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Nontrivial vacua in higher-derivative gravitation
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A discussion of an extended class of higher-derivative classical theories of gravity is presented. A pro
is given for exhibiting the new propagating degrees of freedom, at the full nonlinear level, by transformin
higher-derivative action to a canonical second-order form. For general fourth-order theories, describ
actions which are general functions of the scalar curvature, the Ricci tensor and the full Riemann tenso
shown that the higher-derivative theories may have multiple stable vacua. The vacua are shown to
general, nontrivial, corresponding to de Sitter or anti–de Sitter solutions of the original theory. It is also s
that around any vacuum the elementary excitations remain the massless graviton, a massive scalar fiel
massive ghostlike spin-two field. The analysis is extended to actions which are arbitrary functions of ter
the form¹2kR, and it is shown that such theories also have a nontrivial vacuum structure.

PACS number~s!: 04.50.1h
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I. INTRODUCTION

In a previous paper@1#, we presented a method for reduc
ing a general quadratic theory of gravitation to a canoni
second-order form. The quadratic action provides an
ample of a higher-derivative theory, where the gravitation
equations of motion are higher than second order. T
means that the theory contains more degrees of freedom
just the simple massless graviton. By rewriting the action,
showed that quadratic gravitation is classically equivalent
Einstein’s gravity coupled to a massive real scalar field an
massive symmetric tensor field describing a spin-two fie
with a specific Lagrangian.

We found that, even for simple quadratic gravity, the r
duced action gave highly nontrivial potential energy and
netic coupling terms. This suggests that higher-derivat
theories have a great deal of structure, not immediately
parent from a simple linear analysis where one expan
around flat space. One particular feature, which is the m
thesis of this paper, is that the transformed theory may h
a complicated vacuum structure. Here, by a vacuum solut
we mean a stable solution of the second-order theory. In
paper, we will only consider vacua in which the auxiliar
fields are covariantly constant. It is important to note th
only once the vacuum of the transformed theory has be
identified can the nature of the elementary field excitatio
be discussed. Thus, for instance, the exact mass and
plings of the excitations, as well as which excitations a
potentially ghostlike, may be very different around differe
vacuum states. In general, they will bear little relation to t
excitations of the linearized analysis.

The vacuum structure of the quadratic theories remain
comparatively simple. The only stable vacuum was flat sp
with zero vacuum expectation value for both of the auxilia
fields. The elementary excitations were a massive scalar fi
and a massive ghostlike spin-two field. We would like
investigate how other higher-derivative theories can int
duce a more interesting vacuum structure. A natural gen
alization is to consider actions which are not quadratic b
general functions of the curvature tensors. Since these
sors involve only second derivatives of the metric, the c
responding field equations can be at most fourth order; t
53821/96/53~10!/5597~12!/$10.00
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is, the same order as the quadratic actions. We can start
asking how many new degrees of freedom we expect in su
theories. To give a rough count, we turn to the Cauchy pro
lem. First recall that even higher-derivative gravity theorie
remain diffeomorphism invariant. Thus we are always ab
to transform away four components of the symmetric metri
leaving six free components. Since the field equations a
fourth order, if the Cauchy problem can be solved we expe
to be required to give four initial conditions for each inde
pendent component of the metric, namely the component
self and the first three time derivatives. This would impl
that we have at most twelve degrees of freedom. Rewritin
the theory in a second-order form, since the auxiliary field
are set equal to terms involving second derivatives of th
metric, we expect that giving the initial conditions of the
auxiliary fields is equivalent to fixing second and third de
rivatives of the metric, a total of twelve conditions. Thus w
find that the auxiliary fields should carry six degrees of free
dom, just as in the general quadratic theory. This leaves
possible six further degrees of freedom in the metric. How
ever, since the metric in the second-order theory obeys E
stein gravity, the number of degrees of freedom is reduced
the two helicity states of the usual massless graviton. By th
rough argument, we expect an action in the form of an
general function of the curvature tensors to describe, at mo
the propagation of a massless graviton plus an additional
degrees of freedom; that is, the same as for the special c
of the general quadratic theory discussed in our previo
paper@1#. Be this as it may, the structure of such theories
potentially much richer than in the quadratic case. As we w
see, the vacuum structure is now nontrivial.

A second generalization is to consider gravity action
which have higher derivatives acting on the curvature te
sors. Since these theories involve more than two derivativ
on the metric, the corresponding field equations will be g
nerically higher than fourth order. Consequently, we no
expect new degrees of freedom in addition to those of t
general fourth-order theory. Again, we will show that th
vacuum structure of such theories is, in general, nontrivia

Some discussion of reducing both types of generaliz
theories to a second-order form already exists in the liter
ture. That the equations of motion following from action
5597 © 1996 The American Physical Society
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given by a general functionf (R) are equivalent to the equa
tions of motion of a scalar field dilatonically coupled to gra
ity, was first shown by Teyssandier and Tourrenc@2#. The
equivalence at the level of the action was given by Magna
et al. @3#, who also rewrote the reduce theory in canonic
form. This latter group and Jakubiec and Kijowski@4# also
rewrote actions given by a general functionf (Rmn) in
second-order form, though without the canonical separat
of the new degrees of freedom. Actions including derivativ
of the scalar curvature were considered in the context
inflation by Gottlöberet al. @5#, who again showed, in some
special cases, the equivalence of the field equations to th
describing scalar fields coupled to gravity. Still at the level
the field equations, this work was extended to a general c
of actions by Schmidt@6# and Wands@7#. Possible vacua of
the f (R) theory are discussed, in terms of the origin
higher-derivative field equations, by Barrow and Ottew
@8#, and later in terms of the second-order field equations
Barrow and Cotsakis@9#.

This paper is organized as follows. In the next three s
tions we will consider actions which are general functio
first of the curvature scalar only, then of the Ricci tensor, a
finally of the full Riemann tensor. Rewriting these theories
a canonical second-order form, we will find a rich vacuu
structure. This will require a careful discussion of the diffe
ent ‘‘branches’’ of the theory, a concept we define belo
We will show that the vacuum states are in a one-to-o
correspondence with the stable, constant curvature, de S
or anti–de Sitter solutions of the higher-derivative theo
Furthermore, we will show that if the vacuum of the tran
formed theory has zero cosmological constant, then the c
responding spacetime for the original higher-derivati
theory is also flat. We will then discuss the elementary ex
tations around a given vacuum and argue that they rema
graviton, a scalar field, and a ghostlike spin-two field, wi
masses and couplings depending on the particular vacu
and the functional form of the original action. In Sec. V w
will consider a class of gravity actions that are general fun
tions of the curvature scalarR and the derivatives¹2kR, with
k a positive integer. We show how to rewrite such theories
second-order form and show that they have, in genera
nontrivial vacuum structure. In particular, we present an e
ample with two new scalar degrees of freedom, neither
which is ghostlike, coupled to Einstein gravity with a stab
anti–de Sitter space as its vacuum. We briefly present
conclusions in Sec. VI.

Throughout the paper our conventions are to use a me
of signature ~2111! and define the Ricci tensor a
Rmn5]lG

l
mn2]mGl

ln1Gl
lrG

r
mn2Gl

rmGr
ln .

II. ACTIONS GIVEN BY GENERAL FUNCTIONS OF THE
SCALAR CURVATURE

As in the case of quadratic gravity, the higher-derivati
theory described by actions which are general functions
the curvature scalar is classically completely equivalent
the canonical second-order theory of a scalar field coupled
gravity. This equivalence was first shown at the level of t
action by Magnanoet al. @3#. We shall derive this equivalen
theory in a slightly different form, by first introducing an
auxiliary field to reduce the action to second order and th
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making a suitable conformal transformation. We will poin
out the need to consider different branches of the theo
when making the reduction.

We introduce the auxiliary field in two steps. First we
write

S5
1

2k2 E d4xA2g f~R!5
1

2k2 E d4xA2g@ f 8~X!~R2X!

1 f ~X!#, ~2.1!

wheref 8(X)5d f /dX. The auxiliary fieldX has the equation
of motion

f 9~X!~R2X!50. ~2.2!

Provided we havef 9(X)Þ0, this givesX5R. Substituting
back into the action we return to the original higher
derivative form. Thus the reduced action is equivalent to th
original theory, but only away from the critical points de
fined by f 9(X)50. A continuous region ofX between critical
points, wheref 9(X) never vanishes, will be called a branch
Typically, there will be several branches in the theory. Sinc
X gets set equal toR, in terms of the original theory, the
condition for a critical point can be writtenf 9(R)50. Thus
branches inX correspond to branches inR in the original
higher-derivative theory.

As a concrete example, let us assume that

f ~R!5R1e22R3, ~2.3!

wheree.0. Solving f 9(X)50 implies that there is a single
critical point atX50. Therefore, the second order formalism
in terms of the auxiliary fieldX is valid in each of the two
branches2`,X,0 and 0,X,`, but breaks down at the
critical pointX50. SinceX gets set equal toR, these regions
correspond to branches in the space of curvature given
`,R,0 and 0,R,` with a critical point atR50.

The second step, which will then allow us to rewrite th
action in canonical form, is to change variables to a new fie
l5f 8(X). In terms of this new variable, the action become

S5
1

2k2 E d4xA2g@l„R2X~l!…1 f „X~l!…#. ~2.4!

Clearly this action is well defined only for those region
where theX action is valid; that is, away from the critical
points. Therefore, thel formulation is only defined over
ranges ofX for which f 9(X)Þ0. Note that to define the
action ~2.4! we must be able to invert the expressio
l5f 8(X) to give X5X~l!. Locally this requires the same
nondegenerate conditionf 9(X)Þ0. Globally, there may still
be many different roots when we solve forX in terms ofl.
However, in any given branch ofX there is only a single
root. Thus there is a valid formulation of the theory in term
of l for each branch ofX. It is important to note that, in each
branch, the inverted functionX5X~l! which enters~2.4! is
different.

As a concrete example, consider once againf (R) defined
in ~2.3!. It follows that

l5113e22X2. ~2.5!
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Note thatl.1. This expression can be inverted to give

X56
e

)
Al21. ~2.6!

Clearly one must take the1 root in the 0,X,` branch and
the 2root in the2`,X,0 branch. This situation is quite
generic, as we will see below.

For a particular reduced theory, corresponding to a giv
branch of the original higher-derivative theory, we can defi
x5ln l and perform the conformal transformatio
ḡmn5exgmn . Action ~2.4! then becomes

S5
1

2k2 E d4xA2ḡ$R̄2 3
2 ~¹̄x!22e22x@exX~ex!

2 f ~X~ex!!#%. ~2.7!

As promised, we find a theory of Einstein gravity coupled
a scalar field with a particular potential dependent on t
choice of the original functionf (R). As in the quadratic case
there is one subtlety in definingx. To keepx real, we must
havel.0. Whenl,0 we must introduce, instead, the fiel
x5ln~2l!, the effect of which is to change the sign of th
overall normalization of the action as compared with t
form given in ~2.7! above. Further, at the special pointl50
the action cannot be put in canonical form. In this paper
will restrict our attention to thel.0 case only.

As a concrete example, considerf (R) defined in~2.3!. As
pointed out above, in this casel.1 in either branch ofX.
Therefore,x5ln l is always well defined. We point out
however, that the range ofx is restricted to 0,x,`.

Note that the scalar field kinetic energy has the usual s
and, hence,x is not a ghost. We can now look for the vacu
in any given branch of the theory. The vacua of the theo
described by action~2.7! are defined to be stable solutions o
the ḡmn andx equations of motion given by

R̄mn2 1
2 ḡmnR̄5 3

2 @¹̄mx¹̄nx2 1
2 ḡmn~¹̄x!2#2 3

2 ḡmnV~x!,

~2.8!

¹̄2x5
dV

dx
, ~2.9!

respectively, where the potential is given by

V~x!5 1
3 e

22x@exX~ex!2 f „X~ex!…#, ~2.10!

where we recall that the form ofX(ex) depends on the
branch in question. As stated previously, we will only co
sider vacua satisfying the covariant constant condition

¹̄mx5¹mx50. ~2.11!

It follows that x is a constant and, from~2.9!, that it must
extremize the potential. Furthermore, it follows from~2.8!
that the vacuum is a space of constant curvature with

R̄56V~x!. ~2.12!

Sincegmn5e2xḡmn andx is constant, these vacua also co
respond to spaces of constant curvature with respect to
en
ne
n

to
he

d
e
he

we

,

ign
a
ry
f

n-

r-
the

original metric, withR5exR̄. Since the vacuum fieldx must
be an extremum of the potential, we have the condition

e22x@2 f „X~ex!…2exX~ex!#50. ~2.13!

We started with a completely general functionf , so this con-
dition may generically have multiple solutions, including so
lutions away fromx50. Further, given a particular solution
for x, the value of the potential at this point need not be zer
that is, the vacuum generally has nonzero cosmological co
stant. In this case, the curvature scalarsR and R̄ will be
nonvanishing.

As a concrete example of all this, we return to the ex
ample specified in~2.3!. As discussed previously, there are
two branches where the second order theory is define
branchA where 0,X,` and branchB where2`,X,0.
The fieldl, which is given as a function ofX in ~2.5!, sat-
isfiesl.1 everywhere and, hence,x5ln l is well defined in
both branches, although its range in restricted to 0,x,`.
Expression~2.5! was inverted to giveX as a function ofl in
~2.6!. This expression is branch dependent, being given
X56(e/))Al21 with the positive root chosen in branch
A and the negative root chosen in branchB. It follows that
the form of the potential energy defined in~2.10! also de-
pends on the branch chosen. It is given by

VA~X!51
2

9)
ee22x~ex21!3/2,

~2.14!

VB~x!52
2

9)
ee22x~ex21!3/2

for branchesA andB, respectively. The two potentials are
plotted in Figs. 1 and 2. We see that each has a station
point. However, since vacua must be minima of the pote
tial, it follows that only branchB has a stable vacuum. This
is located at x5ln 4, which is nonzero. Note that
VB~ln 4!52e/24, so that the vacuum state has a nonvanis
ing negative cosmological constant. It follows thatR̄52e/4
and R52e, which implies that the vacuum state is an
anti–de Sitter space both in terms of the metricḡmn and the
metric gmn . Thus we have given an example of a higher
derivative theory which has a new vacuum state away fro

FIG. 1. VA~x! for R1e22R3 gravity.
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the flat-space solution of ordinary Einstein gravity. It is im
portant to note that none of this structure would have be
evident if we had made a simple expansion of the origin
action around flat space in terms ofhmn5gmn2hmn . In fact,
keeping only the first nontrivial, quadratic terms inhmn , we
would not even have been aware that there was an additio
scalar degree of freedom in the theory. The lowest order te
in R3 is cubic in hmn , and so in a quadratic expansion w
would only see the usual Einstein term.

The conclusion is that generic higher-derivative corre
tions to pure Einstein gravity introduce completely ne
vacuum states into the theory. Flat space is no longe
unique point in field space, so that if, for instance, we wish
investigate the fundamental excitations in the theory, w
must start by specifying which vacuum state we are cons
ering.

At this point, we would like to present another specifi
example that further illustrates the preceding discussio
Consider the cubic function

f ~R!5R13ae22R21e22R3, ~2.15!

with e.)a.0. We now have

f 9~X!56e22~X1a!, ~2.16!

so that the theory has a single critical point atX52a. It
follows that the second-order theory is defined on tw
branches; branchA where2a,X,` and branchB where
2`,X,2a. On either branch we can define a new fiel
l5f 8(X), which in this case is given by

l5116ae22X13e22X2. ~2.17!

Note that, sincee.)a, l is always a positive real number in
the range 123a2e22,l,` for both branches. Expression
~2.17! can be inverted to give

X652a6Aa21 1
3 e2~l21!. ~2.18!

Clearly theX1 solution is correct on branchA whereas the
X2 solution is to be used in branchB. Sincel is always
positive, the definition ofx5ln l is valid in both branches.
Note that x is then restricted to lie in the range
ln~123a2e22!,x,`. Since the expression forX in terms of

FIG. 2. VB~x! for R1e22R3 gravity.
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l, and hencex, given in~2.18! is different in each branch, it
follows from ~2.10! that the potential energy function also i
different in each branch. We have

VA~x!5 1
3 e22e22x@X1~x!#2@3a12X1~x!#,

~2.19!

VB~x!5 1
3 e22e22x@X2~x!#2@3a12X2~x!#,

where

X6~x!52a6Aa21 1
3 e2~ex21! ~2.20!

and theVA expression is valid in branchA and theVB ex-
pression valid in branchB. The two potentials are plotted in
Figs. 3 and 4. Unlike the previous example, in this case e
branch contains a single, stable minimum. In branchA, this
minimum is located atx50 and has vanishing cosmologica
constantV~0!50. It follows that, for this vacuum,R̄5R50
and spacetime is flat with respect to both theḡmn and gmn
metrics. In branch B, the minimum is located at
x5ln~426ae21! with a nonvanishing negative cosmologica
constant given byV~x!52e2/6~4e26a!. For this vacuum
R 5̄2e2/~4e26a! and, hence,R52e. It follows that the
spacetime is an anti–de Sitter space with respect to b

FIG. 3. VA~x! for R13ae22R21e22R3 gravity.

FIG. 4. VB~x! for R13ae22R21e22R3 gravity.
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53 5601NONTRIVIAL VACUA IN HIGHER-DERIVATIVE GRAVITATION
metricsḡmn andgmn . Thus we have found an example which
aside from a conventional minimum atR50 with zero cos-
mological constant, has an additional minimum with neg
tive cosmological constant. Furthermore, there is an unsta
maximum with positive cosmological constant. The mass
the scalar field is different at each of the different minim
Here a quadratic expansion of the action around flat spa
would have identified a new scalar degree of freedom, b
would never have revealed the presence of a second st
vacuum state.

It will not have escaped the readers notice that finding t
vacua in the second-order formalism requires a careful d
cussion of the branches in theX variable. The branching
structure was not too difficult in the preceding examples, b
as we will show below, it can be, and generally is, extreme
complicated. However, the following remarks will allow u
to define a simpler procedure for determining the vacua. R
call that, for a covariantly constant scalarx satisfyingdV/dx
50, the corresponding spacetime structure in terms of t
metric gmn is that of a space of constant curvature wit
R56exV~x!. Provided we are not at a degenerate poin
spaces of constant curvatureR and vacuum solutions are in
one-to-one correspondence, since the relationR56exV~x!
not only means that constantx implies constantR, but also
the reverse. Note that, as a corollary, any vacuum solut
with zero cosmological constant, namelyV~x!50, must cor-
respond to flat space in the original higher-derivative theo
An important consequence of this result is that, since fl
space is a single point in the field space of the origin
theory, there can be only one vacuum state with zero cosm
logical constant in the second order theory. We conclude t
all vacuum solutions of the above type can be found as co
stant curvature solutions of the equations of motion for t
higher-derivativegmn theory. All such vacua can be found
directly, without reference to any branch structure. Havin
found a vacuum of interest, one can then proceed in reve
introducing the second-order theory in the appropria
branch containing that vacuum. This is often an easier p
cedure. Thegmn equations derived from the higher-derivativ
action ~2.1! are

Rmn f 8~R!2 1
2 gmn f ~R!2~¹m¹n2gmn¹2! f 8~R!50.

~2.21!

If we look for solutions of constant curvature, the
Rmn5 1

4gmnR whereR is a constant. It follows that the de-
rivative terms in the equations of motion drop out and we a
left with the simple condition, first derived by Barrow and
Ottewill @8#,

Rf8~R!22 f ~R!50. ~2.22!

We see that this is exactly the condition we obtained f
stationary points of the potential~2.13! aside from a factor of
e22x. In the latter case, however, the expression was taken
be a function of the scalar fieldx expressed in terms ofX,
and as such only valid in a branch-by-branch sense, wher
here the expression is valid for all curvatureR.

This now provides us with a procedure for finding all th
vacua of the theory as well as the nature of the excitatio
around a given vacuum. We start by looking for consta
curvature solutions of the original higher-derivative equ
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tions of motion, solving the equation~2.22!, which is valid
globally. Having identified these points we can then, locall
around each solution, make a transformation to the reduc
theory, choosing, if necessary, the appropriate branch
X(ex). In the transformed frame, the new scalar degree o
freedom is made explicit. We can then address questions
local stability and the mass of the scalar field. The onl
breakdown of this procedure occurs when the minimum is
a degenerate point of the transformation; that is, a poi
where f 9(R)50. In this case, any discussion of the particle
spectrum and local stability must be in terms of the origina
theory. In general, we shall not consider such degenera
points.

As an example of this procedure, consider the function

f ~R!5 1
2 @R1e sin~R/e!#, ~2.23!

wheree is a constant. The condition for a degenerate point
then

f 9~R!52 1
2 e21 sin~R/e!50. ~2.24!

This equation has solutionsR5npe wheren is any integer.
The theory thus has an infinite number of branches given b
npe,R,(n11)pe. Rather than treating each branch sepa
rately, we follow our procedure for finding the vacuum state
of the theory by solving the condition~2.22! for the constant
curvature solutions of the original theory. The condition
reads

sin~R/2e!@~R/2e!sin~R/2e!2cos~R/2e!#50. ~2.25!

The left-hand side of this expression is plotted in Fig. 5. W
have the solutions

R52npe, 2dne, ~2.26!

wheren is an integer anddn are the solutions of

d sin d2cosd50. ~2.27!

Explicitly, the first few solutions of~2.27! neard50 are

FIG. 5. Condition for a constant curvature solution of12@R
1e sin~R/e!# gravity.
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..., d22'26.12, d21'22.80, d1'2.80, d2'6.12,... .
~2.28!

Furthermore (unu2 1
2 )p,udnu,unup and as udu becomes

large the solutions approachdn5np.
The first observation to make is that the constant cur

ture solutions atR52npe, including the pointR50, all cor-
respond to degenerate points. As such, a second-order f
of the theory does not exist at these points. Thus, althou
these are constant curvature solutions, we cannot iden
them as vacuum solutions of a canonical second-or
theory. However, the solutions atR52dne are not at degen-
erate points. From our previous discussion this implies t
they must correspond to vacuum solutions of the canon
second-order theory. Nonetheless, we find that each vacu
solution lies in a different branch of the theory.

Let us consider two particular solutions,R52d1e'5.60e
andR52d21e522d1e'25.60e, in the second-order formu-
lation. For the first solution we must take the branchpe,R
,2pe. Following our usual procedure for writing the theor
in a second order form, we first introduce the auxiliary fie
X and then define

l5 f 8~X!5 1
2 @11cos~X/e!#. ~2.29!

However, as usual, we are required to invert this express
to giveX as a function ofl. It follows that

X5e arccos~2l21! with pe,X,2pe. ~2.30!

We note thatl is only defined in the range 0,l,1. To put
the action in canonical second-order form we definex5ln l.
The potential forx ~2.10! is then given by

V~x!5 1
3 e

22x@X~x!cos„X~x!/e…2e sin„X~x!/e…#,
~2.31!

where

X~x!5e arccos~2ex21! with pe,X,2pe. ~2.32!

We now have thatx is restricted to the range2`,x,0. The
potential is plotted in Fig. 6. We find that there is a sing
maximum of the potential atx'20.12. The value of the
potential at this point isV~x!'1.05e, so that R̄56V(x)

FIG. 6. V~x! for the branchpe,R,2pe.
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'6.31e and R56exV(x)'5.60e. Thus we see that the
maximum corresponds to the flat space solutionR52d1e as
expected, and we can conclude that this vacuum is unstab

For the solution atR52d21e, we must take the branch
22pe,R,2pe. The expression for the potential is the
same as the expression~2.31! above, except that we must
now define

X~x!5e arccos~2ex21! with 22pe,X,2pe.
~2.33!

The resulting potential is plotted in Fig. 7. Againx is re-
stricted to lie in the range2`,x,0. We now find a stable
minimum atx'20.12. This givesV~x!'21.05e, R̄56V(x)
'26.31e, and R56exV(x)'25.60e, showing that the
minimum of the potential does indeed correspond to the co
stant curvature solutionR52d21e. We can conclude that this
is a stable vacuum state. In fact, further analysis shows th
all the vacuaR52dne with dn.0 are unstable maxima,
while those withdn,0 are stable minima. This final example
demonstrates that the vacuum structure of higher-derivat
theories can be complicated. We find an infinite number
stable and unstable vacua, each in a different branch of
theory.

In summary, we have shown that theories which are ge
eral functions of the scalar curvatureR can be reduced to a
canonical second-order form describing Einstein gravi
coupled to a scalar field with a potential which may have
vacuum structure of arbitrary complexity. Further thes
vacua all correspond to constant curvature solutions of t
original theory. The advantage of discussing the theory in t
second-order formalism is that it is in a canonical form
where we can easily identify the excitations around th
vacuum. The disadvantage is that the problem of invertin
f 8(X) means that we are forced to break the theory in
regions separated by degenerate points. For this reason
often easier to identify vacua as constant curvature solutio
of the higher-derivative theory and then make a local tran
formation in the region of each solution to investigate th
excitations around that vacuum. All of the nontrivial vacuum
structure arises from nonlinear terms in the field equatio
and so is missed in a quadratic expansion of the highe

FIG. 7. V~x! for the branch22pe,R,2pe.
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derivative theory in terms of the fluctuation of the metr
around flat space. Further, any analysis of the particle c
tent of the theory, in this case the presence of a new sc
degree of freedom and identification of its mass, can only
made once the vacuum is identified.

III. ACTIONS GIVEN BY GENERAL FUNCTIONS
OF THE RICCI TENSOR

In this and the following section we shall extend our di
cussion to include actions which are general functions of fi
the Ricci tensor and then the Riemann tensor. We shall
the same techniques as in the previous section, namely in
ducing auxiliary fields, showing that vacuum states cor
spond to constant curvature solutions of the higher derivat
theory, and then investigating the excitations around a giv
vacuum. The reduction to a second-order form was first d
cussed by Magnanoet al. @3# and Jakubiec and Kijowski@4#.
Here, we shall use a slightly different analysis, again poi
ing out the need for identifying different branches of th
theory and also giving a canonical separation of the n
variables about any given vacuum. We shall only give t
general formulation without specific examples. Again w
will find a rich structure of vacua which would be com
pletely missed in a linearized analysis. This will reemphas
the need to identify the vacuum in question before inves
gating the masses and couplings of the elementary exc
tions of the theory.

Starting with an actionf (Rmn) we can introduce an aux-
iliary field and put the theory in a second-order form

S5
1

2k2 E d4xA2g f~Rmn!

5
1

2k2 E d4xA2gFd f~Xrs!

dXmn
~Rmn2Xmn!1 f ~Xmn!G

5
1

2k2 E d4xA2g@pmn
„Rmn2Xmn~prs!…

1 f „Xmn~prs!…#. ~3.1!

Again we introduce the auxiliary field in two steps, first wri
ing the action in terms of the fieldXmn which gets set toRmn
on solving its equation of motion. We then define

pmn5
d f~Xrs!

dXmn
, ~3.2!

and invert the expression to giveXmn as a function ofpmn .
Note again that the introduction of bothXmn andpmn requires
the nondegeneracy condition

det
d2f ~Xkl!

dXmndXrs
Þ0 ~3.3!

if the auxiliary field is to be properly eliminated to return t
the original action. Furthermore, in inverting~3.2!, it may be
necessary to divide the theory into branches correspondin
different possible roots forXmn . Thus for the variablepmn it
may be necessary to introduce a collection of auxiliary va
able theories each valid for a different branch ofRmn .
ic
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We can ask how many degrees of freedom are there in
auxiliary field? We have argued that we expect six. If w
consider theXmn formulation for now, we see first that we
can again derive a spin-two divergence condition. Since
auxiliary field equation of motion givesXmn5Rmn , we
clearly can show, using the Bianchi identity¹mGmn50, that
¹m(Xmn2 1

2gmnX)50. Constraining the components ofXmn ,
these four conditions imply that we do indeed have six ne
propagating degrees of freedom. We would like to be able
separate these into scalar and spin-two degrees of freedo
was done in the quadratic case in@1#. For a general function
f , this is not possible since we are not able to obtain t
necessary trace condition from thegmn equation of motion.
However, as we will show below, having identified
vacuum state, we can always make the separation locall
an expansion around the vacuum solution.

What then are the vacua of thef (Rmn) theory? Since we
are unable to separate the spin-two and scalar degree
freedom in the auxiliary field, we cannot put the theory in
canonical form and look to minimize the potential as we d
for the f (R) theory. However, we recall that the vacuum
states in question are none other than states where the
iliary field is covariantly constant. This means, since theXmn
equation of motion givesXmn5Rmn , that they are states o
constant tensor curvature. We can also impose the condi
that the states should have no preferred direction, so thatXmn
is proportional to the metricgmn . Thus vacuum states are
states of constant scalar curvatureRmn5 1

4Rgmn with R con-
stant. Consequently, one approach to finding vacuum so
tions is simply to look for constant curvature solutions of th
original theory.

The equations of motion of the original higher derivativ
theory are given by

¹2f mn8 1gmn¹r¹s f rs8 2¹r¹m f n8
r2¹r¹n f m8

r1Rrm f n8
r

1Rrn f m8
r2gmn f50. ~3.4!

To incorporate the presence of the metric inf (Rmn) in de-
riving the equations of motion, we considerf as a function of
the mixed index objectRm

n , with all contractions made be-
tween raised and lowered indices so that the metric does
enter explicitly. Then in the above expressionf 8m

n

5d f /dRn
m , so that, for instance,fmn8 5 f 8m

ngln . Looking
for constant curvature solutions of the formRmn5 1

4gmnR,
we obtain the condition

Rg8~R!22g~R!50, ~3.5!

where g(R)5 f ( 14Rdm
n) and g8(R)5dg(R)/dR, and we

have used the fact thatf 8m
n evaluated at the constant curva

ture solution must be proportional todm
n . Note that this con-

dition has exactly the same form as the condition~2.22! we
obtained for actions which were general functions of the s
lar curvature.

Given a particular vacuum solution satisfying the cond
tion ~3.5!, we would like to investigate the excitations aroun
the vacuum state. The natural way to do this is to consider
expansion of the action around a given vacuumR5R0 . Ex-
pandingf (Rmn) and keeping terms to quadratic order in th
curvature only, we have
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S5
1

2k2 E d4xA2g@a01a1~R2R0!1 1
2 a2,1~R2R0!

21 1
2 a2,2~Rmn2 1

4 gmnR0!~R
mn2 1

4 g
mnR0!#

5
b

2k2 E d4xA2gF2 1
2 R01R1

1

6m0
2 R

22
1

m2
2 ~RmnR

mn2 1
3 R

2!G . ~3.6!
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Here we have evaluatedf and its derivative at the vacuum
Rmn5 1

4gmnR0 and defined

f uR05a0 ,

d f

dRmn
U
R0

5a1g
mn, ~3.7!

d2f

dRmndRrs
U
R0

5a2,1g
mngrs1 1

2 a2,2~g
mrgns1gnrgms!,

using the general symmetric decomposition of the seco
two expressions. The variablesb, m0, andm2 are then given
by

b5a12~a2,11
1
4 a2,2!R0 ,

m0
25

b

3a2,11a2,2
, ~3.8!

m2
252

2b

a2,2
,

where in writing the final line of~3.6! we have used the
constant curvature conditiona1R052a0 . We see that we
have succeeded in putting the action in a quadratic fo
though with the addition of a cosmological constant.

The final line of~3.6! is identical to the general quadrati
form we discussed in our previous paper@1#, except for the
addition of a cosmological constant term and a renormali
tion of the gravitational coupling constant by a factorb. We
can thus introduce auxiliary fieldsx and p̃mn exactly as we
did in @1# to give

S5
b

2k2 E d4xA2g̃@R̃2 3
2 ~¹̃x!22 3

2 m0
2~12e2x!2

2 1
2 R0e

22x2G̃mnp̃mn1 1
4 m2

2~p̃mnp̃mn2p̃2!#.

~3.9!

The only effect of the cosmological term is to modify th
potential for the scalar field, adding a term12R0e

22x. We
find that the extremum of the potential is now a
3m0

2(ex21)5R0 , which, relating the auxiliary fieldx back
to the original curvature, givesR5R0 , as required for a con-
sistent expansion. Following exactly the analysis of our p
nd

rm,

c

za-

e

t

re-

vious paper, the auxiliary fieldp̃mn satisfies generalized di-
vergence and trace conditions, so it does indeed describe
degrees of freedom of a spin-two field. By making a fina
field redefinition, we can write the action in canonical form
with explicit kinetic energy terms for the spin-two field.
Again following the discussion in our previous paper, th
spin-two field will have the correct Pauli-Fierz limit, but will
unfortunately be ghostlike.

Thus we have shown that locally, around any vacuum
the higher-derivative theory~that is a solution of constant
curvature!, we can expand the theory to identify a new scala
and a new spin-two degree of freedom~provided we are not
at a degenerate point!. The spin-two field satisfies divergence
and trace conditions as before but importantly, we see tha
remains ghostlike. Thus generalizing tof (Rmn) actions fails
to remove the problem of the ghost spin-two degree of fre
dom. The masses of the degrees of freedom are fixed by
form of the functionf around the constant curvature solu
tion.

It is worth noting that we could equally well have done
this analysis in the second-order form, looking for solution
with constantXmn proportional togmn . Then expanding in
small Xmn about such solutions gives a linear coupling be
tweenXmn andRmn and quadratic ‘‘mass’’ terms forXmn .
From this form we could then extract the scalar and spin-tw
parts ofXmn . In this sense, the auxiliary fieldXmn always
carries six degrees of freedom, which about any give
vacuum can be decomposed into a scalar field and a gh
spin-two field, with the form of the decomposition changin
as we go from vacuum to vacuum.

IV. ACTIONS GIVEN BY GENERAL FUNCTIONS
OF THE RIEMANN TENSOR

Our last generalization is to consider actions which a
general functions of the Riemann tensorRlmnr . As men-
tioned earlier, the suggestion is that such theories have
additional six degrees of freedom, which we know in th
quadratic case can be decomposed into scalar and spin-
fields.

We start the discussion by demonstrating that, as in
previous cases, we can introduce an auxiliary field to wri
the action in a second order form:
S5
1

2k2 E d4xA2g f~Rlmnr!5
1

2k2 E d4xA2gFd f~Xabgd!

dXlmnr
~Rlmnr2Xlmnr!1 f ~Xlmnr!G

5
1

2k2 E d4xA2g@rlmnr
„Rlmnr2Xlmnr~rabgd!…1 f „Xlmnr~rabgd!…#. ~4.1!
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Again we introduce the auxiliary field in two stages; fir
introducingXlmnr , which gets set equal to the Riemann te
sor on solving its equation of motion, and then defining

rlmnr5
d f~Xabgd!

dXlmnr
. ~4.2!

In both cases we require the nondegeneracy condition

det
d2f ~Xabgd!

dXhklmdXnrst
50 ~4.3!

in order to be able to eliminate the auxiliary field and retu
to the original action. When using the variablerlmnr we may
be required to break the theory into branches, introducin
collection of second-order theories, each taking a differ
branch when inverting to findXlmns in terms ofrlmnr .

Turning to the vacuum states, we again find that sta
with constantXlmns have constant Riemann curvature, sin
Xlmns is set equal toRlmns by its equation of motion. Fur-
thermore, imposing the condition that there is no preferr
direction in spacetime we require thatXlmns is proportional
to gmn . Therefore, given the symmetries ofXlmns , we have

Rlmns5Rlmns
0 5 1

12 R0~glngms2glsgmn!, ~4.4!
st
n-

rn

g a
ent

tes
ce

ed

and, hence, we are considering solutions of constant R
scalar curvature.

As before the easiest way to obtain such solutions is fro
the equations of motion of the original higher-derivative a
tion. Again, to circumvent the problem, when deriving th
equation of motion of the metric explicitly entering the func
tion f , we considerf as a function ofRm

r
n

s with all contrac-
tions made between raised and lowered indices. We t
derive the equations of motion

¹r¹s f mrns8 1¹r¹s f nrms8 1 1
2 Rm

rst f nrst8 1 1
2 Rn

rst f mrst8

2 1
2 gmn f50, ~4.5!

wheref 8m
r

n
s5d f /dRr

m
s

n. Restricting to constant curvature
solutions of the form~4.4!, we get the familiar condition

R0g8~R0!22g~R0!50, ~4.6!

where now g(R0)5 f (Rlmnr
0 ) and g8(R0)5dg(R0)/dR0 ,

and we have used the fact that, by symmetry,f 8m
r

n
s(Rlmnr

0 )
is proportional todm

rdm
s2gmng

rs.
To investigate the excitations around a given vacuum

expand the action about the constant curvature solution.
have, keeping terms up to quadratic order in the curvat
only,
S5
1

2k2 E d4xA2g†a01a1~R2R0!1 1
2 a2,1~R2R0!

21 1
2 a2,2~Rmn2 1

4 gmnR0!~R
mn2 1

4 g
mnR0!

1 1
2 a2,3~Rlmnr2 1

12 R0@glngmr2glrgmn#!~Rlmnr2 1
12 R0@g

lngmr2glrgmn#!‡

5
b

2k2 E d4xA2gF2 1
2 R01R1

1

6m0
2 R

22
1

m2
2 ~RmnR

mn2 1
3 R

2!1g~RlmnrR
lmnr24RmnR

mn1R2!G . ~4.7!
ar-
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Here we evaluatef and its derivatives at the constant curv
ture solution, defining, for the contraction of the derivativ
with a tensorDlmnr which has the symmetries of the Rie
mann tensor but is otherwise arbitrary,

f uR05a0 ,

d f

dRlmnr
U
R0

Dlmnr5a1D,

d2f

dRhklmdRnrst
U
R0

DhklmDnrst5a2,1D
21a2,2DmnDmn

1a2,3DlmnrDlmnr, ~4.8!

with Dmn5glrDmlnr and D5gmnDmn . We have also intro-
duced the parameters

b5a12~a2,11
1
4 a2,21

1
6 a2,3!R0 , g5

a2,3
2b

,

a-
es
-

m0
25

b

3a2,11a2,21a2,3
, m2

252
2b

a2,214a2,3
, ~4.9!

and have used the constant curvature conditiona1R052a0
in the final line of~4.7!.

The final expression in~4.7! is a quadratic action with a
Gauss-Bonnet term, a Weyl-squared term and a Ricci-scal
squared term, together with a cosmological constant. T
Gauss-Bonnet term can be dropped classically as a total
vergence, leaving the action in the same quadratic form
discussed in our previous paper@1#. Reducing the action to a
second-order form then follows exactly as in the case f
f (Rmn) actions, so that we obtain the same transformed a
tion ~3.9!. Again we can verify that the transformed action
has a vacuum solution atR5R0 as is required for the con-
sistency of our expansion. We also note that here too t
expansion could have been made in terms of the variab
Xlmnr , which could then be decomposed into its scalar an
spin-two parts, the form of the decomposition depending o
which vacuum is being considered.

In conclusion, general actions of the formf (Rlmnr) may
have a variety of vacuum solutions, generically not appare
in a linear analysis. Around any vacuum the new degrees
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freedom in the theory, aside from the massless graviton,
always be separated into a scalar field and a spin-two fi
Unfortunately, the spin-two field is always ghostlike.

V. HIGHER-ORDER ACTIONS

In this section, we shall briefly discuss how to extend o
analysis to actions with higher-order equations of motio
We have seen that an action involving any function of t
curvature tensors gives at most fourth-order equations of m
tion. For higher-order equations we need to consider acti
which include some derivatives of the curvature. Here,
shall be concerned with only the simplest form

S5
1

2k2 E d4xA2g f~R,¹2R,¹4R,...,¹2kR!, ~5.1!

where we require that the functionf has been reduced, by
integration by parts and dropping total derivatives, so as
minimizek. The equations of motion following from simila
actions have been considered by Schmidt@6# and Wands@7#,
who showed them to be equivalent to those for a set of sc
fields coupled to gravity. Here we will show the full equiva
lence in a new way, working at the level of the action.

It will be important to distinguish between possible form
of the functionf . If we write f5 f (l1 ,l2 ,...,lk11) ~where
in the action we havel15R, l25¹2R, and so on!, we find
there are two possible cases: either] f /]lk11 is a function
of lk11 ~case 1! or it is not ~case 2!. If it is not then it must
be a function oflk , since otherwise the original form wa
reducible; that is, the action was not written in a form min
mized with respect tok. Thus, in case 2, we can alway
decomposef as

case 2: f ~l1 ,l2 ,...,lk ,lk11!5g~l1 ,l2 ,...,lk!lk11

1h~l1 ,l2 ,...,lk!. ~5.2!

Further, we see that for case 1 the equations of motion
~4k14!th order, while for case 2 they are~4k12!th order.

We would like to reduce the action~5.1! to a canonical
second-order form, by introducing auxiliary fields. Given th
can
eld.
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order of the higher-derivative equations of motion we s
that in case 1 we must introduce 2k11 new fields, while in
case 2 we need only 2k new fields. The procedure we sha
use is essentially a generalization of Ostrogradski’s met
for reducing a higher-order action to a first-order form@10#,
only that here we shall be reducing to a second-order fo
~The Ostrogradski result is usual given as a Hamiltonian,
this can always be rewritten as a Helmhotz Lagrangian,
analog of the form we shall use.!

We start by introducing a set of Lagrange multipliers,

S5
1

2k2 E d4xA2g@ f ~l1 ,l2 ,...,lk11!1m~R2l1!

1m1~¹2l12l2!1•••1mk~¹2lk2lk11!#. ~5.3!

Clearly eliminating fields via the Lagrange multiplier equ
tions of motion, starting withmk and working down ink
returns one to the original action.

However, we have introduced at least one too many n
fields. It is clear that thelk11 equation of motion is purely
algebraic and eliminating it will not introduce higher deriv
tives; that is, the action will remain second order. Thelk11
equation of motion reads

mk5H ] f

]lk11
~l1 ,l2 ,...,lk ,lk11! in case 1,

g~l1 ,l2 ,...,lk! in case 2,
~5.4!

where we have distinguished between the two cases
cussed above, and substituted the special form off in case 2.
In case 1, to form the analog of Ostrogradski’s Lagrangi
we solve the equation to givelk11 as a function ofl1,...,lk
and mk , writing lk115l̃k11(l1 ,...,lk ,mk). It should
be noted that in general the solution is not unique, and
must divide the original theory into pieces corresponding
different branches of the solution, just as in the case of
tions of the formf (R) discussed in the previous section.
case 2 we simply substitute formk and the special form off .
We get, in case 1,
case 1: S5
1

2k2 E d4xA2g@ f „l1 ,l2 ,...,lk ,l̃k11~l1 ,...,lk ,mk!…1m~R2l1!1m1~¹2l12l2!1•••

1mk„¹
2lk2l̃k11~l1 ,...,lk ,mk!…#, ~5.5!
al
w
1.
the exact analog of the Ostrogradski-Helmhotz Lagrangi
while for case 2 we have a slightly different form,

case 2: S5
1

2k2 E d4xA2g@h~l1 ,l2 ,...,lk!1m~R

2l1!1m1~¹2l12l2!1...

1g~l1 ,l2 ,...,lk!¹
2lk#. ~5.6!
an,We see that, as expected, in case 1 we have a total of 2k11
auxiliary fields, while in case 2 we have only 2k new fields.

All that remains is to transform the action into a canonic
form, growing canonical kinetic energy terms for all the ne
auxiliary fields. Let us concentrate on actions of case
Terms of the formm i¹

2l i are easy to deal with. Simply
introducing a pair of new fields,xi andci by

l i5x i1c i , m i5x i2c i , ~5.7!
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we have, in the action,

E d4xA2gm i¹
2l i5E d4xA2g@x i¹

2x i2c i¹
2c i #

5E d4xA2g@2~¹x i !
21~¹c i !

2#.

~5.8!

We see that thexi field has a canonical kinetic term, but th
ci field has the wrong sign; it is a ghost. This is characteris
of higher-order theories. In reducing the theory to seco
order the new fields always enter as a pair of a ghostlike fi
with an ordinary field. If we define a potential function,

V~x1 ,...,xk ;c1 ,...,ck!

5ml11m1l21•••1mk21lk1mkl̃k11~l1 ,...,lk ,mk!

2 f „l1 ,l2 ,...,lk ,l̃k11~l1 ,...,lk ,mk!…, ~5.9!

where it is understood that the right-hand side is evaluate
l i5x i1c i , m i5x i2c i , the action in case 1 becomes

case 1: S5
1

2k2 E d4xA2gFmR2(
i

$~¹x i !
2

2~¹c i !
2%2V~x1 ,...,xk ;c1 ,...,ck!G .

~5.10!

To complete the transformation to canonical form all that
left is to make a conformal rescaling of the metric to remo
themR coupling. As usual we definex5ln m and rescale to
a metricḡmn5exgmn , giving

case 1: S5
1

2k2 E d4xA2ḡF R̄2 3
2 ~¹̄x!2

2e2x(
i

$~¹̄x i !
22~¹̄c i !

2%

2e22xV~x1 ,...,xk ;c1 ,...,ck!G . ~5.11!

We conclude that the original case 1 higher-derivative gra
ity theory is equivalent to canonical Einstein gravity couple
to 2k11 scalar fields,k11 of which, x and xi , propagate
physically andk of which, ci , are ghostlike.

To put the case 2 action in canonical form is more co
plicated because of theg(l1 ,l2 ,...,lk)¹

2lk term. How-
ever, in principle, it is always possible to introduce a set
new fields$x1 ,...,xk ;c1 ,...,ck% which simultaneously di-
agonalize the kinetic terms for theli andmi , though now the
form of the transformation will depend on the functiong. At
leastk21 of the new fields will be ghostlike. We can the
make a conformal rescaling as in case 1 to put the action
the same canonical form~5.11!, though the potential function
will have a different form.

The conclusion is that there is a procedure for rewriti
the higher-order action~5.1! in a canonical second-orde
e
tic
nd
eld

d at

is
ve

v-
d

m-

of

n
in

ng
r

form. However,k of the new fields in case 1 and at leas
k21 of the fields in case 2 will be ghostlike. In each case w
obtain a specific potential, and so we can again look f
vacuum states as stationary points of the potential. Gene
cally, as in the case off (R) actions discussed in the previous
section, the nontrivial vacua do not correspond to the fla
space solution of the original higher-derivative theory.

As an simple example of this procedure consider the fun
tion f5R1a(¹2R)2. This example is of the first case since
writing f ~l1,l2!5l11al2

2 with l15R andl25¹2R, we have
] f /]l252al2, which is not independent ofl2. Following
our general procedure, the first step is to introduce a set
Lagrange multipliers:

S5
1

2k2 E d4xA2g@R1a~¹2R!2#5
1

2k2 E d4xA2g@l1

1al2
21m~R2l1!1m1~¹2l12l2!#. ~5.12!

As discussed above we have introduced one too many a
iliary fields. We can eliminatel2 by solving its equation of
motion, which reads

2al22m150 ~5.13!

implying l25m1/2a. Substituting back into the action gives

S5
1

2k2 E d4xA2g@mR1m1¹
2l11l12ml12

1
4am1

2#.

~5.14!

Next, to put the kinetic energy forl1 andm1 in canonical
form, we definel15x11c1 andm15x12c1, so that

S5
1

2k2 E d4xA2g@mR2~¹x1!
21~¹c1!

22~m21!~x1

1c1!2 1
4a~x12c1!

2#. ~5.15!

Finally we make the conformal rescalingḡmn5exgmn with
x5ln m to put the action in canonical form

S5
1

2k2 E d4xA2ḡ@R̄2 3
2 ~¹̄x!22e2x~¹̄x1!

2

1e2x~¹̄c1!
22e22x$~ex21!~x11c1!

1 1
4a~x12c1!

2%#. ~5.16!

Thus we see that the original higher-derivative gravity theo
is equivalent to canonical Einstein gravity coupled to thre
scalar fields. One field is ghostlike, and the potential has
single, unstable stationary point atx5x15c150.

As a second example considerf5a1bR1gR2

1eR¹2R. Writing l15R and l25¹2R, we now have
] f /]l25el1, independent ofl2, so this example clearly falls
under case 2. Repeating our procedure, we introdu
Lagrange multipliers to give
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S5
1

2k2 E d4xA2g@a1bR1gR21eR¹2R#

5
1

2k2 E d4xA2g@a1bl11gl1
21el1l2

1m~R2l1!1m1~¹2l12l2!#. ~5.17!

Again we have too many new fields: Thel2 equation of
motion now reads

el15m1 , ~5.18!

which cannot be solved forl2 since the action is case 2
However, substituting this solution into the action eliminat
bothl2 andm1, leaving the second-order form

S5
1

2k2 E d4xA2g@mR2e~¹l1!
22ml1

1a1bl11gl1
2#. ~5.19!

The kinetic energy forl1 is already in canonical form, bu
we must make a final conformal rescaling byex5m to put
the action in the completely canonical form

S5
1

2k2 E d4xA2ḡF R̄2
3

2
~¹̄x!22ee2x~¹̄l1!

2

2V~l1 ,x!G , ~5.20!

where we have the potential

V~l1 ,x!5e22x~exl12a2bl12gl1
2!. ~5.21!

Again the original higher-derivative gravity is shown to b
equivalent to ordinary Einstein gravity though now couple
to only two scalar fields. By choosinge.0 we can ensure
that neither field is ghostlike. Note that we argued above t
.
es

t

e
d

hat

case 2 theories must have at leastk21 ghostlike fields. It is
thus only in this special case ofk51 that we are able to have
all the scalar fields nonghostlike.

As before we obtain a specific potential for the fields. W
find thatV~l1,x! has a single stationary point atl1522a/b,
x5ln~b24ag/b!, providedb24ag/b.0. Expanding around
this point we find that, ifa,0 andb,0, we have a stable
minimum. The value of the potential at the minimum is
V~l1,x!52a/~b224ag! which is negative. We conclude
that, for the given range ofa, b, and g, the theory has a
single stable vacuum state with negative cosmological co
stant. From Einstein’s equation we find that this state is a
anti–de Sitter space withR̄522a/~b224ag!. Using the fact
that R5exR̄ for covariantly constantx, we find thatR5
22a/b. Thus the vacuum state also corresponds to
anti–de Sitter space in the original higher-derivative theor

VI. CONCLUSION

The most important conclusion of this paper is tha
higher-derivative theories of gravitation generically hav
multiple stable vacua. One of these may be trivial, corr
sponding to flat spacetime, but all the other vacua are no
trivial with the associated manifold being either de Sitter o
anti–de Sitter spacetime with nonvanishing cosmologic
constant. While of interest from various points of view, suc
nontrivial vacua cannot represent the universe as it is no
since the radius of curvature of these solutions is of the ord
of inverse Planck mass. Thus one might conclude that no
trivial gravitational vacua are irrelevant for particle physic
theories. However, this is not the case. We have recen
shown that if we extend the methods and results of this pap
to the realm ofN51 supergravity, then nontrivial vacua can
exist with vanishing cosmological constant@11#. Further-
more, we find that supersymmetry is generically spontan
ously broken in these vacuum states. It follows that highe
derivativeN51 supergravitation could play a pivotal role in
high energy physics. This possibility is being pursued els
where@12#.
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