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Solitonic strings and BPS saturated dyonic black holes
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We consider a six-dimensional solitonic string solution described by a conformal chiral null model w
nontrivial N54 superconformal transverse part. It can be interpreted as a five-dimensional dyonic solit
string wound around a compact fifth dimension. The conformal model is regular with the short-dista
~‘‘throat’’ ! region equivalent to a Wess-Zumino-Witten~WZW! theory. At distances larger than the compac-
tification scale the solitonic string reduces to a dyonic static spherically symmetric black hole of toroid
compactified heterotic string. The new four-dimensional solution is parametrized by five charges, saturate
Bogomol’nyi bound, and has a nontrivial dilaton-axion field and moduli fields of a two-torus. When acted
by combinedT- andS-duality transformations it serves as a generating solution forall the static spherically
symmetric Bogomol’nyi-Prasad-Sommerfield saturated configurations of the low-energy heterotic string th
compactified on a six-torus. Solutions with regular horizons have the global space-time structure of ext
Reissner-Nordstro¨m black holes with the non-zero thermodynamic entropy which depends only on conser
~quantized! charge vectors. Theindependenceof the thermodynamic entropy on moduli and axion-dilaton
couplings strongly suggests that it should have a microscopic interpretation as counting degeneracy of u
lying string configurations. This interpretation is supported by arguments based on the corresponding
dimensional conformal field theory. The expression for the level of the WZW theory describing the thr
region implies a renormalization of the string tension by a product of magnetic charges, thus relating
entropy and the number of oscillations of the solitonic string in compact directions.@S0556-2821~96!07010-5#

PACS number~s!: 04.50.1h, 04.20.Jb, 11.25.Sq
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I. INTRODUCTION

String theory is bound to have important implications fo
the physics of four-dimensional black holes. It is likely tha
certain fundamental properties of ‘‘realistic’’ black holes ca
be understood by studying a special class of supersymme
Bogomol’nyi-Prasad-Sommerfield~BPS! saturated back-
grounds which for large enough supersymmetry do not
ceive quantum corrections. Examples of such backgrou
are provided by pure electrically or pure magnetical
charged solutions@1# of lowest-order effective field theory
~for a review see@2# and references therein!.

To embed an effective field theory solution intostring
theoryone is to find the corresponding world-sheet confo
mal s model whose couplings reduce to the given bac
ground fields at scales larger than the compactification a
string scales~see, e.g.,@3# and references therein!. Thus four-
dimensional effective field theory backgrounds generica
appear to be only large-distance approximations to high
dimensional string solutions. In particular, all supersymme
ric ~BPS-saturated! electric black hole solutions of toroidally
compactified heterotic~or type II superstring! theory@4# cor-
respond to conformal chiral nulls models@5–9#.

The latter can be interpreted as describing high
dimensional fundamental string backgrounds, i.e., exter
long-range fields produced by stable classical string sour

*On sabbatic leave from the University of Pennsylvania. Ele
tronic address: cvetic@sns.ias.edu
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of elementary closed strings, which are in general charge
oscillate in one, e.g., left-moving, sector and are wound
around a compact spatial dimension@10,11,8,9#. The
leading-order solution is singular at the core1 but a8 correc-
tions most likely provide an effective smearing of the
d-function source at the quantum string scaleAa8 @12#.2

What appears to a distant four-dimensional observer as a
extreme electric black hole has actually an internal structur
of a higher-dimensional fundamental string. This interpreta
tion suggests a natural way of understanding the thermod
namic black-hole entropy in terms of degeneracy of string
configurations@14#, which give rise to black holes with the
same values of asymptotic charges@8,9#. For example, a
higher-dimensional string ‘‘oscillating’’ in a compact inter-
nal direction reduces to a family of black holes with the sam
asymptotic charges but different nonvanishingmassive
Kaluza-Klein fields which are invisible at scales larger than
the compactification scale.3

In order to make this qualitative picture quantitative, i.e.,

c-

ss:

1In fact, it remains singular to all orders ina8 if one chooses to
ignore the source altogether what, from the world-sheets model
point of view, formally seems to be a legitimate alternative@6,3#.
2In addition, a first-principle conformal field theory interpretation

of solutions with string sources should probably involve a ‘‘thin
handle’’-type resummation of string loop expansion@13#.
3In order to try to reproduce the black hole entropy as a statistica

entropy@ lnd(N)# it is important that the oscillating object should be
stringlike, i.e., having an exponentially growing numberd(N) of
states at a given oscillator levelN; it is not enough to consider just
a Kaluza-Klein theory.
5619 © 1996 The American Physical Society
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5620 53MIRJAM CVETIČ AND ARKADY A. TSEYTLIN
to compute the black hole entropy directly from strin
theory, one has to address the question of string loop
a8 corrections. A nice property of the extreme electric bla
hole ~fundamental string! solution is that the dilaton, i.e., the
effective string coupling, goes to zero as one approaches
origin, so that string loop corrections may be ignored. This
not true, however, for thea8 corrections since the curvatur
of the leading-order solution blows up near the origin. T
expectation@12# thata8 corrections should smear the sing
larity of the fundamental string solution at scales of ord
Aa8 is in this context closely related to the suggestion@14#
that the thermodynamic black-hole entropy, which vanish
when evaluated at the singular horizon (r50) of the leading-
order effective field theory solution, should instead be co
puted at the ‘‘stretched’’ horizon atr5Aa8 @15#. The result-
ing expression then matches the statistical string entr
@14,16#. Though very plausible, it may be hard to impleme
this idea in a first-principle calculation of the entropy.

Magnetically charged supersymmetric extreme bla
holes have very different properties. The leading-order so
tion @1# has a nonsingular string metric with the origin
r50 being transformed into a ‘‘throat’’ region. Nowa8 cor-
rections can be ignored provided the magnetic chargeP is
large, i.e.,P@Aa8. Indeed, these configurations have t
string-theory representation@17,18# in terms of a higher-
dimensional string soliton, with magnetic charge havi
Kaluza-Klein origin~for a review, see@19,20# and references
therein!. They are described by a regular, source-free sup
conformal field theory@21# which reduces in the throat re
gion to a Wess-Zumino-Witten~WZW! model supplemented
with a linear dilaton. For that type of magnetic solitons t
dilaton blows up near the origin, and thus string loop corr
tions cannot be ignored. This prevents one from comput
the black-hole entropy by counting different solitonic co
figurations with the same four-dimensional large-distan
behavior.

Given the fact that the presence of an electric cha
seems to regularize the short-distance behaviour of the d
ton while the presence of a magnetic charge leads to a re
lar string metric, one may speculate that to obtain solutio
where both string loop anda8 corrections are under contro
both electric and magnetic charges should be nonvanish
Remarkably, this is indeed what happens in the case of fo
dimensional supersymmetricdyonic black hole solutions
@22,23# of leading-order effective field equations correspon
ing to toroidally compactified heterotic string~see also@24#
for a review and references!. At the string-theory level they
correspond to the world-sheet conformal theory@25# which
is a hybrid of ‘‘electric’’ chiral null model and ‘‘magnetic’’
N54 superconformal model, thus combining the best fe
tures of the pure electric and pure magnetic models. T
conformal theory describes a higher (D>6) dimensional
string soliton with all the background fields regular ever
where ~for r>0). The magnetic charge plays the role of
short-distance regulator, providing an effective sh
r→r1P, analogous to the shiftr→r1Aa8 expected to
happen in the exact fundamental string solution.

As in the purely magnetic case, the short-distance reg
is a throat described by a regular WZW-type conformal fie
theory, but now with aconstantdilaton. In fact, the dilaton
g
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varies smoothly between constant values at large and sm
distances and itsr50 value is given by the ratio of the
magnetic and electric charges. The approximate constancy
the dilaton ensures that the resulting four-dimensional dyon
black holes are black holes indeed; these solutions have
global space-time structure of extreme Reissner-Nordstr¨m
black holes.

As a result, it may be possible to choose the charges
that both the world-sheeta8 and the string loop corrections
remain small everywhere, thus suggesting that in the case o
dyonic charges one should be able to reproduce the exp
sion for the black hole entropy by a semiclassical compu
tion. Indeed, the thermodynamic entropy determined by t
area of the horizon is now proportional to the product of th
electric and magnetic charges and thus is no longer vani
ing. By analogy with the corresponding counting of dege
erate ~fundamental string! states for purely electric black
holes@14,8,9# one may expect that the entropy should no
have an interpretation in terms of counting of degenera
solitonic string states@26#.

To implement this suggestion it is important to understan
which solitonic string states correspond to a given set
asymptotic dyonic black hole charges. One should be able
do this by starting directly with the underlying conforma
field theory of the dyonic soliton. As we shall argue below
for large magnetic charges the level of the WZW-type co
formal field theory which describes the horizon~throat! re-
gion is large and thus the counting of states should be
same as in flat space up to a renormalization of the stri
tension by magnetic charges, as anticipated in@26#. As a
result, one indeed reproduces the thermodynamic entropy
semiclassical, string-theory considerations.

The dyonic model studied in@25# was a six-dimensional
supersymmetric chiral null model with curved transverse pa
which is a hybrid of the five-dimensional fundamental-strin
type model@giving rise upon dimensional reduction along
the compact ‘‘string’’ direction to extreme black holes with
Kaluza-Klein (Q1) and two-form (Q2) electric charges# and
anN54 superconformal model@which generalizes both the
Kaluza-Klein monopole (P1) and theH-monopole (P2)
models#. It has a remarkable covariance property with re
spect toT duality in the two compactified dimensions an
with respect toS duality, interchanging the electric and mag
netic couplings. To get a better understanding of general fe
tures of this class of solitonic conformal models, in particu
lar, of their possible marginal perturbations, we sha
generalize the model of@25# to include one extra coupling
function, specifying the electric charge (q) of the solitonic
string~Sec. II!. The throat region of the resulting backgroun
is described by ~an orbifold of! the six-dimensional
SL(2,R)3SU~2! WZW model with the level proportional to
the product of the two magnetic chargesP1P2 . The relation
to the WZW model also implies quantization conditions o
charges~Sec. II B!.

In the simplest spherically-symmetric case the corr
sponding four-dimensional dyonic solution~Sec. III! is pa-
rameterized by the two magneticP1

(1)5P1 ,P1
(2)5P2 and the

two electricQ2
(1)5Q1 ,Q2

(2)5Q2 charges and by one new
parameter q specifying the electric charges
Q1
(1)52Q1

(2)5q @the upper and lower indices 1,2 indicate
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the Kaluza-Klein and two-form U~1! gauge fields and the
first and the second compactified toroidal coordinates,
spectively#.

Like its q50 limit, corresponding to the four-paramete
solution of @22,23#, the five-parameter dyonic solution satu
rates the Bogomol’nyi bound. It has nontrivial dilaton, axio
and moduli fields of the compactified two-torus and serve
when acted on by theT- andS-duality transformations, as a
generating solution forall the static spherically-symmetric
BPS-saturated solutions of the effective heterotic string co
pactified on a six-torus. These solutions are parameterized
unconstrained28 electric and 28 magnetic charges~Sec. IV!.
Solutions with regular event horizons have the Reissn
Nordström global space-time with zero temperature and no
zero thermodynamic entropy. We derive the generalT- and
S-duality invariant expression for the entropy, which de
pends only on conserved~quantized! electric and magnetic
charges and isindependentof the asymptotic values of the
dilaton-axion and moduli fields. This result supports the e
pectation@26# that the entropy is counting the number o
string degrees of freedom which should not change un
adiabatic variations of couplings of the theory.

The statistical interpretation of the entropy is discussed
Sec. V by considering the string-theory~conformal model!
interpretation of the five-parameter solution. We present
argument relating the thermodynamic entropy to the statis
cal entropy which counts the degeneracy of the dyonic so
tonic string configurations ‘‘oscillating’’ in a compact direc
tion. Our approach generalizes the suggestion of@26# and
explains the renormalization of string tension by magne
charges by direct consideration of the underlying conform
model in the horizon~throat! region.

II. SIX-DIMENSIONAL SOLITONIC STRING
CONFORMAL MODEL

The string soliton we are going to discuss is described
a supersymmetric chiral null model with curved transver
space. The chiral null models@6,3# are a class of two-
dimensional~2D! s models which generalize both plan
wave type and fundamental string type models and are
fined by the following string Lagrangian:4

L5F~x!]u@ ]̄v1K~u,x!]̄u12Ai~u,x!]̄xi #

1~Gi j1Bi j !~x!]xi ]̄xj1RF~x!. ~1!

4We shall use the following notation. The string world-sheet a
tion is normalized so that I5(pa8)21*d2s]x]̄x
5(4pa8)21*d2s]ax]ax. The string effective action is
S105c*d10xA2Ge22F(R1•••) and after reduction to four di-

mensionsS45(16pGN)
21*d4xA2G8e22F8(R81•••), where the

D54 dilaton F8(x) will be assumed to have trivial asymptotic

value,eF8(x→`)51 ~so that both string-frame and Einstein-fram

D54 metrics approachhmn at infinity!, with e
F 8̀ being absorbed in

the Newton’s constantGN5
1
8e

2F 8̀ a8. In Secs. III and IV we shall
seta852 and the compactification radiiRn5Aa85A2. In Sec. III
we shall also assume thateF 8̀ 51, i.e., thatGN51/4.
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Here u,v are ‘‘light-cone’’ coordinates;xi are ‘‘transverse
space’’ coordinates.xi5(xs,yn) where xs (s51,2,3) are
three noncompact spatial coordinates andyn are toroidally
compactified~Kaluza-Klein! coordinates which may also in-
clude the chiral scalar coordinates of the internal 16-torus
the heterotic string.R[ 1

4a8Ag(2)R(2) is proportional to the
world-sheet curvature.

One can also consider generalizations of this model
including u-dependence in functionsF, F, Gi j ,Bi j . Ex-
amples of such conformals models~1! with u-dependent
F @6,3#, F @8#, andGi j ,Bi j @27# were considered in the
literature.

There exists a renormalization scheme in which~1! is
conformal to all orders ina8 provided ~i! the ‘‘transverse’’
s model (Gi j1Bi j )]x

i ]̄xj is conformal when supplemented
with a dilaton couplingf(x) and ~ii ! the functions
F21,K,Ai ,F satisfy the following conditions~as in@25# we
shall assume that the transverse theory hasN54 extended
world-sheet supersymmetry so that the conformal invarian
conditions preserve their one-loop form!:

2 1
2¹2F211] if] iF

2150,

2 1
2¹2K1] if] iK1]u¹ iA

i50, ~2!

2 1
2 ¹̂ iF

i j1] ifF
i j50, i.e.,

¹ i~e
22fF i j !2 1

2e
22fF ikH

ik j50, ~3!

with

¹̂[¹~Ĝ!, Ĝjk
i 5G jk

i 1 1
2Hjk

i , F i j[] iA j2] jAi ,

F5f1 1
2 lnF, ~4!

where¹ i is covariant derivative defined with respect to th
transverse metricGi j andHi jk53]@ iBjk . The Maxwell-type
equation forF i j is the conformal invariance condition in the
(uxi) direction. The linear equations forK andAi can be
viewed as marginality conditions on the corresponding ‘‘pe
turbations’’ of the conformal model specified by
F,Gi j ,Bi j ,f.

Given a u-independent solution of the above equation
one can construct itsu-dependent generalization, e.g., by re
placing the constant parameters inK andAi by functions of
u, i.e., K(x;c)→K(x;c(u)), and Ai(x;q)→hi(u)
1Ai(x;q(u)). If ]u¹ iA

iÞ0 the functionhi will be related
to K by the second equation in~2!. In the case of the funda-
mental string solution with u5x92t,v5x91t, and
Gi j1Bi j5d i j this corresponds to adding@28,6,8,9# traveling
waves of momentum along the string as well as arbitra
left-moving oscillations both in compactyn ~charge! direc-
tions and noncompact spatial directionsxs. Such solutions
are in correspondence with BPS-saturated states of the
erotic string spectrum at the vacuum level in the righ
moving sector~right-moving oscillator numberNR5 1

2! and
an arbitrary level in the left-moving sector~arbitrary left-
moving oscillator numberNL) @8,9#.

Let us now specialize to the particular case of six
dimensionals model ~1! of the type

c-

e
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L5F~x!]u~ ]̄v1K~x!]̄u12A~x!@ ]̄x41as~x!]̄xs# !

1 1
2RlnF~x!1L' , ~5!

L'5 f ~x!k~x!@]x41as~x!]xs#@ ]̄x41as~x!]̄xs#

1 f ~x!k21~x!]xs]̄xs1bs~x!~]x4]̄xs2 ]̄x4]xs!

1Rf~x!, ~6!

wherexs5(x1,x2,x3) are three noncompact spatial dimen
sions, whilex4 andu will be compact coordinates. We sha
assume that all the fields depend only onxs and
f ,k,as ,bs ,f are subject to5

]s]
sf50, ]s]

sk2150, ~7!

]pbq2]qbp52epqs]
sf , ]paq2]qap52epqs]

sk21,

f5 1
2 lnf , ~8!

wherep,q,s51,2,3.
In ~5! we have made a special choice of the fieldAi

As5Aas ,A4[A, ~9!

which makes the model covariant under the duality transf
mation in thex4 direction. The 2D duality transformation
x4→ x̃4 can be performed by gauging the shifts inx4, adding
B] x̃42B̄] x̃4, gauge-fixingx450, and integrating outB and
B̄. One finds that indeed this duality transformation maps t
model ~5! into itself with6

f→k21,k→ f21,as→bs ,bs→as ,A→~ f k!21A, ~10!

where we have assumed thata@pbq50. The choice ofAi ~9!
also leads to the absence of a Taub-NUT term in the me
of the corresponding four-dimensional spherically
symmetric background.

Let us note that case of six target space dimensions
special in that here the duality transformation applied to
rank-two antisymmetric tensor gives again a rank-two tens
and thus can be represented as a formal map of one st
s model into another. In contrast toT duality, however, this
transformation cannot be realised directly at the world-sh
level.7 As was pointed out in@25#, the model~5!,~6! with
A50 has a remarkable covariance property under the s
dimensional S-duality (G→e22FG, dB→e22F* dB,
F→2F): when formally applied to the background field
of the s model this transformation simply interchanges th

5More generally, one may consider a similar six-dimension
model with the functions depending on all four transverse coor
nates. Special cases will be the six-dimensional fundamental st
(F21511Q/x2, K5 f5k51) @11#, its S-dual solitonic string so-
lution @20,29,30# (F5K51,A50,f511P/x2,k51) which also
corresponds to a six-dimensional reduction of the five-brane so
tion @21,31# of the ten-dimensional theory and the dyonic six
dimensional string@32# (F21511Q/x2, f511P/x2,k5K51).
6Note that under the duality inu direction F→K21,

K→F21,F(F)→F(K21) while other functions remain un-
changed.
-
ll

or-

he

tric
-

is
a
or
ring

eet

ix-

s
e

functionsF and f . WhenAÞ0 the above six-dimensional
model is still covariant under theT-duality in x4 andu di-
rections. However, it is no longer covariant under th
S-duality. The reason is that forAÞ0 the components
Hu4s andHupq of the torsion become nonvanishing but unde
the duality they are transformed intoHv4s8 andHvpq8 . That
means that theS-duality induces the torsion terms;]v]x4

and ;]v]xs in the s-model action. Though the resulting
background will again represent a leading-order solution
the string effective equations, now it is not clear whether
will remain an exact solution to all orders ina8.

The conditions~2! on F,K and onAi ~i.e., onA) can be
put into the form

]s]
sF2150, ]s]

sK50, ~11!

]s~k
21f21]sA!1k21]sk]s~k21f21!A50, i.e.,

]s@k
23f21]s~kA!#50. ~12!

In deriving ~12! from ~3! we have used thatas ,bs satisfy~8!
and thatf andk21 are harmonic. The model is thus param
etrized by four harmonic functionsF21,K, f ,k21 and the
functionA satisfying~12!. The functionsas andbs are then
determined byf ,k according to~8!.

The model discussed above is a generalization of the o
introduced in@25# where the fifth functionA was turned off.
Let us emphasize that unlikeF,K and f ,k terms, which co-
exist in ~5! without influencing the equations of each othe
the introduction of the new couplingA leads to the equation
~12! which dependson the couplingsf ,k of the transverse
part of thes model ~5!.

A. Solution of conformal invariance conditions

While F21,K, f ,k21 are independentharmonic functions,
A is specified by~12! which has the following solution:

A5q1k
211q2f

2k,q1,25const. ~13!

This is the general solution in the case of one-cent
spherically-symmetric harmonic functionsf ,k21. For more
general f ,k21 , e.g., multicenter harmonic functions, the
solution of the linear equation~12! @which is equivalent
to the scalar Laplace equation forkA in curved three-
dimensional space with conformally-flat metric
ds3

25r2(x)dxsdxs,r5k23f21# will look more complicated.
If we further assume the asymptotic flatness conditions

the functions, i.e., thatk→1,f→1,A→0 for r 2[xsxs→`,
then ~13! becomes

A5q0k~k222 f 2!, q05q152q2 . ~14!al
di-
ring

lu-
-

7This transformation maps one solution~with vanishing vector
fields! of the toroidally compactified to six dimensions heterotic~or
type II! string into another. In the context of string-string duality
between heterotic string on a four-torus and type II string onK3
surface @33,34# this transformation should be supplemented b
identification of the vector fields in the Neveu-Schwarz–Neve
Schwarz sector of the heterotic string with the vector fields in th
Ramond-Ramond sector of the type II string.
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Note that under theT-duality transformation ~10! the
(q1 ,q2) solution forA is mapped into the (q2 ,q1) solution,
i.e., q0 in ~14! changes sign.

In the special case of one-center harmonic functions
get the following explicit form of the solution:8

F21511
Q2

r
, K511

Q1

r
, f511

P2

r
, k21511

P1

r
,

~15!

A5
q@r1 1

2 ~P11P2!#

r ~r1P1!
, ~16!

asdx
s5P1~12cosu!dw, bsdx

s5P2~12cosu!dw,
~17!

e2F5Fe2f5
r1P2

r1Q2
, ~18!

where the parameterq is related to q0 of ~14! as
q[2q0(P12P2). Note that the expression forA in terms of
q is valid also forP15P2 , i.e., for f k51, when it becomes
just the harmonic functionA5q/r . The one-center solution
is thus specified by the five parametersP1 ,P2 , Q1 ,Q2 , and
q.

Let us note that for positiveP2 andQ2 the string dilaton
~18! is regular and is constant both at larger→` and small
r→0 distances. Thus one can, in principle, make the effe
tive string coupling small everywhere by choosingeF`,1
andP2;Q2 .

B. Throat region

An important property of the six-dimensionals model
~5!,~6!, ~15!–~18! is that in contrast to the six-dimensiona
chiral null model with flat transverse part (f5k51) which is
singular atr50 ~and describes a fundamental string typ
configuration!, in the case of nontrivial transverse part wit
non-vanishing parametersP1.0 andP2.0 the singularity
at the corer50 disappears. It gets replaced by a ‘‘throat’’ o
‘‘semi-wormhole’’ region@21#.

In the throat regionr→0 the Lagrangian~5! @with the
functions given by~15!–~18! andP1 ,P2 ,Q1 ,Q2 all positive#
takes the form

Lr→05P1P2]z]̄z1e2z]u]̄v1Q1Q2
21]u]̄u

12Q2
21q]u@ ]̄y11P1~12cosu!]̄w#

1P1
21P2@]y11P1~12cosu!]w#@ ]̄y1

1P1~12cosu!]̄w#1P1P2~]u]̄u1sin2u]w]̄w!

1P2~12cosu!~]y1]̄w2 ]̄y1]w!,

z[2 ln
r

Q2
→`. ~19!

In the case ofq50 discussed in@25# we get a regular con-
formal model which, up to a factorization over a discre

8The relation to the notation used in @25# is
Q15Q2

(1) ,Q25Q2
(2) ,P15P1

(1) ,P25P1
(2) .
we
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subgroup, is the WZW theory based on a direct product
the SL(2,R) and SU~2! groups.9 An important feature is that,
in contrast to, e.g., the five-brane model@21#, here the dilaton
~18! is constantin the throat region, i.e., the string coupling
is not blowing up and thus the solution can be truste
everywhere.10

For a nonzeroq it looks as if the Lagrangian~19! de-
scribes a globally nontrivial ‘‘mixture’’ of the SL(2,R) and
SU~2! theories. However, the central charge retains its fre
theory value, i.e., the dilatonF is still constant atr50, and
it is easy to see that~19! can, in fact, be put in the same form
as in the q50 case @25# by redefining the coordinates.
Changing the notation for coordinates to
u5y2 ,v52t,x45y1 wherey1 andy2 will be assumed to be
circular coordinates with periods 2pR1 and 2pR2 we get
@up to a total-derivative term}q(]y2]̄y12 ]̄y1]y2)#

Lr→05~p]z]̄z1p8] ỹ2]̄ ỹ212e2z] ỹ2]̄ t̃ !

1p~] ỹ1]̄ ỹ11]w]̄w1]u]̄u22cosu] ỹ1]̄w!.

~20!

Here

ỹ15P1
21y11qP2

21ỹ21w, ỹ25Q2
21y2 , t̃5Q2t,

p5P1P2 , p85Q1Q22q2P1P2
21 . ~21!

The role ofq is thus to mix the two compact coordinates
y1 and y2 , i.e., in the throat regionq plays a role of a
modulus, which turns on the off-diagonal components of th
metric of the two-torus corresponding toy1 ,y2 .

The throat region model~20! is thus equivalent to a direct
product of the SL(2,R) and SU~2! WZW theories@corre-
sponding to the terms in each of the parentheses in~20!#
divided by discrete subgroups. The levels of the SL(2,R) and
SU~2! models are both equal to

k5
4

a8
p5

4

a8
P1P2 . ~22!

Since the level of SU~2! must be integer, we get the quanti-
sation conditionP1P25

1
4a8k.

Whenq50 one can follow@36,17# and construct an or-
bifold of SU~2! by identifying the coordinateỹ1 , which in

9In the special case ofP15P2 , Q15Q2 , q50 similar throat
region model was considered previously in@35#.
10One manifestation of the regularity of the dilaton in this mode

is that the central charge of this conformal field theory, which has
free-theory value in the supersymmetrics model case, can be easily
computed either inr5` or in r50 regions@25#.
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the standard SU~2! WZW model must be 4p periodic, in the
following way: ỹ1[ ỹ114p/m, wherem is an integer. This
is possible provided11

2P15mR1 . ~23!

Then the modular invariance of the orbifold SU~2! k /Zm de-
mands@36# thatk5nmwheren is an integer. Since here the
level k of SU~2! is itself proportional to the product of the
two magnetic charges, we also get the following quantizati
condition forP2:

2P25
na8

R1
. ~24!

For qÞ0 we demand that the coordinateỹ1 should still have
the same period 4p/m and get an additional condition
2P2Q25 lmqR2 , wherel is an integer, i.e.,

Q2

q
5
lm

n
5
lP1

P2
. ~25!

T-duality in y2 direction, which implies Q1→Q2 ,
R2→a8/R2 , yields

Q1

q
5
l 8m

n
5
l 8P1

P2
. ~26!

Thus the consideration of the throat region leads to the re
tions whichmix the quantization conditions onq, Qn , and
Pn .

III. FOUR-DIMENSIONAL DYONIC BLACK HOLES

The six-dimensionals model of the previous section can
be interpreted as describing a dyonic five-dimension
(u,v,xs) solitonic string solution. The string has both electr
(q) charge~with the gauge field one-formAdu) and mag-
netic (P1) charge, both resulting from the couplings to th
compact Kaluza-Kleinx4[y1 direction. There is also a mo-
mentum (Q1) along the string and a special perturbatio
(P2) in curved noncompact spatial directionsxs . The new
coupling A preserves the same amount of the world-she
supersymmetry of thes-model string action, and thus the
same amount of the space-time supersymmetry of the ta
space background, as in the case ofA50 @25#.

Like the fundamental string solution@10,11# ( f5k51)
can be viewed as a field of stable elementary winding stri
mode in flat background, this solution may be interpreted
representing a particular state of a dyonic string soliton. T
interpretation is consistent with the linear form of the equ
tions forF21,K,A ~11!,~12! which can be viewed as condi-
tions of marginality for ~exact! perturbations of the six-

11The quantization ofP1 can also be understood as a consequen
of the requirement of regularity of the metric
„;@dy11P1(12cosu)dw#21•••… of the full six-dimensional model
~5!: to avoid the Taub-NUT singularity one should be able to ide
tify y1 with period 4pP1 , which is possible if 2P1 /R15m. By
T-duality, the same constraint should also apply toP2 , i.e.,
2P25nR̃15na8/R1 .
on
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dimensional model defined as a direct product of the trivi
chiral null ~‘‘electric’’ ! part, specified byu,v, and nontrivial
transverse~‘‘magnetic’’! part, specified byxs ,x4 .

At the same time, this model has also a four-dimension
dyonic black hole interpretation. We shall now derive th
explicit expressions for the corresponding canonical fou
dimensional fields.

A. Dimensional reduction

Following @6#, we setu5y2 ,v52t,x45y1 wherey1 ,y2
are two compact toroidal coordinates.12 One can rewrite the
s model ~5!, i.e., L5(GMN1BMN)]x

M ]̄xN1RF, in the
form13

L5~Gmn8 1Bmn8 !~x!]xm]̄xn1~Gmn1Bmn!~x!

3@]ym1Am
~1!m~x!]xm#@ ]̄yn1An

~1!n~x!]̄xn#

1Anm
~2!~x!~]yn]̄xm2 ]̄yn]xm!1RF8~x!, ~27!

where xm5(t,xs), s51,2,3, n,m51,2. The four-
dimensional string-frame space-time metricGmn8 , the two
form-field Bmn8 and the dilatonF8, which includes the shift
resulting from ‘‘integrating out’’yn, as well as the canonical
vector potentialsAm

(1)n and Anm
(2) of the respective Kaluza-

Klein and two-form U~1! gauge fields are related to the field
of the six-dimensionals model ~5! in the following way:

Gmn8 5Gmn2GmnAm
~1!mAn

~1!n ,

Bmn8 5Bmn2BmnAm
~1!mAn

~1!n , ~28!

Am
~1!n5GnmGmm , Anm

~2!5Bnm2BnmAm
~1!m , F85F2 1

4D,

D[detGmn . ~29!

The four-dimensional Einstein-frame metric is

gmn5e22F8Gmn8 , ~30!

and the gauge-invariant torsion can be written as@37#

Hmnl8 5Hmnl

2~Am
~1!nHnnl2Am

~1!mAn
~1!nHmnl1cycl. perms.!,

~31!

whereHMNK is the field strength of the antisymmetric tenso
BMN in ~5!. Hmnl8 is related to the four-dimensional axion
C by

ce

n-

12In the case of the fundamental string interpretation the directi
of the string winding is the ‘‘boosted’’ compact coordinate
y285y21t, i.e., u5y282t,v5y281t. Then, e.g., for the one-center
solution one getsK5Q1 /r instead ofK511Q1 /r used here.
13In the purely ‘‘electric’’ case off5k51, i.e., the case of the

chiral null model with flat transverse part, similar dimensional re
duction was discussed in@7#. There, an additional term
2FAs]u]̄xs was also included, leading to nonstatic, e.g., Tau
NUT or rotating, four-dimensional space-time metric.
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H8mnl[
e4F8

A2g
emnlr]rC, ~32!

where the indices are raised usinggmn andg5 detgmn .

B. Four-dimensional background

We shall now express the four-dimensional fields in ter
of harmonic functionsF21, K, f , k21, the functionA and
the functionsas ,bs .

The Einstein-frame metric is found to be of the followin
form:

dsE
25gmndx

mdxn52l~r !dt21l21~r !~dr21r 2dV2!.
~33!

The structure of the space-time metric is that of anextreme
static spherically symmetric configuration. This indicat
that this background corresponds to a BPS-saturated sta

The metric functionl, the dilatonF8, and the moduli
Gmn ,Bmn of the two-torus are given by

l5FkD21/2, e2F85F fD21/2, D5FK fk2A2F2,
~34!

G115 f k, G225FK, G1252B125AF. ~35!

The description in terms of the four-dimensional fields
valid in the spatial region, whereF,K, f ,k and the volume of
the two-torusD are all positive. The constraintD.0 implies
a constraint on the functionA: F21Kfk.A2.

The four four-dimensional U~1! Kaluza-Klein and two-
form gauge fields have the following components:

Am
~1!15~2AF2D21,as!, Am

~1!25~F fkD21,0!, ~36!

A1m
~2!5~AF2f kD21,bs!, A2m

~2!5~F2KfkD21,0!.
ms

g
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te.
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The axionC is determined by

]sC5Af22k]s~ f k
21!. ~37!

C. One-center four-dimensional solution

In the case of spherically-symmetric one-center harmon
functionsF21,K, f ,k21 the explicit solution~15!–~18! yields
a class of static spherically-symmetric four-dimension
backgrounds specified by the five parametersP1 ,P2 ,
Q1 ,Q2 , andq.

14 These parameters determine the magne
Pm
(1,2) and electric Qm

(1,2) charges of the corresponding
Kaluza-Klein An

(1)m and two-form Amn
(2) gauge fields, i.e.,

Amt
( i )→2Qm

( i )/r as r 2[xsx
s→`, and Amf

( i ) 5(12cosu)Pm
(i) .

As follows from ~15!–~18! and the expressions for the gaug
fields ~36!, the physical charges are related to these five p
rameters in the following way:15

~Q1
~1! ,P1

~1!!5~q,P1!, ~Q2
~1! ,P2

~1!!5~Q1,0!,

~Q1
~2! ,P1

~2!!5~2q,P2!, ~Q2
~2! ,P2

~2!!5~Q2,0!. ~38!

Note that the magnetic charges arise from the transverse
of thes model~5! and all the electric charges arise from th
chiral null part of ~5!. When there is noA-coupling term
(q50) the electric and magnetic charges are orthogonal, i
they are associated with gauge fields originating from tw
different compactified directions. TheA coupling induces
new electric charges, but only in a left-moving direction:
leads to nonzero left-moving electric charg

QL 1[
1
2 (Q1

(1)2Q1
(2))5q along the magnetic charge direc

tion. The right-moving charges, i.e.,PRn[
1
2(Pn

(1)1Pn
(2)) and

QRn[
1
2(Qn

(1)1Qn
(2)), still remain orthogonal.

The explicit form of the space-time metric functionl, the
dilaton F8, the axionC and the moduliGmn , Bmn of the
internal two-torus is
ified
al
mmetric
l5
r 2

$~r1Q1!~r1Q2!~r1P1!~r1P2!2q2@r1 1
2 ~P11P2!#

2%1/2
, ~39!

e2F85
~r1P1!~r1P2!

$~r1Q1!~r1Q2!~r1P1!~r1P2!2q2@r1 1
2 ~P11P2!#

2%1/2
, ~40!

14The five-parameter extreme~BPS-saturated! solution as well as nonextreme solutions of the effective heterotic string action compact
on a six-torus were obtained independently in@38# by performing a subset of O~8,24! symmetry transformations of the three-dimension
effective action on the Schwarzschild black hole background. They serve as generating solutions for all the static spherically-sy
configurations of the heterotic string theory compactified on a six-torus. The BPS-saturated solution obtained in@38# is related to the one
described in this section through a subset of SO(2)3SO~2!,O~2,2! (T-duality! and SO~2!,SL(2,R) (S-duality! transformations.
15In this section we assume thata852, eF 8̀ 51, the Newton’s constantGN5

1
8a8eF 8̀ 5

1
4 and the compactification radii

R15R25Aa85A2.
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C5
q

2P1
FP22P1

r1P1
1
2~P11P2!

r
23

P2

P1
lnS 11

P1

r D2
P1

P2
lnS 11

P2

r D G , ~41!

G115
r1P2

r1P1
, G225

r1Q1

r1Q2
, G1252B125

q@r1 1
2 ~P11P2!#

~r1Q2!~r1P1!
. ~42!
re-

n-

for

s,
re

y

Note that this one-center solution is written with the follow
ing choice of the asymptotic (r→`) values for the fields:
F 8̀ 5C`5G12`5B12`50 andG11`5G22`51. Solutions
with other aymptotic values of the axion-dilaton and modu
fields are related to this one by a particular SL(2,R)
(S-duality! and O~2,2! (T-duality of two-torus! transforma-
tions, respectively.

Regular solutions, i.e., solutions with event horizons, a
determined by choosing the four parametersP1,2,Q1,2 to be
positive:

P1.0, P2.0, Q1.0, Q2.0, ~43!

andq satisfying the following constraint:

Q1Q22q2.0, ~Q1Q22q2!P1P22
1
4q

2~P12P2!
2.0.

~44!

Regular solutions,16 i.e., those satisfying all the inequalitie
~43!,~44!, have an event horizon atr50 and a timelike sin-
gularity at negative r5r sing (2 min$P1 ,P2 ,Q1 ,Q2%
,r sing,0 for qÞ0 and r sing52min$P1 ,P2 ,Q1 ,Q2% for
q50), i.e., the global space-time is that of extreme Reissn
Nordström black holes. In the case when any of the char
combinations in~43!,~44! is zero, the singularity is null and
located atr50, i.e., the horizon and the singularity coincide
In the case of only one nonzero parameter in~43! the singu-
larity at r50 is naked. When at least one of the charg
combinations in~43!,~44! becomes negative the solutions ar
singular with a naked singularity atr.0.

However, we would like to emphasize that for smallr the
effective four-dimensional description breaks down and t
solution becomes effectively six-dimensional. Therefore t
nature of singularities should be readdressed from the po
of view of the six-dimensional string theory, using string
frame metric~cf. @39#!. For r>0, the regular solutions satis
fying ~43!,~44! are alwaysnonsingular. This is a reflection of
the regularity of the underlying six-dimensional conform
s model discussed in Sec. II.

In the following we shall concentrate on regular solution
The asymptotic value of the metric coefficientl ~39! is of
the form

l512
MADM

2r
1O~r22!, ~45!

where the ADM mass

MADM5Q11Q21P11P2 ~46!

16The space-time properties of regular solutions withq50 were
studied in Ref.@22#.
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does not depend onq. It saturates the Bogomol’nyi bound
@22,40# and corresponds to the BPS-saturated state that p
serves14 of the originalN54 target space supersymmetry.

Scalar fields~40!–~42! have the following asymptotic be-
havior

e2F8511
~P11P22Q12Q2!

2r
1O~r22!,

C5
q~P11P2!

r 2
1O~r23!, ~47!

G11511
~P22P1!

r
1O~r22!,

G22511
~Q12Q2!

r
1O~r22!, ~48!

G1252B125
q

r
1O~r22!. ~49!

Note that the dilaton and all the two-torus moduli have no
zero scalar charges, while the axion charge is zero.

The area of the event horizon, i.e.,A[4p(l21r 2) r50 , is

A54pF ~Q1Q22q2!P1P22
1

4
q2~P12P2!

2G1/2. ~50!

For qÞ0 the area is decreased compared to its value
q50.

At the horizon atr50 the axionC ~41! blows up while
the dilatonF8 ~40! and the moduli~42! are constant. Note
that unlike for pure electric or pure magnetic configuration
whereF8 grows either at small or at large distances, he
eF8 can be chosen to be small in the whole regionr>0.

The T-self-dual case withQ15Q25Q,P15P25P de-
serves a special discussion. In this case the moduliG11 and
G22 ~42! remain constant. Forq50 andQ5P it corresponds
to the extreme Reissner-Nordstro¨m-type dyonic black hole
with all scalar fields being constant@22,25#. In this case the
six-dimensionals model~5!,~27! takes a particularly simple
form discussed in@25#. ForQ5P the six-dimensional dila-
ton ~18! is constant, but ifqÞ0 the moduliG1252B12, and
thus also the four-dimensional dilatonF8, are no longer con-
stant. The area of the horizon in this case is given b
A54pPAQ22q2.
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IV. ALL BPS-SATURATED STATIC BLACK HOLE
SOLUTIONS OF HETEROTIC STRING COMPACTIFIED

ON A SIX-TORUS

The five-parameter solution obtained in Sec. III turns o
to be a generating solution forall static spherically-
symmetric BPS-saturated configurations of the fou
dimensional heterotic string compactified on a six-toru
These solutions can be obtained by applying a subset
T-duality @O~6,22!# andS-duality @SL(2,R)# transformations
to the generating solution. It should be noted, however, t
while the generating solution is described by an exact co
formal s model ~5!, ~6!, these more general BPS-saturate
backgrounds are guaranteed only to be solutions of
leading-order effective string equations. Indeed, in contr
to the T-duality transformations, theS-duality transforma-
tions do not, in general, map one conformals model into
another.

A. Effective four-dimensional action

The effective four-dimensional heterotic string compac
fied on a six-torus hasN54 supersymmetry. The bosonic
part of the leading term in the effective action has the fo
lowing form ~for a review see@41# and references therein!:

S5
1

16pGN
E d4xA2gFR~g!22]mF8]mF8

2
1

12
e24F8Hmnr8 H8mnr2

1

4
e22F8F mn

i ~LML ! i jF
jmn

1
1

8
Tr~]mML]mML !G . ~51!

The action ~51! depends on massless four-dimension
bosonic fields, which are determined in terms of the follow
ing dimensionally reduced ten-dimensional fields: Zehnbe
ÊM
A , dilaton F, two-form field BMN , and U~1! 16 gauge

fieldsAM
I (M ,N50, . . . ,9;I51, . . .,16). The ansatz for the

Zehnbein is of the form

ÊM
A 5S eF8em

a Am
~1!mem

a

0 em
a D ,

where Am
(1)m (m51, . . . ,6;m50, . . . ,3) are Kaluza-Klein

U~1! gauge fields, F85F2 1
2 lndetem

a is the four-
dimensional dilaton field, andgmn5em

aen
a is the Einstein

frame metric. Other components of 28 U~1! gauge fields
Am

i [(Am
(1)m ,Amm

(2) ,Am
(3)I) are defined as Amm

(2)[Bmm

1BmnAm
(1)n1 1

2am
I Am

(3)I , Am
(3)I[Am

I 2am
I Am

(1)m with the field
strengthsF mn

i 5]mAn
i 2]nAm

i . The two-form field with the

field strengthHmnr8 53(]@mBnr]1
1
2A@mLF nr] ) is equivalent

to a pseudoscalar~the axion! C through the duality transfor-
mationH8mnr5e4F8/A2g«mnrs]sC. A symmetric O~6,22!
matrixM of scalar~moduli! fields can be expressed in term
of the following O~6,22! matrix V @37#:
ut

r-
s.
of

hat
n-
d
the
ast

ti-

l-

al
-
in

s

M5VTV, V5S E21 E21C E21aT

0 E 0

0 a I16
D , ~52!

whereE[@em
a # ~the Sechsbein of the internal metricGmn),

C[@ 1
2Am

I An
I 1Bmn], anda[@Am

I #. V plays a role of a Viel-
bein in the O~6,22! target space.

The four-dimensional effective action is invariant unde
the O~6,22! transformations (T-duality! @37,41#:

M→VMVT, Am
i →V i jAm

j , gmn→gmn , S→S,
~53!

whereS[C1 ie22F8 andVPO~6,22! is an O~6,22! invari-
ant matrix,

VTLV5L, L5S 0 I 6 0

I 6 0 0

0 0 2I 16
D . ~54!

In addition, the corresponding equations of motion and B
anchi identities are invariant under the SL(2,R) transforma-
tions (S-duality! @41#:

S→
aS1b

cS1d
, M→M ,gmn→gmn ,

F mn
i →~cC1d!F mn

i 1ce22F8~ML ! i j F̃ mn
j , ~55!

where F̃ imn51/2A2g«mnrsF rs
i and a,b,c,dPR satisfy

ad2bc51. At the quantum level, the parameters of bot
T- andS-duality transformations become integer valued.

B. General class of dyonic solutions generated
by duality transformations

Static spherically-symmetric solutions corresponding
the effective action~51! are described by the ansatz~33! for
the four-dimensional space-time metric, the dilaton-axio
field S and the moduli fieldsM , which depend only on the
radial coordinater , and by 28 electric and 28 magnetic U~1!
gauge fields. The Maxwell’s equations and the Bianchi ide
tities determine the components of the U~1! field strength to
be

A2F tr
i 54GN

e2F8~r !l~r !

r 2
Mi j ~a j1Cb j !,

A2F uf
i 5Li jb jsinu, ~56!

which are expressed in terms of the conserved charge vec
aW andbW . The electric and magnetic charges

PW T[~Pm
~1! ;Pm

~2! ;PI
~3!!, QW T[~Qm

~1! ;Qm
~2! ;QI

~3!!, ~57!

are related to the charge vectorsaW andbW in the following
way @42#:

A2Qi5e2F 8̀Mi j `~a j1C`b j !, A2Pi5Li jb j , ~58!
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5628 53MIRJAM CVETIČ AND ARKADY A. TSEYTLIN
where the subscript̀ refers to the asymptotic (r→`) val-
ues of M and C and we have assumed tha

a852,GN5 1
8a8e2F 8̀ 5 1

4e
2F 8̀ .

The equations of motion are invariant under bothT- and
S-duality transformations. Therefore, one can generate n
supersymmetric solutions by applying O~6,22! and SL(2,R)
transformations to some known solution. This is th
technique17 @14,22,38# which was used previously to obtain a
general class of BPS-saturated backgrounds. In particu
starting with the four-parameter BPS-saturated solution o
finds @22# a general class of BPS-saturated black hole so
tions with 28 electric and 28 magnetic charges subject to o
constraint. Here we follow the same procedure to obtain
most general BPS-saturated solution starting with the fiv
parameter solution of Sec. III. We shall consider regular s
lutions with event horizons. In particular, we shall determin
the expression for the ADM mass formula and for the area
the event horizon for the most general BPS-saturated c
figuration in this class.

Without loss of generality one can bring@41# arbitrary
asymptotic values of the moduli and axion-dilaton fields
the form M`5I and S`5 i by performing the following
O~6,22! and SL(2,R) transformations:

M`→V̂M`V̂T5I , S`→~aS̀ 1b!/d5 i . ~59!

HereV̂PO~6,22!, ad51, and in quantized theory the charg
lattice vectors will belong to the new transformed lattic
Then the subsets of O~6,22! and SL(2,R) transformations
that preserve the above new asymptotic values ofM` and
S` are O~6!3O~22! and SO~2! transformations, respectively
Note that configurations obtained in that manner have
same four-dimensional space-time structure and thus
same singularity and thermal properties as the generating
lution. To find solutions with arbitrary asymptotic values o
M andS one has to undo the above transformations.

The four-dimensional black hole background correspon
ing to the solitonic string solution described in Secs. II an
III is parameterized by the two magneticP1

(1,2) and the four
electricQ2

(1,2) andQ1
(1)52Q1

(2)[q charges, i.e.,

QW T5~q,Q1,0, . . . ,0;2q,Q2,0, . . .,0;0,. . . ,0!,

PW T5~P1,0, . . . ,0;P2,0, . . .,0;0,. . . ,0!.

In Sec. III the asymptotic values of the moduli and th
dilaton-axion fields were already chosen to be of the for
M`5I , S`5 i . This background can now be used as a ge
erating solution for the most general set of solutions in th
class.

As a first step, one applies a subset of O~6!3O~22!
,O~6,22! transformations which correspond to SO~6!/SO~4!
transformations with 9 parameters and SO~22!/SO~20! trans-
formations with 41 parameters, which, along with 5 origin

17Analogous techniques, employing the symmetries of the effe
tive four-dimensional as well as three-dimensional action of t
(41n)-dimensional Abelian Kaluza-Klein theory were used@43# to
obtain all static spherically-symmetric black holes in that theory
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charges, give a configuration with 56~28 electricQW and 28
magneticPW ) charges subject to one constraint. After one ha
undone the transformation~59!, so thatM` andS` become
arbitrary, this constraint can be cast into the following
O~6,22! (T-duality! invariant form:

PW TM1QW 50, M6[LM`L6L. ~60!

The ADM mass~46! of the generating solution can be writ-
ten in the following O~6,22! invariant form:

MADM
2 5e24F 8̀ @~QW TM1QW !1/21~PW TM1PW !1/2#2. ~61!

The area of the event horizonA ~50! for the regular gener-
ating solution can also be cast in the O~6,22! invariant form:

A52pF ~PW TLPW !~QW TLQW !2
1

4
~PW TM2QW !2G1/2. ~62!

Using the charge constraint~60! one can replace the term
(PW TM2QW ) in ~62! by 2@PW T(LM`L)QW # and represent~62!
in the following SL(2,R) (S-duality! invariant form:

A52p@~PW TLPW !~QW TLQW !2~PW T~LM`L !QW !2#1/2. ~63!

The subsequent SO~2!,SL(2,R) transformation provides
one more parameter, which removes the charge constra
~60!. The most general configuration in this class has then 5
parameters specified byunconstrained28 electricQW and 28
magneticPW charges. This configuration thus corresponds t
the most general spherically-symmetric static BPS-saturat
black hole solution consistent with the no-hair theorem.

The SO~2!,SL(2,R) transformation allows one to write
the ADM mass formula in the following O~6,22! and
SL(2,R) invariant form@22,40#:

MADM
2 5e24F 8̀ $QW TM1QW 1PW TM1PW

12@~PW TM1PW !~QW TM1QW !2~PW TM1QW !2#1/2%.

~64!

Note that when the magnetic and electric charges are para
in the SO~6,22! sense, i.e.,PW }QW , the ADM mass~64! cor-
responds to the mass of the BPS-saturated black holes wh
preserve12 of N54 supersymmetry~see, e.g.,@41#!. In the
case when the magnetic and electric charges are not para
the mass is larger and the configurations preserve1

4 of
N54 supersymmetry.

The area of the event horizon~63! is already invariant
under the SL(2,R) transformations and thus remains of the
same form. The general expression for the area reduces
the special form when the charge configurations are co
strained. Regular configurations withPW }QW , i.e., BPS-
saturated states which preserve12 of N54 supersymmetry,
have zero area of the event horizon.

Another example is provided by the most general solu
tions with zeroaxion @22#. Those are backgrounds obtained
from the four-parameter generating solution withq50 by
applying a subset of O~6,22! transformations. They are
specified by 28 electric and 28 magnetic charges subject
two constraints:PW TM1QW 50 andPW TM2QW 50 @22#. Thus,

c-
he

.
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53 5629SOLITONIC STRINGS AND BPS SATURATED DYONIC BLACK HOLES
in this casePW T(LM`L)QW 50, and only the first term in the
expression~63! is present, as pointed out in@26#. In general,
the area of the event horizon isdecreasedby an additional
positive definite term which measures the orthogonality
the magnetic and electric charge vectors.

C. ADM mass and area of horizon
in terms of conserved charges

As the last step, we can express the ADM mass form
~64! and the area of the event horizon~63! in terms of the
conserved electricaW and magneticbW charge vectors, thus
allowing to study their dependence on the asymptotic valu
of the the axion-dilatonS` and moduliM` fields. SincePW

andQW are related to the conserved charge vectorsaW andbW
through~58!, the ADM mass formula~64! can be written as

MADM
2 5 1

2 ãWTm1ãW1 1
2e

24F 8̀ bW Tm1bW

1e22F 8̀ @~bW Tm1bW !~aW Tm1aW !2~bW Tm1aW !2#1/2,

~65!

whereãW[aW 1C`bW andm6[M`6L. Similarly, the area of
the event horizon~63! and thus the black hole entropy can b
represented as18

A5pe2F 8̀ @~bW TLbW !~aW TLaW !2~bW TLaW !2#1/2, S5
A

4GN
.

~66!

Both the ADM mass~65! and the entropy~66! can be cast
in themanifestly T- and S-duality invariant form as19

MADM
2 5~8GN!21$M`ab~vW

aTm1vW
b!

1@2LacLbd~vW
aTm1vW

b!~vW cTm1vW
d!#1/2%,

~67!

S5
A

4GN
5p@ 1

2LacLbd~vW
aTLvW b!~vW cTLvW d!#1/2.

~68!

HereM` is the asympotic value of the axion-dilaton matri
M, andL is the SL(2,R) invariant matrix.M andL are of
the following form:

M5e2F8S 1 C

C C21e24F8D , L5S 0 1

21 0D , ~69!

and the ~quantized! charge vector vW T5(vW 1 T,vW 2 T)
[(aW T,bW T). M andvW transform under the SL(2,R) transfor-
mationv5(b

d
a
c) (ad2bc51) as@41#

18The four-dimensional dilaton value at the event horizon

also a moduli- and coupling-independent quantity:e2F8(0)

5bW TLbW @(bW TLbW )(aW TLaW )2(bW TLaW )2#2
1
2.

19We would like to thank C. Hull for discussions on that point.
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M→vMvT, vW→LvLTvW . ~70!

An important observation is that while for fixed values of th
charge vectorsaW andbW the ADM mass~67! changes under
the variations of the moduli and string coupling,the entropy
remains the same as one moves in the moduli and coupl
space. The fact the entropy is an invariant quantity is con
sistent with the expectation that the internal structure of
BPS-saturated black hole should not change under variati
of moduli and couplings.

This invariance indicates@26# that the classical entropy
may have a statistical interpretation in terms of a number
degenerate black-hole configurations: being an integer suc
number would not change under adiabatic variations
moduli and axion-dilaton couplings. Indeed, the combinatio
of charges (bW TLbW )(aW TLaW )2(bW TLaW )2 which appears in~68!
is expected to be an~even! integer. Following@41#, one may
attempt to justify this by using the analogy with the leve
matching condition for the elementary BPS-saturated stri
states of toroidally compactified heterotic string and th
Dirac-Schwinger-Zwanziger-Witten~DSZW! @42# quantiza-
tion condition. In the case of the generating solution d
scribed by the conformal model discussed in Sec. II, t
quantization of charges is implied by the consideration of t
conformal theory corresponding to the throat region~cf. Sec.
II B !.

Note that the purely electric BPS-saturated black hol
preserve12 of N54 supersymmetry and have the same qua
tum numbers@8,9# as the elementary BPS-saturated strin

states with no excitations in the right sector (NR5 1
2 ). In the

electric case the quantized charge vectoraW is constrained to
lie on an even self-dual lattice with the norm@14#

aW TLaW 52NL22522,0,2,. . . . ~71!

The DSZW charge quantization condition then implies a
analogous constraint forbW TLbW .

The necessary conditions for a BPS-saturated configu
tion to be regular with a nonzero area of the event horiz
are

aW TLaW .0, bW TLbW .0, ~bW TLbW !~aW TLaW !2~bW TLaW !2.0.
~72!

The latter constraint becomes an equality for the BP
saturated configurations preserving12 of N54 supersymme-
try ~i.e., for quantized charges, whenaW }bW with magnetic
and electric charge vector components being coprime in
gers@41#!.

V. STRING ORIGIN
OF DYONIC BLACK HOLE ENTROPY

One of the motivations behind the above discussion of t
five-parameter dyonic static spherically-symmetric BPS
saturated black hole as a four-dimensional ‘‘image’’ of a
exact solitonic string solution in six dimensions is to try t
use information about the underlying conformal theory
order to give a statistical interpretation to the black hole e
tropy. The aim is to extend and amplify the recent interestin
proposal@26# along these lines which generalize an earlie
suggestion@14# ~see also@15#!. The discussion in@26# was
based on a subset of BPS-saturated dyonic black holes

is
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heterotic string on a six-torus, namely the most general c
figurations with zero axion. Those can be obtained
T-duality transformations on the four-parameter, i.e.,q50,
generating solution considered in@22,25#. The expressions
for the area and the entropy of these solutions correspon
a special case of~68! with bW TLaW 50. We expect that the
inclusion of the new parameterq should reveal certain more
general aspects of the relation between the entropy and
degeneracy of black hole states.

Just as in the case of purely electric BPS-saturated bl
holes whose entropy may be qualitatively understood as
ing a consequence of degeneracy of states originating fr
oscillations of the fundamental string@8,9#, one would like to
explain the entropy of the dyonic BPS-saturated black ho
in terms of degeneracy of states originating from small-sc
oscillations of the underlying six-dimensional string soliton

It was already emphasized in Sec. I that an importa
advantage of the dyonic black holes, studied in Secs. III a
IV, over the electric ones, considered in@14,16,8,9#, is that
the magnetic charges provide a short-distance ‘‘regulari
tion’’ of the metric and that the dilaton is approximatel
constant.20 As a result, one may hope to understand the s
tistical origin of the black hole entropy starting directly from
string theory and using only semiclassical considerations

A. Statistical entropy and magnetic renormalization ofa8

Let us consider the case when all the charges are la
and the magnetic chargesP1 ,P2 are approximately equal.
Since the value of the dilaton at ther50 horizon is
e2F05e2F`P2Q2

21 @cf. ~18!# to get a small value for the
string coupling in the horizon region one needs to assu
thatQ2 is also large. Then the expression for the thermod
namic black-hole entropy, proportional to the area of t
horizon ~50!, is of the form21

S5
A

4GN
'

p

GN
@P1P2~Q1Q22q2!#1/2. ~73!

One would like to relate the combination of charges in~73!
to the number of ‘‘microscopic’’ string configurations giving
rise to the same black hole solution at large distances. In
case of the fundamental string states of toroidally compac
fied heterotic string the combination of chargesQ1Q22q2

20The presence of the magnetic charges provides a ‘‘regulari
tion’’ making it unnecessary to resort to ‘‘stretched horizon’’ con
siderations used in the case of purely electric extreme black ho
@14,16#. There is a certain analogy between the present dyo
model and the conjectured modification~by world-sheeta8 correc-
tions! of the purely electric model@14#. Consideration of the
stretched horizon region corresponds effectively to a sh
r→r1Aa8 in ~part of! the metric. Analogous regularization of sin
gularities of the fundamental string and extreme electric black h
solutions was suggested in@12#. Turning on magnetic charges
P15P25P can be represented as a replacement of one of ther 2

factors in the metric by (r1P)2. Then ther50 region becomes
nonsingular provided all four charges (Qn ,Pn) are nonvanishing.
21The assumptionP1'P2 implies that the second term under th

square root in~50!,~68! can be neglected.
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would be related to the number of the left-moving strin
oscillation modesNL , i.e., (Q1Q22q2)' 1

4a8NL ~we as-

sume that both charges andNL are large and setGN5 1
8a8,

eF 8̀ 51). The key observation is that in the present case
horizon ~throat! region r→0 is actually described by the
SL(2,R)3SU~2! WZW-type model~20! with the level, i.e.,
the coefficient in front of the action,k54/a8P1P2 ~22!. For
largeP1P2 , the levelk is large and the spectrum of strin
excitations in this region should be approximately the sa
as in the flat space, but with therenormalizedstring tension
~in the ‘‘transverse’’ part of the action!

1

a8
→

1

a8*
5
P1P2

a8R1
2 5

P1P2

a82
, ~74!

where we have setR15Aa8. ThenQ1Q22q2' 1
4a8*NL ,

or, equivalently,

P1P2~Q1Q22q2!' 1
4a82NL . ~75!

At the same time, the value of the Newton’s constant
determined by the asymptoticr→` region and thus remains
unchanged, i.e.,GN5 1

8a8. As a result, the thermodynami
entropy~73! takes the form of the statistical entropy22

S5 lnd~NL!NL@1'4pANL. ~76!

This argument generalizes the one in@26# to the case of an
extra electric parameterq and also explains the ‘‘magnetic’
renormalization of the string tension@26# by direct consider-
ation of the underlying conformal model in the horizo
~throat! region.

It was also suggested in@26# that there may exist an in-
terpolating formula for the entropy which would be valid fo
arbitrary values of charges and would reproduce
stretched horizon entropy@14,16# in the limit of vanishing
magnetic charges. The idea was to use theS-duality for the
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-
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22The number of BPS states in the free heterotic string spect
with a given left-moving oscillator numberNL@1 is

d(NL)NL@1'aNL
nexp(2pA1

6ceffNL), where ceff5Dcrit22524. In

type II theoryceff5
3
2 (Dcrit22)512, however, there are both left

and right-moving BPS states in the free string spectrum. In cont
to the free string case, the number of BPS oscillation states cou
in our case should be the same in the heterotic and type II theo
Namely, the relevant marginal perturbations are only ‘‘le
moving,’’ not ‘‘right-moving,’’ i.e., the functions in the sigma-
model action can depend only onu, not onv to preserve the con-
formal invariance when bothF andK functions are nontrivial. This
is also related to the fact that the background is ‘‘chiral’’ and h
the same amount of space-time supersymmetry in both theories
therefore only ‘‘left-moving’’ perturbations will be supersymme
ric. As a result, one should expect that the entropy should be
same in heterotic and type II cases, in agreement with the fact
the corresponding black hole solution and thus also its thermo
namic entropy is the same in two theories. This suggests that
effective value of the productceffNL should be the same in the two
theories. How this actually happens for thes model describing the
horizon region remains to be understood.
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specific example of charge configurations, obtained from
generating solution withq50, and to conjecture that in gen
eral theP1P2 factor should be replaced byP1P21a8, so
that the renormalized string tension should be of the fo
1/a8*51/a8(111/a8P1P2). The ‘‘quantum’’ shift by a8
can be viewed as a modification of the purely electric mo
~where the area of the horizon atr50 is zero! corresponding
to the prescription of evaluation of the entropy at t
stretched horizon atr5Aa8. This proposal, however, doe
not seem to apply to the general class of solutions obtai
from the five-parameter generating solution withqÞ0. In
this case one gets a more general expression for the are
the event horizon~50!,~68! than the one assumed in@26#.23

The general quantum formula for the entropy, valid for lar
as well as small magnetic charges and thus interpolating
tween the classical general expression~68! and the one for
purely electric configurations evaluated at the stretched h

zon (A52pA2aW TLaW ) @14,16#, should involve a nontrivial
mixture of electric and magnetic charges.

B. Origin of degeneracy: More general ‘‘oscillating’’ solutions

The dyonic black hole is an approximate fou
dimensional description of the six-dimensional string solit
represented by the conformal model~5!. The origin of the
‘‘internal degrees of freedom’’ of the black hole or a dege
eracy of configurations with fixed values of global charg
which explains the statistical nature of its entropy, should
related to the existence of different six-dimensional stri
configurations which have the same structure at scales la
than compactification scale. Such solutions should be re
sented by marginal deformations of the soliton theory wh
do not change the values of the asymptotic black h
charges.

As in the case of purely electric BPS-saturated bla
holes described by the five dimensional fundamental str
solutions, one should look for more general conformal mo
els which include~left-moving! oscillations, e.g., in a com-
pact dimension@8,9#. Since these more general solutions e
plicitly depend on a compact internal coordinate, they can
represented as solutions of lower-dimensional theory w
massiveKaluza-Klein fields having nontrivial backgroun
values. At scales larger than the compactification scale th
backgrounds will have the same structure as the B
saturated black hole, but the degeneracy will be lifted on
one starts measuring external fields with resolution com
rable to the compactification scale@8#.

Like the oscillating versions of the fundamental string s
lution correspond to the excited~but still supersymmetric
BPS-saturated! states of the heterotic string with flat tran
verse space@10,9#, similar generalizations of the mode
~5!,~6! should represent the BPS-saturated excited state

23According to @26# the level matching condition should remai
essentially the same as in flat space, i.
a8NL54(Q1Q22q21•••), while the magnetic charges should e
ter through the modification of the string tension mentioned abo
This would imply that A'4pANL, NL5(114/a8P1P2)
3@114/a8(Q1Q22q2)#. The general expression for the are
~50!,~68! does not seem to be consistent with such a factorizati
the
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the string soliton with nontrivial transverse~‘‘magnetic’’!
space.

Remarkably, a class of supersymmetric generalisations
the soliton model~5!,~6! can be obtained in the same way a
in the fundamental string case, by allowing the functionsK
andAi in ~1! @e.g.,K andA in ~5!# to depend also onu.24 In
the case of the flat transverse space this corresponds to
generalised fundamental string solution with waves travelin
along the string as well as fluctuations in the compact an
noncompact flat spatial directions~see@8,9# and references
therein!.

Starting with the spherically-symmetric one-center mode
~15!,~16! the simplest possibility is to add au dependent, but
linear inxs term inK @note that the equation forK ~11! does
not depend on the functions of the transverse theory# and to
replace the constantsQ1 and q in K and A by arbitrary
functions ofu @there is no extra constraint since the term
]u¹ iA

i in the equation forK in ~2! vanishes in the
spherically-symmetric case#

K~u,x!511 f s~u!xs1
Q1~u!

r
,

A~u,x!5
q~u!@r1 1

2 ~P11P2!#

r ~r1P1!
. ~77!

HereQ1(u)5Q11Q̃1(u),q(u)5q1q̃(u).25

For simplicity, let us ignore oscillations in the noncom-
pact dimensions, i.e.,f s50. In the fundamental string case
(P15P250) one expects the ‘‘matching condition’’26

Q1~u!Q22q2~u!50, ~78!

which, after averaging in the compact coordinateu, can be
put in the form of the~classical! level matching condition for
the elementary string states27

n
e.,
n-
ve.

a
on.

24There exists, in principle, a possibility of including au depen-
dence also in the functionsGi j ,Bi j ,f in ~1! @i.e., in the functions
f ,k in ~6!# which define the transverse conformal theory. In thi
case one finds nontrivial second-order differential equations inu
@27# which should be satisfied byf (u,x),k(u,x). As a result, only a
special dependence onu may be allowed in the ‘‘magnetic’’ part of
the model.
25The asymptotic flatness of the background can be restored b

coordinate transformation@xs→xs2 f̃ s(u),]u
2 f̃ s; f s, etc.# as in

@8,9#. Note also that in general theu-dependent part ofK can be
traded for theAi-perturbation in~1! by making a redefinition of
v @6#.
26It can be imposed either by requiring that ther50 singularity of

the higher-dimensional background should be null@8# or by using
string source considerations@9# and T-duality ~see also the next
footnote!.
27This relation should already hold in the bosonic string case.

fact, Q1 plays the role of the momentum along the string. Sinc
Q1 andQ2 are interchanged byT-duality in u5y2 direction,Q2

should be an analogue of the winding number. Then their produ
should be proportional to the difference of the left-moving (NL) and
right-moving (NR) oscillation numbers. In heterotic string case
there are no classical oscillations in the right-moving sector, i.e
NR50.
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4

a8
~Q1Q22q2!5NL , NL[

4

a8
^q̃ 2~u!&. ~79!

Analogous level matching condition should exist for excite
states of the soliton theory with nonvanishingP1,2.

28 Since
now the horizon region is described by a well-defined co
formal theory, the constraint should be just the level matc
ing condition for the corresponding states of the generaliz
WZW-type theory ~20!. For example, replacingq in
~19!,~21! by a periodic function ofu5y2 , q→q1q̃(y2) cor-
responds to adding to~19! the perturbation@cf. ~20!,~21!#

2q̃~y2!] ỹ2@ ]̄y11P1~12cosu!]̄w#52P1q̃~y2!] ỹ2J̄3 .
~80!

It is marginal for anyq̃(y2) because of the presence of th
e2z]y2]̄t term in ~20!. By analogy with the fundamenta
string case we expect that for large levelk ~22! the corre-
sponding state in the soliton string spectrum should also s
isfy

28Although the higher-dimensional soliton background is nons
gular at r50 if Q1Q2P1P2Þ0 it may still be possible to derive
such a level matching condition from some geometrical consid
ations; cf.@26#.
d

n-
h-
ed

e
l

at-

k~Q1Q22q2!5
4

a8
P1P2~Q1Q22q2!;,q̃ 2~u!.;NL .

~81!

The main difference compared to~79! is again the renormal-
ization of the string tension byP1P2 , in agreement with the
suggestion in@26#. The relation~81! provides an interpreta-
tion of ~part of! the degeneracyNL in ~75! in terms of~clas-
sical! oscillations of the underlying soliton in the interna
y2 direction. Further study of marginal BPS-saturated pertu
bations of the soliton model is important for making th
statistical interpretation of the black hole entropy~73! more
quantitative.
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@22# M. Cvetič and D. Youm, Phys. Rev. D53, 584 ~1996!.
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@24# M. Cvetič and D. Youm,Proceedings of STRINGS 95: Future

Perspectives in String Theory~World Scientific, Singapore, in
press!.
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