when varying the Hamiltoniarfor action defined on the

ADM phase spacé&’. The asymptotic values of the lapse and mr=0(r"1Y), (A19)

lapse density are only allowed to vary when using the ex-

tended phase spadg for cylindrically symmetric space- q-ry=0(r‘(1+5>), (A20)

times. Note also that many other variables have a nonvanish-

ing value ag —0 or r —«; these limiting values arsot held Y= o(r Y, (A21)

fixed in any of the variational principles. In particular, the

values of the lapse and lapse density on the exi® arenot Y= o(r~(Xte)y, (A22)

held fixed.

The phase space variables are functions of the radial covhere €>0. The lapse and shift are assumed to have the
ordinater; we must give the boundary conditions ms;0  following behavior ag —:
andr—o. Asr—0, we assume the following behavior of the LNl e
canonical coordinates and momentalan N==N"()+0(r™), (A23)

R:r+0(r3), (Al) N'=O(r_€). (A24)

The lapse density inherits its behavior es» from the

— 2
y=0(r?), (A2) " |apse function:

¥=y(0)+0(r?), (A3) N=N()+O(r ). (A25)

U=9(0)+0(r3), (A4)  Equations(A20) and(3.4) imply that, asr —,



5650 JOSEPH D. ROMANO AND CHARLES G. TORRE 53

T=T()+O(r °). (A26) and
Similarly,

[I;=0(r (1t (A27) Mg=0(r"1). (A28)
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