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Nontrivial vacua in higher-derivative gravitation
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A discussion of an extended class of higher-derivative classical theories of gravity is presented. A procedure
is given for exhibiting the new propagating degrees of freedom, at the full nonlinear level, by transforming the
higher-derivative action to a canonical second-order form. For general fourth-order theories, described by
actions which are general functions of the scalar curvature, the Ricci tensor and the full Riemann tensor, it is
shown that the higher-derivative theories may have multiple stable vacua. The vacua are shown to be, in
general, nontrivial, corresponding to de Sitter or anti—de Sitter solutions of the original theory. It is also shown
that around any vacuum the elementary excitations remain the massless graviton, a massive scalar field, and a
massive ghostlike spin-two field. The analysis is extended to actions which are arbitrary functions of terms of
the form V2R, and it is shown that such theories also have a nontrivial vacuum structure.

PACS numbd(s): 04.50+h

[. INTRODUCTION is, the same order as the quadratic actions. We can start by
asking how many new degrees of freedom we expect in such

In a previous papdrl], we presented a method for reduc- theories. To give a rough count, we turn to the Cauchy prob-
ing a general quadratic theory of gravitation to a canonicalem. First recall that even higher-derivative gravity theories
second-order form. The quadratic action provides an exremain diffeomorphism invariant. Thus we are always able
ample of a higher-derivative theory, where the gravitationako transform away four components of the symmetric metric,
equations of motion are higher than second order. Thiseaving six free components. Since the field equations are
means that the theory contains more degrees of freedom thdourth order, if the Cauchy problem can be solved we expect
just the simple massless graviton. By rewriting the action, weo be required to give four initial conditions for each inde-
showed that quadratic gravitation is classically equivalent tgpendent component of the metric, namely the component it-
Einstein’s gravity coupled to a massive real scalar field and aelf and the first three time derivatives. This would imply
massive symmetric tensor field describing a spin-two fieldthat we have at most twelve degrees of freedom. Rewriting
with a specific Lagrangian. the theory in a second-order form, since the auxiliary fields

We found that, even for simple quadratic gravity, the re-are set equal to terms involving second derivatives of the
duced action gave highly nontrivial potential energy and ki-metric, we expect that giving the initial conditions of the
netic coupling terms. This suggests that higher-derivativeauxiliary fields is equivalent to fixing second and third de-
theories have a great deal of structure, not immediately aprvatives of the metric, a total of twelve conditions. Thus we
parent from a simple linear analysis where one expandfind that the auxiliary fields should carry six degrees of free-
around flat space. One particular feature, which is the maidom, just as in the general quadratic theory. This leaves a
thesis of this paper, is that the transformed theory may havpossible six further degrees of freedom in the metric. How-
a complicated vacuum structure. Here, by a vacuum solutiorgver, since the metric in the second-order theory obeys Ein-
we mean a stable solution of the second-order theory. In thistein gravity, the number of degrees of freedom is reduced to
paper, we will only consider vacua in which the auxiliary the two helicity states of the usual massless graviton. By this
fields are covariantly constant. It is important to note thatrough argument, we expect an action in the form of any
only once the vacuum of the transformed theory has beegeneral function of the curvature tensors to describe, at most,
identified can the nature of the elementary field excitationghe propagation of a massless graviton plus an additional six
be discussed. Thus, for instance, the exact mass and codegrees of freedom; that is, the same as for the special case
plings of the excitations, as well as which excitations areof the general quadratic theory discussed in our previous
potentially ghostlike, may be very different around different paper[1]. Be this as it may, the structure of such theories is
vacuum states. In general, they will bear little relation to thepotentially much richer than in the quadratic case. As we will
excitations of the linearized analysis. see, the vacuum structure is now nontrivial.

The vacuum structure of the quadratic theories remained A second generalization is to consider gravity actions
comparatively simple. The only stable vacuum was flat spacehich have higher derivatives acting on the curvature ten-
with zero vacuum expectation value for both of the auxiliarysors. Since these theories involve more than two derivatives
fields. The elementary excitations were a massive scalar fieldn the metric, the corresponding field equations will be ge-
and a massive ghostlike spin-two field. We would like tonerically higher than fourth order. Consequently, we now
investigate how other higher-derivative theories can intro-expect new degrees of freedom in addition to those of the
duce a more interesting vacuum structure. A natural genemgeneral fourth-order theory. Again, we will show that the
alization is to consider actions which are not quadratic buvacuum structure of such theories is, in general, nontrivial.
general functions of the curvature tensors. Since these ten- Some discussion of reducing both types of generalized
sors involve only second derivatives of the metric, the cortheories to a second-order form already exists in the litera-
responding field equations can be at most fourth order; thaure. That the equations of motion following from actions
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given by a general functiof(R) are equivalent to the equa- making a suitable conformal transformation. We will point
tions of motion of a scalar field dilatonically coupled to grav- out the need to consider different branches of the theory
ity, was first shown by Teyssandier and Tourrg@¢ The  when making the reduction.

equivalence at the level of the action was given by Magnano We introduce the auxiliary field in two steps. First we
et al. [3], who also rewrote the reduce theory in canonicalwrite

form. This latter group and Jakubiec and Kijow$Hi also

rewrote actions given by a general functidiR,,) in 1 1 ,

second-order form, though without the canonicalﬂseparatioéz 22 f d'x\=gf(R)= 22 f dxV=g[f'(X)(R=X)

of the new degrees of freedom. Actions including derivatives

of the scalar curvature were considered in the context of +f(X)], (0
inflation by Gottldoer et al. [5], who again showed, in some ) - i ]
special cases, the equivalence of the field equations to tho¥geref’ (X)=df/dX. The auxiliary fieldX has the equation
describing scalar fields coupled to gravity. Still at the level ofof motion
the field equations, this work was extended to a general class

of actions by Schmidt6] and Wandg7]. Possible vacua of
the f(R) theory are discussed, in terms of the original
higher-derivative field equations, by Barrow and Ottewill

£(X)(R—X)=0. 2.2

Provided we have"”(X)#0, this givesX=R. Substituting
: : . back into the action we return to the original higher-
[8], and later in terms of the second-order field equations b)éerivative form. Thus the reduced action is equivalent to the

Barrow and Cotsakif9]. qinal th b | ; h itical boints d
This paper is organized as follows. In the next three secongina theory, but on y away from the critica ponjtg e
' fined byf”(X)=0. A continuous region aX between critical

tions we will consider actions which are general functions_ . . .
9 oints, wheref”(X) never vanishes, will be called a branch.

first of the curvature scalar only, then of the Ricci tensor, an icallv. there will be several branches in the theorv. Since
finally of the full Riemann tensor. Rewriting these theories in ypicaiy, : L Y-
X gets set equal t&®, in terms of the original theory, the

a canonical second-order form, we will find a rich vacuum o . . -
o . ) . . condition for a critical point can be writteff (R)=0. Thus

structure. This will require a careful discussion of the differ- . . o

z Y . branches inX correspond to branches R in the original
ent “branches” of the theory, a concept we define below.h. L

. ; igher-derivative theory.
We will show that the vacuum states are in a one-to-one
. . As a concrete example, let us assume that

correspondence with the stable, constant curvature, de Sitter
or anti—de Sitter solutions of the higher-derivative theory. f(R)=R+ e 2R3 2.3
Furthermore, we will show that if the vacuum of the trans- ' '
formed theory has zero cosmological constant, then the co{jhere ¢>0. Solving f"(X) =0 implies that there is a single

responding spacetime for the original higher-derivativejica| point atx=0. Therefore, the second order formalism
theory is also flat. We will then discuss the elementary excij, terms of the auxiliary fieldX is valid in each of the two
tations around a given vacuum and argue that they remain g snches—s<X<0 and G<X<. but breaks down at the
graviton, a scalar field, and a ghostlike spin-two field, with oiitica) pointX=0. SinceX gets set equal tR, these regions

masses and couplings depending on the particular vacuuyrespond to branches in the space of curvature given by
and the functional form of the original action. In Sec. V we . -r 0 and 6cR< with a critical point atR=0.

will consider a class of gravity actions that are gkeneral func-  The second step, which will then allow us to rewrite the
. . . 2 . )
tions of the curvature scal& and the derivative§™'R, with  5¢tjon in canonical form, is to change variables to a new field

k a positive integer. We show how to rewrite such theories iN\=£"(X). In terms of this new variable, the action becomes
second-order form and show that they have, in general, a

nontrivial vacuum structure. In particular, we present an ex- 1

ample with two new scalar degrees of freedom, neither of S= 2.2 j d*V—g[A(R=X(\))+T(X(A\)]. (2.4
which is ghostlike, coupled to Einstein gravity with a stable

anti-de Sitter space as its vacuum. We briefly present Ou{:Iearly this action is well defined only for those regions

Coq_(;:lrj;'j%?fo:ﬂ tsrécb;/plér our conventions are to use a metriWh_ere theX action is valid; that.is, away from '_[he critical
of signature (—+++) and define the Ricci tensor as Bomts. Therefore, _tha formulation is only deflne_d over
R —aT* —aT* +T TP —T> I* ranges ofX for which f"(X) #0. Note that to define the
R s R R action (2.4 we must be able to invert the expression
A=f'(X) to give X=X(\). Locally this requires the same
Il. ACTIONS GIVEN BY GENERAL FUNCTIONS OF THE nondegene_rate conditidif (X) #0. Globally, 'Fhere may still
SCALAR CURVATURE be many d_lfferent roots when we solve mrln terms o_f)\.
However, in any given branch of there is only a single
As in the case of quadratic gravity, the higher-derivativeroot. Thus there is a valid formulation of the theory in terms
theory described by actions which are general functions obf \ for each branch oX. It is important to note that, in each
the curvature scalar is classically completely equivalent tdranch, the inverted functioX=X(\) which enters(2.4) is
the canonical second-order theory of a scalar field coupled tdifferent.
gravity. This equivalence was first shown at the level of the As a concrete example, consider once adéR) defined
action by Magnanet al.[3]. We shall derive this equivalent in (2.3). It follows that
theory in a slightly different form, by first introducing an
auxiliary field to reduce the action to second order and then A=1+3e 2X2 (2.5
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Note that\>1. This expression can be inverted to give

e s

X=t‘/—§ A—1. (2.6)

Va

Clearly one must take theé root in the G<X< branch and
the —root in the —o<X<<0 branch. This situation is quite
generic, as we will see below.

For a particular reduced theory, corresponding to a given
branch of the original higher-derivative theory, we can define
x=InA and perform the conformal transformation
9,,=€"g,,. Action (2.4) then becomes |

1 I— P
S=52 f d*xV—g{R—3(Vx)?—e > e*X(e)
FIG. 1. VA(y) for R+ e ?R® gravity.

—f(X(e))]}. 2.7 -

. , . . . original metric, withR=eXR. Since the vacuum fielg must
As promised, we find a theory of Einstein gravity coupled to,, . . axtremum of the potential, we have the condition
a scalar field with a particular potential dependent on the '

choice of the original functiofi(R). As in the quadratic case e 22 f(X(eX))—exX(e¥)]=0. (2.13
there is one subtlety in defining To keepy real, we must
havex>0. WhenA<0 we must |ntr0duce, |nStead, the field We started with a Comp|ete|y genera| functifrso this con-

x=In(=N\), the effect of which is to change the sign of the dition may generically have multiple solutions, including so-
overall normalization of the action as compared with the|ytions away fromy=0. Further, given a particular solution
form given in(2.7) above. Further, at the special podt0  for y, the value of the potential at this point need not be zero;
the action cannot be put in canonical form. In this paper wehat is, the vacuum generally has nonzero cosmological con-

will restrict our attention to tha>0 case only. stant. In this case, the curvature scal®sand R will be

As a concrete example, considgR) defined in(2.3. As  nonvanishing.
pointed out above, in this case>1 in either branch oK. As a concrete example of all this, we return to the ex-
Therefore, x=In A is always well defined. We point out, ample specified in2.3). As discussed previously, there are
however, that the range afis restricted to € y<. two branches where the second order theory is defined;

Note that the scalar field kinetic energy has the usual SigbranchA where G<X<o and branchB where —o<X<0.
and, hencey is not a ghost. We can now look for the vacua The field \, which is given as a function of in (2.5), sat-
in any given branch of the theory. The vacua of the theorysfiesh>1 everywhere and, hence=In \ is well defined in
described by actio(2.7) are defined to be stable solutions of poth branches, although its range in restricted toy8:oe.
theg,, and x equations of motion given by Expression2.5) was inverted to givéX as a function of\ in
(2.6). This expression is branch dependent, being given by

R.=3 9,,R=3 [VuxVox—13 9,.,(VX)%1-% 9. V(x), X=*(e/v3)\—1 with the positive root chosen in branch
(2.9 A and the negative root chosen in brarighlt follows that
the form of the potential energy defined (.10 also de-
v2. _ d_V pends on the branch chosen. It is given by
Vex= (2.9
X dy’ .
2
respectively, where the potential is given by Va(X) =+ o ee 2X(eX—1)%2
V(x)=3 e 2 [ex(en—f(X(eY))], (210 (2.14
2
where we recall that the form oX(eX) depends on the VB(X):_73 ee 2X(eX—1)%2

branch in question. As stated previously, we will only con-

sider vacua satisfying the covariant constant condition ) )
o for branchesA and B, respectively. The two potentials are

V,.x=V,x=0. (2.11)  plotted in Figs. 1 and 2. We see that each has a stationary

point. However, since vacua must be minima of the poten-
It follows that y is a constant and, frornf2.9), that it must tial, it follows that only branciB has a stable vacuum. This
extremize the potential. Furthermore, it follows frai2.8) is located at y=In4, which is nonzero. Note that

that the vacuum is a space of constant curvature with Vg(In 4)=—¢€/24, so that the vacuum state has a nonvanish-
o ing negative cosmological constant. It follows tht —e/4
R=6V(x). (2.12 and R=—¢, which implies that the vacuum state is an

o anti—de Sitter space both in terms of the megjg and the
Sinceg,, =€ *g,, andy is constant, these vacua also cor- metric g,,,. Thus we have given an example of a higher-
respond to spaces of constant curvature with respect to thderivative theory which has a new vacuum state away from
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FIG. 2. Vg(y) for R+ e 2R3 gravity. FIG. 3. VA(y for R+3ae ?R%+ e RS gravity.

the flat-space solution of ordinary Einstein gravity. It is im- \ 'and hencey, given in(2.18 is different in each branch, it

portant to note that none of this structure would have beefg|lows from (2.10 that the potential energy function also is
evident if we had made a simple expansion of the originaljfferent in each branch. We have

action around flat space in termstof,=g,,,— 7,, . In fact,
keeping only the first nontrivial, quadratic termshp, , we

1 _—2,-2 2
would not even have been aware that there was an additional ~ VAX) =3 € "€ Z XL (O ]T3a+2X,(x)],
scalar degree of freedom in the theory. The lowest order term (219
in R® is cubic inh,,, and so in a quadratic expansion we Ve(x)=3% e 2e "2 X_(x)A[3a+2X_(x)],

would only see the usual Einstein term.
The conclusion is that generic higher-derivative correcy,pare
tions to pure Einstein gravity introduce completely new
vacuum states into the theory. Flat space is no longer a
unique point in field space, so that if, for instance, we wish to Xi(x)=—a*x\a?+3e(eX—1) (2.20
investigate the fundamental excitations in the theory, we
must start by specifying which vacuum state we are consid
ering.
At this point, we would like to present another specific
example that further illustrates the preceding discussio
Consider the cubic function

and theV, expression is valid in brancA and theVg ex-
pression valid in brancB. The two potentials are plotted in
Figs. 3 and 4. Unlike the previous example, in this case each
Twranch contains a single, stable minimum. In braAghhis
minimum is located ay=0 and has vanishing cosmological

_ -2p2, _—2p3 constantv(0)=0. It follows that, for this vacuumR=R=0
FRI=R+3ae™ "R+ 7R, (2.19 and spacetime is flat with respect to both thg, andg,,
with e>v3a>0. We now have metrics. In branch B, the minimum is located at
x=In(4—6a€ 1) with a nonvanishing negative cosmological
f(X)=6€ %(X+a), (2.16  constant given by(x)=—€%/6(4e—6a). For this vacuum

R =—é4/(4e—6a) and, henceR=—e. It follows that the
so that the theory has a single critical pointXat—a. It  spacetime is an anti—de Sitter space with respect to both
follows that the second-order theory is defined on two
branches; brancliA where —a<X< and branchB where

—o<X<—a. On either branch we can define a new field Vs
A=f'(X), which in this case is given by /
A=1+6ae ?X+3e ?X2. (2.1

Note that, since&>v3a, \ is always a positive real number in
the range +3a%¢ ><\<w for both branches. Expression |

(2.17) can be inverted to give In(4 - 6oe-l) x

X.=—a*+\a?+3e?(A—1). (2.18

Clearly theX, solution is correct on branch whereas the
X_ solution is to be used in brandB. Since\ is always In(1-302e2)
positive, the definition ofy=In \ is valid in both branches. /A
Note that xy is then restricted to lie in the range

In(1—3a’€ ?)<y<o. Since the expression fot in terms of FIG. 4. Vg(y) for R+3ae ?R?+ e 2R3 gravity.
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metricsg_w andg,,, . Thus we have found an example which,
aside from a conventional minimum Rt=0 with zero cos-
mological constant, has an additional minimum with nega-
tive cosmological constant. Furthermore, there is an unstable
maximum with positive cosmological constant. The mass of
the scalar field is different at each of the different minima.
Here a quadratic expansion of the action around flat space
would have identified a new scalar degree of freedom, but \
would never have revealed the presence of a second stable ~
vacuum state.

It will not have escaped the readers notice that finding the
vacua in the second-order formalism requires a careful dis-
cussion of the branches in thé variable. The branching
structure was not too difficult in the preceding examples, but
as we will show below, it can be, and generally is, extremely
complicated. However, the following remarks will allow us ~ FIG. 5. Condition for a constant curvature solution #R
to define a simpler procedure for determining the vacua. Re+ e sin(R/e)] gravity.
call that, for a covariantly constant scajasatisfyingd V/dy
=0, the corresponding spacetime structure in terms of th@ons of motion, solving the equatiof2.22, which is valid
metric g, is that of a space of constant curvature withglobally. Having identified these points we can then, locally
R=6eXV(x). Provided we are not at a degenerate pointaround each solution, make a transformation to the reduced
spaces of constant curvatuReand vacuum solutions are in theory, choosing, if necessary, the appropriate branch of
one-to-one correspondence, since the relafen6eXV(y)  X(eY). In the transformed frame, the new scalar degree of
not only means that constagtimplies constanR, but also  freedom is made explicit. We can then address questions of
the reverse. Note that, as a corollary, any vacuum solutiofocal stability and the mass of the scalar field. The only
with zero cosmological constant, namalyx)=0, must cor-  breakdown of this procedure occurs when the minimum is at
respond to flat space in the original higher-derivative theorya degenerate point of the transformation; that is, a point
An important consequence of this result is that, since flatvheref”(R)=0. In this case, any discussion of the particle
space is a single point in the field space of the originalspectrum and local stability must be in terms of the original
theory, there can be only one vacuum state with zero cosmaheory. In general, we shall not consider such degenerate
logical constant in the second order theory. We conclude thasoints.
all vacuum solutions of the above type can be found as con- As an example of this procedure, consider the function
stant curvature solutions of the equations of motion for the
higher-derivativeg,,, theory. All such vacua can be found f(R)=% [R+e€ sin(R/€)], (2.23
directly, without reference to any branch structure. Having
found a vacuum of interest, one can then proceed in reversgerec is a constant. The condition for a degenerate point is
introducing the second-order theory in the appropriatgnen
branch containing that vacuum. This is often an easier pro-
cedure. Th equations derived from the higher-derivative My — L _—1 i -

o (2.1)‘2% q 9 f"(R)=—% e ! sin(R/e)=0. (2.24

28
‘ 23¢ aN 2me € N 4me
4/ 28,8 -2 e 20.€ \

R

R,f'(R—1 g, f(RI—(V,V,—g,, V) (R)=0. This equation has solutior®=ne wheren is any integer.
w w povoER (2.21)  The theory thus has an infinite number of branches given by
nTe<R<(n+1)me. Rather than treating each branch sepa-
If we look for solutions of constant curvature, then rately, we follow our procedure for finding the vacuum states
R.,= %QWR whereR is a constant. It follows that the de- of the theory by solving the conditiof2.22 for the constant
rivative terms in the equations of motion drop out and we arecurvature solutions of the original theory. The condition
left with the simple condition, first derived by Barrow and reads
Ottewill [8],
sin(R/2¢)[ (R/2¢)sin(R/2e) —cogR/2¢€)|=0. (2.29
Rf (R)—2f(R)=0. (2.22
. . ) The left-hand side of this expression is plotted in Fig. 5. We
We see that this is exactly the condition we obtained for,5ve the solutions
stationary points of the potentié?.13 aside from a factor of
e 2X_In the latter case, however, the expression was taken to
be a function of the scalar fielg expressed in terms of,
and as such only valid in a branch-by-branch sense, whereas , . )
here the expression is valid for all curvatuRe wheren is an integer and, are the solutions of
This now provides us with a procedure for finding all the
vacua of the theory as well as the nature of the excitations o sin 6—cos 6=0. (2.27)
around a given vacuum. We start by looking for constant
curvature solutions of the original higher-derivative equa-Explicitly, the first few solutions 0f2.27 near5=0 are

R=2nme, 26,€, (2.26
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)

/

FIG. 7. V(y) for the branch—27e<R<—1re.
FIG. 6. V(y) for the branchre<R<27re.

~6.31e and R=6eXV(x)~5.60. Thus we see that the

oy 027612, 6.4~~280, 5,~2.80, 5,~6.12... - aimum corresponds to the flat space solufor25;e as

(229 expected, and we can conclude that this vacuum is unstable.
Furthermore [n|—3%)7<|5,/<|n|m and as|s becomes For the solution aR=25_,¢, we must take the branch
large the solutions approach=nn. —2me<R<-—me. The expression for the potential is the

The first observation to make is that the constant curvaSame as the expressi¢@.31) above, except that we must
ture solutions aR=2nre, including the poinR=0, all cor-  Now define
respond to degenerate points. As such, a second-order form
of the theory does not exist at these points. Thus, although i
these are constant curvature solutions, we cannot identify X(X)=€ arccog2e*—1) with —2me<X<—me.
them as vacuum solutions of a canonical second-order (2.33
theory. However, the solutions Rt=2 45, € are not at degen-
erate points. From our previous discussion this implies th
they must correspond to vacuum solutions of the canonicaai
second-order theory. Nonetheless, we find that each vacuu
solution lies in a different branch of the theory.

Let us consider two particular solutionR=26,e~5.60e
andR=26_,e=—26,e~—5.60¢, in the second-order formu-
lation. For the first solution we must take the braneh<R
<2me. Following our usual procedure for writing the theory
in a second order form, we first introduce the auxiliary field
X and then define

he resulting potential is plotted in Fig. 7. Agajnis re-
tricted to lie in the range-<y<<0. We now find a stable
Hlinimum aty~—0.12. This gived/(y)~—1.0%, R=6V(y)
~—6.31le, and R=6eXV(x)~ —5.60¢, showing that the
minimum of the potential does indeed correspond to the con-
stant curvature solutioR=246_,e. We can conclude that this
is a stable vacuum state. In fact, further analysis shows that
all the vacuaR=26,¢ with §,>0 are unstable maxima,
while those withs,<0 are stable minima. This final example
demonstrates that the vacuum structure of higher-derivative
A=F'(X)=1 [1+cogX/e)]. (2.29 theories can be complicated. We _find an infinite number of
stable and unstable vacua, each in a different branch of the
However, as usual, we are required to invert this expressiotheory.
to give X as a function of. It follows that In summary, we have shown that theories which are gen-
eral functions of the scalar curvatuRecan be reduced to a
X=¢€ arcco$2\—1) with me<X<2me. (2.30 canonical second-order form describing Einstein gravity
] i ) coupled to a scalar field with a potential which may have a
We note that is only defined in the range<\<1. To put  yacuum structure of arbitrary complexity. Further these
the action in canonical second-order form we defimdn . yacua all correspond to constant curvature solutions of the

The potential fory (2.10 is then given by original theory. The advantage of discussing the theory in the
12 o second-order formalism is that it is in a canonical form
V(x)=35 & “[X(x)cosX(x)/€) Es'n(X(X)le)]'zg where we can easily identify the excitations around the
(2.3 vacuum. The disadvantage is that the problem of inverting

f’(X) means that we are forced to break the theory into
regions separated by degenerate points. For this reason it is
X(x)=€ arccog2eX—1) with me<X<2me. (2.32) often easier to identify vacua as constant curvature solutions
of the higher-derivative theory and then make a local trans-

We now have thay is restricted to the range»<y<0. The  formation in the region of each solution to investigate the

potential is plotted in Fig. 6. We find that there is a singleexcitations around that vacuum. All of the nontrivial vacuum
maximum of the potential ay~—0.12. The value of the structure arises from nonlinear terms in the field equations
potential at this point isV(x)~1.05, so thatR=6V(yx) and so is missed in a quadratic expansion of the higher-

where
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derivative theory in terms of the fluctuation of the metric  We can ask how many degrees of freedom are there in the
around flat space. Further, any analysis of the particle corauxiliary field? We have argued that we expect six. If we
tent of the theory, in this case the presence of a new scalaonsider theX ,, formulation for now, we see first that we
degree of freedom and identification of its mass, can only bean again derive a spin-two divergence condition. Since the

made once the vacuum is identified. auxiliary field equation of motion givex,,=R,,, we
clearly can show, using the Bianchi ident®/G,,,=0, that
Ill. ACTIONS GIVEN BY GENERAL FUNCTIONS V#(X,,,—29,,X) =0. Constraining the components Xf,,

OF THE RICCI TENSOR these four conditions imply that we do indeed have six new

propagating degrees of freedom. We would like to be able to
In this and the following section we shall extend our dis-separate these into scalar and spin-two degrees of freedom as
cussion to include actions which are general functions of firsiyas done in the quadratic case[lj. For a general function
the Ricci tensor and then the Riemann tensor. We shall usg this is not possible since we are not able to obtain the
the same techniques as in the previous section, namely intrgrecessary trace condition from tge, equation of motion.
ducing auxiliary fields, showing that vacuum states correHowever, as we will show below, having identified a

spond to constant curvature solutions of the higher derivativgacuum state, we can always make the separation locally in
theory, and then investigating the excitations around a give@n expansion around the vacuum solution.

vacuum. The reduction to a second-order form was first dis- \What then are the vacua of tiérR,,,) theory? Since we
cussed by Magnanet al.[3] and Jakubiec and Kijowsk#].  are unable to separate the spin-two and scalar degrees of
Here, we shall use a slightly different analysis, again pointfreedom in the auxiliary field, we cannot put the theory in a
ing out the need for identifying different branches of the canonical form and look to minimize the potential as we did
theory and also giving a canonical separation of the newWor the f(R) theory. However, we recall that the vacuum
variables about any given vacuum. We shall only give thestates in question are none other than states where the aux-
general formulation without specific examples. Again Weiliary field is covariantly constant. This means, since X)g

will find a rich structure of vacua which would be com- equation of motion giveX,, =R, , that they are states of
pletely missed in a linearized analysis. This will reemphasizeonstant tensor curvature. We can also impose the condition
the need to identify the vacuum in question before investithat the states should have no preferred direction, soxpat
gating the masses and couplings of the elementary excitas proportional to the metrig,,. Thus vacuum states are

tions of the theory. . states of constant scalar curvatiRg,= ;Rg,, with R con-
_ Starting with an actiorf(R,,,) we can introduce an aux- stant. Consequently, one approach to finding vacuum solu-
iliary field and put the theory in a second-order form tions is simply to look for constant curvature solutions of the
1 original theory.
s=— | d*x/=af(R The equations of motion of the original higher derivative
2k° f V= Ol(R) theory are given by
1 df(x a-) 2¢1 of! ! ! !
=52 f d4X\/—g[T:V(RW—XW)+f(XW) VALt 9u VIV =V VB =V VPR, P
+R,,f1P~g,,f=0. (3.4)

1
~ 5t | AT Ry Xm0 , o
2K To incorporate the presence of the metricf{iR,,) in de-
+f(X . 3.1 riving _the e.quatlons.of motion, we con5|d‘eas_ a function of
Xual(p))] @D the mixed index objecR,”, with all contractions made be-
Again we introduce the auxiliary field in two steps, first writ- tween raised and lowered indices so that the metric does not

ing the action in terms of the fiel,,, which gets set t&®,, ~ €nter explicitly. Then in the above expressiofi ,”

on solving its equation of motion. We then define =df/dR*, so that, for instancef, ,=f',"g,,. Looking
for constant curvature solutions of the fomvzigMVR,
df(X,,) we obtain the condition
WMV:dT’ (3.2)
- Rg'(R)—29(R)=0, (3.5

and invert the expression to give,, as a function ofm,, .
Note again that the introduction of bo¥),, and,, requires ~ where g(R)=f(%R6#”) and g’'(R)=dg(R)/dR, and we

the nondegeneracy condition have used the fact that ,” evaluated at the constant curva-
ture solution must be proportional %,”. Note that this con-
d*f(X,) dition has exactly the same form as the conditiar2? we
detdxwdxp(r #0 (33 obtained for actions which were general functions of the sca-

lar curvature.
if the auxiliary field is to be properly eliminated to return to  Given a particular vacuum solution satisfying the condi-
the original action. Furthermore, in invertifg.2), it may be  tion (3.5), we would like to investigate the excitations around
necessary to divide the theory into branches corresponding the vacuum state. The natural way to do this is to consider an
different possible roots foX ,,. Thus for the variabler,, it ~ expansion of the action around a given vacuBmR,. Ex-
may be necessary to introduce a collection of auxiliary varipandingf(R,,) and keeping terms to quadratic order in the
able theories each valid for a different branchRyf, . curvature only, we have
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1
S=3.2 J' d*xv—glag+a;(R=Ro)+7 a0(R—Ro)*+3 a,2R,,— 7 9,,,R0) (R =5 g*'Ry)]

RZ—i (R, R*"—1 R? (3.6
6m02 m22 nv 3 . .

B
=ﬁfd4x\/—g{—% Ro+R+

Here we have evaluatedand its derivative at the vacuum vious paper, the auxiliary fieldr,, satisfies generalized di-
R.,= %gWRO and defined vergence and trace conditions, so it does indeed describe the
degrees of freedom of a spin-two field. By making a final
field redefinition, we can write the action in canonical form
with explicit kinetic energy terms for the spin-two field.

=a,0"", (8.7 Again following the discussion in our previous paper, the
Ro spin-two field will have the correct Pauli-Fierz limit, but will

unfortunately be ghostlike.

=a,,9""9""+ 3 a (g*"9"’+g""g""), Thus we have shown that locally, around any vacuum of

Ro the higher-derivative theorfthat is a solution of constant

using the general symmetric decomposition of the secon§urvaturé, we can expand the theory to identify a new scalar
two expressions. The variabl@ m,, andm, are then given and @ new spin-two degree of freed@provided we are not

f|R0:aOa

d2f
dR,,dR

po

by at a degenerate pojnfThe spin-two field satisfies divergence

N and trace conditions as before but importantly, we see that it
B=a;— (a1t 7 az2)Ro, remains ghostlike. Thus generalizing ft(R ,,) actions fails

B to remove the problem of the ghost spin-two degree of free-
m02=3—+, (3.8 dom. The masses of the degrees of freedom are fixed by the

A217 822 form of the functionf around the constant curvature solu-

) 2B tion.
my™=——— It is worth noting that we could equally well have done

ay’ , o ; ;
22 this analysis in the second-order form, looking for solutions

where in writing the final line of(3.6) we have used the wijth constantX,, proportional tog,,. Then expanding in
constant curvature conditioa;Ry=2a,. We see that we small X, about such solutions gives a linear coupling be-
have succeeded in putting the action in a quadratic formyyeen X,, andR,, and quadratic “mass” terms foK,,,.
though with the addition of a cosmological constant. ~ From this form we could then extract the scalar and spin-two
The flnE_l' line Of(36) IS |dentl_ca| to the general quadratlc parts Ofx,uv' In this sense, the auxi”ary f|e|ﬁMV a|WayS
form we discussed in our previous pajpét, except for the  carries six degrees of freedom, which about any given
addition of a cosmological constant term and a renormalizayacuum can be decomposed into a scalar field and a ghost

tion of the gravitational coupling constant by a facRWe  gpin-two field, with the form of the decomposition changing
can thus introduce auxiliary fieldg and 7, exactly as we a5 we go from vacuum to vacuum.

did in [1] to give

B 4 == 3= 5 3 IV. ACTIONS GIVEN BY GENERAL FUNCTIONS
_ = _ _3 _3 A X\2 .
S=52 | IxV=g[R=2 (VY)"=2 mp"(1—e™) OF THE RIEMANN TENSOR
~1 Roe’ZX—aMﬁ“”ﬂL% mf(?rw,'afr“”—’%z)]. Our last generalization is to consider actions which are

general functions of the Riemann tensRy,,,. As men-

B9  toned earlier, the suggestion is that such theories have an
The only effect of the cosmological term is to modify the additional six degrees of freedom, which we know in the
potential for the scalar field, adding a teriR,e 2X. We  quadratic case can be decomposed into scalar and spin-two
find that the extremum of the potential is now at fields.
3my2(eX—1)=R,, which, relating the auxiliary fielgy back We start the discussion by demonstrating that, as in all
to the original curvature, giveR=R,, as required for a con- previous cases, we can introduce an auxiliary field to write
sistent expansion. Following exactly the analysis of our prethe action in a second order form:

1 1 df(Xop,s)
SzﬁJdLlXV_gf(R)\,uvp):ﬁ f d4XV_g[TM:;(R)\;va_x)\uvp)+f(x)\yvp)

1
= ZZ f d4X VT g[p}\ﬂvp(R)\,qu_ X)\Mvp(paﬂyé))+ f(x}\p,vp(paﬂyﬁ))]' (41)
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Again we introduce the auxiliary field in two stages; first and, hence, we are considering solutions of constant Ricci

introducingX,,,,,, which gets set equal to the Riemann ten-scalar curvature.

sor on solving its equation of motion, and then defining As before the easiest way to obtain such solutions is from

the equations of motion of the original higher-derivative ac-

df(Xapye) 4.2 tion. Again, to circumvent the problem, when deriving the

dXy vy ' equation of motion of the metric explicitly entering the func-

_ N tion f, we considef as a function oR ,”,” with all contrac-

In both cases we require the nondegeneracy condition  tions made between raised and lowered indices. We then

derive the equations of motion

Auvp —
phHrP=

dzf(xaﬂyﬁ)
det g, dx, . 0 @3 Qoyor Lyeyer 1Rt 1R
KN vpoT mpvo vppuo = 2 "M vpoT @ 2 v mpoT
in order to be able to eliminate the auxiliary field and return ~39,,f=0, 4.5

to the original action. When using the variallg,,,, we may o , o
be required to break the theory into branches, introducing ¥/heref’,”,”=df/dR*". Restricting to constant curvature
collection of second-order theories, each taking a differengolutions of the forn{4.4), we get the familiar condition
branch when inverting to fin&, ,,, in terms ofp, ..., / _ _

Turning to the vacuum statlés, we again find that states Rog"(Ro)~29(Ro) =0, 4.9
with constantX, ,,, have constant Riemann curvature, sincewhere now g(Ro) = f(ngp) and g’ (Rg)=dg(Ry)/dRy,
Xyuro 1S S€t equal tR, ,,,, by its equation of motion. Fur- and we have used the fact that, by symmeitfyb,”v"(Rg vp)
thermore, imposing the condition that there is no preferreds proportional tos,”s,’—g,,,9".
direction in spacetime we require thsf ,,,, is proportional To investigate the excitations around a given vacuum we
to g,,. Therefore, given the symmetries Xf ,,,, we have  expand the action about the constant curvature solution. We

0 L have, keeping terms up to quadratic order in the curvature
R)\,u,va': R}\ILLVO': 12 RO(g}\Vg,ua_ g)\ag,uv)l (44) Only,

1
S= 5.2 f d*x—g[ag+a;(R—Rg) +3 az1(R—Ry)*+3 aAR,,— 7 QWRO)(RW_% 9“"Ro)
+% a2,3(R}\/.LVp_ﬁ RO[ghvg,up_g)\pg,u,v])(R)\'qu_é RO[g)\Vg#p_gAngV])]

B
:Z_KZ f d4x\/—g[—% Ro+ R+

1
2 v 1 2 Auv v 2
6m02 R-— m22 (Ru,R*"= 35 R)+ (R, ,R*™"P=4R, ,R*"+R)|. 4.7

Here we evaluaté and its derivatives at the constant curva- ) B ) 2B
ture solution, defining, for the contraction of the derivatives mo=m, m;=— 2ot dan 4.9
with a tensora, ,,,, which has the symmetries of the Rie- 2179227523 227 7o23

mann tensor but is otherwise arbitrary, "
y and have used the constant curvature condiigR,=2a,

in the final line of(4.7).
f|R02301 The final expression if4.7) is a quadratic action with a
Gauss-Bonnet term, a Weyl-squared term and a Ricci-scalar-
squared term, together with a cosmological constant. The

L Ay =23, Gauss-Bonnet term can be dropped classically as a total di-
ARy wvp Ry vergence, leaving the action in the same quadratic form as
discussed in our previous pagéf. Reducing the action to a
42 ?(econ)d-order form Lhen foll?ows exhactly as in tht;z cas?j for
_ 2 uv R,,) actions, so that we obtain the same transformed ac-
dR, 0 AR, 6 ROA pornvpor =8 A7 82,8 tion (3.9). Again we can verify that the transformed action

has a vacuum solution &=R, as is required for the con-
+azy3AMVpAWVP, (4.9 sistency of our expansion. We also note that here too the
expansion could have been made in terms of the variable
Xyuvp» Which could then be decomposed into its scalar and
spin-two parts, the form of the decomposition depending on
which vacuum is being considered.
In conclusion, general actions of the forftR, ,,,,) may

B=a,—(ay L aytt a,9R _ %3 have_a variety of vacuum solutions, generically not apparent

171d217 2 92276 %2390, YT 580 in a linear analysis. Around any vacuum the new degrees of

with A,,=g"A,,,, and A=g*”A,,. We have also intro-
duced the parameters
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freedom in the theory, aside from the massless graviton, caorder of the higher-derivative equations of motion we see
always be separated into a scalar field and a spin-two fieldhat in case 1 we must introduc&21 new fields, while in

Unfortunately, the spin-two field is always ghostlike. case 2 we need onlykZnew fields. The procedure we shall
use is essentially a generalization of Ostrogradski’'s method
V. HIGHER-ORDER ACTIONS for reducing a higher-order action to a first-order forb@],

] ] ) ] only that here we shall be reducing to a second-order form.
In this section, we shall briefly discuss how to extend our(The Ostrogradski result is usual given as a Hamiltonian, but

analysis to actions with higher-order equations of motionihis can always be rewritten as a Helmhotz Lagrangian, the
We have seen that an action involving any function of theznaiog of the form we shall uge.

curvature tensors gives at most fourth-order equations of mo- \ye start by introducing a set of Lagrange multipliers, so
tion. For higher-order equations we need to consider actions

which include some derivatives of the curvature. Here, we 1

shall be concerned with only the simplest form S=52 J d*%V=a[F(A 1. N g, Ngs 1) F m(R=N7)

1
S:Ffd"’x\/—gf(R,VzR,V“R,...,Vz"R), (5.1) Fpa(VON =N+ u( VA= Nz )] (B.3)
K

Clearly eliminating fields via the Lagrange multiplier equa-

where we require that the functidnhas been reduced, by 8ions of motion, starting with, and working down ink

integration by parts and dropping total derivatives, so as treturns one to the original action.

minimize k. The equations of motion following from similar However, we have introduced at least one too many new
actions have been considered by Schrdand Wands7], fields. It is clear that the, , ; equation of motion is purely

who showed them to be equivalent to those for a set of scalaa{l ebraic and eliminating it will not introduce higher deriva-
fields coupled to gravity. Here we will show the full equiva- 9 9 9

lence in a new way, working at the level of the action. gvizti?r?toz‘sﬁtgt?oicr“eoan d;\”" remain second order. e,
It will be important to distinguish between possible forms q
of the functionf. If we write f=f(\y,N5,..., Ay 1) (Where

in the action we hava,;=R, \,=V?R, and so ol we find Jf (A1 A2, N Msq) in case 1
there are two possible cases: eitdétd\, . , is a function k=g gy ST (5.4
of A\, (case 1 oritis not(case 2. If it is not then it must g(N{,No,...,A) in case 2,

be a function of\,, since otherwise the original form was

reducible; that is, the action was not written in a form mini- where we have distinguished between the two cases dis-
mized with respect tk. Thus, in case 2, we can always cussed above, and substituted the special foriinfcase 2.
decomposd as In case 1, to form the analog of Ostrogradski's Lagrangian,
) we solve the equation to givg.,; as a function of\,,... \¢

case 2: f(Ai Az MM S9NLA2MIMe1 gnd g, writing xm:%kﬂ()\l,...,)\k,ﬂk). It should

Fh(Ng Ay ). (5.20  be noted that in general the solution is not unique, and we
must divide the original theory into pieces corresponding to

Further, we see that for case 1 the equations of motion ardifferent branches of the solution, just as in the case of ac-
(4k+4)th order, while for case 2 they afék+2)th order. tions of the formf(R) discussed in the previous section. In

We would like to reduce the actiofb.1) to a canonical case 2 we simply substitute fpg, and the special form df.
second-order form, by introducing auxiliary fields. Given theWe get, in case 1,

1-s=1 5o YT R L VT VIS O WS VIR | F W(R=N1) + 11 (VPN = No) + -
case 1: 2,32 XV=9[ T N2 N N e (NN g )+ 1)+ 1~ A\2)

+ (V2= N 1N oo N i) s (5.5

the exact analog of the Ostrogradski-Helmhotz LagrangianyWe see that, as expected, in case 1 we have a totadt 6.2

while for case 2 we have a slightly different form, auxiliary fields, while in case 2 we have onlk 2ew fields.
All that remains is to transform the action into a canonical
form, growing canonical kinetic energy terms for all the new
1 auxiliary fields. Let us concentrate on actions of case 1.

case 2! S=53 J d*xvV=g[h(A 1. N5, M)+ &(R Terms of the formu;V2\; are easy to deal with. Simply
introducing a pair of new fieldsy, and ¢ by
_)\1)+M1(V2)\1_)\2)+

+FO(N 1 N2, M) VAN (5.6 N=xit i, pi=xi— i, (5.7
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we have, in the action, form. However,k of the new fields in case 1 and at least
k—1 of the fields in case 2 will be ghostlike. In each case we
4y [ 2 4y [ 2. 2 obtain a specific potential, and so we can again look for
f =gV )\i_f A=l VX~ iV 2] vacuum states as stationary points of the potential. Generi-
cally, as in the case df{R) actions discussed in the previous
:J d*V—g[— (Vxi) 2+ (V)2 section, the nontrivial vacua do not correspond to the flat-
space solution of the original higher-derivative theory.
(5.8 As an simple example of this procedure consider the func-
tion f=R+ a(V2R)2. This example is of the first case since
We see that the; field has a canonical kinetic term, but the writing f(A;,\,)=\;+a\3 with \;=R and\,=V?R, we have
i field has the wrong sign; it is a ghost. This is characteristicof/d\,=2a)\,, which is not independent af,. Following
of higher-order theories. In reducing the theory to secondur general procedure, the first step is to introduce a set of
order the new fields always enter as a pair of a ghostlike fieldagrange multipliers:
with an ordinary field. If we define a potential function,

1 — 1 —
V(Xl!vXkrlrljlavl//k) S:2_K2jd4x —g[R+a(V2R)Z]=2—’<2Jd4X —g[)\l
= a1+ kot e et e 1N N 1) +aN2+ u(R=N)+ u1 (VAN —Ny)]. (5.12
_f()\ll)\z!'"1)\k1’xk+l()\lv'--a)\kaﬂk))v (59)

As discussed above we have introduced one too many aux-

where it is understood that the right-hand side is evaluated diary fields. We can eliminate,, by solving its equation of
Ni=xi+ ¥, #i=xi— ¥, the action in case 1 becomes motion, which reads

1 -
case 1: Szﬁfd“x\/—g puR=> {(Vxi)? 2N 3= p1=0 (5.13
I

implying A\,=u4/2a. Substituting back into the action gives
_(Vll/i)z}_v(xl1'--7Xk;¢'11'--1lzbk):|'

1
(5.10 S:ﬁ f d*x =gl R+ p VAN 1+ Ny — uh = Faus®].
To complete the transformation to canonical form all that is (5.1

left is to make a conformal rescaling of the metric to remove
the «R coupling. As usual we defing=In x and rescale to Next, to put the kinetic energy fax; and w, in canonical

a metricg,,,=€%g,,, giving form, we define\,=x;+ ¢y and u;=x,— ¢4, So that
1 -
1 S= Ay — _3 2 1
case 1. S Zz f d*x afR 2 (VX) S:ﬁ f d*x /_g[MR_(VXI)Z_l—(V‘pl)Z_(,U«_1)(X1
—e X {(Vx)2= (Vi) +n)— Fa(xi— )2 (5.19
i

Finally we make the conformal rescali@vzexgw with

—€ 2V (X1 Xk W) |- (5.1)  y=In u to put the action in canonical form

We conclude that the original case 1 higher-derivative grav- 1 4 = 3,02 —yo 2
ity theory is equivalent to canonical Einstein gravity coupled S= 2,2 d™V=g[R=3(Vx)*—e X(Vx1)
to 2k+1 scalar fieldsk+1 of which, y and y;, propagate —
physically andk of which, ¢ , are ghostlike. +e X(Vy)?—e (e —1)(x1+ 1)
To put the case 2 action in canonical form is more com- 1 2
plicated because of thg(\j,\,,....\)V2\, term. How- trala— ¢l (5.19

ever, in principle, it is always possible to introduce a set of

new fields{xq,..-,xk;¥1.---.¢} which simultaneously di- Thus we see that the original higher-derivative gravity theory

agonalize the kinetic terms for the andy; , though now the is equivalent to canonical Einstein gravity coupled to three

form of the transformation will depend on the functignAt  scalar fields. One field is ghostlike, and the potential has a

leastk—1 of the new fields will be ghostlike. We can then single, unstable stationary point g ;= ¢4, =0.

make a conformal rescaling as in case 1 to put the actionin As a second example considef=a+ B8R+ yR?

the same canonical for.11), though the potential function +eRV?R. Writing \;=R and \,=V°R, we now have

will have a different form. aflon,= e\, independent ok, so this example clearly falls
The conclusion is that there is a procedure for rewritingunder case 2. Repeating our procedure, we introduce

the higher-order actior{5.1) in a canonical second-order Lagrange multipliers to give
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1 . 5 X case 2 theories must have at lelastl ghostlike fields. It is
S=52 f d*xy—gla+ R+ yR°+eRV R] thus only in this special case kf=1 that we are able to have
all the scalar fields nonghostlike.

1 4 ) As before we obtain a specific potential for the fields. We
=52 J d*xv=gla+ A1+ YA 2+ i), find thatV(\;,x) has a single stationary point &f=—2a/p,
x=In(B—4ay/pB), provided—4ay/3>0. Expanding around
+ w(R=Np)+ m1(V2A1—Ny)]. (5.17  this point we find that, ifa<<O and <0, we have a stable

. ] ) minimum. The value of the potential at the minimum is
Again we have too many new fields: The equation of v(\, y)=—a/(8>—4ay) which is negative. We conclude
motion now reads that, for the given range of, B, and y, the theory has a

Ehn = (5.19 single stable vacuum state with negative cosmological con-
17 K1 ' stant. From Einstein’s equation we find that this state is an
which cannot be solved fox, since the action is case 2. anti—de Sitter space witR=—2a/(5’~4ay). Using the fact

However, substituting this solution into the action eliminatesthat R=e*R for covariantly constank, we find thatR=
both \, and u,, leaving the second-order form —2alB. Thus the vacuum state also corresponds to an
anti—de Sitter space in the original higher-derivative theory.

1
S5 f %G R— (VA1) 2~ ks VI. CONCLUSION
The most important conclusion of this paper is that
+a+ BN+ YN 2 (5.19  higher-derivative theories of gravitation generically have

multiple stable vacua. One of these may be trivial, corre-
o ) ] ) sponding to flat spacetime, but all the other vacua are non-
The kinetic energy fon, is already in canonical form, but trjyjal with the associated manifold being either de Sitter or
we must make a final conformal rescaling &Y=y to put  anti—de Sitter spacetime with nonvanishing cosmological
the action in the completely canonical form constant. While of interest from various points of view, such
nontrivial vacua cannot represent the universe as it is now
1 3 o sin_ce the radius of curvature of these _solutions is of the order
S=-— f d4X\/__§fR_ = (Vx)2—ee X(VA;)? of inverse Planck mass. Thus one might conclude that non-
2k 2 trivial gravitational vacua are irrelevant for particle physics
theories. However, this is not the case. We have recently
—V(M,X)}, (5.20 shown that if we extend the methods and results of this paper
to the realm ofN=1 supergravity, then nontrivial vacua can
exist with vanishing cosmological constaftl]. Further-
more, we find that supersymmetry is generically spontane-
ously broken in these vacuum states. It follows that higher-
derivativeN=1 supergravitation could play a pivotal role in
VN, x) =€ 2X(e\,—a—Br— y\;d).  (5.2D) hiﬁh eFlezr]gy physics. This possibility is being pursued else-
where[12].

where we have the potential
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