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Geometric interpretation and classification of global solutions in generalized dilaton gravity
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Two-dimensional gravity with torsion is proved to be equivalent to special types of generalized 2D dilaton
gravity. For example, in one version, the dilaton field is shown to be expressible by the extra scalar curvature,
constructed for an independent Lorentz connection corresponding to a nontrivial torsion. Elimination of that
dilaton field yields an equivalent torsionless theory, nonpolynomial in curvature. These theories, although
locally equivalent, exhibit quite different global properties of the general solution. We discuss the example of
a (torsionless dilaton theory equivalent to th@?+ T? model. Each global solution of this model is shown to
split into a set of global solutions of generalized dilaton gravity. In contrast to the theory with torsion, the
equivalent dilaton one exhibits solutions which are asymptotically flat in special ranges of the parameters. In
the simplest case of ordinary dilaton gravity we clarify the well-known problem of removing the Schwarzschild
singularity by a field redefinition.S0556-282(96)06210-§

PACS numbsgs): 04.50:+h, 04.20.Jb

[. INTRODUCTION that a singularity resembling most closely the black hole in
d=4 has been the main motivation for the interest in dilaton
The renewed interest in two-dimensional gravity modelstheories. On the other hand, after coupling matter fields to
can be traced to the advent of string theoligs with the  the original dilaton black hole, so far the hopes have not
especially promising aspect to study dynamical models ofnaterialized that, e.g., the problem of the depletion of a
black holes. Generalized dilaton theorigd or equivalent black hole by Hawking radiation can be understood in more
theories with higher powers in curvature with the dilatonthan a semiclassical way, nor the even more fundamental
eliminated have enriched our knowledge about even morguestion of information los$7]. Thus, by extending the
complicated singularity structures. However, the commorrange of 2D models which are classically solvable and which
aspect of the latter generalizations, as well as of other, simsontain the Schwarzschild singularity among their global so-
pler models of 2D gravity3], is the fact that in most of these lutions, possibly — after introducing couplings to matter —
cases a physical or geometrical interpretation of particulasome new model may show advantages also in the quantum
models does not seem to be evident. On the other hand, @se.
corresponding interpretation obviously is present in theories Here, we only present the first step in such a program. We
quadratic in curvatur® and in torsionT [4]: Such a theory show how a theory quadratic in torsion and curvature may
resembles @noncompadt gauge theory with second order indeed be reformulated as an equivalent dilaton theory, first
field equations in the zweibeie‘; and the Lorentz connec- (Sec. I) by a suitable identification of the scalar curvature in
tion w?p, if the latter is considered as an independent variR?+T? theory with the dilaton field of generalized dilaton
able. The globally complete solutions of those by now well-theory. In this case the use of the field equation necessitates

studied models with torsiofi4,5] show a rich singularity & careful check of the admissibility of tHeonloca) trans-
structure[6]. formation involved. In Sec. Il we show this equivalence by

A common feature of all such models, though, — in the@ local method starting from a first order formalism for the
matterless case — is the large number of unphysical degreé¥+ T theory [5]. Here, the Lorentz connection is elimi-
of freedom. Therefore, the question arises whethefdtas- ~ Nated in favor of the torsion which turns into a nondynamical
sica) equivalence between generalized dilaton theories anfield variable. After the discussion of the general solution
higher derivative curvature mode[g] in the torsion-free  (Sec. IV) we present the classification in Sec. V. Essential
case may not even extend to theories with nonvanishing torsteps of the corresponding mathematical analysis are given
sion, thereby vyielding a geometric interpretation of certainin Sec. VI. The relation of the global solutions for the dilaton
dilaton theorieg7]. theory equivalent to thB2+ T2 model[4] we present in Sec.

This seems to be especially attractive in view of the factVIl. In the final Sec. VIII — beside a summary — also the

role of field redefinitions and the creation of the singularity
for the ordinary dilaton theory is discussed.
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constantsy, 8 and a cosmological constaft(e= deei) [4] T,T7*=(1-a)T,T*+aT,T* a=const. (10
e _, e In the first term of(10) the equation of motioi8) is used to
‘:%G=@R T g Tal teA. (1) express only one factdF, as a gradient of the scalar curva-

ture. We then integrate by parts and use the identity
The scalar curvatur® is constructed from an indepen-

dent zweibeire,?, «=0,1,a=0,1, and Lorentz connection 2V, T*=R-R,
Va where a tilde sign means that the corresponding quantities
our case the metrical connection entering the covariant de-
Fqwg— dgw,=— EEQBR, (2)  rivative and the scalar curvatyrare computed in terms of
the metric forvanishingtorsion only. In the second term of
~aB (10) Eq. (8) is used twice to arrive at a kinetic term for the

€*P= e, e f= _ ©) scalar curvature. In the resulting Lagrangian

e

1 ~ @ 1
Here,e,p=—€pa, €p1=1 is the totally antisymmetric tensor  ¥“= 8—(1— a)RR— S—Zag‘waaRaBRJr —aR?+A,
and€*? a corresponding tensor density. Greek indices de- B B

8B
note world tensors while Latin indices describe tensors trans- (1
forming under local Lorentz rotation. The zweibein simply \ve may now consider metric and scalar curvature as new

connects Greek indices with Latin ones and vice versa. Thgygependent variables. Varyind1) with respect to the sca-

torsion lar curvatureR and metric, one obtains new second order
equations of motion

T2 5= 0,65~ 9pel+ (w,eh— w4ed) e (4)
. . . . 1 —_ a~
is expressed in terms of zweibein and connection. Its trace —(1-a)R+ a_Va[yaR-{- aR=0, (12)
reads 2 B
T,=e.P(dze,°—d,e.°)+ w,e®, . 5 = a
v (78 g) T wne © (1-2)¥,7,R~ ad,R,R

Now, we may interpret the definition of the scalar curva-
ture (2) as an equation for the Lorentz connection. In two 1 o
dimensions the integrability conditions for these equations + 50ap| 589"RI, R+ aR?+8BA |=0. (13
are trivially satisfied. So the scalar curvature and metric 2 B
uniquely define a Lorentz connection up to a gradient of an

arbitrary scalar fieldy Although Lagrangian(11) was obtained from the La-

grangian of two-dimensional gravity with torsion, the result-
0, =0, F o, I,0°=0 (6) in_g model is, in gene_ral, inequivalent (i) for_ two reasons.

@ Than Tah o DL First, the transformation of Lorentz connection to scalar cur-
wherew? is the divergence-free solution ¢f) andy can be ~ Vature becal_Jse of E@2) is nonlocal and second, the equa-
readily identified with a local Lorentz rotation. This shows ions of motions were used. Nevertheless, both models can
that — at least locally — an arbitrary Lorentz connection canP® Shown to be equivalent far=—1 according to the fol-
always be parametrized by the scalar curvature and a LorentWing arguments. o
angle. Let us stress that this already happens at the kinematj- !t i proved easily that any zweibein and Lorentz connec-

cal level without using the equations of motion. tion §atisfying the equations of mc_)tion of two-dimensional
We now proceed to an alternative formulation of model9ravity with torsion[(8) and (9] satisfy also Eqs(12) and
(1) in terms of the metric (13)._ Metric and scalar curvature are uniquely determined by
zweibein and Lorentz connection. In fact, taking the trace of
gaﬁzeaaeﬁbnab, .= diag +—), (7) (9) and comparing it with Eq912) and (13), one finds that

Eq. (12) is satisfied if and only ia=—1. Then eliminating
and scalar curvatur®. To reformulate the model we start the torsion from(9) by means of Eq(8), one indeed gets Eq.
with the original equations of motion for zweibein and Lor- (13).
entz connection fronfl) The inverse statement thé8) and (9) follow from (12)

and (13) for a=—1, is more subtle. Equatioril2) for

1 1 __ S
—9,R+—=T,=0, © 2 1 can be rewritten in the form
2B a
s[RI\
lv T R2 TaTa Ao o \Y% ﬁ*‘;-ra =0.
; «a B+gaﬂ @_ 2u - — Y, ()

Its general solution
whereV , denotes the covariant derivative corresponding to
nontrivial torsion. The second term {f) now is divided into daR
two pieces, parametrized by a constant 2B
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depends on an arbitrary functian Here, we note that both (e_T++e+T‘>
14 14 (20)

Egs.(7) and(2) define zweibein and Lorentz connection up € ,0,=€""d, B, e,
to an arbitrary local Lorentz rotation entering a general so-
lution of Eqgs.(7) and(2) as two independent arbitrary func- Tne first term on the right-hand sid&HS) of (20) is pro-
tions. So without loss of generality, we may use one of thes‘f)ortional to a torsionless curvature
functions, sayy in (6) to seto=0. Then the Lorentz rotation
of zweibein and Lorentz connection must be performed si- Re
multaneously, and Eq8) indeed is the consequence(@p), %‘WaMaF -5 (21
and Eq.(9) immediately follows from(13).

In order to bring(11) into the familiar form of dilaton
gravity, we parametrize the scalar curvature by a dilaton fiel
¢ and rescale the metrio= £1)

here® is considered as a function of the zweibein and its
erivatives corresponding to a torsionless case. Inse(2itig
into (17), after shifting the derivatives in the second term of
(20) onto X exhibits the nondynamical nature &f which
may be “integrated out” by solving theialgebrai¢ equa-
jons of motion. At this point the identification
X=R/(2Be) immediately yields(11). With a definition of
the dilaton field similar tq14)

R=04pe 2?, g,5—0a8%% (14)

This transformation is clearly canonical and thus leads to th
equivalent generalized dilaton gravity described by the La
grangian

, ~ X
S =e 2 oR+ (4o +8ae 29)g*Pd,pdzd—2 S=e 2% X>0 (22

2
+Ae*]\~g. (15) N
and after reexpressing the factoes/e from the square
This coincides with the standard dilaton gravity Lagrangianbrackets of20) in terms of the inverse zweibeins combining
[1] if o=+1, 28=—4\%,A=0,a=0. By leaving the sign them intog*’=e*“e #+e*Pe , the Lagrangian/!) is
o in (15) open we are able to cover both regidRs-0 and found to be equivalent to

R<0 for a fixed sign of3. -
gn off Y@= gl e 2R+ 8a-e 44gH(9,6)(9,0)
IIl. LOCAL EQUIVALENCE —V(2e 2%%)]. (23

Instead of eliminating théindependentLorentz connec- ; : .
tion by the nonlocal transformation defined by E®), its ;li—(r)]r? Ei?%;% :/éjllellng(taydlscussed beloyef. (41)]. In addi

components may also be solvalgiebraicallyin terms of the
two independent components of the torsion represented by quV:eZqogl“”

the Hodge dual of4). In the definition
V=9R=\—0R—23,[V—08§"P94e], (24)

which also represents a local transformation, allows one to
we introduce light cone coordinat@s = 1/y2 (T°<T%) in  write down the most general dilaton theory equivaleniio
the Lorentz indices. Note that here we just retafft, as R
defined in(3). Equation(1) is equivalent to the first order SO = [—g[—e PR+ 43P (d,p) (€ 24dze

action with Lagrangian
grang + 200" 9,) — e?PV(2072%)]. (25)

T =(d,*w,)e, e (16)

7

FO=XTT +X T+ X(*9,0,)—e(aX X +V), . . . .
(e"0,0,) ~e(a )(17) The choicep= ¢ immediately yields the case of=—1 of

(15), while for ¢=—¢

where = o
SV =—/-ge " 2[R+4(1-2ae 2?)(V¢)?
V= §X2_A' (18) +V(Ze_2¢)], (26)
the deviation from ordinary dilaton theoryr&0, V=4\2)
The equations of motion faX andX* are is most obvious. Of course, the dilaton field may be elimi-
nated altogether as well, if i(R5) (for constanta)
R
eBX= X eaX*=T* (19 aX
p=0(P)= ae_2¢=7 (27)

and thereforeX and X* are proportional to curvature and . )
torsion for B#0 and «#0. It should be noticed that the IS chosen. In that case it seems more useful to retain the
subsequent steps hold for gene¥a:V(X), i.e., a theory VariableX instead of¢:
guadratic in torsion but with arbitrary powers in curvature. N
Now, instead ofw, the T* in (16) are introduced as new A5) _ = aX

L um PO = ——g| =+ .
variables: 9 2 eTV(X) (28)
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Comparing(28) to a torsionless theor{l7) with =0 but  with a positive value forg, e.g., +2. All global solutions
modifiedV, the difference now just resides in the additionalwith nonconstant curvature are most easily obtained by the
exponential e* [13]. It should be mentioned that the known general solutio5] of the equations of motion of
“equivalence” shown in this and the preceeding section is(17) for the zweibeine? (X #0) in an arbitrary gauge

purely classical and even there only true locally. The global

(classical inequivalence will be addressed in the following e =X"edf, (3D
section. We will show there in examples how one global

solution of 2D gravity with torsion decouples into two or e‘=d—X+X‘e“de (32)
more global solutions of the “equivalent” generalized dila- X" ’

ton model.

Of course, at the quantum level questions like the influ-Wheref, X, and X™ are arbitrary functions except for the
ence of the Jacobian appearing as a consequence of the fgquirement thadf anddX define a basis for one forms. The
definition of fields will play a role. Such considerations re- line element from31) and(32) reads

main outside the scope of our present work. (ds)?=2e* e~ =2e**df® (dX+ X' X e™df). (33)

IV. GENERAL SOLUTION As shown in[4], the Lagrangian in all such models gives rise
OF GENERALIZED DILATON GRAVITY to an absolutely conserved quantity
The study of global properties for 2D theories is based C=X"X"e™4+w(X), (34)

upon the extension of the solution which is known at first

only in local patches, continued maximally to global ones. X

The analysis uses null directions which become the coordi- W(X)=J V(y)e™dy, (35)
nates of Penrose diagrams which are sewed together appro- %o

priately. The continuation across horizons and the determiyhere the lower limitX, = const clearly has to be determined
nation of singularities can be based upon extremals Opppropriately so thatinside a certain patgtthe integral ex-
geodesics. The physical interpretation of an extremal is thgsis for a certain range oK. C can be used to eliminate
interaction of the space—time manifold with a pointlike testy+y- i, (33). Using (30) and defining coordinates
particle, “feeling” the metricg,z through the Christoffel , _ _ 45 u=¢ vields the line element of the generalized
symbol [9]. After torsion has been eliminated, there is no gjjaton Lagrangiar(29)

ambiguity for our analysis which only has extremals at its

disposal. That interaction with extremals, however, crucially (ds)?=e?(ds)*=g(u)[2dvdu+I(u)dv?®] (36
depends on the choice of the “physical” metric to be used:

the one computed from the, of (1), or anyg,,; which is a with

result of different field transformations involving the dilaton ou

—4u —-2u

field? Clearly, the torsionless dilaton theot®3) has the I(u):e_[c_g(u)(% _462 +C, } (37)

same metric asl), e.g., the global analysis ¢6] applies 8 o a

directly and the different types of solutions are exhausted by o

those studied if6]. guy=e?* ", (38)
However, from the point of view of a “true” dilaton 5

theory, one could argue that with a redefined metric as in Coe 2 n 4L (39)

(26), 0,5=€°?9,5=20,5/X has some physical justification B o

as well. In fact, for Witten's black holg, is flat and the ) ) S )

interesting(black holé singularity structure just results from Which automatically implies the convention for the constant
the factor 2X. Now, in the originalR2+ T2 theory[6], there  Of integration in(35) to be used in the following.

are solutions(G3) resembling, e.g., the black hole but not Note that transformatio(22) is defined only for positive
completely: Their singularity resides at lightlike lines and X while the original model contains arbitrary valuesofTo
they are not asymptotically flat in the Schwarzschild sensecover the negative case one would have to rep{d@eby
Thus, the factor 2 may well yield improvements on that X

situation. . _ _ —=—e"2¢ Xx<0. (40)
Here we shall analyze a generalized dilaton gravity 2
Z=\=ge 2[R+ 4(1—2ae 2% (V$)2+2B8e *¢+4\2]  Since the metri¢36) is invariant under
(29) e—2u_)_e—2u, a——a, C—-—-C, (41)

hich is obtained from{(17) by taki . .
which is obtained from(17) by taking one may consider the line elemg®6) for «>0 anda<0

X=2e"2%, g,,=0,6 2% A=-4\2 (30) tocoverallpatches of the originR?+ T2 theory whereX is
positive and negative.
and omitting an overall minus sign. We need to consider In the metric of the form
only the cases foB = positive, negative, or 0. The absolute
value of a nonvanishing may always be absorbed by res- g :g(u)(o 1 )
y72% ’

42
caling X and w to X— /| B|X andw— w/|B]. Let us start 1 1(u) 42
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the Killing direction is d/dv and the norm of the Killing

vector
e[y

becomesg(u)l(u). By a redefinition of the variable: it
would be easy to redudd?2) to the standard light cone gauge
with g=1, used, e.g., in the second RES]. However, be-
cause ofg(u) >0 (except atu—x), the horizons are deter-
mined by the zeros df(u) only. Therefore, we have found it
technically easier to retai@®2).

The conformal gaugeds)?=F(u)dt’'dv ' in (42) is ob-
tained by “straightening” the null extremals

0
1

v =const, (43
W 2 foralluwith 1(u) £ 0 44
WwoT or all u with [(u) #0, (44)
u=ug=const forl(uy)=0, (45)
by means of a diffeomorphism

u’'=v+f(u), v'=v, (46)

2dy
f(uw=| - (47)

A subsequent ong’ —tarv’ and another appropriately cho-
sen one foi’ produce the Penrose diagram. It is valid for a
certain patch wher@l4) is well defined. Clearly, the shape of
those diagrams depends crucially on thember and kind
of) zeros and on the asymptotic behavior ().

V. CLASSIFICATION OF GLOBAL SOLUTIONS
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(lambda)*2

FIG. 1. Range of solutions fax>0.

a<0, pB>0:

D17: C>C,, C=0,

D2°: C>C,, C<O0,

D3": C=C, C=0,

D3, : C=C,, C<0, A\2=0,

D4™: C=C,, C<0, A?<0,

D1, : C<C,, C<Cy,

D57: C<(C,, C=(Cqy,

D6 : C<C, C>C,, C<O0,

D2, : C<C, C>C,, C=0, (50

The analysis of all possible cases as described by the
ranges of parameters, 3,C, and\? is straightforward but Wwith the indexr indicating a rotation by 90°. The classifica-
tedious. We shall first give the classification of all globaltion Dn™ denotes the Penrose diagrams for generalized dila-
solutions. Comments on the construction of Penrose diaton gravity. Figures 1 and 2 show their range of parameters
grams will be presented in the next section. Apart fromand in Figs. 3 and 4 the corresponding Penrose diagrams are
Cy, defined in(38), also depicted. These cases for nonzerare locally equivalent to
R2+ T2 gravity defined by the actiond) and(17).

The limit «=0 — corresponding to ordinary dilaton grav-
ity with an additional potentiaBe*? — is defined only for
the action in first order fornl7). It is equivalent ta(higher
plays a role fora#0 and\?<0, discriminating the possible derivative R? gravity without torsion, whose global solu-
cases with two zeros, with one double zero and without zerdions are analyzed in the second Ref.[6f. To obtain the
inl, i.e., the presence of two nondegenerate or one degeneastassification of the global solutions for the locally equiva-
ate Killing horizon. The qualitatively distinct cases for lent dilaton theory we us€83) and(34) with «=0 and again
a>0 anda<0 are listed in(49) and (50): B=2 to get the line element

2

1
zezw?(__z J=22
a o

Cy

(48)

a>0, p>0:
D1*: C>C . c e ™
: 0 (ds)?=2dudy +e?! g—hze*”—— dv?. (51
D2": C=C,, \?<0,
+. _ 2
D37 C=Co, A"=0, In terms of
D4": C<C,, C>C;, \2<0,
D5+: C<C0, C:C]_, 7\2<0, 0 16 21372
D6*: C<C, C<Cy, (49) Ci=— 5 V5 (52
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{lambda)*2

FIG. 4. Penrose diagrams far<0. Conventions as above.

A sign change of3 to — B together with sign changes of
C and\?, followed bydv — —dv, produces the same global
solutions except that timelike and spacelike directions are
reversed §s’>— —ds?). Since all possible signs foE and
A2 were considered above, we obtain the solutions for nega-
tive B's simply by rotating the diagrams by 90° and keeping
the sign changes of and\? in mind.

Next, we consider the teleparallel limit dfL7) corre-
sponding toB=0. In this limit the curvature is equal to zero

FIG. 2. Range of solutions far<<0.

qualitatively this yields exactly the same cases asdafor0
for the following conditions on the parameters:

FIG. 3. Penrose diagrams far>0. Thick lines indicate an in-

a=0, pB>0: and one ha3? gravity[12]. We still obtain the line element
D1*: C>0. of (36) with a simplified
D2": C=0, a\’<0, e pye- 20N
D3*: C=0, \=0, '=glce 7) 4
D4™: c<0, C>C, The Penrose diagrams for the corresponding global solu-
D5 C<0, C=CY, tions have already been obtained in the above cases. Here,
D6": C<0, C <C‘f. (53) Erg)ei Caiemr\gllzi;u)e:d to the following ranges of parameters
a#0, B=0:
- N D6, : D>0, A\?<0,
Lo D17: D>0, A\?=0,
- D1*: D>0, A%>0,
D1 : D<0, %<0,
_ D1, : D<0, A\?=0,
R D6%: D<0, \2>0,
D3": D=0, A\%>0,
D3 : D=0, A0,
D17: D>0, C=0,
D27: D>0, C<Q0,
- D2, : D<0, C>0,
— D1, : D<O0, C=0,
D37: D=0, \’<O0,
D3 : D=0, A\*>0. (55

complete singular boundanR{). Thin lines show(completg

boundaries with finite or vanishing curvature; inside the diagramslhe case\=0, C=0 yields just the conformally flat case.
they correspond to lines of constant curvature. Dots represent com- The last caser= =0 of (30) describes ordinary dilaton
plete corners and Killing horizons are drawn as dashed lines.  gravity. Its general solution is
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u=+o0

axis Il axis I

FIG. 5. Different types of so-

lutions forD2™.
axis I+1I s

=1

=l

(ds)?=2dudp +e?¥(Ce?"—\?)dv? (56) to be reached by any extremal is complete. Using the con-
servation law for a metric of typé42) from its Killing di-
and contains three types of global solutions: rection
a=pB=0:
+. 2 du dv
D27 €>0, A">0, gd—+gld—:\/ﬂ=const, (59)
D2/ : C<0, %<0, T T
D3*: C>0, \?<0, N , : .
N 5 and identifying the affine parametdr with theds in (36),
D3, : C<0, A==0, (57)  these extremals are found to obey
and flat space-time fo€=0.
b Iis(1-igia)-1 60
VI. CONSTRUCTION OF PENROSE DIAGRAMS du | [1+( 9/A) ] (60

For each set of the parameters as summarizen
(50), (53), (55), and(57), the global solution is obtained by by simply solving a quadratic equation. In addition, from
gluing (wherever necessarysolutions of the line element (59) and(60) the affine parameter is determined by
(36), which as a rule defines only a local solution. Another
local solution in conformal coordinates is obtained by inter-

-1/2
changing the role of the null directions. The transformation S(u)= qudyg( 1— I%) ) (61)
_ JA
u’=u,
- (58 . .
0" =—f(u)—w, For A>0, resp.A<0 the parametes is a timelike, resp.

spacelike quantity. Extremals along the null directif()
with f(u) from (44) may be easily verified to do this job. and (44)] are contained as the special case-> in (60),
The situation may be visualized best in a specific examplewith (61) replaced by similar relation without the square-root
say,D2* [10] as shown in Fig. 5. Equatior{§8) essentially terms. In addition to(59), (60), and (61), the equation for
correspond to a reflection of the diagram with respect to axtremals is satisfied by the horizo@5) and by degenerate
axis orthogonal to the lines=const, i.e., transversal to the extremals[see(63) below] for which Ig=A and therefore
Killing directions u=const. In Fig. 5 this leads frorte) to ~ (61) does not hold. Clearly, the additional condition
(b), resp.(c). Further solutions are obtained by simple reflec-1’(up) =0 identifies double zero&egenerate Killing hori-
tions in the {i1,7) coordinates. Now, those patches may bezons as, e.g., inD5". Incompleteness of the lines
glued together along certain parts of their boundaries bylo=const for single zeros at one end is established easily. A
identifying either the triangle or the square. For that purposdine at a double zero as iD5~ instead has incomplete end
the completeness of all extremals at these edges must Ipoints. From considering the extremals for finite: 0, in all
analyzed by checking whether there is at least one extremahses the edges with= *%« are found to be incomplete,
reaching a certain boundafyr corner of a boundajyat a  exceptfor C=C, (cf., e.g., our exampl®2* or C=0 in
finite value of the affine parameter. By definition, a point notD2°) where foru— +, the boundary is complete. We re-
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mark that the completeness of null and non-null extremalsntroduced separately for positive and negat.ethe Pen-
differs on some boundaries. For example, atrose diagranG3 is split by the linesX=0, where the con-
u——o, a>0 null extremals are complete while non-null formal transformation i(30) becomes singular. The result-
extremals are incomplete. Contrary to this situation, the coming diagrams directly turn into the global solutions of
pleteness of all types of extremals is the sameRfa+ T? generalized dilaton gravity. It should be noted that in the
theory. It can be shown that this difference is because of th&?+ T? theory all non-null boundaries can be straightened by
conformal rescaling of the metri@4). a suitable choice of coordinates, while in generalized dilaton

Except for the case®2*, D3*, D3, , D4~ (where gravity some boundaries cannot be straightened without af-
R—0 for u—+®), the scalar curvature diverges at fecting other boundaries. For example, in the square diagram
u— *o which can be seen directly evaluating D1* or in the “eye”-diagramD6™ a redefinition of the

coordinates cannot straighten all boundaries simultaneously,
1 g,ﬁ whereas this is possible in the diagré&2~. This phenom-
R= 7 El ~Goud —Guulu= 9l uu (620 enon has been observed beféce the second Ref. di6]).

It is also important that the conformal transformation of
and using(37). Thus, all singular boundaries are incompletethe metric@a[;:Zgw/X changes the character of the bound-
while the boundaries with zero curvature are always comaries. The boundaryX=0(u— +«) becomes singular
plete. This means that generalized dilaton gravity includesR(g)—c, and remains incomplete fa€# C,, while for
asymptotically flat solutions, something not encountered iC=C, it becomes complete and asymptotically flat

the originalR?+ T2 theory. R(§)—0. The boundarieX— = remain singular but al-
Special consideration require the corners of a boundaryays become incomplete.
formed by lines with bothu= + or bothu= —c. For ex- In Fig. 6(d) the “black hole” solutionD2* emerges. It

ample, in Fig. 5 the lower right one can only be reached byjjystrates how the diagrafG11 that had to be continued in
extremals(59) with (61) whenA=0. Actually, forD2* that  the plane splits into the diagrar®2* andD4~ which can-
point is complete — just as the adjoining lines-+%. In  not be continued. The decomposition in the case of ordinary
some diagrams such corners are formed by linest~ and  djlaton gravity is shown in Fig. 7. ModélL7) for a= =0

u= —co, both singular in curvature. These corners are essehas a unique global solution which is flat Minkowskian
tial singularities and can only be reached by degenerate expace-time represented by a rhombic Penrose diagram. Per-
tremals, which are parallel to theaxis and go through those forming the conformal transformation yields a singular met-

points where ric and curvature at the lines of vanishiXg thereby produc-
ing three global solutions of the dilaton modeD2*
J(lg) -0 (63) represents the famous black hole solutjdh whose singu-
Uy, larity is reached by timelike extremals for a finite value of

the affine parameter. The completeness of the other extrem-
is satisfied. The existence and number of such extremals déls is the same as in the above cases. The origial T2
pends on the values of the parameters. They are always cortifeory contains one solution resembling the “real”
plete and so are the corresponding cornerg68 has no  Schwarzschild black hole only in a very approximate sense.
solution then the corner is not reached by any extremal antis solutionG3 exhibits anincomplete singularity, but into
thus is complete by definition. In Figs. 3 and 4 these pointgwull directions, the “asymptotically flat” direction is re-
are indicated by full dots. With these tools, patches as in Figplaced by a singularity of the curvature, albeit at an infinite
5 may now be glued together. F&2* this leads to the distance(complete case In the present dilaton theory, pre-
well—-known shape of the “classical” black hole in the cor- cisely the exampléd2*, whose derivation fronG11 was
responding global solution drawn in Fig. 3. A full line in this discussed more explicitly above, is Schwarzschild—like.
diagram — as in the others — represents(mtomplete¢  Other solutions with similar properties, but more compli-
singularity of the curvature ati=+«, a thin line at the cated singularity structure a3~ (naked singularitigsand
external boundary denotes a complete asymptotically flab4~. On the other hand, the “eye” diagram6™ appears
space-time which may occur at=+« only. Internal lines here, as well as the square diagrads” of R? gravity [6].
indicateu=const, with a broken line for a Killing horizon. D4~ represents an interesting variety of a manifold where
Arrows indicate directions into which one should imaginethe ordinary black hole is replaced by a “light”-like singu-
periodic continuation. larity.

VIl. COMPARISON OF THE MODELS VIll. SUMMARY AND OUTLOOK

It seems instructive to compare our present global struc- By showing explicitly the local equivalence of certain
ture to the one studied for other theories. The basic observdtorsionless dilaton theories with a 2D theory quadratic in
tion is that each global solution of the origirRf+ T2 theory  curvature and torsion, a certain class of such generalizations
naturally splits into a set of global solutions in generalizedof the original Witten model has now been found to acquire
dilaton gravity. As a generic example we show in Fig@)6  a better geometric foundation. At the same time, however,
6(b), and Gc) the three different ways of splitting of the we observe that local equivalence does not guarantee the
diagramG3 (in the notation ofl6]) where the separation is equivalence of global solutions. Indeed, we have shown in
determined solely by the value of the constants. The Penroge/o generic examples how one global solution of 2D gravity
diagramG3 covers all values oX. Since the dilaton field is  with torsion splits into a set of global solutions of general-
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(@)
(b)

FIG. 6. Examples of the split-
ting of the R>+ T? diagrams into
the diagrams of generalized dila-
ton theory. The double lines indi-
cate complete singular boundaries

© and thick dashed lines correspond

to X=0. (a), (b), and(c) show dif-
ferent splittings of the same dia-
gram G3 foran?>0 which depend
on the parameters as follow&)
aCp<aC, (b) C=Cy, (0
0<aC<aCqy. (d) occurs for
A2<0, aC=aCy>0 and dem-
onstrates the appearance of the
black hole solutionD2* in the
generalized dilaton theory.

D2~

G11 D4~

ized dilaton gravity. This separation occurs along linestion, resembling the 4D case, is retained. Since the complete
X=0 where the conformal transformation of the metric classical solution is known in all cases, the range of models
@aﬁ=29aﬂlx becomes singuldr4]. thus has been extended considerably for which in a next step
We find that in the equivalent dilaton theories one of thequantum effects can be studied, after interactions with matter
main advantages of the original “minimal” dilaton theory have been added. Of course, we encounter here once more
[1], the presence of an asymptotically flat black hole soluthe problem, familiar from Brans-Dicke-Jordan-type theories

FIG. 7. Splitting of
Minkowskian space-timeM into
the black hole of ordinary dilaton
gravity. The thin lines in the left

D2+ diagram are the lines of=const
and especially the thick dashed
line denotesX= 0 along which the
splitting occurs.
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