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Solitonic strings and BPS saturated dyonic black holes
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We consider a six-dimensional solitonic string solution described by a conformal chiral null model with
nontrivial N=4 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solitonic
string wound around a compact fifth dimension. The conformal model is regular with the short-distance
(“throat” ) region equivalent to a Wess-Zumino-WittéWwZW) theory. At distances larger than the compac-
tification scale the solitonic string reduces to a dyonic static spherically symmetric black hole of toroidally
compactified heterotic string. The new four-dimensional solution is parametrized by five charges, saturates the
Bogomol'nyi bound, and has a nontrivial dilaton-axion field and moduli fields of a two-torus. When acted on
by combinedT- and S-duality transformations it serves as a generating solutioraliothe static spherically
symmetric Bogomol'nyi-Prasad-Sommerfield saturated configurations of the low-energy heterotic string theory
compactified on a six-torus. Solutions with regular horizons have the global space-time structure of extreme
Reissner-Nordstr black holes with the non-zero thermodynamic entropy which depends only on conserved
(quantizedl charge vectors. Thendependencef the thermodynamic entropy on moduli and axion-dilaton
couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of under-
lying string configurations. This interpretation is supported by arguments based on the corresponding six-
dimensional conformal field theory. The expression for the level of the WZW theory describing the throat
region implies a renormalization of the string tension by a product of magnetic charges, thus relating the
entropy and the number of oscillations of the solitonic string in compact direcfi86556-282196)07010-3

PACS numbe(s): 04.50+h, 04.20.Jb, 11.25.Sq

[. INTRODUCTION of elementary closed strings, which are in general charged,
oscillate in one, e.g., left-moving, sector and are wound
String theory is bound to have important implications foraround a compact spatial dimensioi0,11,8,9. The
the physics of four-dimensional black holes. It is likely that leading-order solution is singular at the cbhkeit o’ correc-
certain fundamental properties of “realistic” black holes cantions most likely provide an effective smearing of the
be understood by studying a special class of supersymmetrig-function source at the quantum string scale’ [12].2
Bogomol'nyi-Prasad-SommerfieldBPS saturated back- What appears to a distant four-dimensional observer as an
grounds which for large enough supersymmetry do not reextreme electric black hole has actually an internal structure
ceive quantum corrections. Examples of such backgroundsf a higher-dimensional fundamental string. This interpreta-
are provided by pure electrically or pure magneticallytion suggests a natural way of understanding the thermody-
charged solution$l] of lowest-order effective field theory namic black-hole entropy in terms of degeneracy of string
(for a review se¢?2] and references thergin configurationg 14], which give rise to black holes with the
To embed an effective field theory solution instring  same values of asymptotic charge®9]. For example, a
theoryone is to find the corresponding world-sheet confor-higher-dimensional string “oscillating” in a compact inter-
mal ¢ model whose couplings reduce to the given back-nal direction reduces to a family of black holes with the same
ground fields at scales larger than the compactification andsymptotic charges but different nonvanishimgassive
string scalegsee, e.g..3] and references therginrhus four-  Kaluza-Klein fields which are invisible at scales larger than
dimensional effective field theory backgrounds genericallythe compactification scafe.
appear to be only large-distance approximations to higher- In order to make this qualitative picture quantitative, i.e.,
dimensional string solutions. In particular, all supersymmet-
ric (BPS-saturatedelectric black hole solutions of toroidally
compactified heterotior type Il superstringtheory[4] cor- in fact, it remains singular to all orders ' if one chooses to
respond to conformal chiral nuét models[5-9]. ignore the source altogether what, from the world-sheehodel
The latter can be interpreted as describing higherpoint of view, formally seems to be a legitimate alternafiges].
dimensional fundamental string backgrounds, i.e., external?n addition, a first-principle conformal field theory interpretation
long-range fields produced by stable classical string sourcasf solutions with string sources should probably involve a “thin
handle”-type resummation of string loop expans[ds3].
3In order to try to reproduce the black hole entropy as a statistical
*On sabbatic leave from the University of Pennsylvania. Elec-entropy[Ind(N)] it is important that the oscillating object should be

tronic address: cvetic@sns.ias.edu stringlike, i.e., having an exponentially growing numluiN) of
TOn leave from Lebedev Institute, Moscow. Electronic addressstates at a given oscillator levl it is not enough to consider just
tseytlin@ic.ac.uk a Kaluza-Klein theory.
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to compute the black hole entropy directly from string varies smoothly between constant values at large and small
theory, one has to address the question of string loop andistances and its =0 value is given by the ratio of the
a' corrections. A nice property of the extreme electric blackmagnetic and electric charges. The approximate constancy of
hole (fundamental stringsolution is that the dilaton, i.e., the the dilaton ensures that the resulting four-dimensional dyonic
effective string coupling, goes to zero as one approaches thdack holes are black holes indeed; these solutions have the
origin, so that string loop corrections may be ignored. This isglobal space-time structure of extreme Reissner-Nomfstro
not true, however, for the' corrections since the curvature black holes.
of the leading-order solution blows up near the origin. The As a result, it may be possible to choose the charges so
expectatiorf12] that o’ corrections should smear the singu- that both the world-sheet’ and the string loop corrections
larity of the fundamental string solution at scales of orderremain small everywheré¢hus suggesting that in the case of
Ja' is in this context closely related to the suggestiad]  dyonic charges one should be able to reproduce the expres-
that the thermodynamic black-hole entropy, which vanishesion for the black hole entropy by a semiclassical computa-
when evaluated at the singular horizan<0) of the leading-  tion. Indeed, the thermodynamic entropy determined by the
order effective field theory solution, should instead be com-area of the horizon is now proportional to the product of the
puted at the “stretched” horizon at= \/? [15]. The result- electric and magnetic charges and thus is no longer vanish-
ing expression then matches the statistical string entrop{Pd- By analogy with the corresponding counting of degen-
[14,16]. Though very plausible, it may be hard to implementerate (fundamental string states for purely electric black
this idea in a first-principle calculation of the entropy. holes[14,8,9 one may expect that the entropy should now

Magnetically charged supersymmetric extreme blacl@a\./e an interpretation in terms of counting of degenerate
holes have very different properties. The leading-order soluSOhtOU'C string stat_e§26]. S
tion [1] has a nonsingular string metric with the origin at 10 implement this suggestion it is important to understand
r=0 being transformed into a “throat” region. Now’' cor- which solitonic string states correspond to a given set of
rections can be ignored provided the magnetic ch@tge  asymptotic dyonic black hole charges. One should be able to
large, i.e.,P>\/a’. Indeed, these configurations have thedo this by starting directly with the underlying conformal
string-theory representatiofl7,1§ in terms of a higher- field theory of the dyonic soliton. As we shall argue below,
dimensional string soliton, with magnetic charge havingfor large magnetic charges the level of the WZW-type con-
Kaluza-Klein origin(for a review, se¢19,2q and references formal field theory which describes the horiz@hroa) re-
therein. They are described by a regular, source-free supedion is large and thus the counting of states should be the
conformal field theory21] which reduces in the throat re- S@me as in flat space up to a renormalization of the string
gion to a Wess-Zumino-WittetWZW) model supplemented tension by magnetic charges, as anticipated26]. As a
with a linear dilaton. For that type of magnetic solitons ther®Sult, one indeed reproduces the thermodynamic entropy by
dilaton blows up near the origin, and thus string loop correcSeMmiclassical, string-theory considerations. _
tions cannot be ignored. This prevents one from computing 1he dyonic model studied if25] was a six-dimensional
the black-hole entropy by counting different solitonic con- Supersymmetric chiral null model with curved transverse part
figurations with the same four-dimensional large-distancéVhich is a hybrid of the five-dimensional fundamental-string
behavior. type model[giving rise upon dimensional reduction along

Given the fact that the presence of an electric chargéhe compact “string” direction to extreme _bIack holes with
seems to regularize the short-distance behaviour of the dild$@luza-Klein Q;) and two-form Q) electric chargelsand
ton while the presence of a magnetic charge leads to a reg@ N=4 superconformal modéivhich generalizes both the
lar string metric, one may speculate that to obtain solutionsi@luza-Klein monopole R;) and the H-monopole P,)
where both string loop ana’ corrections are under control, Modeld. It has a remarkable covariance property with re-
both electric and magnetic charges should be nonvanishingPect toT duality in the two compactified dimensions and
Remarkably, this is indeed what happens in the case of fouith respect td duality, interchanging the electric and mag-
dimensional supersymmetridyonic black hole solutions netic couplings. To get a better understanding of general fea-
[22,23 of leading-order effective field equations correspond-tures of this class of solitonic conformal models, in particu-
ing to toroidally compactified heterotic striigee alsq24]  lar, of their possible marginal perturbations, we shall
for a review and referencesAt the string-theory level they ~generalize the model 5] to include one extra coupling
correspond to the world-sheet conformal thef2g] which ~ function, specifying the electric charge)( of the solitonic
is a hybrid of “electric” chiral null model and “magnetic”  String(Sec. I). The throat region of the resulting background
N=4 superconformal model, thus combining the best feaiS described by (an orbifold of the six-dimensional
tures of the pure electric and pure magnetic models. Thi$L(2R)XSU2) WZW model with the level proportional to
conformal theory describes a higheD£6) dimensional the product of the two magnetic chargesP,. The relation
string soliton with all the background fields regular every-to the WZW model also implies quantization conditions on
where (for r=0). The magnetic charge plays the role of achargesSec. Il B. . _
short-distance regulator, providing an effective shift In the simplest spherically-symmetric case the corre-
r—r+P, analogous to the shift—>r+\/? expected to spondm_g four-dimensional dyonllc solutlcﬁéec. Iy is pa-
happen in the exact fundamental string solution. rameterized by the two magne®{"=P, ,P{)=P, and the

As in the purely magnetic case, the short-distance regiofwo electric Q5=Q;,Q$?=Q, charges and by one new
is a throat described by a regular WZW-type conformal fieldparameter specifying  the  electric  charges
theory, but now with aconstantdilaton. In fact, the dilaton Q{Y=-Q{®=q [the upper and lower indices 1,2 indicate
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the Kaluza-Klein and two-form (1) gauge fields and the Hereu,v are “light-cone” coordinatesx' are “transverse
first and the second compactified toroidal coordinates, respace” coordinatesx'=(x%y") where x° (s=1,2,3) are
spectively. three noncompact spatial coordinates afidare toroidally
Like its q=0 limit, corresponding to the four-parameter compactified Kaluza-Klein coordinates which may also in-
solution of[22,23, the five-parameter dyonic solution satu- clude the chiral scalar coordinates of the internal 16-torus of
rates the Bogomol'nyi bound. It has nontrivial dilaton, axion the heterotic stringz2= %a' \/E(ER(Z) is proportional to the
and moduli fields of the compactified two-torus and servesworld-sheet curvature.
when acted on by th&- and S-duality transformations, as a One can also consider generalizations of this model by
generating solution foall the static spherically-symmetric including u-dependence in function®, F, Gij.Bjj. Ex-
BPS-saturated solutions of the effective heterotic string comamples of such conformar models(1) with u-dependent
pactified on a six-torus. These solutions are parameterized by [6,3], F [8], and Gij ,Bjj [27] were considered in the
unconstraine®8 electric and 28 magnetic charg&ec. 1\). literature.
Solutions with regular event horizons have the Reissner- There exists a renormalization scheme in whiah is
Nordstran global space-time with zero temperature and nongonformal to all orders im’ provided (i) the “transverse”
zero thermodynamic entropy. We derive the gengraind  ; model G +Bjj)dx'axl is conformal when supplemented
S-duality invariant expression for the entropy, which de-yith a dilaton couplingé(x) and (i) the functions
pends only on conserve@uantized electric and magnetic £-1k 7 & satisfy the following conditionéas in[25] we
charges and isndependenof the asymptotic values of the gpa|| assume that the transverse theory Kas4 extended
dilaton-axion and moduli fields. This result supports the eXyyor|d-sheet supersymmetry so that the conformal invariance

pectation[26] that the entropy is counting the number of ¢onditions preserve their one-loop form
string degrees of freedom which should not change under

IR

adiabatic variations of couplings of the theory. —iV2E-1y 5o F1=0,
The statistical interpretation of the entropy is discussed in
Sec. V by considering the string-theofgonformal model —1V2K+ g paK+ 3.V, 4 =0, ©)

interpretation of the five-parameter solution. We present an
argument relating the thermodynamic entropy to the statisti-
cal entropy which counts the degeneracy of the dyonic soli-
tonic string configurations “oscillating” in a compact direc- 2 AN 126 k]
tion. Our approach generalizes the suggestiori26] and Vi(e =?71) —ze" 2?7 H™ =0, )
explains the renormalization of string tension by magnetic

charges by direct consideration of the underlying conformatvith

model in the horizor(throa) region.

_%Ai.’//’\ij‘f'ﬁi(ﬁ.gﬁj:o, i.e.,

V=V, Ty =Tj+iH\., Ti=0.7—0.%,

Il. SIX-DIMENSIONAL SOLITONIC STRING ® = ¢+ 3InF, (4)
CONFORMAL MODEL

The stri It ina to di is d ibed bwhereVi is covariant derivative defined with respect to the
€ string sofiton We are going 1o dISCUSS 1S AeSCrbed b5y arge metriG;; andH;;=3diBjx. The Maxwell-type
a supersymmetric chiral null model with curved transverse

space. The chiral null modelgs,3] are a class of two- equation for7;; is the conformal invariance condition in the
pace. - ) (ux') direction. The linear equations fé¢ and.#; can be
dimensional(2D) o models which generalize both plane

. viewed as marginality conditions on the corresponding “per-
wave type and fundamental string type models and are detUrbations” of the conformal model specified by
fined by the following string Lagrangigh:

FiGij ,Bij ,¢.
Given au-independent solution of the above equations
— — , — one can construct its-dependent generalization, e.g., by re-
— /. I . - .
L=F(x)ouldv+K(ux)du+2.7(u,x)ix] placing the constant parameterskirand. % by functions of
+(Gij+Bij)(X)(9XiEj+./L?q)(X). (1) u, e, K(x;c)—K(x;c(u)), and .7(x;q)—h;(u)
+.7;(x;q(u)). If 9,V;.2'#0 the functionh; will be related
to K by the second equation ). In the case of the funda-
“We shall use the following notation. The string world-sheet ac-mental string. solution  with U=Xo—t,v=Xo+t, and
ton is normalized so  that |=(ma’)"fd?odxix Gjj + Bj;= dj; this corresponds to adc_hr[@B,G,B,Q travelmg
=(4ma') Y d%eaxix. The string effective action is Waves of momentum along the string as well as arbitrary
a . . . . . .
Sp=cfd%—Ge 2*(R+---) and after reduction to four di- left-moving oscillations both in compagt® (charge direc-
. N 14 Y L tions and noncompact spatial directions Such solutions
mensionsS,=(16wGy)  fd*xy—G'e (R"+--), where the . X
D=4 dilaton ®'(x) will be assumed to have trivial asymptotic are .m CorreSpondence with BPS-saturated Sta.tes of the het-
value, e® *~*)=1 (so that both string-frame and Einstein-frame erou.c string spectrum at the yacuum level in Ehe right-
T o o =~ moving sector(right-moving oscillator numbeNgz=3) and
D=4 metrics approacly,,, atinfinity), with €™~ being absorbed in g arpitrary level in the left-moving sectdarbitrary left-
the Newton's constar®y = ze**~a’. In Secs. Il and IV we shall moving oscillator numbeN, ) [8,9].
seta’ =2 and the compactification rad®,= \'a’ = 2. In Sec. Ill Let us now specialize to the particular case of six-
we shall also assume thet-=1, i.e., thatGy=1/4. dimensionalo model (1) of the type
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L =F(x)au(av + K(x)du+ 2A(x)[ 9x*+ ag(x) 9x°]) functionsF and f. WhenA#0 the above six-dimensional
model is still covariant under th&-duality in x, andu di-
+3.2INF(X)+L,, (5)  rections. However, it is no longer covariant under the
_ _ S-duality. The reason is that foA#0 the components
L, =fOOK)[ax?+ag(x) ax®[ax* + ag(x) ax°] Hu4s andH ;4 of the torsion become nonvanishing but under

the duality they are transformed intd,, andH_ .. That
means that thé&-duality induces the torsion terms dv 9x*
+ (X)), (6) and ~dvdx® in the o-model action. Though the resulting
background will again represent a leading-order solution of
where x*= (x!,x?,x3) are three noncompact spatial dimen- the string effective equations, now it is not clear whether it
sions, whilex* andu will be compact coordinates. We shall will remain an exact solution to all orders i .

T (X)K™H(X) IXSIXS+ by(X) (9x4axS— ax*ax®)

assume that all the fields depend only off and The conditiong?2) on F,K and on.#; (i.e., onA) can be
f,k,as,bs, ¢ are subject put into the form
9s9%=0, 9%k =0, (7) 9s°F " 1=0, 940°K=0, (11
Jpbg— dqbp=— €pq?®f,  dpag— dq@p =~ €pqsTk ", Ak~ 1g%A) +k okaS(k 1 "HA=0, i.e.,
¢=3Inf, ®) aJ k3 ~155(kA)]=0. (12)
wherep,q,s=1,2,3. ' _ o In deriving (12) from (3) we have used that, b, satisfy(8)
In (5) we have made a special choice of the fiel§ and thatf andk ™! are harmonic. The model is thus param-

etrized by four harmonic functions "1,K,f,k~! and the
function A satisfying(12). The functionsa, andbg are then
determined byf,k according to(8).

The model discussed above is a generalization of the one
introduced in[25] where the fifth functiorA was turned off.
Let us emphasize that unlike,K andf, k terms, which co-
exist in (5) without influencing the equations of each other,
®he introduction of the new coupling leads to the equation
(12) which dependson the couplingsf,k of the transverse

f—>k_1,k—>f_1,as—>bs,bs—>as,A—>(fk)_1A, (10) part of theo model(5)

As=Aag, Z,=A, ©)

which makes the model covariant under the duality transfor
mation in thex* direction. The 2D duality transformation
x*—X* can be performed by gauging the shiftsxth adding
BJX*—Bdx*, gauge-fixingx*=0, and integrating ouB and

B. One finds that indeed this duality transformation maps th
model (5) into itself with®

where we have assumed tlaggb,= 0. The choice of 7; (9) A. Solution of conformal invariance conditions
also leads to the absence of a Taub-NUT term in the metric While F~1 K f k™1
of the corresponding four-dimensional  spherically- 5 ;g specified b’y(,12)
symmetric background.

Let us note that case of six target space dimensions is A:qlk*1+q2f2k'q1,2= const. (13
special in that here the duality transformation applied to a
rank-two antisymmetric tensor gives again a rank-two tensofhis is the general solution in the case of one-center
and thus can be represented as a formal map of one strirgpherically-symmetric harmonic functiorisk 1. For more
o model into another. In contrast ®duality, however, this general f,k ! , e.g., multicenter harmonic functions, the
transformation cannot be realised directly at the world-sheegolution of the linear equatiofl2) [which is equivalent
level.” As was pointed out irf25], the model(5),(6) with  to the scalar Laplace equation f&A in curved three-
A=0 has a remarkable covariance property under the sixdimensional space with  conformally-flat  metric
dimensional S-duality (G—e ?*G, dB—e ***dB,  dsi=p%(x)dx°dxs,p=k 3f 1] will look more complicated.
®— —®): when formally applied to the background fields  |f we further assume the asymptotic flatness conditions on
of the o model this transformation simply interchanges thethe functions, i.e., thak—1,f—1,A—0 for r’=xSx;—»,

then (13) becomes

areindependenharmonic functions,
which has the following solution:

SMore generally, one may consider a similar six-dimensional A=qok(k 2—f2), qo=0;=—0>. (14)
model with the functions depending on all four transverse coordi-
nates. Special cases will be the six-dimensional fundamental string
(F '=1+Q/x% K=f=k=1) [11], its S-dual solitonic string so- "This transformation maps one solutigwith vanishing vector
lution [20,29,30 (F=K=1A=0,f=1+P/x?k=1) which also fields of the toroidally compactified to six dimensions heterdgtic
corresponds to a six-dimensional reduction of the five-brane solutype Il) string into another. In the context of string-string duality
tion [21,31] of the ten-dimensional theory and the dyonic six- between heterotic string on a four-torus and type Il stringkéh
dimensional string32] (F '=1+Q/x?,f=1+P/x’k=K=1). surface[33,34 this transformation should be supplemented by
5Note that under the duality inu direction F—K™1, identification of the vector fields in the Neveu-Schwarz—Neveu-
K—F 1,®(F)—-®(K™1) while other functions remain un- Schwarz sector of the heterotic string with the vector fields in the
changed. Ramond-Ramond sector of the type Il string.
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Note that under theT-duality transformation(10) the
(91,9,) solution forA is mapped into thed,,q,) solution,
i.e., qo in (14) changes sign.
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subgroup, is the WZW theory based on a direct product of
the SL(2R) and SU2) groups’ An important feature is that,
in contrast to, e.g., the five-brane mof@21], here the dilaton

In the special case of one-center harmonic functions we18) is constantin the throat region, i.e., the string coupling

get the following explicit form of the solutiof:

P P
LS S WL S P
r r r r
(15)
qlr+3(P1+Py)]
= , (16)
r(r+Py)
adx*=Py(1—cosf)de, bdx*=P,(1-cos)de,
(17
r+P,
20 24 _
e Fe 40, (18

where the parameteq is related to g, of (14) as
g=2qoy(P,— P,). Note that the expression fér in terms of
g is valid also forP,=P,, i.e., forfk=1, when it becomes
just the harmonic functiod=q/r. The one-center solution
is thus specified by the five parameté&s,P,, Q;,Q,, and
g.
Let us note that for positiv®, andQ, the string dilaton
(18) is regular and is constant both at lange>c and small

is not blowing up and thus the solution can be trusted
everywhere?

For a nonzerq it looks as if the Lagrangiaril9) de-
scribes a globally nontrivial “mixture” of the SL(R) and
SU(2) theories. However, the central charge retains its free-
theory value, i.e., the dilato® is still constant at =0, and
it is easy to see thdf.9) can, in fact, be put in the same form
as in theq=0 case[25] by redefining the coordinates.
Changing the notation for coordinates to
u=y,,v=2t,x,=y; wherey, andy, will be assumed to be
circular coordinates with periods#7R; and 27R, we get
[up to a total-derivative termxq(dy,dy,— dy19Yy>) |

Lr 0=(Ppdzaz+p' dY,dy,+ 25 2d%,4t )
+ (Y, 0Y 1+ dpdp+ 00— 2CoDIY,0p).
(20)

Here

r—0 distances. Thus one can, in principle, make the effec-

tive string coupling small everywhere by choosie§j»<1
and P2~ Q2 .

B. Throat region

An important property of the six-dimensional model

(5),(6), (15—(18) is that in contrast to the six-dimensional

chiral null model with flat transverse pat£ k=1) which is

singular atr=0 (and describes a fundamental string type
configuration, in the case of nontrivial transverse part with

non-vanishing paramete®,>0 andP,>0 the singularity

at the core =0 disappears. It gets replaced by a “throat” or

“semi-wormhole” region[21].

In the throat regior —0 the Lagrangian5) [with the
functions given by15)—(18) andP,,P,,Q4,Q, all positive]
takes the form

L, .o=P1P,dzdz+ e Zgudv +Q,Q; *auau
+2Q; 'qau[ gy, + P1(1—cosd)de]
+ Py P, dy; + Py(1—cos)de][dy,
+P,(1—cos)dp]+ P1P(3096+sirP0dpde)

+Py(1- 0039)(67)’1(9—90 _(7_)’1390),

=—In ——.

Q2

In the case ofj=0 discussed in25] we get a regular con-

Vi=Pilyi+aP; Wot e, Vo=Qsly,, T=Qut,

p=P;P,, p'=Q:Q;—q?P,P;". (21)

The role ofq is thus to mix the two compact coordinates
y, andy,, i.e., in the throat regiorq plays a role of a
modulus, which turns on the off-diagonal components of the
metric of the two-torus corresponding ¥9,Y>.

The throat region mod€R0) is thus equivalent to a direct
product of the SL(R) and SU2) WZW theories[corre-
sponding to the terms in each of the parenthese@@®]
divided by discrete subgroups. The levels of the SRjand
SU(2) models are both equal to

—4—4PP 22
K—?p—ylz- (22)

Since the level of S(2) must be integer, we get the quanti-
sation conditionP,P,= ja' k.

Wheng=0 one can follow{36,17] and construct an or-
bifold of SU(2) by identifying the coordinatg,, which in

%In the special case oP,=P,, Q;=Q,, q=0 similar throat

formal model which, up to a factorization over a discreteregion model was considered previously85].

8The relation to the notation used

Q1=Q,Q,=Q% P, =P P,=PP.

in[25] is

100ne manifestation of the regularity of the dilaton in this model
is that the central charge of this conformal field theory, which has a
free-theory value in the supersymmetsianodel case, can be easily
computed either im=c or in r=0 regions[25].



5624 MIRJAM CVETIC AND ARKADY A. TSEYTLIN 53

the standard S(2) WZW model must be 4 periodic, in the  dimensional model defined as a direct product of the trivial
following way: y,;=Yy;+4a/m, wherem is an integer. This chiral null (“electric” ) part, specified by, v, and nontrivial
is possible provided transversd“‘magnetic”) part, specified bxg,x,.
At the same time, this model has also a four-dimensional
2P;=mR;. (23)  dyonic black hole interpretation. We shall now derive the
explicit expressions for the corresponding canonical four-

Then the modular invariance of the orbifold &),./Z,, de- dimensional fields.

mandg 36] that k=nm wheren is an integer. Since here the
level k of SU(2) is itself proportional to the product of the

two magnetic charges, we also get the following quantization A. Dimensional reduction

condition forP,: Following [6], we setu=Y,,v=2t,x,=Yy; wherey;,Y,
) are two compact toroidal coordinat€sOne can rewrite the
2P2:”1_ 20 © m%del (5), i.e., L=(Gyn+Bun)dxMoxN+.2®, in the
Ry form
Forq+0 we demand that the coordinate should still have L=(G,,,+ B;V)(x)ax“&“r(Ganr Bimn) (X)
the same period #/m and get an additional condition o A (Dm L A DN
2P,Q,=ImgR,, wherel is an integer, i.e., X[ay™+ AT (X)ax#][ay"+ ALT(X) 9]
Q Im P, 5 AR (3y"oxt = 3y o) + 2 (x),  (27)
q n Py where x*=(t,x%), s=1,2,3, nm=12. The four-

T-duality in y, direction, which implies Q;—Q,, dimensional string-frame space-time metﬂ?;w, the two

R,—a'iR,, yields form-field B;,, and the dilatond’, which includes the shift
resulting from “integrating out"y", as well as the canonical
Q, I'm I'P; vector potentialsA)" and AlZ) of the respective Kaluza-

q n P, (26)  Kiein and two-form UW1) gauge fields are related to the fields

of the six-dimensionatr model (5) in the following way:

Thus the consideration of the throat region leads to the rela-
tions whichmix the quantization conditions o, Q,,, and G,,=G,,—GmA mA",
P,.

B, =B, BmAL A", (28)

Ill. FOUR-DIMENSIONAL DYONIC BLACK HOLES AN GG, AD_p 5 WM 1
The six-dimensional- model of the previous section can ~ * mi Ana = B~ Bom o
be interpreted as describing a dyonic five-dimensional A=deG,,,. (29)
(u,v,Xs) solitonic string solution. The string has both electric
(q) charge(with the gauge field one-formdu) and mag-  The four-dimensional Einstein-frame metric is
netic (P,) charge, both resulting from the couplings to the
compact Kaluza-Kleirx,=y; direction. There is also a mo- gW:e*Z‘l”G;W
mentum Q,) along the string and a special perturbation
(P,) in curved noncompact spatial directiors. The new and the gauge-invariant torsion can be writter 34
coupling A preserves the same amount of the world-sheet
supersymmetry of ther-model string action, and thus the  H,,\=H .\
same amount of the space-time supersymmetry of the target
space background, as in the caseAaf0 [25]. = (AL "Hin = AL AT H nny + cycl. perms),
Like the fundamental string solutiofl0,11 (f=k=1) (31)

can be viewed as a field of stable elementary winding string
mode in flat background, this solution may be interpreted awhereH\ is the field strength of the antisymmetric tensor
representing a particular state of a dyonic string soliton. ThiByy in (5). Hl’m is related to the four-dimensional axion
interpretation is consistent with the linear form of the equa-¥ by
tions for F~1,K,A (11),(12) which can be viewed as condi-
tions of marginality for(exac) perturbations of the six-

(30)

12In the case of the fundamental string interpretation the direction
of the string winding is the “boosted” compact coordinate
The quantization oP, can also be understood as a consequence,=y,+t, i.e.,u=y,—t,v=y,+t. Then, e.g., for the one-center
of the requirement of regularity of the metric solution one getX=Q,/r instead ofkK=1+Q,/r used here.
(~[dy;+ P;(1—cosf)dg]?+ - - -) of the full six-dimensional model Bn the purely “electric” case off=k=1, i.e., the case of the
(5): to avoid the Taub-NUT singularity one should be able to iden-chiral null model with flat transverse part, similar dimensional re-
tify y, with period 4wP,, which is possible if 2,/R;=m. By duction was discussed in7]. There, an additional term
T-duality, the same constraint should also apply Rg, i.e., 2F. Z,9udx® was also included, leading to nonstatic, e.g., Taub-
2P2=n~R1=na’/R1. NUT or rotating, four-dimensional space-time metric.
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40’
’ WY\ — e MVND
H = € c?p‘l',

-9

(32

where the indices are raised usigg, andg= deg,,, .

B. Four-dimensional background

5625

The axionV is determined by

W =Af"2kas(fk™1). (37)

C. One-center four-dimensional solution

In the case of spherically-symmetric one-center harmonic

functionsF ~1,K, f, k™! the explicit solution(15)—(18) yields

% class of static spherically-symmetric four-dimensional
backgrounds specified by the five parametd?s,P,,
Q;,Q,, andq. These parameters determine the magnetic
PEnl'Z) and electric Qﬁnl’z) charges of the corresponding
Kaluza-Klein AAY™ and two-form A{?) gauge fields, i.e.,
Al — —Q)Ir as r?=xxS—e, and Al),=(1-cos)PY).

As follows from (15)—(18) and the expressions for the gauge
fields (36), the physical charges are related to these five pa-
rameters in the following way’

QM ,PM)=(q,Py), (QY,P)=(Q.,0),

QP ,PP)=(—-0q,Py), (Q¥,P¥)=(Q,0).

We shall now express the four-dimensional fields in term
of harmonic functiond 1, K, f, k™1, the functionA and
the functionsag,bs.

The Einstein-frame metric is found to be of the following
form:

dst=g,,,dx*dx"=—N\(r)dt?+ X" 1(r)(dr?+ erQZ)(. )
33

The structure of the space-time metric is that ofexitreme

static spherically symmetric configuration. This indicates

that this background corresponds to a BPS-saturated state.
The metric function\, the dilaton®’, and the moduli

Gnn,Bmn Of the two-torus are given by (38

A=FkA™12 e =FfA~12 A=FKfk—A%F? Note that the magnetic charges arise from the transverse part
(34 of the ¢ model(5) and all the electric charges arise from the
chiral null part of (5). When there is ndA-coupling term
Gu=fk, Gzp=FK, Gp=-B;=AF. (35 (g=0) the electric and magnetic charges are orthogonal, i.e.,

they are associated with gauge fields originating from two
different compactified directions. Th& coupling induces
new electric charges, but only in a left-moving direction: it
leads to nonzero left-moving electric  charge
QL 1=3(QY-Q{¥)=q along the magnetic charge direc-
tion. The right-moving charges, i.€2z,=3(P{"+ P{?) and
Qrn=2(QM+Q(?), still remain orthogonal.

The explicit form of the space-time metric functian the
dilaton ®’, the axionV¥ and the moduliG,,, By, Of the
internal two-torus is

The description in terms of the four-dimensional fields is
valid in the spatial region, whefie, K, f,k and the volume of
the two-torusA are all positive. The constraitt>0 implies
a constraint on the functioA: F~Kfk>A?2

The four four-dimensional (1) Kaluza-Klein and two-
form gauge fields have the following components:

ADI=(-AFA L ay), AD?=(Ffka™10), (36

AL =(AFPTKA 1 bg),  AS)=(F?KfkA™1,0).

2
A= , 39
{(r+Q(r+Qu)(r+Py)(r+Py)—gr+3(P1+Py) %2 %9

o (r+P)(r+P,) 0

{(r+Qu)(r +Q)(r+Py)(r+Py)—g?[r+3(Py+Py) 122

1The five-parameter extrenfBPS-saturatedsolution as well as nonextreme solutions of the effective heterotic string action compactified
on a six-torus were obtained independently{38] by performing a subset of 8,24 symmetry transformations of the three-dimensional
effective action on the Schwarzschild black hole background. They serve as generating solutions for all the static spherically-symmetric
configurations of the heterotic string theory compactified on a six-torus. The BPS-saturated solution obtg88¢dsirelated to the one
described in this section through a subset of SO(31(2)C O(2,2) (T-duality) and S@2)C SL(2R) (S-duality) transformations.

%N this section we assume that’=2, e®-=1, the Newton’s constantGy=ia'e®>=1 and the compactification radii

R;=R,=a'=2.
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. q |P=Py 2(P1+Py) P P} P1 Py

_Z_Pl r+P1 + ; —3P—1In 1+ — —P—2|n 1+—11, (41)
_rt+P rtQy Goe _CI[H'%(PH‘Pz)] 42

u=r7p, G2 g, Swm BT oiniRy (42)

Note that this one-center solution is written with the follow- does not depend og. It saturates the Bogomol'nyi bound
ing choice of the asymptoticr () values for the fields: [22,40 and corresponds to the BPS-saturated state that pre-
O =V,=G15,=B1,.=0 andGy;..=G,,..=1. Solutions  serves; of the originalN=4 target space supersymmetry.
with other aymptotic values of the axion-dilaton and moduli ~ Scalar field9440)—(42) have the following asymptotic be-
fields are related to this one by a particular SRR, havior

(S-duality) and Q2,2) (T-duality of two-torug transforma-

tions, respectively. P.+P,—O.—
Regular solutions, i.e., solutions with event horizons, are e?® =1+ (Py 22 Qu~ Qo) +0(r?),
determined by choosing the four parameteis,,Q; , to be r
positive
Pi+P
P,>0, P,>0, Q;>0, Q,>0, (43 P = q(1r—22)+0(r*3), (47
andq satisfying the following constraint:
QiQ:—4%>0, (Q:1Q,—?)P1P,—50%(P1—P,)2>0. G+ 2 PY 52
(44) r
Regular solutions® i.e., those satisfying all the inequalities
(43),(44), have an event horizon at=0 and a timelike sin- . (Q1—Qy) s
gularity at negative r=rgn, (— min{P1,P,,Q1,Q;} Go=1+ r +0(r ), (48)

<rging<0 for g#0 and rg,;=—min{P,,P,,Q,Q,} for

g=0), i.e., the global space-time is that of extreme Reissner-

Nords_tr"crr_l bIa(;k holes. I_n the case When any qf the charge Gip=— Bu:ﬂJro(r—z). (49)
combinations in(43),(44) is zero, the singularity is null and r

located ar =0, i.e., the horizon and the singularity coincide.

In the case of only one nonzero paramete(48) the singu-  Njote that the dilaton and all the two-torus moduli have non-

larity at r=0 is naked. When at least one of the charge,erg scalar charges, while the axion charge is zero.
combinations in(43),(44) becomes negative the solutions are  The area of the event horizon ia=4m(\1r2),_,, is

singular with a naked singularity at>0.

However, we would like to emphasize that for snrathe 1 12
effective four-dimensional description breaks down and the _ 42 2P _p.\2
solution becomes effectively six-dimensional. Therefore the A=4m (Q1Qe=a7)P1Po= 7 a%(P1=P2)" . (50
nature of singularities should be readdressed from the point

of view of _the six-dimensional string theory, “?ing stri_ng- For q#0 the area is decreased compared to its value for
frame metric(cf. [39]). Forr=0, the regular solutions satis- _ _

ging (431’(4:1') arfetﬁlwayzongingulgr ;’lhis is a refllectiofn of | At the horizon atr =0 the axion¥ (41) blows up while
€ reguiarity of the underlying six-dimensional conformaly,q gjjatondg’ (40) and the moduli(42) are constant. Note

o model discussed in Sec. II. that unlike for pure electric or pure magnetic configurations,

In the foIIovx_/lng we shall concentrate on r_egular S.°|Ut'0ns'where<1>’ grows either at small or at large distances, here
The asymptotic value of the metric coefficient(39) is of Y . .
the form e” can be chosen to be small in the whole regienO.

The T-self-dual case withQ;=Q,=Q,P,=P,=P de-

M apm _y serves a special discussion. In this case the md@yliand
A=1-— +0O(r 9, (45 G,,(42) remain constant. Far=0 andQ= P it corresponds
to the extreme Reissner-Nordstretype dyonic black hole
where the ADM mass with all scalar fields being constaf22,25. In this case the
six-dimensional- model(5),(27) takes a particularly simple
Mapm=Q1+ Q2+ P1+P; (46)  form discussed ifi25]. For Q=P the six-dimensional dila-

ton (18) is constant, but ifj= 0 the moduliG,,= —B;,, and
thus also the four-dimensional dilatdr , are no longer con-
16The space-time properties of regular solutions vith0 were ~ stant. The area of the horizon in this case is given by

studied in Ref[22]. A=47P\Q*- >



IV. ALL BPS-SATURATED STATIC BLACK HOLE
SOLUTIONS OF HETEROTIC STRING COMPACTIFIED
ON A SIX-TORUS

The five-parameter solution obtained in Sec. Il turns out

to be a generating solution foall static spherically-

symmetric BPS-saturated configurations of the four-
dimensional heterotic string compactified on a six-torus

These solutions can be obtained by applying a subset
T-duality [O(6,22] and S-duality [SL(2,R) ] transformations
to the generating solution. It should be noted, however, th

SOLITONIC STRINGS AND BPS SATURATED DYONIC BLACK HOLES

(o)

a
while the generating solution is described by an exact con-
formal o model (5), (6), these more general BPS-saturated
backgrounds are guaranteed only to be solutions of the

5627
E* ET'C E'a’

M=VTv, v=| O E 0 , (52
0 a l16

whereE=[e] (the Sechsbein of the internal met(&;,,),
C=[3ALAl+Bn, anda=[A]]. V plays a role of a Viel-
‘l?ein in the 6,22 target space.

The four-dimensional effective action is invariant under
tthe Q6,22 transformations T-duality) [37,41]:

M—OMQT, . Z2,—Q 4, 9,,—0,.. sa% )
53

leading-order effective string equations. Indeed, in contrasyneres=v +ie 2% andQ € 0(6,22 is an 46,22 invari-

to the T-duality transformations, th&-duality transforma-
tions do not, in general, map one conformalmodel into
another.

A. Effective four-dimensional action

The effective four-dimensional heterotic string compacti-

fied on a six-torus hadl=4 supersymmetry. The bosonic
part of the leading term in the effective action has the fo
lowing form (for a review seg¢41] and references thergin

1

= 4 — — I QL !
S 167TGNde\/ g[R(g) 29,®"9"®

_ ’
e4‘1J HI

H’,U-VP_} 20" 7 (| ML)... e
avp 4 e '/Mv( )”/

12

1
+§TM%MLMMLﬂ. (51)

The action (51) depends on massless four-dimensional
bosonic fields, which are determined in terms of the follow-

ant matrix,

0 0

0

le
lsg O
0 0

QTLo=L, L

= (54)
—lig

In addition, the corresponding equations of motion and Bi-

|_anchi identities are invariant under the SIRP transforma-

tions (S-duality) [41]:

aStb
Sﬂm, M*)M'g,lLV‘}gMV’

T (e +d).7, +ce 2 (ML) 7, (59
where 7'#7=1/2\=ge#"*".7, and a,b,c,deR satisfy
ad—bc=1. At the quantum level, the parameters of both
T- and S-duality transformations become integer valued.

B. General class of dyonic solutions generated
by duality transformations

ing dimensionally reduced ten-dimensional fields: Zehnbein Static spherically-symmetric solutions corresponding to

EA, dilaton ®, two-form field By, and U1)%® gauge
fieldsA}, (M,N=0,...,9;1=1,...,16). The ansatz for the
Zehnbein is of the form

(e A
M 0 e '

a
m

where A(V™ (m=1,...,6u=0,...,3) are Kaluza-Klein
U(l) gauge fields, ®'=d—3Inde€d, is the four-
dimensional dilaton field, and),,=e;e; is the Einstein
frame metric. Other components of 281y gauge fields
A, =AD" AD AP are  defined as AG)=B,n,
+Bm A"+ 3a AR AB=A) —ay AD™ with the field
strengths7,,=d,,. %, — d,. 7, . The two-form field with the
field strengttH, , =3(d[,B,,+ 3. 7,L.7,,)) is equivalent
to a pseudoscaldthe axion ¥ through the duality transfor-
mation H #¥e=e*®'/\[—ge#"P?9 ¥ . A symmetric 36,22
matrix M of scalar(moduli) fields can be expressed in terms
of the following 06,22 matrix V [37]:

the effective actior{51) are described by the ansdg3) for

the four-dimensional space-time metric, the dilaton-axion
field S and the moduli field$V, which depend only on the
radial coordinater, and by 28 electric and 28 magneti¢1y
gauge fields. The Maxwell's equations and the Bianchi iden-
tities determine the components of th€l)field strength to

be

e (N (r)

——z Mijj(q;+¥B),

V27, =46 —

which are expressed in terms of the conserved charge vectors
@ and 8. The electric and magnetic charges
PT=(Py;Pr ;PP QT=(Qw:Qn’: Q). (57

are related to the charge vectarsand § in the following
way [42]:

V2Qi=e*" M (aj+V.B), V2Pi=L;B;, (59)
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where the subscript refers to the asymptoticr (~) val-  charges, give a configuration with 588 electricQ and 28

ues of M and W and we have assumed that ,,qnetich) charges subject to one constraint. After one has

a'=2Gy=3a'€P»=5e*P=, undone the transformatio®9), so thatM., andS,, become
The equations of motion are invariant under b@thand  arbitrary, this constraint can be cast into the following

S-duality transformations. Therefore, one can generate new®(6,22 (T-duality) invariant form:

supersymmetric solutions by applying&22 and SL(2R) . .

transformations to some known solution. This is the PT.7#.Q=0, Z.=LM.L=*L. (60

techniqué’ [14,22,38 which was used previously to obtain a _ _ ,

general class of BPS-saturated backgrounds. In particulaf,"¢ ADM mass(46) of the generating solution can be writ-

starting with the four-parameter BPS-saturated solution on&" in the following @6,22) invariant form:

finds[22] a general class of BPS-saturated black hole solu- LA - 2T 2 1 =

tions with 28 electric and 28 magnetic charges subject to one Maom=€ [ (QT.Z, QY+ (PT.Z.P)Y?]2. (61)

constraint. Here we follow the same procedure to obtain th%’he area of the event horizoh (50) for the regular gener-

most general BPS-saturated solution starting with the five, .. . ; : : .
X : ating solution can also be cast in thé6®22 invariant form:
parameter solution of Sec. Ill. We shall consider regular so- g 2

lutions with event horizons. In particular, we shall determine R R L Y2

the expression for the ADM mass formula and for the area of A=2m7| (PTLP)(Q'LQ)— Z(PT/ZJN2 . (62
the event horizon for the most general BPS-saturated con-

figuration in this class. Using the charge constraiti60) one can replace the term

Without loss of generality one can bririg1] arbitrary (BT Q) in (62 by 2[BT(LM.L)O] and represent62)
asymptotic values of the moduli and axion-dilaton fields toj, the following SL(2R) (S-duality) invariant form:
the form M,=I1 and S,=i by performing the following

0(6,22 and SL(2R) transformations: A=27[(PTLP)(Q"LQ)—(PT(LM.L)Q)?]2. (63

M.—OM.QT=I, S,—(aS.+b)/d=i. (590 The subsequent SOCSL(2R) transformation provides
one more parameter, which removes the charge constraint
HereQ e 0(6,22, ad=1, and in quantized theory the charge (60). The most general configuration in this class has then 56
lattice vectors will belong to the new transformed lattice. parameters specified hynconstrained8 electricQ and 28

Then the subsets of 6,22 and SL(2R) transformations magneticP charges. This configuration thus corresponds to
that preserve the above new asymptotic valuedof and  the most general spherically-symmetric static BPS-saturated
S.. are 06)x O(22) and S@2) transformations, respectively. pjack hole solution consistent with the no-hair theorem.
Note that configurations obtained in that manner have the The SA2)CSL(2R) transformation allows one to write

same four-dimensional space-time structure and thus th@&e ADM mass formula in the following 8,22 and
same singularity and thermal properties as the generating S&1(2R) invariant form[22,40:

lution. To find solutions with arbitrary asymptotic values of

M andS one has to undo the above transformations. M2 :e—4fl>;{(jT'/g Q+P"#.P
. . ADM I+ T+
The four-dimensional black hole background correspond- o R
ing to the solitonic string solution described in Secs. Il and +2[(PT.Z,P)QT.7,Q)—(PT.2#,Q)%1"3.

[l is parameterized by the two magneﬁéll'z) and the four

64
electricQ{*? andQ{V=—-Q{¥=q charges, i.e., 64
Note that when the magnetic and electric charges are parallel
QT=(q,Q1,0, ...,0-0,Q,,0,...,0;0,...,0), in the Sd6,22 sense, i.e.|50c(§, the ADM mass(64) cor-
responds to the mass of the BPS-saturated black holes which
|5T:(Pl 0,...,0P,0,...,0:0,..,0). preserve; of N=4 supersymmetrysee, e.g.[41]). In the

case when the magnetic and electric charges are not parallel,

In Sec. Ill the asymptotic values of the moduli and theth® mass is larger and the configurations preseqvef
dilaton-axion fields were already chosen to be of the formfN=4 Supersymmetry. _ _ o
M..=I, S.=i. This background can now be used as a gen- The area of the event horizai®3) is already invariant
erating solution for the most general set of solutions in thid!nder the SL(R) transformations and thus remains of the
class. same form. The general expression for the area reduces to

As a first step, one applies a subset of6X O(22) the special form when the charge configurations are con-
C (6,22 transformations which correspond to ®ISQ(4) ~ strained. Regular configurations witR=Q, i.e., BPS-
transformations with 9 parameters and(32/SO(20) trans-  Saturated states which presery@f N=4 supersymmetry,

formations with 41 parameters, which, along with 5 originalhave zero area of the event horizon.
Another example is provided by the most general solu-

tions with zeroaxion[22]. Those are backgrounds obtained
Analogous techniques, employing the symmetries of the effecfrom the four-parameter generating solution wik-0 by
tive four-dimensional as well as three-dimensional action of thedPplying a subset of ®,22 transformations. They are
(4+n)-dimensional Abelian Kaluza-Klein theory were ugag]to  Specified by 28 electric and 28 magnetic charges subject to
obtain all static spherically-symmetric black holes in that theory. two constraintsP’. 7, Q=0 andP".#_Q=0 [22]. Thus,
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in this casePT(LM.,L)Q=0, and only the first term in the M=o W', v—LoLy. (70)
expressior(63) is present, as pointed out [26]. In general, . o ) )

the area of the event horizon decreasedy an additional An important observation is that while for fixed values of the
positive definite term which measures the orthogonality ofcharge vectorsr and 8 the ADM mass(67) changes under

the magnetic and electric charge vectors. the variations of the moduli and string couplirige entropy
remains the same as one moves in the moduli and coupling

space The fact the entropy is an invariant quantity is con-

sistent with the expectation that the internal structure of a

BPS-saturated black hole should not change under variations
As the last step, we can express the ADM mass formul®f moduli and couplings.

(64) and the area of the event horiz¢83) in terms of the This invariance indicatef26] that the classical entropy

conserved electriez and magneticd charge vectors, thus MaY have a statistical interpretation in terms of a number of

allowing to study their dependence on the asymptotic Valuegegenerate black-hole configurations: bging an i”t‘?g‘?f sucha
number would not change under adiabatic variations of

of the the axion-dilatorg.. and moduliM.. fields. SinceP  moqyli and axion-dilaton couplings. Indeed, the combination

andQ are related to the conserved charge vectond8  of charges 7L 8)(a"La) — (8L )2 which appears ir68)

through(58), the ADM mass formuld64) can be written as g expected to be afeven integer. Following41], one may
attempt to justify this by using the analogy with the level

C. ADM mass and area of horizon
in terms of conserved charges

Miou=2a . a+3e **=BTu. B matching condition for the elementary BPS-saturated string
N N R R R states of toroidally compactified heterotic string and the
+e 2P [(BTu B)(a uia)— (B s a)®]M?, Dirac-Schwinger-Zwanziger-WittefDSZW) [42] quantiza-

(65) tion condition. In the case of the generating solution de-
scribed by the conformal model discussed in Sec. I, the
quantization of charges is implied by the consideration of the

wherea=a+WV.B andu.=M.xL. Similarly, the area of = conformal theory corresponding to the throat regich Sec.
the event horizoit63) and thus the black hole entropy can be | ),

represented a3 Note that the purely electric BPS-saturated black holes
preserve; of N=4 supersymmetry and have the same quan-
A=wezq’;o[(,éTLB)(&TL&)—(BTL&)Z]“Z S= A tum numberg8,9] as the elementary BPS-saturated string
’ 4GN66 states with no excitations in the right sectdtg= 2). In the
(66) electric case the quantized charge veetds constrained to

Both the ADM masg65) and the entropy66) can be cast lie on an even self-dual lattice with the nofri¥]
in the manifestly T and Sduality invariant form a¥

a'La=2N,—2=-20,2.... (72

M2 = (8GN) ™Y Zuan(02 T2 0?) The DSZW charge quantization condition then implies an
R IR - analogous constraint f(fb’TLB.
+[2 %00 %0 i 0®) (0T 0], The necessary conditions for a BPS-saturated configura-
(67)  tion to be regular with a nonzero area of the event horizon
are
S= 25 =7} Zac Zoa(0 L) (0°TLOD] V2, aLa>0, B'LA>0, (B'LB)(a"La)— (BTL&)2>(O-2)
N 7

(68)
The latter constraint becomes an equality for the BPS-
Here. /., is the asympotic value of the axion-dilaton matrix saturated configurations preserviag@f N=4 supersymme-
-, andZ is the SL(2R) invariant matrix. ~ and.Z'are of  try (i.e., for quantized charges, wher é with magnetic

the following form: and electric charge vector components being coprime inte-
gers[41]).
M= , SF= (69) V. STRING ORIGIN
2 -4’ |’ —_ !
Vowite 10 OF DYONIC BLACK HOLE ENTROPY

and the (quantized charge vector v'=(v'T,027) ~ One of the motivations behind the above discussion of the
=" g". .« andg transform under the SL(R) transfor- five-parameter dyonic static spherlca_lly-symmetrlc BPS-
. " de = saturated black hole as a four-dimensional “image” of an
mationw=(},;) (ad—bc=1) as[41] L . LT . ;
exact solitonic string solution in six dimensions is to try to
use information about the underlying conformal theory in
order to give a statistical interpretation to the black hole en-
_ o . 207(0) tropy. The aim is to extend and amplify the recent interesting
also a moduli- and couplmg-mdlependent quantitg: proposal[26] along these lines which generalize an earlier
=LA [(BLB)(a"La)— (B La)?] . suggestior{14] (see alsd15]). The discussion i126] was
We would like to thank C. Hull for discussions on that point. based on a subset of BPS-saturated dyonic black holes of

®The four-dimensional dilaton value at the event horizon is
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heterotic string on a six-torus, namely the most general conavould be related to the number of the left-moving string
figurations with zero axion. Those can be obtained byoscillation modesN, , i.e., (Q;Q,—g?)~3:a’'N, (we as-
T-duality transformations on the four-parameter, i®=0,  sume that both charges ah are large and se€By=1a’,
generating solution considered j@2,25. The expressions

for the area and the entropy of these solutions correspond 0 . 1). The key observation is that in the present case the

. L s orizon (throa) regionr—0 is actually described by the
a special case of68) with £ La~0. We expect that the ") (5)  SU2) WZW-type model(20) with the level, i,
Inclusion of the new parametershould reveal certain more o cqefficient in front of the actionk=4/a' PP, (22). For

general aspects of the relation between the entropy and ﬂ]grge P,P,, the level is large and the spectrum of string

degeneracy of black hole states. . xcitations in this region should be approximately the same
Just as in the case of purely electric BPS-saturated blac s in the flat space, but with thenormalizedstring tension

holes whose entropy may be qualitatively undgrs_tood asb in the “transverse” part of the action

ing a consequence of degeneracy of states originating fro

oscillations of the fundamental strig,9], one would like to 1 1 PP, PP,

explain the entropy of the dyonic BPS-saturated black holes —— = =—, (74

in terms of degeneracy of states originating from small-scale @

oscillations of the underlying six-dimensional string soliton. o~ 5 1,
It was already emphasized in Sec. | that an importantV"€re Wel ha}/e seR;=a’. Then QuQ;—a?~ja’ Ny,

advantage of the dyonic black holes, studied in Secs. IIl an§"> €quivalently,

IV, over the electric ones, considered|[it4,16,8,9, is that v 1 42

the magnetic charges provide a short-distance “regulariza- P1P2(QiQ2=a%)~ 3" "Ny (75

tion t0f1?t°h,§ metric ﬁnd that thi dllatton |sdappt)ro>(<j|r3?tel¥ At the same time, the value of the Newton's constant is

constant.” AS a result, oné may hope to understand the Stagqiqmineq by the asymptotic—cc region and thus remains

unchanged, i.e.Gy=3a’. As a result, the thermodynamic

tistical origin of the black hole entropy starting directly from
string theory and using only semiclassical considerations. entropy(73) takes the form of the statistical entrGpy

A. Statistical entropy and magnetic renormalization ofa’ S=INd(Np )y >1~4mIN,. (76)

Let us consider the case when all the charges are large
and the magnetic chargd®,,P, are approximately equal. This argument generalizes the one[#6] to the case of an
Since the value of the dilaton at the=0 horizon is  €xtra electric parameter and also explains the “magnetic”
e?®o=e??+pP,Q, ! [cf. (18)] to get a small value for the repormallzatlon of the_ string tensi¢@6] by dm_act con5|dgr—
string coupling in the horizon region one needs to assum@tion of the underlying conformal model in the horizon
thatQ, is also large. Then the expression for the thermody-{throaj region.

namic black-hole entropy, proportional to the area of the It Was also suggested {i26] that there may exist an in-
horizon (50), is of the forn* terpolating formula for the entropy which would be valid for

arbitrary values of charges and would reproduce the
A T 112 stretched horizon entropjl4,16 in the limit of vanishing
S= 4Gy ~ G—N[Ple(Qle—q )1 (73 magnetic charges. The idea was to use $kauality for the

One would like to relate the combination of chargeg6)
to the number of “microscopic” string configurations giving
rise to the same black hole solution at large distances. In th¥
case of the fundamental string states of toroidally compactid(N.)x, >1~aN;exp(2my/ §CeNL), Where Ce=D—2=24. In
fied heterotic string the combination of charg®sQ,—0®  type Il theoryces=3(Dei—2)=12, however, there are both left-
and right-moving BPS states in the free string spectrum. In contrast
to the free string case, the number of BPS oscillation states counted
20The presence of the magnetic charges provides a “regularizain our case should be the same in the heterotic and type Il theories.
tion” making it unnecessary to resort to “stretched horizon” con- Namely, the relevant marginal perturbations are only “left-
siderations used in the case of purely electric extreme black holesioving,” not “right-moving,” i.e., the functions in the sigma-
[14,16. There is a certain analogy between the present dyonienodel action can depend only an not onv to preserve the con-
model and the conjectured modificati@y world-sheetr” correc-  formal invariance when botR andK functions are nontrivial. This
tions) of the purely electric mode[14]. Consideration of the is also related to the fact that the background is “chiral” and has
stretched horizon region corresponds effectively to a shiftthe same amount of space-time supersymmetry in both theories, and
r—r++a'in (part of) the metric. Analogous regularization of sin- therefore only “left-moving” perturbations will be supersymmet-
gularities of the fundamental string and extreme electric black holegic. As a result, one should expect that the entropy should be the
solutions was suggested ii2]. Turning on magnetic charges same in heterotic and type Il cases, in agreement with the fact that
P,=P,=P can be represented as a replacement of one ofthe the corresponding black hole solution and thus also its thermody-
factors in the metric by r(+ P)2. Then ther =0 region becomes namic entropy is the same in two theories. This suggests that the
nonsingular provided all four charge®(,P,) are nonvanishing.  effective value of the produd.N, should be the same in the two
2'The assumptio®;~ P, implies that the second term under the theories. How this actually happens for tiremodel describing the
square root in50),(68) can be neglected. horizon region remains to be understood.

22The number of BPS states in the free heterotic string spectrum
ith a given left-moving oscillator numberN, >1 s
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specific example of charge configurations, obtained from théhe string soliton with nontrivial transvers¢magnetic”)
generating solution witlgg=0, and to conjecture that in gen- space.

eral theP,P, factor should be replaced by,P,+a’, so Remarkably, a class of supersymmetric generalisations of
that the renormalized string tension should be of the fornthe soliton mode(5),(6) can be obtained in the same way as
la', =1la'(1+1la’'P,P,). The “quantum” shift by «’ in the fundamental string case, by allowing the functiéhs

can be viewed as a modification of the purely electric modehnd. 7 in (1) [e.g.,K andA in (5)] to depend also on.?*In

(where the area of the horizonrat 0 is zerg corresponding the case of the flat transverse space this corresponds to the
to the prescription of evaluation of the entropy at thegeneralised fundamental string solution with waves traveling
stretched horizon at=+/a’. This proposal, however, does along the string as well as fluctuations in the compact and
not seem to apply to the general class of solutions obtainedoncompact flat spatial directiorisee[8,9] and references
from the five-parameter generating solution wigk0. In  therein.

this case one gets a more general expression for the area of Starting with the spherically-symmetric one-center model
the event horizor(50),(68) than the one assumed @6].2®  (15),(16) the simplest possibility is to addwadependent, but
The general quantum formula for the entropy, valid for largelinear inx® term inK [note that the equation fd¢ (11) does

as well as small magnetic charges and thus interpolating béwot depend on the functions of the transverse theanyl to
tween the classical general expressi68) and the one for replace the constant®; and q in K and A by arbitrary
purely electric configurations evaluated at the stretched horifunctions ofu [there is no extra constraint since the term

zon (A=2m\2a"La) [14,16, should involve a nontrivial 9Vi./' in the equation forK in (2) vanishes in the
mixture of electric and magnetic charges. spherically-symmetric cage

u
. o ) K(u,x)=1+fy(u)x3+ Ql—()
B. Origin of degeneracy: More general “oscillating” solutions r
The dyonic black hole is an approximate four- q(u)[r+1(P,+P,)]
dimensional description of the six-dimensional string soliton A(u,x)= (TP (77
1

represented by the conformal mod®&). The origin of the
“internal degrees of freedom” of the black hole or a degen- _ ~ L~ 25
eracy of configurations with fixed values of global ChargeS,Herte(_u)—_Q1+Q1(u),_q(u)—q+q(u)_. )
which explains the statistical nature of its entropy, should be For.S'mp“.C'W' I_et us_lgnore oscillations in the honcom-
related to the existence of different six-dimensional stringpaCt dimensions, i.efs=0. In t“he fun(_:iamental_ _st?rflgg case
configurations which have the same structure at scales IargéPlZ P,=0) one expects the “matching conditio
than compactification scale. Such solutions should be repre- Q. (u)Q,—g%(u)=0, (79
sented by marginal deformations of the soliton theory which
do not change the values of the asymptotic black holevhich, after averaging in the compact coordinatecan be
charges. put in the form of thgclassical level matching condition for
As in the case of purely electric BPS-saturated blackhe elementary string statés
holes described by the five dimensional fundamental string
solutions, one should look for more general conformal mod-
els which include(left-moving) oscillations, e.g., in a com-  ?*There exists, in principle, a possibility of includinguadepen-
pact dimension8,9]. Since these more general solutions ex-dence also in the functior3;; ,B;; , ¢ in (1) [i.e., in the functions
plicitly depend on a compact internal coordinate, they can b& k in (6)] which define the transverse conformal theory. In this
represented as solutions of lower-dimensional theory witltase one finds nontrivial second-order differential equations in
massiveKaluza-Klein fields having nontrivial background [27] which should be satisfied Hyu,x),k(u,x). As a result, only a
values. At scales larger than the compactification scale thesgecial dependence enmay be allowed in the “magnetic” part of
backgrounds will have the same structure as the BPSthe model.
saturated black hole, but the degeneracy will be lifted once ?The asymptotic flatness of the background can be restored by a
one starts measuring external fields with resolution compacoordinate transformatior{xsﬂXS—?S(U),aﬁs“'fs, etc] as in
rable to the compactification scé@. [8,9]. Note also that in general the-dependent part oK can be
Like the oscillating versions of the fundamental string so-traded for the -perturbation in(1) by making a redefinition of
lution correspond to the excitetbut still supersymmetric 4 [6].
BPS-saturatedstates of the heterotic string with flat trans- 25t can be imposed either by requiring that the0 singularity of
verse spacg10,9], similar generalizations of the model the higher-dimensional background should be fi8]lor by using
(5),(6) should represent the BPS-saturated excited states @fring source consideratiori§] and T-duality (see also the next
footnote.
2'This relation should already hold in the bosonic string case. In
Zccording to[26] the level matching condition should remain fact, Q; plays the role of the momentum along the string. Since
essentially the same as in flat space, i.e.,Q; and Q, are interchanged by -duality in u=y, direction, Q,
a'N =4(Q;Q,—qg?+ - - -), while the magnetic charges should en- should be an analogue of the winding number. Then their product
ter through the modification of the string tension mentioned aboveshould be proportional to the difference of the left-movihg X and
This would imply that A~4m N, N =(1+4/a'P,P,) right-moving (Ng) oscillation numbers. In heterotic string case
X[1+4/a'(Q;Q,—qg?)]. The general expression for the area there are no classical oscillations in the right-moving sector, i.e.,
(50),(68) does not seem to be consistent with such a factorizationNg=0.
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4 4 _ 4 _
y(Qle—qz)zNL, NLE?<q2(U)>- (79 K(Qle_qz):?P1P2(Q1Q2_q2)~<q2(u)>~NL-
(81)

Analogous level matching condition should exist for excitedThe main difference compared (89) is again the renormal-
states of the soliton theory with nonvanishiRg ,.?® Since  jzation of the string tension bp,P,, in agreement with the
now the horizon region is described by a well-defined consuggestion iff26]. The relation(81) provides an interpreta-
formal theory, the constraint should be just the level matchtion of (part o) the degeneraci, in (75) in terms of(clas-

ing condition for the corresponding states of the generalizedica) oscillations of the underlying soliton in the internal
WZW-type theory (20). For example, replacingg in Yy, direction. Further study of marginal BPS-saturated pertur-
(19),(21) by a periodic function oti=y,, g—q+7q(y,) cor-  bations of the soliton model is important for making the

responds to adding t@9) the perturbationicf. (20),(21)] statist_ica] interpretation of the black hole entra@g) more
quantitative.

20(y2) Vo[ dy; + P1(1—cos) de]=2P(y,) 07273&80) ACKNOWLEDGMENTS
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