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The Hamiltonian structure of spacetimes with two commuting Killing vector fields is analyzed for
purpose of addressing the various problems of time that arise in canonical gravity. Two specific model
considered:~i! cylindrically symmetric spacetimes and~ii ! toroidally symmetric spacetimes, which respectively
involve open and closed universe boundary conditions. For each model, canonical variables which can b
to identify points of space and instants of time, i.e., internally defined spacetime coordinates, are identifie
do this it is necessary to extend the usual ADM phase space by a finite number of degrees of free
Canonical transformations are exhibited that identify each of these models with harmonic maps in the pa
etrized field theory formalism. The identifications made between the gravitational models and harmonic
field theories are completely gauge invariant; that is, no coordinate conditions are needed. The degree to
the problems of time are resolved in these models is discussed.@S0556-2821~96!02510-6#

PACS number~s!: 04.60.Ds, 04.20.Ex, 04.60.Kz
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I. INTRODUCTION

Throughout a large part of the history of general relati
ity, much effort has been expended toward disentangling
true degrees of freedom of the gravitational field from th
‘‘pure gauge’’ degrees of freedom brought into the theo
via the principle of general covariance. In the Hamiltonia
form of the theory, this problem involves understanding t
solution space of the initial value constraints and the app
priate free data for the Cauchy problem. Classically, a ch
acterization of the true degrees of freedom is relevant
analyzing the dynamical evolution of strongly gravitatin
systems, e.g., binary black hole systems, as well as for
derstanding fundamental issues in relativity, e.g., cosm
censorship. The intertwining of gauge degrees of freed
and dynamical degrees of freedom is especially vexing
quantum gravity, where it leads to many of the ‘‘problems
time’’ @1#. Evidently, canonical quantization of the gravita
tional field would be expediated by a sufficiently explic
characterization of the true degrees of freedom. For the m
part, the strategy for doing this stems from the origin
Hamiltonian description of gravitation provided by Arnowitt
Deser, and Misner~ADM ! @2# and Dirac@3#. The philosophy
adopted there is that the Einstein field equations define
‘‘already parametrized field theory’’ in which certain nondy
namical canonical variables represent points of space
instants of time, relative to which the true degrees of fre
dom evolve. In the ADM approach, the dynamical content
relativity is exposed by coordinate conditions which fix th
nondynamical gauge variables. This leads to a description
gravitational dynamics relative to a fixed foliation of spac
time, that is, relative to a fixed family of observers. A prom
nent example of this approach appears in the conformal

*Current address.
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proach to the initial value problem@4#. From such work it
seems that the ADM approach is quite adequate for addre
ing many problems in classical relativity. However, the pric
paid for obtaining technical control over the true degrees
freedom is that general covariance is lost in the sense th
one is obliged to view dynamics from the point of view of a
given set of observers. In quantum theory this provides a fir
instance of a problem of time, which might be called th
problem of general covariance: how to give the state of th
gravitational field on an arbitrary hypersurface, that is, wit
respect to arbitrary observers. In the ADM approach one
prohibited from even asking this question.

An alternative approach to describing the true degrees
freedom of the gravitational field that preserves general c
variance is available. This approach still relies upon the po
sibility of extracting ‘‘many-fingered time’’ degrees of
freedom—or, more precisely, spacelike embeddings
Cauchy surfaces—from the gravitational phase space, b
does not fix the foliation with coordinate conditions. Instead
one describes evolution of the true degrees of freedom re
tive to an arbitrary foliation; i.e., one casts the Einstein equ
tions in the form of a parametrized field theory@5#. This
point of view was developed in considerable detail by Ku
chař @6#, who called it the ‘‘bubble time’’ dynamics of the
gravitational field. Many of the problems of time are miti-
gated using this approach@1#, which is now known as the
‘‘internal time formalism.’’ Implementation of the internal
time formalism hinges upon the possibility of~i! finding a
canonical transformation on the gravitational phase spa
which separates four canonical variables to play the role
spacelike embeddings of a Cauchy surface into spacetim
and ~ii ! eliminating the momenta conjugate to the embed
dings by the initial value constraints. If this can be done, th
remaining variables represent the true degrees of freedo
whose dynamical evolution occurs via correlation with th
arbitrary spacelike slices provided by the embedding var
5634 © 1996 The American Physical Society
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ables. So far, the internal time approach to gravitational d
namics has been implemented in lower-dimensional mod
typically symmetry reductions of the full theory. There is
plethora of homogeneous cosmological models in which it
possible, at least locally, to isolate a canonical variable re
resenting time and then solve the constraints for the mom
tum conjugate to time. These models possess a finite num
of degrees of freedom. Relatively few field theoretic mode
i.e., models possessing an infinity of degrees of freedo
exist in which one can implement the internal time progra
Such models are, to our knowledge, always two-dimensio
field theories, most notably Einstein-Rosen waves@7#, plane-
gravitational waves@8#, spherically symmetric vacuum grav
ity @9#, the bosonic string@10,11#, and related models@12#.
For the most part, these models are generally covariant th
ries of one or more free fields; e.g., the dynamics of t
Einstein-Rosen wave is that of a single free scalar field re
resenting the metric amplitude of the wave.

Our goal in this paper is to establish an internal tim
formalism for the reduction of the vacuum Einstein equ
tions obtained by assuming the existence of two commut
spacelike Killing vector fields. We consider models involv
ing both open universe and closed universe boundary con
tions. Our work generalizes previous models, in particu
the Einstein-Rosen waves@7#, in two key ways. First, the
reduced system of equations describes a pair ofinteracting
fields. To our knowledge, this is the only symmetry redu
tion of the vacuum Einstein equations known that admits
internal time formulation and in which the true degrees
freedom constitute a nonlinear field theory. Second, in ter
of the two Killing vector model, we illustrate in detail the
fact that, strictly speaking, general relativity is not an alrea
parametrized field theory. In order to extract canonical va
ables representing embeddings from the ADM phase spa
it is necessary to extend that phase space by a finite num
of degrees of freedom. For open universes, the additio
nongravitational variables represent the asymptotic locat
of a spacelike hypersurface relative to an inertial frame ‘
infinity’’ @13#. For closed universes, the intrinsic and extrin
sic geometries of a hypersurface are inadequate to define
embedding of that hypersurface in spacetime@14#; additional
nongravitational variables are needed to accomplish th
Given the extensions of the phase space, the resulting
namical system is in each case a generally covariant~param-
etrized! formulation of harmonic maps from a flat three
dimensional spacetime to a two-dimensional target space
constant negative curvature.

In the next section we define the models. Our open u
verse model is obtained by imposing cylindrical symmet
on spacetime. Our closed universe model, first considered
Gowdy @15#, defines the universe to be a three-torus whi
admits a two-torus group of isometries. We do not impo
hypersurface orthogonality~reflection symmetry! on the
Killing vectors, and the resulting dynamical theory is in eac
case intrinsically nonlinear, in contrast to the Einstein-Ros
waves@7# or ‘‘polarized’’ Gowdy models@16#. In the lan-
guage of the linearized theory, both gravitational polariz
tions propagate and interact. In Sec. III we exhibit canonic
transformations, inspired by@7# and @10#, which allow us to
extract the embeddings, solve the constraints, and reveal
true degrees of freedom in each model. Other two Killin
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vector models, which differ in the choice of isometry group
spacetime topology, etc., can be treated in much the sa
way as we do here. As mentioned above, these results lea
substantial simplifications in the problems of time that occ
in canonical quantum gravity. We discuss these problem
and the general structure of the quantum theory based on
internal time formulation of the two Killing vector models in
Sec. IV. In the cylindrically symmetric model, it is necessar
to keep track of the behavior of fields on the axis of symm
try and at infinity. We summarize our boundary and fallo
conditions in the Appendix, which is referred to throughou
the paper.

II. SPACETIMES WITH TWO COMMUTING KILLING
VECTORS

We are going to study the Hamiltonian structure of spac
times~M,g! which admit two linearly independent spacelik
Killing vector fields K A

a, A51,2. The Killing vector fields
are assumed to commute,

@KA ,KB#a50, ~2.1!

and to generate a two-dimensional ‘‘orthogonally transitive
groupG of isometries. This latter requirement means that th
distribution of two-dimensional vector spaces spanned
K A

a at each point is orthogonal to a foliation ofM by sur-
facesM�M. Our assumptions amount to demanding th
the integral curves of the Killing vector fields provide a fi
brationp : M→M of the spacetime manifold by spacelike
surfaces. The two-dimensional manifoldM is the ‘‘space of
orbits’’ of the Killing vector fields.

The spacetime metricgab defines three functions

lAB5gabKA
aKB

b , ~2.2!

representing the lengths and inner products of the Killin
vector fields. Because the Killing vectors are spacelike a
linearly independent at each point, this symmetric matr
will have a symmetric inverselAB. We can uselAB to define
a projection operatorgb

a into the ~co!tangent space to each
point ofM :

gb
a5db

a2lABKA
aKBb . ~2.3!

The associated tensor field

gab5gab2lABKAaKBb ~2.4!

satisfies

LKA
gab50 and KA

agab50. ~2.5!

There is a one-to-one correspondence between tensor fi
onM and tensor fields onM with vanishing Lie derivatives
along K A

a and which are completely ‘‘orthogonal’’ toK A
a

@17,18#. This correspondence means thatgab uniquely de-
fines a Lorentz metric onM .

Coordinatesxa5(xA,xa), A51,2, a53,4, can be chosen
such that

KA
a5dA

a , ~2.6!

and the spacetime metric takes the form
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gabdx
adxb5lABdx

AdxB1gabdx
adxb, ~2.7!

wherelAB5lAB(x
a) andgab5gab(x

a).
There are only six independent Einstein equations b

cause the orthogonal transitivity requirement forces

gg
aKA

bGab[0. ~2.8!

Thus the nontrivial Einstein equations can be taken to be

KA
aKB

bGab50,
~2.9!

gg
agd

bGab50.

Settingl5det~lAB!, these equations can be put into the fo
lowing form in the coordinates (xA,xa):

2 1
2l1/2Da~l21/2DalAB!1lAB~2 1

2R1l21/2DaDal
1/2

1 3
2D

al21/2Dal
1/22 3

8D
alCDDalCD)50, ~2.10!

1
4Dcl

ABDdlAB2Dc~l21/2Ddl
1/2!1gcd~l21/2DaDal

1/2

1 1
2D

al21/2Dal
1/22 1

8D
alABDalAB)50. ~2.11!

HereDa is the derivative operator onM compatible withgab
andR is the scalar curvature ofDa . Indices for tensor fields
onM ~Latin lowercase! are lowered and raised withgab and
its inversegab. It will be useful later to note that Eq.~2.11!
implies

DaDa~l1/2!50. ~2.12!

All of our considerations will be formulated on the space
orbits M . The Einstein equations~2.10! and ~2.11! are
viewed as a generally covariant system of partial different
equations for ‘‘matter fields’’lAB and Lorentz metricgab on
the two-dimensional manifoldM .

A. Cylindrical symmetry

Our model for open universes is defined by takin
M5R33S1 andG5S13R. Note thatM is diffeomorphic
to the manifold obtained by removing a timelike two-plan
~swept out by, say, thez axis! from R4. The Killing coordi-
nates are denoted byxA5(f,z), where fP~0,2p! and z
P~2`,`!. The space of orbits isM5R3R1, whereR1 is
the manifold of positive-definite real numbers. We defin
R:5l1/2 and demand that“aR is everywhere spacelike. We
will call spacetimes with these propertiescylindrically sym-
metric. In what follows it will be useful to employ coordi-
nates onM that are adapted to a foliation by spacelike curv
R1

�M . These coordinates will be denoted byxa5(t,r )
wheretP~2`,`! andrP~0,̀ !. The radial variabler will be
restricted by the requirement that]R/]r.0. R itself can
serve as a radial coordinate onR1. Because of~2.12!, R will
be a harmonic coordinate when the Einstein equations ho
The harmonic conjugateT to R is defined by

DaT5ea
bDbR, ~2.13!

where eab is the volume form onM defined bygab . The
coordinatest5T and r5R form a conformal coordinate
e-

l-

of

ial

g

e

e

es

ld.

chart when the Einstein equations hold; that is, in these c
ordinates the metric onM is given by

ds25V2~2dT21dR2!, ~2.14!

whereV5V(T,R) is a positive-definite function.
We parametrizelAB in terms of scalar fields (R,c,c̃) via

lABdx
AdxB5R2e2cdf21ec~dz1c̃df!2. ~2.15!

In preparation for the Hamiltonian formulation of the Ein
stein equations~2.10! and ~2.11!, we foliateM with space-
like curvest5const and parametrize the metric onM via

gabdx
adxb5@2~N'!21eg2c~Nr !2#dt212eg2cNrdt dr

1eg2cdr2. ~2.16!

As tensor fields on the curvest5const,N' is a scalar field
called the ‘‘lapse function,’’Nr is a vector field called the
‘‘shift vector’’ ~equivalent to a density of weight minus one
onR1!, andg is the natural logarithm of a covariant rank-2
tensor field ~equivalent to the logarithm of a density o
weight two!. The functions (R,c,c̃) are scalar fields on
t5const. All the fields (N',Nr ,g,R,c,c̃) are functions of
the coordinates (t,r ) only; see the Appendix for the bound-
ary and falloff conditions we use for these fields. In terms
this parametrization, the conformal factorV arising in the
coordinatesxa5(T,R) @see~2.14!# is given by

V5e~g2c!/2. ~2.17!

It is worth noting some special cases of the parametriz
tion given above. If the Killing vectors are each hypersurfac
orthogonal, it follows thatc̃50; i.e., the matrixlAB is diag-
onal, indicating orthogonality of the Killing vectors. This
special case of cylindrical symmetry in which eachK A

a is
hypersurface orthogonal will be calledwhole cylindrical
symmetry. The solutions to the field equations possessin
whole cylindrical symmetry are the well-known Einstein
Rosen waves. Kucharˇ assumes whole cylindrical symmetry
in his analysis@7#, and, withc̃50, our parametrization of the
spacetime metric is identical to his. When

N'51, Nr50, g50, R5r , c50, c̃50,
~2.18!

the spacetime is flat and the metric is expressed in cylindri
coordinates.

Let an overdot denote differentiation with respect tot.
The field equations~2.10! and ~2.11! in the parametrization
~2.15! and~2.16! can be obtained from the following Hamil-
tonian form of the action:

S@N',Nr ,g,R,c,c̃,pg ,pR ,pc ,pc̃#

5E
t1

t2
dtE

0

`

dr~pgġ1pRṘ1pcċ1pc̃c8 !2E
t1

t2
dt H,

~2.19!

where the Hamiltonian is
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H52N'~`!~12e2g~`!/2!1E
0

`

dr~N'H'1NrHr !,

~2.20!

and we have denoted the limits ofN'(r ) andg(r ) as r→`
by N'~`! and g~`!. The super-Hamiltonian and supermo
mentum are given by

H' :5e~c2g!/2F2pgpR12R92R8g8

1
1

2
~Rc821R21pc

2 !1
1

2
~Re22cp

c̃

2

1R21e2cc̃82!G , ~2.21!

H r :522pg81pgg81pRR81pcc81pc̃c̃8,
~2.22!

where a prime indicates a derivative with respect tor . For
eacht the momentum variables (pg ,pR ,pc ,pc̃) are scalar
densities of weight one onR1. The Hamiltonian action func-
tional ~2.19! can be obtained by~i! expressing the ADM
action in terms of the parametrization~2.15! and ~2.16!, ~ii !
integrating out the Killing coordinatesz andf ~the range of
z should be made finite!, and~iii ! dividing the result by the
range ofz and the range off.

Extremizing the action~2.19! with respect to variations of
pg , pR , pc , andpc̃ produces the definitions of the moment
in terms of the ‘‘velocities’’ġ, Ṙ, ċ, andc8 . Extremizing the
action ~2.19! with respect to variations ofN', Nr , g, R, c,
and c̃, where the asymptotic values ofN' andNr are held
fixed, yields six equations, which, given the definitions of th
momenta, are equivalent to the six field equations~2.10! and
~2.11! in the parametrization~2.15! and~2.16!. In particular,
the field equations arising from varying the lapse and sh
are the constraints

H''0 andH r'0, ~2.23!

which correspond to the normal-normal and norma
tangential projections of the field equations~2.11! relative to
the curvet5const. The remaining four equations are evol
tion equations for the spatial metric variableg and the ‘‘mat-
ter fields’’ R, c, andc̃.

Let us make two remarks on the Hamiltonian variation
principle we have described.~i! It is important to note that
the canonical variables are restricted by the assumption
¹aR is spacelike onM, which implies thatDaR is spacelike
onM . In Hamiltonian form, this restriction is

R8.upgu. ~2.24!

~ii ! The boundary term at infinity that appears in the Ham
tonian is needed to render the action and Hamiltonian fu
tionally differentiable with the boundary conditions given i
the Appendix. On solutions to the field equations, the Ham
tonian is given by the boundary term, which we identify a
the energy that generates time evolution at infinity charact
ized byN'~`!. Note that our boundary conditions are suc
that N'~`! is fixed, that is, not subject to variation. Thi
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allows us to add constant multiples ofN'~`! to the surface
term without spoiling the differentiability of the action or
Hamiltonian. We have used this freedom to normalize th
Hamiltonian so that it vanishes when spacetime is flat, whic
occurs wheng~`!50. The energy associated with time trans
lations described by unit lapse function at infinity is

E52~12e2g~`!/2!. ~2.25!

It follows from the field equations thatg~`!, known as the
‘‘ C energy,’’ is conserved and non-negative~see, e.g.,@19#!.
HenceE is bounded from below and is minimized on flat
spacetime. Note also thatE is bounded from above, which is
due to the geometric interpretation ofE as a deficit angle
~divided byp! at infinity. See@20# for a detailed discussion
of this interesting behavior of the energy of cylindrically
symmetric spacetimes.

To summarize, cylindrically symmetric spacetimes const
tute a constrained Hamiltonian system. The phase spaceG is
the space of fields (g,R,c,c̃,pg ,pR ,pc ,pc̃) on R

1 with
boundary conditions as specified in the Appendix and wit
the restriction~2.24!. The action functional~2.19! defines the
symplectic two-formV on G. V maps a pair of tangent vec-
tors

X5~dg,dR,dc,dc̃,dpg ,dpR ,dpc ,dpc̃! ~2.26!

and

X̂5~ d̂g,d̂R,d̂c,d̂c̃,d̂pg ,d̂pR ,d̂pc ,d̂pc̃! ~2.27!

to the real number

V~X,X̂!5E
0

`

dr~dpgd̂g1dpRd̂R1dpcd̂c1dpc̃d̂c̃

2@d↔ d̂ # !. ~2.28!

From ~2.28! it follows that (g,R,c,c̃) and
(pg ,pR ,pc ,pc̃) are, respectively, canonical coordinate
and momenta forG and hence satisfy the canonical Poisso
brackets relations, e.g.,

$g~r !,pg~ r̄ !%5d~r , r̄ !. ~2.29!

In terms of the Poisson bracket$•,•%, the time evolution of a
functionF:G→R is given by

Ḟ5$F,H%. ~2.30!

For any choice of lapse and shift, dynamical evolution take
place entirely on the constraint surfaceḠ�G defined by the
constraints~2.23!. This follows from the fact that the con-
straints are ‘‘first class.’’ More precisely, the Poisson algebr
of the super-Hamiltonian and supermomentum is the algeb
of deformations of spacelike curves inM @21#.

In two-dimensional spacetimes, such as we have here, it
convenient to work with a rescaled super-Hamiltonian whic
is a scalar density of weight two. We define the weight-tw
super-Hamiltonian via

H5e~g2c!/2H' . ~2.31!
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Of course, the super-Hamiltonian constraintH''0 is
equivalent toH'0, and we can write

N'H'5NH, ~2.32!

whereN is a scalar density of weight minus one, which i
equivalent to a vector in one dimension, obtained by

N5e~c2g!/2N'. ~2.33!

We can now vary the action

S̄@N,Nr ,g,R,c,c̃,pg ,pR ,pc ,pc̃#

5E
t1

t2
dtE

0

`

dr~pgġ1pRṘ1pcċ1pc̃c8 2NH

2NrH r !2E
t1

t2
dt N~`!g~`! ~2.34!

with respect to its arguments and obtain equations s
equivalent to ~2.10! and ~2.11! once the correspondence
~2.33! is made. In this variational principle we hold fixed th
asymptotic value ofN. When using the weight-two super-
Hamiltonian and associated lapse density, the Hamiltonian
given by

H̄5N~`!g~`!1E
0

`

dr~NH1NrHr !, ~2.35!

where the surface term is again chosen to makeS̄ and H̄
differentiable with our boundary conditions and to yiel
H̄50 wheng~`!50. Evidently, theC energy is associated
with time translations defined by unit lapsedensityat infin-
ity.

The advantage of the weight-two super-Hamiltonian
that the Poisson algebra of constraints is now a Lie alge
@22#. In detail, define the smeared constraints

H~N!5E
0

`

dr NH andH r~N
r !5E

0

`

dr NrHr ,

~2.36!

whereNr is a given vector field andN is a given scalar
density of weight minus one. Direct computation then show
that

$H~N!,H~M !%5H r~J
r !,

$H~N!,H r~M
r !%5H~K !, ~2.37!

$Hr~N
r !,H r~M

r !%5H r~L
r !,

where

Jr5NM82MN8,

K5NMr82MrN8, ~2.38!

Lr5NrMr82MrNr8.
s

till

e

is

d
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B. Toroidal symmetry

Our model for closed universes is obtained by settin
M5R13T3 and choosing the isometry group to beG5T2

with coordinatesy,zP~0,2p!. The space of orbits is a cylin-
der, M5R13S1. We are considering one of the Gowdy
models @15#, and we shall call spacetimes with the abov
propertiestoroidally symmetric. In these spacetimes we de-
fine t :5l1/2. It can be shown that toroidally symmetric
vacuum spacetimes are foliated by spacelike surfaces wh
leaves are defined byt5const@15,23#. Hence the gradient of
t is timelike, which we will assume in all that follows. Ac-
cording to observers ‘‘at rest’’ relative to the slicest 5const,
the toroidally symmetric spacetimes expand forever from
‘‘big bang’’ at t 50. Coordinates onM that are adapted to a
foliation by spacelike circles will be denoted (t,x), where
tP~0,̀ ! and xP~2`,`! with the identificationx;x12p.
We will demand that a time coordinatet onM satisfy]t/]t
.0. For any solution of the Einstein equations,t is a har-
monic time coordinate. The harmonic conjugate tot is de-
noted byX, which satisfies

DaX5
ea

bDbt

1

2p
*s1ds

aea
bDbt

, ~2.39!

wheredsa is the oriented line element on a spacelike circle
BecauseDat is timelike, the denominator in~2.39! never
vanishes. By virtue of~2.12!, the integral in the denominator
is independent of the choice of spacelike circle, i.e., is
constant of motion. This integral is introduced so that on an
circle t5const we have that

X~x12p!2X~x!52p. ~2.40!

With the identificationX;X12p, the coordinatest5t,
x5X are adapted to a spacelike foliation ofM ; in these
coordinates, the metric onM is of the form

ds25V2~2dt21dX2!. ~2.41!

The Hamiltonian formulation of toroidally symmetric
spacetimes closely parallels that obtained for cylindrical
symmetric spacetimes. Essentially, the toroidally symmetr
case differs by the change of notationR↔t and the fact that
the Cauchy surfaces inM are now compact circles param-
etrized byx instead of noncompact half-lines parametrize
by r . We parametrizelAB in terms of scalar fields~t,c,c̃! via

lABdx
AdxB5t2e2cdy21ec~dz1c̃dy!2. ~2.42!

The metric onM is parametrized relative to an arbitrary
foliation by spacelike circles exactly as in~2.16!:

gabdx
adxb5@2~N'!21eg2c~Nx!2#dt212eg2cNxdt dx

1eg2cdx2. ~2.43!

In the coordinatesxa5(t,X) the conformal factor in~2.41!
is

V5e~g2c!/2. ~2.44!

When c̃50 our parametrization corresponds to a ‘‘polar
ized Gowdy model’’ @16#, which can be considered the
closed universe analog of the Einstein-Rosen waves. Whe
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N'51, Nx50, g50, t5t, c50, c̃50,
~2.45!

the spacetime is flat. This spacetime can be obtained fr
four-dimensional Minkowski spacetimeM4 as follows. Let
( t̂,x̂,ŷ,ẑ) be inertial coordinates onM4. Denote byI the
submanifold ofM4 in which t̂22 ŷ2.0 and t̂.0. Let Ĩ de-
note the manifold obtained fromI by the identifications

x̂; x̂12p,

arctanhS ŷ
t̂
D ;arctanhS ŷ

t̂
D 12p, ~2.46!

ẑ; ẑ12p.

The Minkowski metrichab projects to a flat metric onĨ . The
mappingf:M→Ĩ , defined by

t̂5t coshy,

x̂5x,
~2.47!

ŷ5t sinh y,

ẑ5z,

is a diffeomorphism which identifies the metric onM de-
fined by ~2.45!,

ds252dt21dx21t2dy21dz2, ~2.48!

with the flat metric induced onĨ .
In terms of a spacelike foliation ofM with adapted coor-

dinates (t,x), the Hamiltonian form of the action is

S@N',Nr ,g,t,c,c̃,pg ,pt ,pc ,pc̃#

5E
t1

t2
dtE

0

2p

dx~pgġ1ptṫ1pcċ1pc̃c8 !2E
t1

t2
dt H,

~2.49!

where the Hamiltonian is

H5E
0

2p

dx~N'H'1NxHx!. ~2.50!

The super-Hamiltonian and supermomentum are given b

H' :5e~c2g!/2F2pgpt12t92t8g81 1
2 ~tc821t21pc

2 !

1
1

2
~te22cp

c̃

2
1t21e2cc̃82!G'0, ~2.51!

Hx :522pg81pgg81ptt81pcc81pc̃c̃8'0,
~2.52!
om

y

where a prime denotes differentiation with respect tox. As in
the cylindrically symmetric case, the action functional~2.49!
can be obtained by expressing the usual ADM action in th
field parametrization~2.42! and ~2.43!, integrating out the
coordinatesy and z, and dividing by the ranges of these
coordinates. Extremizing~2.49! with respect to variations of
its arguments leads to the Einstein field equations~2.10! and
~2.11! in our chosen parametrization.

To summarize, points in the phase spaceG of toroidally
symmetric spacetimes are defined by the smooth tensor fie
on the circle (g,t,c,c̃,pg ,pt ,pc ,pc̃). These fields are re-
stricted by the requirement that¹at be timelike onM,
which meansDat is timelike onM ; in Hamiltonian form,
this requirement is

pg,2ut8u. ~2.53!

The action~2.49! defines the symplectic structure onG. The
symplectic two-form acting on a pair of tangent vectors toG
is given by

V~X,X̂!5E
0

2p

dx~dpgd̂g1dptd̂t1dpcd̂c1dpc̃d̂c̃

2@d↔ d̂ # !, ~2.54!

so that, withR↔t, the canonical coordinates and moment
are as before. The weight-two super-Hamiltonian is define
via ~2.31!, and the Poisson-algebraic properties of the co
straint functions are as in the cylindrically symmetric cas
Dynamical evolution takes place on the constraint surfaceḠ
defined by the constraints~2.51! and~2.52!, and is generated
by the Hamiltonian~2.50!.

III. CANONICAL TRANSFORMATIONS

In this section we will exhibit canonical transformations
from slight extensions of the gravitational phase spaces
Sec. II to phase spaces for parametrized field theories on
fixed background spacetime. The extensions are needed
cause the gravitational phase space is not quite adequat
define embeddings of hypersurfaces into Ricci-flat spac
times. This difficulty arises for the full theory in both closed
universes@14# and open universes@13#, and can be consid-
ered a ‘‘global problem of time’’@1#. While it is possible to
phrase all of our results directly on the four-dimensiona
spacetime manifoldM, it is far more convenient to express
our results on the space of orbitsM , and we will present our
analysis on this effective two-dimensional spacetime man
fold.

Before specializing to our two Killing vector models, let
us outline the basic strategy for the full theory@6,1#. Denote
the usual gravitational phase space variables by (qi j ,p

i j ) and
the super-Hamiltonian and super-momentum by~H' ,H i!.
We seek a canonical transformation

~qi j ,p
i j !→~Xa,Pa ,q

A,pA!, ~3.1!

wherea50,1,2,3 andA51,2 such that, on solutions to the
equations of motion and constraints,Xa:S→M represents a
spacelike embedding of a Cauchy surfaceS into the space-
time manifoldM. The transformation must allow the con-
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straintsH''0'H i to be resolved for the momenta conju
gate to the embeddings; i.e., in the new variables
constraints are equivalent to

Ha :5Pa1ha~Xa,qA,pA!'0. ~3.2!

This formulation of the canonical theory has the followin
interpretation. The gravitational variables encoded inXa are
used to identify instants of time and points of space at wh
the true degrees of freedom~qA,pA! are being measured. Th
embeddings are ‘‘pure gauge,’’ i.e., arbitrary; their conjuga
momenta are completely determined in terms of the emb
dings and true degrees of freedom by the constraints~3.2!.
The constraint functionsHa , when integrated against func
tions Na, generate the dynamical evolution of the true d
grees of freedom~qA,pA! as the embedding they are on
deformed, viadXa5Na, through the Ricci-flat spacetime fo
which ~qA,pA! are Cauchy data. The densities of weight-o
ha~Xa,qA,pA! represent the energy-momentum current
~qA,pA! through the hypersurface embedded byXa. Gravita-
tional dynamics on phase space is thus cast into the form
a ‘‘parametrized field theory’’ onM.

A. Open universes: Cylindrical symmetry

As we saw in Sec. II A, the metric variableR and its
harmonic conjugateT define a conformal coordinate chart o
cylindrically symmetric spacetimes~reduced toM !. We can
thus define a spacelike curveR1

�M by giving its paramet-
ric description„T(r ),R(r )…. In the canonical formalism we
can therefore view the phase space variableR(r ) as one part
of an embedding ofR1 intoM . To complete the definition of
the embedding, we must expressT as a function on the phase
space, which will be again denotedT(r ). Using the pullback
of ~2.13! to a spacelike curvet5const and the Hamilton
equations, we find

T852pg . ~3.3!

This equation can be integrated to give

T~r !5T~`!2 È r

dr̄ pg~ r̄ !. ~3.4!

Because of the restriction~2.24!, the variables„T(r ),R(r )…
define a spacelike embedding on solutions of the equati
of motion. Unfortunately, given a point in the gravitationa
phase spaceG, the embedding is not uniquely specified b
cause the gravitational data do not fix the value of the in
gration constantT~`!, which represents the asymptotic loca
tion of the embedded curve. This difficulty is not
consequence of our use of the conformal coordinates (T,R)
to specify an embedding, but is a general feature of gen
relativity of open universes. For example, in@13# the Hamil-
tonian formulation of general relativity in asymptotically fla
universes is considered, and it is shown that the geome
dynamical data must be supplemented by a finite numbe
additional degrees of freedom in order to determine a spa
like hypersurface. To implement this idea in the context
cylindrically symmetric spacetimes, we will extend the pha
spaceG of Sec. II A. We then make a canonical change
variables on the extended phase space in which certain
-
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grees of freedom are identified as spacelike embeddings. T
resulting Hamiltonian structure of the model is then inte
preted as a generally covariant form of a theory of harmon
maps by a sequence of canonical transformations on the
propriate harmonic map phase space. We begin by findi
the appropriate extended phase space for cylindrically sy
metric spacetimes.

From the definition of the lapse densityN and the timeT
or, equivalently, from the equations of motion forT, it fol-
lows that the rate of change ofT~`! with respect tot is the
asymptotic value of the lapse densityN~`!. This motivates
the following construction@24#. We introduce a new degree
of freedom,t` , which is the time displayed by a clock at
infinity that measures timeT. The lapse density at infinity is
expressed as

N~`!5 ṫ` . ~3.5!

If we insist on keeping fixed the asymptotic value of th
lapse density, then we also keep fixedṫ` , and nothing is
changed except notation. However, we can treatt` as a new
dynamical variable which is to be varied in the action. Thi
is the usual logic of the parametrization process as applied
the ‘‘point at infinity.’’ If we parametrize at infinity, the
Hamiltonian form of the action~2.34! can be written as

S̃@N,Nr ,g,R,c,c̃,pg ,pR ,pc ,pc̃ ,t`#

5E
t1

t2
dtE

0

`

dr~pgġ1pRṘ1pcċ1pc̃c8 2NH

2NrHr !2E
t1

t2
dt ṫ`g~`!. ~3.6!

By adding the new variablet` to the Hamiltonian action
principle, we get additional equations, which, however, a
equivalent to the original equations. In detail, by varyingt`

we obtain conservation of theC energy,ġ~`!50, which al-
ready followed from the other equations of motion and s
does not alter the content of the field equations. The oth
new equation comes from varyingg. Prior to parametrizing
at infinity, the variation ofg led to one of the field equations
~2.10! and ~2.11!, and a potential boundary equation wa
eliminated by the boundary term in the Hamiltonian. Afte
parametrization, the boundary equation survives and yiel
Eq. ~3.5!, which recovers the desired definition oft` .

To summarize, we can enlarge the phase spaceG of cy-
lindrically symmetric spacetimes by adding a single variab
t` . The extended phase space will be denotedG!. The ex-
trema of the action functional~3.6! still define cylindrically
symmetric vacuum spacetimes, but now in terms of the e
tended set of variables. By enlarging the phase space in t
manner, we are able to define the asymptotic location
spatial curves using dynamical variables. The actionS̃, how-
ever, is not in Hamiltonian form because the surface ter
now enters as a ‘‘kinetic term’’ and destroys the canonic
nature of the phase space coordinatesg and pg . We still
must find canonical coordinates and momenta onG!. Indeed,
we must show thatG! is a symplectic manifold. We will take
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care of these issues, while at the same time providing
cylindrically symmetric version of the canonical transform
tion ~3.1!, in the following.

Let us define the phase spaceY for a field theory onM as
follows. A point in phase space is defined by the functio
(T,R,c,c̃,PT ,PR ,pc ,pc̃) on R1, where (T,R,c,c̃) are
scalar functions and (PT ,PR ,pc ,pc̃) are scalar densities o
weight one. Boundary and fall off conditions on these sca
fields and scalar densities are as indicated in the Appen
We will need some restrictions on the functionsT(r ) and
R(r ) so that they can be interpreted as spacelike embedd
of R1 into M . For reasons which will be clearer in a mo
ment, we demand

R8.uT8u, ~3.7!

and we include this inequality in the definition ofY. We
define a symplectic two-form,J(X,X̂) onY by its action on
a pair of vectors

X5~dT,dR,dc,dc̃,dPT ,dPR ,dpc ,dpc̃! ~3.8!

and

X̂5~ d̂T,d̂R,d̂c,d̂c̃,d̂PT ,d̂PR ,d̂pc ,d̂pc̃! ~3.9!

at a point ofY. The symplectic form is defined by

J~X,X̂!5E
0

`

dr~dPTd̂T1dPRd̂R1dpcd̂c1dpc̃d̂c̃

2@d↔ d̂ # !. ~3.10!

For the moment, the symplectic manifold~Y,J! is to be
viewed as logically independent of the gravitational pha
space; that is,Y is being thought of as simply a space o
functions (T,R,c,c̃,PT ,PR ,pc ,pc̃) upon which we have
defined a symplectic structure. The symplectic structure
defined so that (T,R,c,c̃) and (PT ,PR ,pc ,pc̃) are, re-
spectively, canonical coordinates and momenta.

Now consider the following map fromG! to Y. As sug-
gested by our notation, we will identify the variable
R,c,c̃,pc ,pc̃ in G! andY. The remaining portion of the
map is defined by

T~r !5t`2 È r

dr̄ pg~ r̄ !, ~3.11!

PT52g81@ ln~R822pg
2!#8, ~3.12!

PR5pR1F lnSR82pg

R81pg
D G8. ~3.13!

Note that this transformation is consistent withPT andPR
being scalar densities of weight one. This map can be
verted; the relevant formulas are

t`5T~`!, ~3.14!

g~r !5 ln~R822T82!2E
0

r

dr̄ PT~ r̄ !, ~3.15!
the
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pg52T8, ~3.16!

pR5PR2F lnSR81T8

R82T8D G8. ~3.17!

The transformation~3.11!–~3.13! is a diffeomorphism which
identifiesG! andY. In particular, the inequality~3.7! is pre-
cisely the restriction~2.24! onG! and is needed for the trans-
formation to be well defined. We can use this diffeomor
phism to express the action~2.34! as a functionalS! of
curves inY:

S!@N,Nr ,T,R,c,c̃,PT ,PR ,pc ,pc̃#

5E
t1

t2
dtE

0

`

dr~PTṪ1PRṘ1pcċ1pc̃c8 2NH2NrHr !,

~3.18!

where

H5PTR81PRT81 1
2 ~Rc821R21pc

2 !

1 1
2 ~Re22cp

c̃

2
1R21e2cc̃82!'0, ~3.19!

Hr5PTT81PRR81pcc81pc̃c̃8'0. ~3.20!

Note that the surface term contribution to the action ha
dropped out. Indeed, from this action we see that the va
ables (T,R,c,c̃) and (PT ,PR ,pc ,pc̃) are canonical coor-
dinates and momenta for the phase spaceG!. We have~i!
shown thatG! is a symplectic manifold by exhibiting a dif-
feomorphism fromG! to the symplectic manifold~Y,J! and
~ii ! exhibited a canonical coordinate char
(T,R,c,c̃,PT ,PR ,pc ,pc̃) on G!.

The actionS! has a nice mathematical interpretation in
terms of a parametrized field theory formulation of harmon
maps on a flat on spacetime, and we shall now spend a lit
time developing this interpretation. Recall that harmon
mapswA:M→L are fields on a spacetime~M ,g! taking val-
ues in a Riemannian manifold~L ,s! and which extremize the
‘‘energy integral’’:

I @wA#52 1
2 E

M
A2ggabsAB~w!w ,a

A w ,b
B , ~3.21!

wheregab is the metric onM andsAB is the metric onL .
Note that we are using capital Latin indices to label the ha
monic maps; in this discussion, these indices should not
confused with those labeling the Killing vectors used to de
fine the gravitational model. Also, the spacetime manifoldM
and metricgab for the harmonic map theory should not be
confused with the gravitationalM andgab .

Introduce a spacelike foliationX:R3S→M characterized
by lapseN' and shiftNi . The Hamiltonian form of the action
~3.21! is

I @wA,pA#5E
R3S

~pAẇA2N'h'2Nihi !, ~3.22!

where lowercase Latin indices denote tensors onS, and the
energy and momentum densities are
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h'5
1

2 S 1

Aq
sABpApB1Aqqi jsABw ,i

Aw , j
BD , ~3.23!

hi5pAw ,i
A . ~3.24!

Hereqi j is the induced metric on each hypersurfaceS of the
foliation. Variation of I [wA,pA] with respect towA andpA
yields equations equivalent to those obtained by vary
~3.21!. At this point the spacetime metric and foliation, whil
arbitrary, are fixed. This is reflected by the fact that the lap
and shift are fixed fields onR3S, i.e., not subject to varia-
tion in the action principle. Because of this, the field theo
in either the Lagrangian or Hamiltonian formulation, is n
‘‘generally covariant.’’ General covariance can be intr
duced into the field theory by keeping the spacetime me
fixed and adding the foliation itself to the space of depend
variables to be varied in the action principle. This is conv
niently done in the Hamiltonian formulation, where the ne
dynamical variables are spacelike embeddings, which
shall denote byXa. We must still introduce momentaPa
conjugate to the embeddings. To do this we need the u
normal na to the hypersurface embedded byXa. The unit
normal is defined by

gab~X!naX,i
b50 and gab~X!nanb521, ~3.25!

wheregab(X) is the metric onM restricted to the embedding
Xa. The unit normal is a fixed local function of the embe
ding and its first spatial derivatives. The foliation is a on
parameter family of spacelike embeddings, which we sh
denote byXa(t). It is straightforward to show that

Ẋa~ t !5N'na1NiX,i
a . ~3.26!

The action~3.22! can thus be written as

I @wA,pA#5E
R3S

~pAẇA2Ẋaha!, ~3.27!

where

ha52nah'1Xa
i hi , ~3.28!

and we have introduced fieldsX a
i , which are fixed local

functions of the embeddings and their first spatial derivativ
defined by

Xa
i X, j

a5d j
i and naXa

i 50. ~3.29!

From this form of the action we see that the momenta co
jugate to the embeddings are given by

Pa52ha ; ~3.30!

these definitions represent constraints

Ha :5Pa1ha'0. ~3.31!

We can take the constraints~3.31! into account with
Lagrange multipliersNa and obtain the final form for the
Hamiltonian action describing the parametrized field theo
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I @Na,Xa,Pa ,w
A,pA#5E

R3S
~pAẇA1PaẊ

a2NaHa!.

~3.32!

The extrema of this action, obtained by varying it with re
spect to its arguments, are defined by a system of equatio
equivalent to those obtained by extremizing~3.27!. Note that
the Hamiltonian can be expressed as

H:5E
S
NaHa5E

S
~N'H'1NiHi !, ~3.33!

where

H'5naPa1h' , ~3.34!

Hi5X,i
aPa1hi , ~3.35!

and we can equally well varyN' andNi instead ofNa in
~3.32!.

The resulting formalism, in which the embeddings an
their conjugate momenta are adjoined to the phase space@at
the expense of the constraints~3.31!#, is the ‘‘parametrized
formalism’’ for the harmonic map field theory. The centra
feature of the parametrized formalism is that it provides
generally covariant formulation of any field theory. This is
what makes possible the identification of the gravitation
models, which are generally covariant field theories onM ,
with the theory of harmonic maps on a fixed backgroun
spacetime.

Now we are ready to make contact with the Hamiltonia
formulation of cylindrically symmetric spacetimes. This is
accomplished in three steps.

1. Fix the spacetime and target space

We fix the spacetime to beM5R23S1 equipped with a
flat metric, which is defined in polar coordinates by the lin
element

gabdx
adxb52dT21dR21R2dF2. ~3.36!

Here TP~2`,`!, RP~0,̀ !, andFP~0,2p!. The harmonic
maps are defined to take values inL5R2 with the metricsAB
chosen to be of constant negative curvature. In coordina
cP~2`,`! andfP~2`,`!, the metric onL is determined
by the line element

sABdwAdwB5dc21e22cdf2. ~3.37!

The scalar curvature of this metric is22.

2. Impose azimuthal symmetry

Of course]/]F is a Killing vector field of the metricgab .
We now demand that the fieldswA be invariant along the
flow generated by this Killing vector field: i.e.,

L]/]FwA50. ~3.38!

In the coordinates~T,R,F! onM , this means we assume the
fields are independent ofF:

c5c~T,R! and f5f~T,R!. ~3.39!
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In the parametrized formalism for the field theory, we al
assume that the foliation is compatible with the azimuth
symmetry in the sense that we only consider spacelike s
faces to which]/]F is everywhere tangent. The embeddin
can be registered in the coordinates~T,R,F!; that is, we have

Xa~r ,F!5„T~r !,R~r !,F…, ~3.40!

where rP~0,̀ !. Thus, to specify an embedding, we mu
specify two functions of one variable,T(r ) andR(r ). On the
symmetry-compatible foliation the shift vector takes th
form

Ni5~Nr ,0!. ~3.41!

We can now formulate the parametrized harmonic m
field theory on the two-dimensional space of orbi
M5R3R1 of the Killing vector. By working in polar coor-
dinates onM , this amounts to simply ignoring theF coordi-
nate. The Hamiltonian form of the action can be obtained
substituting the choices made in the first two steps into
action ~3.32! and integrating out the angular coordinate. W
obtain

I @N',Nr ,T,R,PT ,PR ,c,f,pc ,pf#

5E
t1

t2
dtE

0

`

dr~PTṪ1PRṘ1pcċ

1pfḟ2N'H'2NrHr !, ~3.42!

where

H'5
1

AR822T82
@PTR81PRT81 1

2 ~Rc821R21pc
2 !

1 1
2 ~Re22cf821R21e2cpf

2 !#, ~3.43!

Hr5PTT81PRR81pcc81pff8. ~3.44!

Variation of this action with respect to its arguments yiel
field equations equivalent to those obtained from~3.32! in
the special case of azimuthal symmetry. An equivalent va
tional principle is obtained by defining a lapse density

N:5
1

AR822T82
N' ~3.45!

and weight-two super-Hamiltonian

H5PTR81PRT81 1
2 ~Rc821R21pc

2 !

1 1
2 ~Re22cf821R21e2cpf

2 !. ~3.46!

In terms of these quantities we have

Ī @N,Nr ,T,R,PT ,PR ,c,f,pc ,pf#

5E
t1

t2
dtE

0

`

dr~PTṪ1PRṘ1pcċ1pfḟ

2ṄH2NrHr !, ~3.47!
so
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and variation of this action with respect to its argumen
yields field equations equivalent to those obtained fro
~3.42!. Note the close similarity between the super
Hamiltonian ~3.46! for the harmonic map theory and the
super-Hamiltonian~3.19! for cylindrically symmetric space-
times.

3. Canonical transformation

In the last step, we perform a canonical transformatio
that interchanges the roles off andpf and puts the super-
Hamiltonian and supermomentum of the parametrized fie
theory of harmonic maps into the form~3.19! and ~3.20!.
This transformation is given by

c̃~r !5 È r

dr̄ pf~ r̄ !, ~3.48!

pc̃5f8. ~3.49!

The inverse transformation is

f~r !5E
0

r

dr̄ pc̃~ r̄ !, ~3.50!

pf5c̃8. ~3.51!

With the boundary conditions given in the Appendix, this i
a canonical transformation provided we impose the bounda
condition f~r50!50. It follows immediately from~3.50!
and ~3.51! that, in the new variables, the super-Hamiltonia
and supermomentum for the parametrized harmonic m
field theory are precisely~3.19! and ~3.20!.

As indicated by the equivalence to a parametrized fie
theory, the constraints~3.19! and ~3.20!,

H'0'Hr , ~3.52!

can be solved for the momenta conjugate to the embeddin
Indeed, it is straightforward to show that these constraints a
equivalent to

Ha :5Pa1ha'0, ~3.53!

where Pa5(PT ,PR) and ha5(hT ,hR) is defined as in
~3.28! with

na5~nT ,nR!5S 2
R8

AR822T82
,

T8

AR822T82
D ,

~3.54!

Xa
r 5~XT

r ,XR
r !5S 2

T8

R822T82
,

R8

R822T82D . ~3.55!

Explicitly, the constraints~3.53! take the form

PT1
1

R822T82
„R8@ 1

2 ~Rc821R21pc
2 !1 1

2 ~Re22cp
c̃

2

1R21e2cc̃82)]2T8~pcc81pc̃c̃8!…'0 ~3.56!

and
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PR2
1

R822T82
„T8@ 1

2 ~Rc821R21pc
2 !1 1

2 ~Re22cp
c̃

2

1R21e2cc̃82)]2R8~pcc81pc̃c̃8!…'0. ~3.57!

A standard argument~see, e.g.,@25#! establishes that the con-
straints~3.56! and ~3.57! have an Abelian Poisson bracke
algebra:

$Ha~r !,Hb~ r̄ !%50. ~3.58!

To summarize, the Hamiltonian structure of cylindricall
symmetric gravitational fields is mathematically identical t
a parametrized field theory of azimuthally symmetric ha
monic maps from a three-dimensional flat spacetime to
two-dimensional manifold equipped with a metric of con
stant negative curvature. It is important to note that all
these results are fully gauge invariant in the sense that
coordinate conditions are needed to be imposed on the gr
tational theory. In any of the forms that we have present
the Hamiltonian formulation, the field theory retains the fu
two-dimensional diffeomorphism invariance compatible wit
the imposition of cylindrical symmetry.

B. Closed universes: Toroidal symmetry

We now repeat the analysis of Sec. III A under the a
sumption of toroidal symmetry. The procedure is very sim
lar to that used in the cylindrical symmetry case; the ke
difference is the way in which the missing degree of freedo
is introduced.

Again, the strategy is to use the conformal coordinatest
andX to define embeddings of a circle intoM5R13S1. The
variablet already appears as a canonical coordinate on
phase space, but we must still expressX as a function on
phase space. This can be achieved starting from~2.39!.
Choosing the spacelike circle on which the integral is pe
formed to be at5const slice, we have that

X85
1

p0
pg , ~3.59!

where

p0 :5
1

2p E
0

2p

dx pg~x!. ~3.60!

Note that, because of~2.53!, pg is negative definite, and so
the denominator never vanishes in~3.59! andX(x) is mono-
tonic.

Before completing the phase space definition oft andX
into a canonical transformation, we have to contend with t
fact that~3.59! does not defineX as a function on the gravi-
tational phase spaceG. The reason is the same as in th
cylindrically symmetric case: There is an integration co
stant left unspecified in~3.59!, which is not fixed by the
gravitational phase space data. In Sec. III A the integrati
constant represented the asymptotic location of a space
slice; here, it represents the relation between the origin of
coordinatex onS1 and the origin of the conformal coordinate
X. This information is coordinate dependent and not i
cluded in the gravitational phase space. As before, we re
t
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edy this situation by adding a new degree of freedomq to the
phase space@24#. Unlike the cylindrically symmetric case
this new degree of freedom has no role to play in gravi
tional dynamics; i.e., it is pure gauge. We therefore introdu
a momentump conjugate toq and adjoin a new constraint,

p'0, ~3.61!

to the Hamiltonian formulation. We denote byG! the phase
space extended by the variablesq andp. Our strategy is to
formulate the gravitational system as a parametrized fi
theory onG! and then reduce the system by the constra
~3.61!. When we reduceG! by the constraint~3.61!, we ar-
rive at the original gravitational phase spaceG and the dy-
namics thereon.

We are now ready to extract embedding variables fro
the gravitational system formulated onG!. Let m(x) be a
prescribed measure on the circle; i.e.,m is a positive density
of weight one on the circle and is normalized via

E
0

2p

dx m~x!51. ~3.62!

We define a transformation

~t,g,c,c̃,q,pt ,pg ,pc ,pc̃ ,p!

↔~T,X,f,f̃,Q ,PT ,PX ,pf ,pf̃ ,P ! ~3.63!

by

T52
1

p0
t, ~3.64!

X~x!5q1E
0

2p

dx9 m~x9!E
x9

x

dx8
1

p0
pg~x8!,

~3.65!

PT52p0S pt1F lnS pg2t8

t81pg
D G8D , ~3.66!

PX5pm1p0~g82@ ln~pg
22t82!#8! ~3.67!

and

f5A2p0c, ~3.68!

f̃5
1

A2p0

c̃, ~3.69!

pf5
1

A2p0

pc , ~3.70!

pf̃5A2p0pc̃ , ~3.71!
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Q5
1

p0
E
0

2p

dxH @g2 ln~pg
22t82!#pg

2S pt1F lnS pg2t8

t81pg
D G8D t

1 1
2pcc2 1

2pc̃c̃J , ~3.72!

P5p0 . ~3.73!

Here we have made some convenient rescalings. In part
lar, the scaling by 1/p0 used in the definition ofX guarantees
that

X~2p!2X~0!52p. ~3.74!

We mention that the requirement thatDat be timelike, given
by ~2.53!, is equivalent to

X8.uT8u. ~3.75!

The inequalities~2.53! and ~3.75! guarantee that the abov
transformation is well defined and that the slices embedd
by „T(x),X(x)… are spacelike. Let us also note that the co
straint ~3.61! is, in the new variables, the constraint

E
0

2p

dx PX~x!'0. ~3.76!

It is not too hard to show, e.g., by expanding in Fouri
series, that the above transformation is a bijection fromG! to
the phase space Y for a field theory of
(f,f̃,Q ,pf ,pf̃ ,P ) in the parametrized formalism. Our no
tation here is thatY is the product of the cotangent bundl
over the space of embeddings of a circle intoM and the
phase space of the canonical variables~f,f̃,Q ! and
(pf ,pf̃ ,P ). By computing Poisson brackets, or by compu
ing the symplectic form in the new variables, it is straigh
forward to verify that the transformation is canonical, i.e
identifies the respective symplectic structures, and that
variables ~T,X,f,f̃,Q ! and (PT ,PX ,pf ,pf̃ ,P ) are ca-
nonical coordinates and momenta.

Modulo the constraint~3.76!, the weight-two super-
Hamiltonian and supermomentum take the following for
when expressed in terms of the new canonical variables:

H:5PTX81PXT81
1

2
~Tf821 T21pf

2 !

1
1

2
~Te22f/A2Pp

f̃

2
1 T21e2f/A2P f̃82!'0

~3.77!

and

Hx :5PTT81PXX81pff81pf̃f̃8'0. ~3.78!

The constraints of the theory are~3.76!–~3.78!; they are
‘‘first class.’’ In particular, the Poisson brackets of the co
straint ~3.76! with the super-Hamiltonian and supermome
icu-

e
ed
n-

er

-
e

t-
t-
.,
the

m

n-
n-

tum vanish because~3.76! generates constant shifts ofX with
respect to whichH andHx are invariant.

Let us make one further remark about the canonical tra
formation ~3.63!. First, we emphasize that the identificatio
of G! with Y depends on the nongravitational data (q,p,m).
However, upon passing toG using the constraint~3.76!, this
dependence necessarily disappears. To see this, recall
the reduction fromG! to G is obtained by~i! restricting the
phase space to the constraint surface defined by~3.76! and
~ii ! identifying points on the constraint surface which lie o
an orbit of the canonical transformations generated
*s1PX ; that is, embeddingsX andX1const are identified.
The dependence ofPX on p andm is eliminated upon pass-
ing to the constraint surface defined by~3.76!. Restricting to
the constraint surface of~3.76!, we must identifyX and
X1const. For a fixed choice ofm this eliminates the depen-
dence of the phase space onq. Now suppose we use a dif
ferent measurem̃ to define a new embedding variableX̃(x).
BecauseX̃85pg/p0, we have that (X̃2X)850, that is,X̃5X
1const, which is precisely the transformation generated
*s1PX , and so onG the phase space is independent of t
choice of measurem. Put differently, changingm is equiva-
lent to holdingm fixed and changingq, which has no effect
on points ofG. Thus the nongravitational data (q,p,m) are
eliminated upon passing fromG! to the original phase space
G.

Once again we can interpret the resulting formalism
terms of a parametrized field theory of harmonic maps. Ho
ever, it must be kept in mind that there is a ‘‘point particle
degree of freedom represented byQ andP along with an
extra constraint~3.76!. BecauseQ is cyclic in the Hamil-
tonian, we can reduce the phase spaceG! by the integral of
motion P to a phase spaceG̃!. On G̃! we view P as a
parameter, which will appear in the metric for the spacetim
upon which the harmonic maps are defined. To express
gravitational theory formulated onG̃! as a parametrized har
monic map field theory, we repeat the three steps of S
III A.

1. Fix the spacetime and target space

The spacetime is now taken to beM5R13T2 with metric
given by the line element

ds25 l 2~2dT21dX21T2dY2!, ~3.79!

whereX andY are coordinates onT2, T.0, andl is a posi-
tive constant. Using an analogous construction to that fou
in Sec. II B, this metric can be viewed as a flat metric on
compactification of a submanifoldI of three-dimensional
Minkowski spacetimeM3. Let us spell this out in detail.
Let t̂,x̂,ŷ denote inertial coordinates onM3. Define I as the
submanifold for whicht̂22 ŷ2.0 and t̂.0. On I make the
identification

x̂; x̂12p l , arctanhS ŷ
t̂
D ;arctanhS ŷ

t̂
D 12p ~3.80!

and denote the resulting manifold byĨ . The Minkowski met-
ric on M3 projects to a flat metric onĨ . Define coordinates
(T,X,Y) on R13T2, where TP~0,̀ !, XP~2`,`!, and Y
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P~2`,`!, with X;X12p andY;Y12p. The diffeomor-
phismf:R13T2→Ĩ , defined by

t̂5 lT coshY,

x̂5 lX, ~3.81!

ŷ5 lT sinhY,

identifies the metric~3.79! on R13T2 with the Minkowski
metric on Ĩ .

As in the cylindrically symmetric case, the harmoni
mapswA:5~a,b! take values inL5R2, which is equipped
with a metric of constant negative curvature given by the lin
element

sABdwAdwB5da21e22adb2. ~3.82!

2. Impose azimuthal symmetry

The vector field]/]Y is a Killing vector field for the met-
ric onM . We now demand that all the fields of the param
etrized harmonic map field theory are likewise invariant u
der the one-parameter family of isometries generated
]/]Y. Thus we can formulate the theory on the space of o
bits,M5R13S1, of the Killing vector field. On the space of
orbits of]/]Y, the Hamiltonian form of the action is given by

Ī @N,Nx,T,X,pT ,pX ,a,b,pa ,pb#

5E
t1

t2
dtE

0

2p

dx~pTṪ1pXẊ1paȧ1pbḃ

2NH2NxHx!, ~3.83!

where

H5pTX81pXT81 1
2 @~ lT !21pa

21 lTa82#

1 1
2 @~ lT !21e2apb

21 lTe22ab82# ~3.84!

and

Hx5pTT81pXX81paa81pbb8. ~3.85!

Note the similarity between the super-Hamiltonian~3.84! for
the harmonic map theory and the super-Hamiltonian~3.77!
for toroidally symmetric spacetimes.

3. Canonical transformation

In this last step we make a canonical transformatio
which puts the super-Hamiltonian and supermomentu
~3.84! and ~3.85! of the parametrized field theory into the
form ~3.77! and~3.78! found in the gravitational theory. It is
possible to adapt the transformation~3.48!–~3.49! used for
the cylindrically symmetric case, but this leads to additiona
and unnecessary, constraints on the harmonic maps. In
toroidal symmetry case the following canonical transform
tion accomplishes our goal@26#:

a52 l21/2f1 ln~ lT !, ~3.86!

b5 l 1/2f̃, ~3.87!
c

e

-
n-
by
r-

n
m

l,
the
a-

pa52 l 1/2pf1 lX8, ~3.88!

pb5 l21/2pf̃ , ~3.89!

pT5PT1 l 1/2T21pf2 l ~2T!21X8, ~3.90!

pX5PX1 l 1/2f82 l ~2T!21T8. ~3.91!

Note that the embedding coordinates (T,X) retain their origi-
nal meaning and the embedding momenta, while redefine
are still scalar densities of weight one on the circle. By usin
the transformation~3.86!–~3.91!, it follows that the super-
Hamiltonian and supermomentum~3.84! and ~3.85! of the
parametrized field theory become those found in the gravi
tional theory formulated onG̃! @~3.77! and~3.78!#, provided
we make the identification

l52P . ~3.92!

As in the cylindrically symmetric case, we now know tha
the constraints~3.77! and ~3.78!,

H'0'Hx , ~3.93!

can be reexpressed as

Ha :5Pa1ha'0, ~3.94!

where Pa5(PT ,PX) and ha5(hT ,hX) is defined as in
~3.28! with

na5~nT ,nX!5S 2
X8

AX822T82
,

T8

AX822T82
D ,

~3.95!

Xa
x5~XT

x ,XX
x !5S 2

T8

X822T82
,

X8

X822T82D . ~3.96!

Explicitly, the constraints~3.94! take the form

PT1
1

X822T82
„X8@ 1

2 ~Tf821T21pf
2 !1 1

2 ~Te22f/A2Pp
f̃

2

1T21e2f/A2P f̃82)]2T8~pff81pf̃f̃8!…'0 ~3.97!

and

PX2
1

X822T82
„T8@ 1

2 ~Tf821T21pf
2 !1 1

2 ~Te22f/A2Pp
f̃

2

1T21e2f/A2P f̃82)]2X8~pff81pf̃f̃8!…'0. ~3.98!

As before, the constraints~3.97! and~3.98! have an Abelian
Poisson bracket algebra:

$Ha~x!,Hb~ x̄!%50. ~3.99!

To summarize, the Hamiltonian formulation onG̃! of to-
roidally symmetric gravitational fields is equivalent to that o
a parametrized field theory of harmonic maps from a fl
three-dimensional spacetime to a two-dimensional manifo
of constant negative curvature. Of course, to recover t
original gravitational field theory onG the degrees of free-
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dom ~Q ,P ! must be reinstated, but more importantly, th
constraint~3.76! must be imposed on the harmonic map fie
theory. This constraint sets to zero the homogeneous m
of the embedding momentumPX and, by virtue of~3.98!, is
equivalent to the constraint

E
0

2p

dx hX~x!'0. ~3.100!

This constraint can be viewed as setting to zero the to
momentum of the fieldsf and f̃ ~or a andb!. Because the
constraint~3.100! is first class, we are obliged to identifyX
andX1const. The equivalence class of embeddings thus
tained is independent of the value of the nongravitation
variables (q,p,m). On the other hand, the extra constrai
means that, strictly speaking, the Hamiltonian formulation
toroidally symmetric spacetimes is not quite identical to
parametrized field theory of harmonic maps. However, as
shall see, the correspondence is sufficiently close to allo
formal construction of the quantum theory.

IV. IMPLICATIONS FOR QUANTUM THEORY

Issues which arise in canonical quantum gravity, the pro
lems of time in particular@1#, can be investigated in the
models we have been studying. In the last section we exh
ited canonical transformations that identify certain pha
spaces for these models with phase spaces for harm
maps from flat three-dimensional spacetimes into a tar
space of constant negative curvature. This mathemat
identification is fully gauge invariant, i.e., preserves the tw
dimensional diffeomorphism symmetry exhibited by the tw
Killing vector models. It should be emphasized, howev
that the extraction of the embedding variables was not wi
out its complications. We encountered a ‘‘global problem
time,’’ which was resolved by adding a finite number o
nongravitational degrees of freedom to the usual ADM pha
space. Given the extended phase spaces, each event i
effective two-dimensional spacetime is uniquely labeled
the values of the canonical variablesXa on a spacelike slice
at the point where the spacelike slice passes through
event. The identification of spacetime points provided byXa

is independent of the choice of slice and the ‘‘spacetim
problem’’ @1# is avoided. Given these results, the obvio
strategy for quantization is to view the dynamics of the mo
els as a generally covariant~i.e., parametrized! formulation
of nonlinear fields on a fixed background. The quantu
theory of fields on a fixed spacetime is quite well studi
and, at least superficially, presents no overwhelming conc
tual difficulties, although the quantum theory of interactin
fields is always technically challenging. A simplifying fea
ture of these models is that, while they can be viewed as fi
theories on a three-dimensional flat spacetime, the Killi
vector structure is such that the final result is in each cas
two-dimensional field theory and in two dimensions quantu
field theory is typically more manageable than in higher d
mensions. Our purpose in this section is to discuss cer
broad features of the quantization of these models ba
upon the classical structures elucidated in Sec. III. We ho
to return to a more detailed examination of the resulti
quantum theories in future work.
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In each of the models we have studied, the resulti
Hamiltonian structure involves embedding variablesXa and
their conjugate momentaPa , along with dynamical variables
~qA,pA!, which are (c,c̃,pc ,pc̃) in the cylindrical symme-
try case or (Q ,f,f̃,P ,pf ,pf̃) in the toroidal symmetry
case. The constraints include diffeomorphism constrai
~3.53!, ~3.94! and, in the case of toroidal symmetry, an a
ditional constraint~3.76!. Ignoring its origins, the param-
etrized field theory defined by these constraints is, at le
formally, relatively straightforward to ‘‘quantize.’’ Note,
however, that in each of the models the effective tw
dimensional field theory has a complicating feature not us
ally found in more familiar two-dimensional field theories
Namely, the super-Hamiltonian is an explicit function o
R(r ) in the cylindrical symmetry case andT(x) in the toroi-
dal symmetry case. This will modify the quantum theori
relative to what we might find, e.g., for a conformal fiel
theory. In any case, we promote the canonical variab
~qA,pA! to operators on statesuC&. One way to do this would
be, using the Heisenberg picture, to quantize the variab
~qA,pA! on the privileged foliationT5t andR5r or X5x.
The states are embedding independent in the Heisenberg
ture, while the operators are evolved by the embedding m
menta@27#. Of course, it may be necessary to use perturb
tion theory to define the operators and states. Forma
observables are self-adjoint operators representing class
functionals of~qA,pA!. Note that in the toroidal symmetry
model observables must commute with the constraint~3.76!.

In the Schro¨dinger picture, dynamical evolution corre
sponds to considering statesuC,Xa& which are parametrized
by the embeddings. The states are evolved from one emb
ding to the next by the energy-momentum currentha . More
precisely, the statesuC,Xa& are defined as solutions to th
functional Schro¨dinger equation

i
d

dXa uC,Xa&5hauC,Xa&. ~4.1!

This equation can be considered an implementation of
demand that ‘‘physical states are annihilated b
constraints’’: HauC,Xa&50. In the toroidal symmetry case
we must also impose the quantum version of~3.76!:

S E
0

2p

dx
d

dX~x! D uC,Xa&50. ~4.2!

This requirement is equivalent to

uC,T,X1const&5uC,T,X&, ~4.3!

but in light of ~4.1! is also equivalent to

S E
0

2p

dxhX~x! D uC,Xa&50. ~4.4!

Given an initial stateuC0,X 0
a& on an initial embeddingX 0

a,
the functional Schro¨dinger equation~4.1! is solved@subject
to the subsidiary condition~4.2!# and the solution is matched
to the initial data. Note that~4.2! can be implemented by
imposing~4.3! on the initial stateuC0,X 0

a& and then solving
~4.1!. If ~4.2! is satisfied initially, it will be satisfied on any
embedding provided the state is evolved according to~4.1!.
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The resulting embedding-dependent vectoruC,Xa& is to be
interpreted as the state of the system on the embedd
Xa(x), and one can go on to predict outcomes of measu
ments of observables constructed from the quantum fie
@andXa(x) if desired# on various hypersurfaces in the usu
way.

For this quantization strategy to be feasible, one m
check that the operator representatives of the currentsha are
well-defined operator-valued distributions. Furthermore, o
must guarantee that the infinite number of differential equ
tions contained in~4.1! and ~4.2! are mutually consistent.
The integrability conditions for this are the quantum comm
tator analogs of the Abelian algebra~3.58! and~3.99!, which
guarantee that quantum dynamics does not depend on
choice of observer. More precisely, the integrability cond
tions for ~4.1! imply that the stateuC1,X 1

a& obtained by
evolving an initial stateuC0,X 0

a& along a specific foliation
connecting the slices defined byX 0

a andX 1
a does not depend

on the choice of the foliation. For these integrability cond
tions to be satisfied, it is essential that the commutators
the components of the energy-momentum current be, up
factor of i , the same as their classical Poisson brackets. I
very likely that this will not happen; i.e., anomalies~or
‘‘Schwinger terms’’! terms will arise. This is the ‘‘functional
evolution problem’’@1#. It would be very interesting to com-
pute these Schwinger terms. If they depend only on the e
bedding and are finite, then one can use techniques de
oped by Kucharˇ for free fields in two dimensions, where th
anomalous terms are finite and depend only on the emb
dings @27#. If the anomalous terms are operator valued
infinite, it is not at all clear how to proceed. Note that if w
turn off one of the polarizations of the gravitational field b
settingc̃50, then the resulting field theory is linear. In thi
case it would seem that all operators can be defined by n
mal ordering and that the Schwinger terms are finite a
depend only on the embeddings, but to our knowledge
one has computed the Schwinger terms for this interest
special case. In many ways, the functional evolution probl
is the most important issue to address in studying the qu
tization of the two Killing vector models, for it is here tha
one verifies the compatibility of the method of quantizatio
with the principle of general covariance.

Given a successful resolution of the functional evolutio
problem, we should relate the elements of the quantum
rametrized theory with geometrical elements of spacetime
particular, what does it mean to ‘‘know the state on the e
beddingXa(x)’’? Let us treat each of the models in turn. T
fix the stateuC,Xa& of a cylindrically symmetric spacetime
we imagine a family of observers and the associated spa
like foliation of spacetime. On a given slice of the foliatio
the observers measure the gravitational variables~R,pg! and
the ‘‘laboratory variable’’t` ; this fixes the embedding of the
slice, Xa(r )5„T(r ),R(r )…, via ~3.11!. The observers also
measure a complete set of commuting observables built fr
the operator representatives of (c,c̃,pc ,pc̃). All together,
these measurements fix the quantum state on a spacelike
persurface in terms of measurement of geometrical quanti
and the reading of a clock at infinity. In the toroidal symm
try case the family of observers measuret/p0 and pg /p0;
this determines the embeddingXa(x)5„T(x),X(x)… via
~3.64! and ~3.65! up to specification of the nongravitationa
ing
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variablesq andm. The observers also measure a complete
of commuting observables built from (Q ,f,f̃,P ,pf ,pf̃),
which are defined in terms of the spacetime geometry
~3.68!–~3.73!. Different choices ofq andm simply redefine
X(x) by addition of a constant. Because the states of a t
oidally symmetric spacetime must be invariant under th
transformation@see~4.3!#, the quantum stateuC,Xa& is unam-
biguously determined by measurements of gravitational d
only.

There is one remaining problem that should be discus
when quantizing general relativity as a parametrized fie
theory. Kucharˇ calls this problem the ‘‘multiple choice prob-
lem’’ @1#. The quantization we have outlined apparently d
pends quite heavily on the way in which the canonical va
ablesXa are used to identify points of space and instants
time. To be sure, the embeddings we have constructed ar
some sense, geometrically natural. But it is conceivable t
other, equally valid, embedding variables could be co
structed. In this case it is not at all clear that when usi
some other embedding variables the resulting quant
theory will coincide with the one we have outlined here.
the quantum theories based on different choices of emb
ding variables do not coincide, i.e., are not physica
equivalent, then we have an ‘‘embarassment of ric
es’’: Which quantum theory describes the real world? Th
issue can be examined in the context of the parametri
formalism for a relativistic particle moving in a curved
spacetime, and it is found that the multiple choice proble
can be quite severe@1#. In many ways it is the multiple
choice problem which most deeply reflects the conflict b
tween general relativity and quantum mechanics. In order
examine this problem in the models we have consider
new sets of embedding variables are required. For exam
one relatively simple way to obtain other embedding va
ables is to take the embeddingsXa we have constructed here
and perform the point transformation

X̃a:5Fa~X!. ~4.5!

AssumingFa is smooth and admits a smooth inverse, th
transformation can be easily completed to a canonical tra
formation. These new embeddings can be interpreted as
lows. Fix an embeddingXa of a hypersurfaceS in spacetime.
DisplaceS by letting the diffeomorphismFa act on it point-
wise. The resulting hypersurface is embedded byX̃a. Is it
possible to construct a quantum theory of the parametriz
field theories representing the classical two Killing vect
models so that transformations such as~4.5! lead to physi-
cally equivalent theories? Of course, we cannot answer
question here since we have only outlined the most ba
features to be expected in the putative quantum theory.
us, however, suggest that the multiple choice problem
closely allied with a familiar issue that arises in quantizatio
of a gauge theory using gauge-fixing conditions. There,
question is whether or not the predictions of quantum fie
theories based on different gauge-fixing conditions agr
The connection of this issue with the multiple choice pro
lem stems from the fact that, at least in the models cons
ered here, the classical gravitational theory can be obtai
by ~i! choosing the gaugeT5t andR5r or X5x and ~ii !
‘‘parametrizing’’ the resulting field theory to regain genera
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covariance. Likewise, we quantize the fields~qA,pA! on the
foliation T5t andR5r or X5x and then reinstate genera
covariance by constructing states parametrized by the
beddingsXa which satisfy~4.1!. Whether general covarianc
is in fact realized in the quantum theory is determined by t
outcome of the problem of functional evolution. Let us a
sume that this problem can be solved. The remaining qu
tion is how the quantum theory depends on the initial cho
of gauge. In gauge theories, this issue is fruitfully analyz
using Becchi-Rouet-Stora-Tyutin~BRST! methods @28#,
which, at least formally, guarantee the independence of
predictions of the quantum theory from the underlyin
choice of gauge. It remains to be seen whether the mult
choice problem in generally covariant theories can be
solved in a similar way.
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APPENDIX: BOUNDARY CONDITIONS FOR
CYLINDRICALLY SYMMETRIC SPACETIMES

In this appendix we summarize the boundary conditio
used in the analysis of cylindrically symmetric spacetime
These boundary conditions guarantee existence and diffe
tiability of the various action and Hamiltonian functiona
that are used in the paper, as well as the canonical natur
the various transformations considered. The boundary co
tions are also such that they are preserved under the dyn
cal evolution generated by the Hamiltonian functionals. It
conceivable that weaker boundary conditions can be us
but those used here allow for a reasonably large class
solutions to the field equations. In particular, the bounda
conditions include the Einstein-Rosen wave solutions wh
arise when one assumes whole cylindrical symmetry.

It is important to note that the asymptotic values~r→`!
of the lapse and lapse density, while arbitrary, are held fix
when varying the Hamiltonian~or action! defined on the
ADM phase spaceG. The asymptotic values of the lapse an
lapse density are only allowed to vary when using the e
tended phase spaceG! for cylindrically symmetric space-
times. Note also that many other variables have a nonvan
ing value asr→0 or r→`; these limiting values arenot held
fixed in any of the variational principles. In particular, th
values of the lapse and lapse density on the axisr50 arenot
held fixed.

The phase space variables are functions of the radial
ordinater ; we must give the boundary conditions asr→0
andr→`. As r→0, we assume the following behavior of th
canonical coordinates and momenta onG:

R5r1O~r 3!, ~A1!

g5O~r 2!, ~A2!

c5c~0!1O~r 2!, ~A3!

c̃5c̃~0!1O~r 3!, ~A4!
l
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pR5O~r !, ~A5!

pg5O~r 2!, ~A6!

pc5O~r !, ~A7!

pc̃5pc̃~0!1O~r !. ~A8!

The lapse and shift are assumed to have the following
havior asr→0:

N'5N'~0!1O~r 2!, ~A9!

Nr5O~r 2!. ~A10!

The lapse density inherits its behavior asr→0 from the lapse
function:

N5N~0!1O~r 2!. ~A11!

Equations~A6! and ~3.4! imply that asr→0,

T5T~0!1O~r 3!. ~A12!

Similarly, we assume

PT5O~r ! ~A13!

and

PR5O~r !. ~A14!

Our boundary conditions atr50 imply that there are no sin
gularities on the axis of symmetry.

As r→`, we assume the following behavior of the c
nonical coordinates and momenta onG:

R5r1O~r2e!, ~A15!

g5g~`!1O~r2e!, ~A16!

c5O~r2e!, ~A17!

c̃5O~r2e!, ~A18!

pR5O~r21!, ~A19!

pg5O~r2~11e!!, ~A20!

pc5O~r21!, ~A21!

pc̃5O~r2~11e!!, ~A22!

where e.0. The lapse and shift are assumed to have
following behavior asr→`:

N'5N'~`!1O~r2e!, ~A23!

Nr5O~r2e!. ~A24!

The lapse density inherits its behavior asr→` from the
lapse function:

N5N~`!1O~r2e!. ~A25!

Equations~A20! and ~3.4! imply that, asr→`,
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T5T~`!1O~r2e!. ~A26!

Similarly,

PT5O~r2~11e!! ~A27!

and

PR5O~r21!. ~A28!
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