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Geometric interpretation and classification of global solutions in generalized dilaton gravity

M. O. Katanaev*

Erwin Schrödinger International Institute for Mathematical Physics, Pasteurgasse 6/7, A-1090 Wien, Austria

W. Kummer† and H. Liebl‡

Institut für Theoretische Physik, Technische Universita¨t Wien, Wiedener Hauptstrasse 8–10, A-1040 Wien, Austria
~Received 3 November 1995!

Two-dimensional gravity with torsion is proved to be equivalent to special types of generalized 2D dilaton
gravity. For example, in one version, the dilaton field is shown to be expressible by the extra scalar curvature,
constructed for an independent Lorentz connection corresponding to a nontrivial torsion. Elimination of that
dilaton field yields an equivalent torsionless theory, nonpolynomial in curvature. These theories, although
locally equivalent, exhibit quite different global properties of the general solution. We discuss the example of
a ~torsionless! dilaton theory equivalent to theR21T2 model. Each global solution of this model is shown to
split into a set of global solutions of generalized dilaton gravity. In contrast to the theory with torsion, the
equivalent dilaton one exhibits solutions which are asymptotically flat in special ranges of the parameters. In
the simplest case of ordinary dilaton gravity we clarify the well-known problem of removing the Schwarzschild
singularity by a field redefinition.@S0556-2821~96!06210-8#
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I. INTRODUCTION

The renewed interest in two-dimensional gravity mode
can be traced to the advent of string theories@1# with the
especially promising aspect to study dynamical models
black holes. Generalized dilaton theories@2# or equivalent
theories with higher powers in curvature with the dilato
eliminated have enriched our knowledge about even m
complicated singularity structures. However, the comm
aspect of the latter generalizations, as well as of other, s
pler models of 2D gravity@3#, is the fact that in most of these
cases a physical or geometrical interpretation of particu
models does not seem to be evident. On the other han
corresponding interpretation obviously is present in theor
quadratic in curvatureR and in torsionT @4#: Such a theory
resembles a~noncompact! gauge theory with second orde
field equations in the zweibeinem

a and the Lorentz connec-
tion vm

a
b , if the latter is considered as an independent va

able. The globally complete solutions of those by now we
studied models with torsion@4,5# show a rich singularity
structure@6#.

A common feature of all such models, though, — in th
matterless case — is the large number of unphysical degr
of freedom. Therefore, the question arises whether the~clas-
sical! equivalence between generalized dilaton theories a
higher derivative curvature models@2# in the torsion-free
case may not even extend to theories with nonvanishing t
sion, thereby yielding a geometric interpretation of certa
dilaton theories@7#.

This seems to be especially attractive in view of the fa
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that a singularity resembling most closely the black hole
d54 has been the main motivation for the interest in dilato
theories. On the other hand, after coupling matter fields
the original dilaton black hole, so far the hopes have n
materialized that, e.g., the problem of the depletion of
black hole by Hawking radiation can be understood in mo
than a semiclassical way, nor the even more fundamen
question of information loss@7#. Thus, by extending the
range of 2D models which are classically solvable and whi
contain the Schwarzschild singularity among their global s
lutions, possibly — after introducing couplings to matter —
some new model may show advantages also in the quan
case.

Here, we only present the first step in such a program. W
show how a theory quadratic in torsion and curvature m
indeed be reformulated as an equivalent dilaton theory, fi
~Sec. II! by a suitable identification of the scalar curvature i
R21T2 theory with the dilaton field of generalized dilaton
theory. In this case the use of the field equation necessita
a careful check of the admissibility of the~nonlocal! trans-
formation involved. In Sec. III we show this equivalence b
a local method starting from a first order formalism for the
R21T2 theory @5#. Here, the Lorentz connection is elimi-
nated in favor of the torsion which turns into a nondynamic
field variable. After the discussion of the general solutio
~Sec. IV! we present the classification in Sec. V. Essenti
steps of the corresponding mathematical analysis are giv
in Sec. VI. The relation of the global solutions for the dilato
theory equivalent to theR21T2 model@4# we present in Sec.
VII. In the final Sec. VIII — beside a summary — also the
role of field redefinitions and the creation of the singularit
for the ordinary dilaton theory is discussed.

II. NONLOCAL EQUIVALENCE

The basis of our considerations is the Lagrangian of tw
dimensional gravity with torsion, containing two coupling

ov
ss:
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constantsa,b and a cosmological constantL (e5detem
a ) @4#

LG5
e

8b
R22

e

2a
TaT

a1eL. ~1!

The scalar curvatureR is constructed from an indepen
dent zweibeinea

a , a50,1, a50,1, and Lorentz connection
va

]avb2]bva52
1

2
eabR, ~2!

eab5eabea
aeb

b5
2 ẽab

e
. ~3!

Here,eab52eba , e0151 is the totally antisymmetric tensor
and ẽab a corresponding tensor density. Greek indices d
note world tensors while Latin indices describe tensors tra
forming under local Lorentz rotation. The zweibein simp
connects Greek indices with Latin ones and vice versa. T
torsion

Tab
a 5]aeb

a2]bea
a1~vaeb

b2vbea
b !eb

a ~4!

is expressed in terms of zweibein and connection. Its tra
reads

Ta5eb
b~]bea

b2]aeb
b!1vbe

b
a . ~5!

Now, we may interpret the definition of the scalar curv
ture ~2! as an equation for the Lorentz connection. In tw
dimensions the integrability conditions for these equatio
are trivially satisfied. So the scalar curvature and met
uniquely define a Lorentz connection up to a gradient of
arbitrary scalar fieldc

va5v'a1]ac, ]av'
a50, ~6!

wherev'
a is the divergence-free solution of~2! andc can be

readily identified with a local Lorentz rotation. This show
that — at least locally — an arbitrary Lorentz connection ca
always be parametrized by the scalar curvature and a Lore
angle. Let us stress that this already happens at the kinem
cal level without using the equations of motion.

We now proceed to an alternative formulation of mod
~1! in terms of the metric

gab5ea
aeb

bhab , hab5 diag~12 !, ~7!

and scalar curvatureR. To reformulate the model we star
with the original equations of motion for zweibein and Lo
entz connection from~1!

1

2b
]aR1

1

a
Ta50, ~8!

1

a
¹aTb1gabS R2

8b
2
TaT

a

2a
2L D50, ~9!

where¹a denotes the covariant derivative corresponding
nontrivial torsion. The second term in~1! now is divided into
two pieces, parametrized by a constanta
-
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TaT
a5~12a!TaT

a1aTaT
a, a5const. ~10!

In the first term of~10! the equation of motion~8! is used to
express only one factorTa as a gradient of the scalar curva
ture. We then integrate by parts and use the identity

2¹̃aT
a5R̃2R,

where a tilde sign means that the corresponding quantities~in
our case the metrical connection entering the covariant d
rivative and the scalar curvature! are computed in terms of
the metric forvanishingtorsion only. In the second term of
~10! Eq. ~8! is used twice to arrive at a kinetic term for the
scalar curvature. In the resulting Lagrangian

L5
1

8b
~12a!R̃R2

a

8b2ag
ab]aR]bR1

1

8b
aR21L,

~11!

we may now consider metric and scalar curvature as n
independent variables. Varying~11! with respect to the sca-
lar curvatureR and metric, one obtains new second orde
equations of motion

1

2
~12a!R̃1

aa

b
¹̃a]aR1aR50, ~12!

~12a!¹̃a]bR2
a

b
a]aR]bR

1
1

2
gabS a

b
a]gR]gR1aR218bL D50. ~13!

Although Lagrangian~11! was obtained from the La-
grangian of two-dimensional gravity with torsion, the resul
ing model is, in general, inequivalent to~1! for two reasons.
First, the transformation of Lorentz connection to scalar cu
vature because of Eq.~2! is nonlocal and second, the equa
tions of motions were used. Nevertheless, both models c
be shown to be equivalent fora521 according to the fol-
lowing arguments.

It is proved easily that any zweibein and Lorentz conne
tion satisfying the equations of motion of two-dimensiona
gravity with torsion@~8! and ~9!# satisfy also Eqs.~12! and
~13!. Metric and scalar curvature are uniquely determined
zweibein and Lorentz connection. In fact, taking the trace
~9! and comparing it with Eqs.~12! and ~13!, one finds that
Eq. ~12! is satisfied if and only ifa521. Then eliminating
the torsion from~9! by means of Eq.~8!, one indeed gets Eq.
~13!.

The inverse statement that~8! and ~9! follow from ~12!
and ~13! for a521, is more subtle. Equation~12! for
a521 can be rewritten in the form

¹̃aS ]aR

2b
1
1

a
TaD50.

Its general solution

]aR

2b
1
Ta

a
5ea

b]bw
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depends on an arbitrary functionw. Here, we note that both
Eqs.~7! and ~2! define zweibein and Lorentz connection u
to an arbitrary local Lorentz rotation entering a general s
lution of Eqs.~7! and~2! as two independent arbitrary func
tions. So without loss of generality, we may use one of the
functions, sayc in ~6! to setw50. Then the Lorentz rotation
of zweibein and Lorentz connection must be performed
multaneously, and Eq.~8! indeed is the consequence of~12!,
and Eq.~9! immediately follows from~13!.

In order to bring~11! into the familiar form of dilaton
gravity, we parametrize the scalar curvature by a dilaton fie
f and rescale the metric (s561)

R5s4be22f, gab→gabe
2f. ~14!

This transformation is clearly canonical and thus leads to
equivalent generalized dilaton gravity described by the L
grangian

LD
~1!5e22f@sR̃1~4s18ae22f!gab]af]bf22b

1Le4f#A2g. ~15!

This coincides with the standard dilaton gravity Lagrangia
@1# if s511, 2b524l2,L50,a50. By leaving the sign
s in ~15! open we are able to cover both regionsR.0 and
R,0 for a fixed sign ofb.

III. LOCAL EQUIVALENCE

Instead of eliminating the~independent! Lorentz connec-
tion by the nonlocal transformation defined by Eq.~2!, its
components may also be solvedalgebraicallyin terms of the
two independent components of the torsion represented
the Hodge dual of~4!. In the definition

T65~]m6vm!en
6ẽmn ~16!

we introduce light cone coordinatesT65 1/A2 (T06T1) in
the Lorentz indices. Note that here we just retainẽmn, as
defined in~3!. Equation~1! is equivalent to the first order
action with Lagrangian

L~1!5X1T21X2T11X~ ẽmn]mvn!2e~aX1X21V!,
~17!

where

V5
b

2
X22L. ~18!

The equations of motion forX andX6 are

ebX5
R

2
, eaX65T6 ~19!

and thereforeX and X6 are proportional to curvature and
torsion for bÞ0 and aÞ0. It should be noticed that the
subsequent steps hold for generalV5V(X), i.e., a theory
quadratic in torsion but with arbitrary powers in curvatur
Now, instead ofvm the T6 in ~16! are introduced as new
variables:
p
o-
-
se

si-

ld

the
a-

n

by

e.

ẽmn]mvn5 ẽmn]mṽn1 ẽmn]mS en
2T11en

1T2

e D . ~20!

The first term on the right-hand side~RHS! of ~20! is pro-
portional to a torsionless curvatureR̃,

ẽmn]mṽn52
R̃e

2
, ~21!

whereṽ is considered as a function of the zweibein and
derivatives corresponding to a torsionless case. Inserting~20!
into ~17!, after shifting the derivatives in the second term
~20! onto X exhibits the nondynamical nature ofT6 which
may be ‘‘integrated out’’ by solving their~algebraic! equa-
tions of motion. At this point the identification
X5R/(2be) immediately yields~11!. With a definition of
the dilaton field similar to~14!

X

2
5e22f, X.0 ~22!

and after reexpressing the factorsen
6/e from the square

brackets of~20! in terms of the inverse zweibeins combinin
them intogab5e1ae2b1e1be2a, the LagrangianL(1) is
found to be equivalent to

L~2!5A2g@2e22fR̃18a•e24fgmn~]mf!~]nf!

2V~2e22f!#. ~23!

The caseX,0 will be discussed below@cf. ~41!#. In addi-
tion, using the identity

gmn5e2wĝmn ,

A2gR5A2ĝR̂22]a@A2ĝĝab]bw#, ~24!

which also represents a local transformation, allows one
write down the most general dilaton theory equivalent to~1!:

L~3!5A2ĝ@2e22fR̂14ĝab~]af!~e22f]bw

12ae24f]bf!2e2wV~2e22f!#. ~25!

The choicew5f immediately yields the case ofs521 of
~15!, while for w52f

L~4!52A2ĝe22f@R̂14~122ae22f!~¹f!2

1V~2e22f!#, ~26!

the deviation from ordinary dilaton theory (a50, V54l2)
is most obvious. Of course, the dilaton field may be elim
nated altogether as well, if in~25! ~for constanta)

w5w~f!5ae22f5
aX

2
~27!

is chosen. In that case it seems more useful to retain
variableX instead off:

L~5!52A2ĝFXR̂2 1eaXV~X!G . ~28!
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Comparing~28! to a torsionless theory~17! with a50 but
modifiedV, the difference now just resides in the addition
exponential eaX @13#. It should be mentioned that the
‘‘equivalence’’ shown in this and the preceeding section
purely classical and even there only true locally. The glob
~classical! inequivalence will be addressed in the followin
section. We will show there in examples how one glob
solution of 2D gravity with torsion decouples into two o
more global solutions of the ‘‘equivalent’’ generalized dila
ton model.

Of course, at the quantum level questions like the infl
ence of the Jacobian appearing as a consequence of th
definition of fields will play a role. Such considerations re
main outside the scope of our present work.

IV. GENERAL SOLUTION
OF GENERALIZED DILATON GRAVITY

The study of global properties for 2D theories is bas
upon the extension of the solution which is known at fir
only in local patches, continued maximally to global one
The analysis uses null directions which become the coor
nates of Penrose diagrams which are sewed together ap
priately. The continuation across horizons and the deter
nation of singularities can be based upon extremals
geodesics. The physical interpretation of an extremal is
interaction of the space–time manifold with a pointlike te
particle, ‘‘feeling’’ the metricgab through the Christoffel
symbol @9#. After torsion has been eliminated, there is n
ambiguity for our analysis which only has extremals at i
disposal. That interaction with extremals, however, crucia
depends on the choice of the ‘‘physical’’ metric to be use
the one computed from theem

a of ~1!, or anyĝab which is a
result of different field transformations involving the dilato
field? Clearly, the torsionless dilaton theory~23! has the
same metric as~1!, e.g., the global analysis of@6# applies
directly and the different types of solutions are exhausted
those studied in@6#.

However, from the point of view of a ‘‘true’’ dilaton
theory, one could argue that with a redefined metric as
~26!, ĝab5e2fgab52gab /X has some physical justification
as well. In fact, for Witten’s black holegab is flat and the
interesting~black hole! singularity structure just results from
the factor 2/X. Now, in the originalR21T2 theory@6#, there
are solutions~G3! resembling, e.g., the black hole but no
completely: Their singularity resides at lightlike lines an
they are not asymptotically flat in the Schwarzschild sen
Thus, the factor 2/X may well yield improvements on that
situation.

Here we shall analyze a generalized dilaton gravity

L5A2ĝe22f@R̂14~122ae22f!~¹f!212be24f14l2#
~29!

which is obtained from~17! by taking

X52e22f, gmn5ĝmne
22f, L524l2, ~30!

and omitting an overall minus sign. We need to consid
only the cases forb 5 positive, negative, or 0. The absolut
value of a nonvanishingb may always be absorbed by res
calingX andv to X→AubuX andv→v/Aubu. Let us start
al
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with a positive value forb, e.g.,12. All global solutions
with nonconstant curvature are most easily obtained by t
known general solution@5# of the equations of motion of
~17! for the zweibeinea (X1Þ0) in an arbitrary gauge

e15X1eaXd f , ~31!

e25
dX

X1 1X2eaXd f , ~32!

where f , X, andX1 are arbitrary functions except for the
requirement thatd f anddX define a basis for one forms. The
line element from~31! and ~32! reads

~ds!252e1e252eaXd f^ ~dX1X1X2eaXd f !. ~33!

As shown in@4#, the Lagrangian in all such models gives ris
to an absolutely conserved quantity

C5X1X2eaX1w~X!, ~34!

w~X!5E
X0

X

V~y!eaydy, ~35!

where the lower limitX05const clearly has to be determined
appropriately so that~inside a certain patch! the integral ex-
ists for a certain range ofX. C can be used to eliminate
X1X2 in ~33!. Using ~30! and defining coordinates
v524 f , u5f yields the line element of the generalize
dilaton Lagrangian~29!

~dŝ!25e2u~ds!25g~u!@2dvdu1 l ~u!dv2# ~36!

with

l ~u!5
e2u

8 FC2g~u!S 4e24u

a
2
4e22u

a2 1C0D G , ~37!

g~u!5e2ae22u
, ~38!

C05
2

a3 1
4l2

a
, ~39!

which automatically implies the convention for the consta
of integration in~35! to be used in the following.

Note that transformation~22! is defined only for positive
X while the original model contains arbitrary values ofX. To
cover the negative case one would have to replace~22! by

X

2
52e22f, X,0. ~40!

Since the metric~36! is invariant under

e22u→2e22u, a→2a, C→2C, ~41!

one may consider the line element~36! for a.0 anda,0
to cover all patches of the originalR21T2 theory whereX is
positive and negative.

In the metric of the form

ĝmn5g~u!S 0 1

1 l ~u!
D , ~42!
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the Killing direction is ]/]v and the norm of the Killing
vector

km5S 01D
becomesg(u) l (u). By a redefinition of the variableu it
would be easy to reduce~42! to the standard light cone gaug
with g51, used, e.g., in the second Ref.@6#. However, be-
cause ofg(u).0 ~except atu→`), the horizons are deter-
mined by the zeros ofl (u) only. Therefore, we have found it
technically easier to retain~42!.

The conformal gauge (dŝ)25F(u)dũ 8dṽ 8 in ~42! is ob-
tained by ‘‘straightening’’ the null extremals

v5const, ~43!

dv
du

52
2

l
for all u with l ~u!Þ0, ~44!

u5u05const forl ~u0!50, ~45!

by means of a diffeomorphism

ũ 85v1 f ~u!, ṽ85v, ~46!

f ~u![Eu2dy

l ~y!
. ~47!

A subsequent oneṽ8→tanṽ8 and another appropriately cho
sen one forũ8 produce the Penrose diagram. It is valid for
certain patch where~44! is well defined. Clearly, the shape o
those diagrams depends crucially on the~number and kind
of! zeros and on the asymptotic behavior ofl (u).

V. CLASSIFICATION OF GLOBAL SOLUTIONS

The analysis of all possible cases as described by
ranges of parametersa,b,C, andl2 is straightforward but
tedious. We shall first give the classification of all glob
solutions. Comments on the construction of Penrose d
grams will be presented in the next section. Apart fro
C0 , defined in~38!, also

C15
2

a2e
2aA2l2S 1a 22A2l2D ~48!

plays a role foraÞ0 andl2,0, discriminating the possible
cases with two zeros, with one double zero and without ze
in l , i.e., the presence of two nondegenerate or one dege
ate Killing horizon. The qualitatively distinct cases fo
a.0 anda,0 are listed in~49! and ~50!:

a.0, b.0:

D11: C.C0 ,

D21: C5C0 , l2,0,

D31: C5C0 , l2>0,

D41: C,C0 , C.C1 , l2,0,

D51: C,C0 , C5C1 , l2,0,

D61: C,C0 , C,C1 , ~49!
e

-
a
f

the

al
ia-
m

ro
ner-
r

a,0, b.0:

D12: C.C0 , C>0,

D22: C.C0 , C,0,

D32: C5C0 , C>0,

D3r
2 : C5C0 , C,0, l2>0,

D42: C5C0 , C,0, l2,0,

D1r
2 : C,C0 , C,C1 ,

D52: C,C0 , C5C1 ,

D62: C,C0 , C.C1 , C,0,

D2r
2 : C,C0 , C.C1 , C>0, ~50!

with the indexr indicating a rotation by 90°. The classifica
tion Dn6 denotes the Penrose diagrams for generalized d
ton gravity. Figures 1 and 2 show their range of paramete
and in Figs. 3 and 4 the corresponding Penrose diagrams
depicted. These cases for nonzeroa are locally equivalent to
R21T2 gravity defined by the actions~1! and ~17!.

The limit a50 — corresponding to ordinary dilaton grav
ity with an additional potentialbe4f — is defined only for
the action in first order form~17!. It is equivalent to~higher
derivative! R2 gravity without torsion, whose global solu-
tions are analyzed in the second Ref. of@6#. To obtain the
classification of the global solutions for the locally equiva
lent dilaton theory we use~33! and~34! with a50 and again
b52 to get the line element

~dŝ!252dudv1e2uSC8 2l2e22u2
e26u

3 Ddv2. ~51!

In terms of

C1
052

16

3
ul2u3/2, ~52!

FIG. 1. Range of solutions fora.0.
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qualitatively this yields exactly the same cases as fora.0
for the following conditions on the parameters:

a50, b.0:

D11: C.0,

D21: C50, l2,0,

D31: C50, l2>0,

D41: C,0, C.C1
0,

D51: C,0, C5C1
0,

D61: C,0, C,C1
0. ~53!

FIG. 2. Range of solutions fora,0.

FIG. 3. Penrose diagrams fora.0. Thick lines indicate an in-
complete singular boundary (R→`). Thin lines show~complete!
boundaries with finite or vanishing curvature; inside the diagra
they correspond to lines of constant curvature. Dots represent c
plete corners and Killing horizons are drawn as dashed lines.
A sign change ofb to 2b together with sign changes of
C andl2, followed bydv→2dv, produces the same global
solutions except that timelike and spacelike directions a
reversed (ds2→2ds2). Since all possible signs forC and
l2 were considered above, we obtain the solutions for neg
tive b ’s simply by rotating the diagrams by 90° and keepin
the sign changes ofC andl2 in mind.

Next, we consider the teleparallel limit of~17! corre-
sponding tob50. In this limit the curvature is equal to zero
and one hasT2 gravity @12#. We still obtain the line element
of ~36! with a simplified

l5
e2u

8 SC2e2ae22u4l2

a D . ~54!

The Penrose diagrams for the corresponding global so
tions have already been obtained in the above cases. He
they are related to the following ranges of paramete
(D5C2 4l2/a):

aÞ0, b50:

D6r
1 : D.0, l2,0,

D12: D.0, l250,

D11: D.0, l2.0,

D1r
1 : D,0, l2,0,

D1r
2 : D,0, l250,

D61: D,0, l2.0,

D31: D50, l2.0,

D3r
1 : D50, l2,0,

D12: D.0, C>0,

D22: D.0, C,0,

D2r
2 : D,0, C.0,

D1r
2 : D,0, C<0,

D32: D50, l2,0,

D3r
2 : D50, l2.0. ~55!

The casel50, C50 yields just the conformally flat case.
The last casea5b50 of ~30! describes ordinary dilaton

gravity. Its general solution is

ms
om-

FIG. 4. Penrose diagrams fora,0. Conventions as above.
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FIG. 5. Different types of so-
lutions forD21.
on-

m

ot

n

. A
d

,

-

~dŝ!252dudv1e2u~Ce2u2l2!dv2 ~56!

and contains three types of global solutions:
a5b50:

D21: C.0, l2.0,

D2r
1 : C,0, l2,0,

D31: C.0, l2<0,

D3r
1 : C,0, l2>0, ~57!

and flat space-time forC50.

VI. CONSTRUCTION OF PENROSE DIAGRAMS

For each set of the parameters as summarized in~49!,
~50!, ~53!, ~55!, and~57!, the global solution is obtained by
gluing ~wherever necessary! solutions of the line element
~36!, which as a rule defines only a local solution. Anoth
local solution in conformal coordinates is obtained by inte
changing the role of the null directions. The transformatio

ũ95u,
~58!

ṽ952 f ~u!2w,

with f (u) from ~44! may be easily verified to do this job
The situation may be visualized best in a specific examp
say,D21 @10# as shown in Fig. 5. Equations~58! essentially
correspond to a reflection of the diagram with respect to
axis orthogonal to the linesu5const, i.e., transversal to the
Killing directions u5const. In Fig. 5 this leads from~a! to
~b!, resp.~c!. Further solutions are obtained by simple refle
tions in the (ũ,ṽ) coordinates. Now, those patches may b
glued together along certain parts of their boundaries
identifying either the triangle or the square. For that purpo
the completeness of all extremals at these edges mus
analyzed by checking whether there is at least one extre
reaching a certain boundary~or corner of a boundary! at a
finite value of the affine parameter. By definition, a point n
er
r-
n
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le,

an
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by
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ot

to be reached by any extremal is complete. Using the c
servation law for a metric of type~42! from its Killing di-
rection

g
du

dt
1gl

dv
dt

5AA5const, ~59!

and identifying the affine parameterdt with the dŝ in ~36!,
these extremals are found to obey

dv
du

52
1

l
@17~12 lg/A!21/2# ~60!

by simply solving a quadratic equation. In addition, fro
~59! and ~60! the affine parameter is determined by

ŝ~u!5
1

AuAu
Eu

dygS 12
lg

A D 21/2

. ~61!

For A.0, resp.A,0 the parameters is a timelike, resp.
spacelike quantity. Extremals along the null directions@~43!
and ~44!# are contained as the special caseA→` in ~60!,
with ~61! replaced by similar relation without the square-ro
terms. In addition to~59!, ~60!, and ~61!, the equation for
extremals is satisfied by the horizons~45! and by degenerate
extremals@see~63! below# for which lg5A and therefore
~61! does not hold. Clearly, the additional conditio
l 8(u0)50 identifies double zeros~degenerate Killing hori-
zons! as, e.g., in D52. Incompleteness of the lines
u05const for single zeros at one end is established easily
line at a double zero as inD52 instead has incomplete en
points. From considering the extremals for finiteAÞ0, in all
cases the edges withu56` are found to be incomplete
exceptfor C5C0 ~cf., e.g., our exampleD21 or C50 in
D20) where foru→1`, the boundary is complete. We re
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mark that the completeness of null and non-null extrem
differs on some boundaries. For example,
u→2`, a.0 null extremals are complete while non-nu
extremals are incomplete. Contrary to this situation, the co
pleteness of all types of extremals is the same inR21T2

theory. It can be shown that this difference is because of
conformal rescaling of the metric~24!.

Except for the casesD21, D36, D3r
2 , D42 ~where

R→0 for u→1`), the scalar curvature diverges a
u→6` which can be seen directly evaluating

R5
1

g2 S g,u
2

g
l2g,uul2g,ul ,u2gl,uuD ~62!

and using~37!. Thus, all singular boundaries are incomple
while the boundaries with zero curvature are always co
plete. This means that generalized dilaton gravity includ
asymptotically flat solutions, something not encountered
the originalR21T2 theory.

Special consideration require the corners of a bound
formed by lines with bothu51` or bothu52`. For ex-
ample, in Fig. 5 the lower right one can only be reached
extremals~59! with ~61! whenA50. Actually, forD21 that
point is complete — just as the adjoining linesu51`. In
some diagrams such corners are formed by linesu51` and
u52`, both singular in curvature. These corners are ess
tial singularities and can only be reached by degenerate
tremals, which are parallel to thev axis and go through those
points where

]~ lg !

]u
U
u5u0

50 ~63!

is satisfied. The existence and number of such extremals
pends on the values of the parameters. They are always c
plete and so are the corresponding corners. If~63! has no
solution then the corner is not reached by any extremal a
thus is complete by definition. In Figs. 3 and 4 these poin
are indicated by full dots. With these tools, patches as in F
5 may now be glued together. ForD21 this leads to the
well–known shape of the ‘‘classical’’ black hole in the cor
responding global solution drawn in Fig. 3. A full line in this
diagram — as in the others — represents an~incomplete!
singularity of the curvature atu56`, a thin line at the
external boundary denotes a complete asymptotically
space-time which may occur atu51` only. Internal lines
indicateu5const, with a broken line for a Killing horizon.
Arrows indicate directions into which one should imagin
periodic continuation.

VII. COMPARISON OF THE MODELS

It seems instructive to compare our present global stru
ture to the one studied for other theories. The basic obser
tion is that each global solution of the originalR21T2 theory
naturally splits into a set of global solutions in generalize
dilaton gravity. As a generic example we show in Figs. 6~a!,
6~b!, and 6~c! the three different ways of splitting of the
diagramG3 ~in the notation of@6#! where the separation is
determined solely by the value of the constants. The Penr
diagramG3 covers all values ofX. Since the dilaton field is
als
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introduced separately for positive and negativeX, the Pen-
rose diagramG3 is split by the linesX50, where the con-
formal transformation in~30! becomes singular. The result-
ing diagrams directly turn into the global solutions o
generalized dilaton gravity. It should be noted that in th
R21T2 theory all non-null boundaries can be straightened
a suitable choice of coordinates, while in generalized dilat
gravity some boundaries cannot be straightened without
fecting other boundaries. For example, in the square diagr
D11 or in the ‘‘eye’’-diagramD61 a redefinition of the
coordinates cannot straighten all boundaries simultaneou
whereas this is possible in the diagramD22. This phenom-
enon has been observed before~cf. the second Ref. of@6#!.

It is also important that the conformal transformation o
the metricĝab52gab /X changes the character of the bound
aries. The boundaryX50(u→1`) becomes singular
R̃(ĝ)→`, and remains incomplete forCÞC0 , while for
C5C0 it becomes complete and asymptotically fla
R̃(ĝ)→0. The boundariesX→6` remain singular but al-
ways become incomplete.

In Fig. 6~d! the ‘‘black hole’’ solutionD21 emerges. It
illustrates how the diagramG11 that had to be continued in
the plane splits into the diagramsD21 andD42 which can-
not be continued. The decomposition in the case of ordina
dilaton gravity is shown in Fig. 7. Model~17! for a5b50
has a unique global solution which is flat Minkowskian
space-time represented by a rhombic Penrose diagram. P
forming the conformal transformation yields a singular me
ric and curvature at the lines of vanishingX, thereby produc-
ing three global solutions of the dilaton model.D21

represents the famous black hole solution@1# whose singu-
larity is reached by timelike extremals for a finite value o
the affine parameter. The completeness of the other extre
als is the same as in the above cases. The originalR21T2

theory contains one solution resembling the ‘‘real
Schwarzschild black hole only in a very approximate sens
Its solutionG3 exhibits an~incomplete! singularity, but into
null directions, the ‘‘asymptotically flat’’ direction is re-
placed by a singularity of the curvature, albeit at an infini
distance~complete case!. In the present dilaton theory, pre-
cisely the exampleD21, whose derivation fromG11 was
discussed more explicitly above, is Schwarzschild–lik
Other solutions with similar properties, but more compl
cated singularity structure areD32 ~naked singularities! and
D42. On the other hand, the ‘‘eye’’ diagramD61 appears
here, as well as the square diagramsD11 of R2 gravity @6#.
D42 represents an interesting variety of a manifold whe
the ordinary black hole is replaced by a ‘‘light’’-like singu-
larity.

VIII. SUMMARY AND OUTLOOK

By showing explicitly the local equivalence of certain
~torsionless! dilaton theories with a 2D theory quadratic in
curvature and torsion, a certain class of such generalizatio
of the original Witten model has now been found to acqui
a better geometric foundation. At the same time, howev
we observe that local equivalence does not guarantee
equivalence of global solutions. Indeed, we have shown
two generic examples how one global solution of 2D gravi
with torsion splits into a set of global solutions of genera
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FIG. 6. Examples of the split-
ting of theR21T2 diagrams into
the diagrams of generalized dila-
ton theory. The double lines indi-
cate complete singular boundaries
and thick dashed lines correspond
to X50. ~a!, ~b!, and~c! show dif-
ferent splittings of the same dia-
gram G3 forl2.0 which depend
on the parameters as follows:~a!
aC0,aC, ~b! C5C0 , ~c!
0,aC,aC0 . ~d! occurs for
l2,0, aC5aC0.0 and dem-
onstrates the appearance of th
black hole solutionD21 in the
generalized dilaton theory.
ete
ls
tep
ter
ore
s

ized dilaton gravity. This separation occurs along lin
X50 where the conformal transformation of the metr
ĝab52gab /X becomes singular@14#.

We find that in the equivalent dilaton theories one of th
main advantages of the original ‘‘minimal’’ dilaton theory
@1#, the presence of an asymptotically flat black hole so
es
ic

e

lu-

tion, resembling the 4D case, is retained. Since the compl
classical solution is known in all cases, the range of mode
thus has been extended considerably for which in a next s
quantum effects can be studied, after interactions with mat
have been added. Of course, we encounter here once m
the problem, familiar from Brans-Dicke-Jordan-type theorie
FIG. 7. Splitting of
Minkowskian space-timeM into
the black hole of ordinary dilaton
gravity. The thin lines in the left
diagram are the lines ofX5const
and especially the thick dashed
line denotesX50 along which the
splitting occurs.
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@11#: Our analysis implicitly assumes that our ‘‘test particle
obeying the equations for the extremals in Sec. VI for t
‘‘equivalent theory’’ is coupled to a metric of the Jorda
version of the theory, i.e., to the redefined metricĝ and not
to the metric derived from the originalR21T2 theory. It
must be admitted that, therefore, the argument of geome
interpretability is somewhat weakened. Nevertheless, we
convinced that the class of such models introduced here m
serve as a field for promising further studies.
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