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Testing gravity to second post-Newtonian order: A field-theory approach
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A field-theory-based framework for discussing and interpreting experimental tests of relativistic gravity,
notably at the second post-Newtonian~2PN! level, is introduced. Contrary to previous frameworks which
attempted at parametrizing any conceivable phenomenological deviation from general relativity, we focus on
the most general class of gravity models of the type suggested by unified theories: namely, models in which
gravity is mediated by a tensor field together with one or several scalar fields. The 2PN approximation of these
‘‘tensor-multiscalar’’ theories is obtained thanks to a diagrammatic expansion which allows us to compute the
Lagrangian describing the motion ofN bodies. In contrast with previous studies which had to introduce many
phenomenological parameters, we find that, within this tensor-multiscalar framework, the 2PN deviations from
general relativity can be fully described by introducing only two new 2PN parameters« andz beyond the usual
~Eddington! 1PN parametersb̄[b21 andḡ[g21. It follows from the basic tenets of field theory, notably
the absence of negative-energy excitations, thatb̄, «, and z ~as well as all the further parameters entering
higher post-Newtonian orders! must tend to zero withḡ. It is also found that« andz do not enter the 2PN
equations of motion of light. Therefore, within our field-theory framework, second-order light-deflection or
time-delay experiments cannot probe any 2PN deviation from general relativity. On the other hand, these
experiments can give a clean access toḡ, which is of greatest significance as it measures the basic coupling
strength of matter to the scalar fields. Because of the importance of self-gravity effects in neutron stars,
binary-pulsar experiments are found to constitute a unique testing ground for the 2PN structure of relativistic
gravity. A simplified analysis of current data on four binary-pulsar systems already leads to significant con-
straints on the two 2PN parametersu«u,731022, uzu,631023.

PACS number~s!: 04.25.Nx, 04.50.1h, 04.80.Cc
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I. INTRODUCTION

The past three decades have been the golden era of
perimental gravity: from Pound and Rebka to Hulse and Ta
lor, many complementary aspects of general relativity ha
been successfully tested. In particular, solar-system exp
ments allowed one to map out fairly completely weak-fie
gravity at the first post-Newtonian~1PN! approximation, i.e.,
to put stringent numerical constraints on a large class of p
sible deviations from general relativity at order 1/c2. Let us
recall the useful role played in this respect by the first-ord
parametrized post-Newtonian~PPN! formalism @1–8# which
introduced, in its extended versions, about 10 independ
phenomenological parameters to describe possible n
Einsteinian 1PN effects. Improved experiments are no
planned to reach the second post-Newtonian~2PN! level,
order 1/c4, such as microsecond level light deflection expe
ments. Let us also mention that a 2PN treatment of the p
astron advance is already significant for the binary puls
PSR 1913116 @9#. It is therefore timely to undertake a sys
tematic theoretical study of gravitational theories at this a
proximation.

The 2PN limit of general relativity has already been stu
ied in depth@10–18,9,19#, but we also need to know wha
can be the possible deviations from these results in alter
tive theories of gravity. An ambitious program developed b
530556-2821/96/53~10!/5541~38!/$10.00
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Nordtvedt and Benacquista in@20–22# tries to extend di-
rectly the PPN formalism at order 1/c4; i.e., it aims at intro-
ducing a large number of parameters describing any poss
relativistic theory at this order. Although it has only bee
partially implemented at the present time, this approach
lowed one to derive some relations between these 2PN
rameters by imposing the concept of ‘‘extended Lorentz
variance’’ ~i.e., by requiring that the gravitational physics o
subsystems, influenced by external masses, exhibit Lore
invariance! @23,22#. In spite of its partial achievements, th
ability of such a general phenomenological approach to
lineate the physically most important structures at the 2
level is unclear. For instance, it was claimed in@21# that 10
‘‘parameters’’ are required to map Lorentz-invariant theori
of gravity at the 2PN level; however, a careful reading of th
article shows that several of these ‘‘parameters’’ are in f
functionsof the distances between massive bodies, and co
dependa priori on an infinite number of real parameters.

In the present paper, we shall follow an entirely differe
methodology by developing a ‘‘theory-dependent’’ approa
initiated in @24#: Instead of considering any conceivable ph
nomenological deviation from general relativity, we focus o
the simplest and best motivated class of non-Einstein
theories, in which gravity is mediated by a tensor fie
(gmn* ) together with one or several scalar fields (wa). These
‘‘tensor-multiscalar’’ theories arise naturally in theoretic
5541 © 1996 The American Physical Society
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attempts at quantizing gravity or at unifying it with othe
interactions~Kaluza-Klein and superstrings theories!. More-
over, they are the only consistent field theories, containi
only fields of infinite range, able to satisfy the weak equiv
lence principle~universality of free fall of laboratory-size
objects! @25#.1 Indeed, massless gravitational theories inco
porating, besides the metricgmn* , vector fields, a second
symmetric tensor field or an antisymmetric tensor field a
known to present in general many flaws, such as discontin
ties in the field degrees of freedom, negative-energy mod
causality violations, ill posedness of the Cauchy proble
etc., not to mention the lack of theoretical motivations fo
considering equivalence-principle-preserving couplings
such fields. By contrast, tensor-multiscalar theories are w
motivated, consistent and simple enough to allow their o
servational predictions to be fully worked out@24#. More-
over, we believe that these field theories are the only on
satisfying the extended Lorentz invariance required in@20–
23#. It would be an interesting program to prove it rigor
ously. In that case, our field-theoretical approach gives
technically much more efficient way of controlling thei
structure than that of Refs.@20–23#, as exemplified by our
results below.

A detailed study of the 1PN limit of tensor-multiscala
theories has been performed in@24#, as well as the generali-
zation of this approximation to the case of compact bod
~such as neutron stars!, called the first post-Keplerian~1PK!
limit. We recall some of our results in Sec. II below. Out o
the 10 post-Newtonian parameters describing conceiva
deviations from general relativity at the 1PN level, only tw
do not vanish in this class of theories: the paramete
b̄[b21 and ḡ[g21, introduced long ago~on different
r

ng
a-

r-

re
ui-
es,
m,
r
for
ell
b-

es

-
a

r

r

ies

f
ble
o
rs

grounds! by Eddington@1#.2 In @27,26#, it was shown that the
cosmological evolution generically drives these paramete
towards values&1027 at our present epoch. This class o
theories gives therefore a natural explanation~requiring no
fine tuning nor thea priori presence of small parameters! to

the boundsu ḡ u,231023 @28# andub̄u,631024 @29# found
at the 1PN level in solar-system experiments, and furnish
motivation for increasing the precision of these measur
ments to the 1027 level. Such an increase in accuracy dow
to a level comparable to 2PN effects (Gm( /R(c

2;1026)
makes it necessary to determine how 2PN effects can infl
ence such high-precision measurements, i.e., whether th
are new anda priori unknown 2PN parameters which could
complicate the interpretation of 1PN experiments. An e
ample of this is given by higher-order light-deflection exper
ments which have been claimed to involve a new 2PN p
rameter@12,13,15#. We shall, however, prove below that this
claim is incorrect in the framework of tensor-scalar theorie

The questions we shall address are thus: What are the n
degrees of freedom describing the possible deviations
tensor-multiscalar theories from general relativity at the 2P
order, and can the corresponding effects be separated fr

those associated withb̄ and ḡ? On the other hand, do ex-

perimental bounds onb̄ and ḡ give constraints on possible
2PN non-Einsteinian effects?

Before entering into a detailed study of the 2PN limit o
tensor-scalar theories, let us quote one of our main resu
Two, and only two, new parameters arise at the 2PN lev
We have denoted them by« and z, cf. Eqs.~3.30! below.
The possible 2PNdeviations from the general relativistic
physical metric tensor are given by
dg00~x!5
«

3c6
U3~x!1

«

c6E d3x8
Gs~x8!U2~x8!

ux2x8u
1
2z

c6E d3x8
Gs~x8!

ux2x8u E d3x9
Gs~x9!U~x9!

ux82x9u

1
2z

c6
U~x!E d3x8

Gs~x8!U~x8!

ux2x8u
1OS b̄

c6
,

ḡ

c6
D 1OS 1

c8
D , ~1.1a!

dg0i~x!5OS b̄

c5
,

ḡ

c5
D 1OS 1

c7
D , ~1.1b!

dgi j ~x!5OS b̄

c4
,

ḡ

c4
D 1OS 1

c6
D , ~1.1c!
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where s(x) is the mass density and
U(x)5*d3x8Gs(x8)/ux2x8u the Newtonian potential. To
increase the readability of Eqs.~1.1!, we have suppressed th
tilde which should decorate all the quantities appearing in
g̃00( x̃ ),Ũ,G̃,s̃, . . . ; seebelow. The same parameters«, z
will be found to define the 2PN renormalizations of variou

1Note, however, that the scalar couplings coming out natura
from unifying theories violate the equivalence principle@26#.
e
it:

s

Newtonian or 1PN quantities under the influence of se
gravity or external gravitational fields.

In Sec. II, we recall the action and the equations of m
tion of tensor-multiscalar theories, as well as a few usef
results concerning their 1PN limit. We also recall how th

lly

2The intuitively preferred role played byb̄ and ḡ in the PPN
formalism is a further argument for working in the framework o
tensor-scalar theories.
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motion of self-gravitating bodies can be described in the
theories. The main discussion of our paper, in Sec. III,
devoted to the Lagrangian describing the motion ofN mas-
sive bodies at the 2PN level. Our main technical tool is
diagrammatic expansion, which allows us to compu
straightforwardly all the 2PN effects. In Sec. IV we deriv
the 2PN metric corresponding to the Lagrangian of Sec.
and we verify and complement our results by considering t
metric generated by one static and spherically symme
body, whose exact solution has been derived in@24#. In Sec.
V, we discuss the impact of our findings on future relativist
experiments. We summarize our results and give our conc
sions in Sec. VI. To relieve the tedium, technical details a
relegated to various appendixes. Appendix A gives the e
plicit diagrammatic calculation of the 2PN Lagrangian. I
Appendix B, we discuss the renormalizations of the Newto
ian and 1PN coupling parameters due to 2PN effects. Fina
Appendix C derives the explicit 2PN formulas for the defle
tion of light and the perihelion shift of test masses.

II. TENSOR-MULTISCALAR THEORIES

In this section we define our notation for dealing wit
tensor-scalar theories, and recall the results of@24# that we
need below to study their 2PN approximation.

A. Action and field equations

For simplicity, we consider in the present paper only the
ries respecting exactly the weak equivalence principle, i.
theories in which matter is universally coupled toonesecond
rank symmetric tensor, sayg̃mn(x

l). The action describing
matter can then be written as a functional:

Sm@cm ,g̃mn#, ~2.1!

wherecm denotes globally all matter fields, including gaug
bosons. Actually, from the perspective of modern unifie
theories, this class of models seems ratherad hoc. For in-
stance, string theory does suggest the possibility that th
exist long-range scalar fields contributing to the interacti
between macroscopic bodies, but all such scalar fields h
composition-dependent couplings. However, a recent stu
of a large class of superstring-inspired tensor-scalar mod
@26# has found that~because of deep physical facts! the
composition-dependent effects represent only fractiona
small (;1025) corrections to standard post-Newtonian e
fects.

At a fundamental level, the matter actionSm should be
chosen as the curved-spacetime version of the action of
standard model of electroweak and strong interactions,
tained by replacing the flat metricfmn5diag(21,1,1,1) by
g̃mn and partial derivatives byg̃-covariant ones. At a phe-
nomenological level, the action describing a system ofN
~non-self-gravitating! pointlike particles is

Sm52 (
A51

N E m̃Acds̃A , ~2.2!

whereds̃A[@2g̃mn(xA
l)dxA

mdxA
n #1/2, and them̃A’s denote the

~constant! inertial masses of the different particles. The un
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versal coupling tog̃mn implies in particular that laboratory
rods and clocks measure this metric, which will therefore b
called the ‘‘physical metric’’@the names Jordan, Fierz, or
Pauli metric are also used in the literature#.

The difference with general relativity lies in that the
physical metricg̃mn , instead of being a pure spin-2 field, is
in tensor-scalar theories a mixing of spin-2 and spin-0 d
grees of freedom. More precisely, it can be written as

g̃mn5A2~wa!gmn* , ~2.3!

where A(wa) is a function ofn scalar fields~we choose
A.0 to simplify some equations below!. The dynamics of
the pure spin-2 fieldgmn* , usually called the ‘‘Einstein met-
ric,’’ is described by the Einstein-Hilbert action

Sspin 25
c4

4pG*
E d4x

c
Ag*

R*

4
, ~2.4!

whereG* is a constant~the bare gravitational constant!,
R* is the scalar curvature ofgmn* ~with the sign conventions
of @30#!, and g*[udetgmn* u. On the other hand, the action
describing then scalar fieldswa reads

Sspin 05
c4

4pG*
E d4x

c
Ag* F2

1

2
g
*
mngab~wc!]mwa]nwbG ,

~2.5!

whereg
*
mn is the inverse ofgmn* , the indicesa,b,c, . . . vary

from 1 to n, and gab(w
c) is an n-dimensional (s-model!

metric in the internal scalar space spanned by thewa’s.
@gab must be positive-definite to get positive kinetic-energ
terms.# A tensor-multiscalar theory contains in genera
11n(n21)/2 arbitrary functions ofn variables: the ‘‘cou-
pling function’’ A(wa) involved in Eq. ~2.3!, and the
n(n11)/2 components ofgab from which must be sub-
tractedn arbitrary functions parametrizing arbitrary change
of scalar-field variablesw8a5 f a(wb). In the simplest case
where there is only one scalar field (n51), the only arbitrary
function in the problem isA(w), the unique component of
thes-model metric being always reducible to the trivial form
g11(w

1)51. The reader should note that the consideration
multiple scalar fields, far from complicating uselessly ou
analysis, is in fact a technically powerful tool for delineatin
the structure of the possible deviations from general relat
ity. Once one is used to some notation, working with seve
fields is anyway not more difficult than working with only
one.

We could also have added a potential termV(wa) in the
action ~2.5!, but we will restrict our attention to infinite-
range fields in the present paper~see@24# for more details!.
Note thatgmn* and then scalar fieldswa are considered as
forming the gravitational sector of the theory, by contra
with the matter sector described by the fieldscm of Eq. ~2.1!.

Although one should always keep in mind that the metr
measured by normal physical standards isg̃mn , it will be
convenient in the following to formulate the theory in term
of the pure spin-2 and spin-0 fieldsgmn* and wa. The
Einstein-frame infinitesimal lengthsl , time intervalst, and
massesm will therefore be related to the physical~measured!
ones by
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l 5A21~w! l̃ , t5A21~w! t̃, m5A~w!m̃. ~2.6!

For instance, the action~2.2! describing N ~non-self-
gravitating! pointlike particles can be rewritten as

Sm52 (
A51

N E m̃AcA„w
a~xA!…A2gmn* ~xA!dxA

mdxA
n

52 (
A51

N E mA„w
a~xA!…cdsA* , ~2.7!

where the Einstein-frame massesmA(w
a)[A(wa)m̃A are no

longer constant, as opposed to them̃A’s.
The field equations deriving from the total actio

Sspin 21Sspin 01Sm read

Rmn* 52gab~w!]mwa]nwb1
8pG*

c4 S Tmn* 2
1

2
T* gmn* D ,

~2.8a!

h ~g* ,g!w
a52

4pG*

c4
aa~w!T* , ~2.8b!

dSm@cm ,g̃mn#/dcm50. ~2.8c!

Here Rmn* is the Ricci tensor of gmn* ,
T
*
mn[(2c/Ag* )dSm@cm ,A

2gmn* #/dgmn* is the Einstein-frame
energy tensor~related to the conserved ‘‘physical’’ energy
tensorT̃mn by T

*
mn5A6T̃mn; see@24#!, and the d’Alembertian

h (g* ,g) is covariant with respect to both space-time an
s-model indices, i.e., involves the Levi-Civita connection
of bothgmn* andgab(w), denoted asGmn*

l andgbc
a (w), respec-

tively:

h ~g* ,g!w
a[g

*
mn@]m]nwa2Gmn*

l]lwa1gbc
a ~w!]mwb]nwc#.

~2.9!

In Eqs. ~2.8! and everywhere else in this paper, the vario
indices are moved by their corresponding metric, for instan
Tmn* 5gma* gnb* T

*
ab , T*5gmn* T

*
mn , T̃m

n5g̃maT̃
an, etc., but

alsoaa(w)5gab(w)ab(w) wheregab is the inverse ofgab
and where we have introduced the notation

aa~w![
] lnA~w!

]wa . ~2.10!

Note that, in view of the third equation~2.6!, the definition
of aa(w) can be rewritten as

aa~w![
] lnm~w!

]wa , ~2.11!

wherem(w) is the mass of any non-self-gravitating particl
in the Einstein conformal frame. This second way of definin
aa is quite general as it encompasses both self-gravity
fects @24# ~see below! and possible composition-dependen
effects@26#.

B. 1PN approximation

As is clear from Eq.~2.8b!, the quantityaa(w) ~which is
a vector field in the internal ‘‘s-model’’ space spanned by
n

d
s

us
ce

e
g
ef-
t

the wa’s! plays the crucial role of measuring thecoupling
strengthof the scalar fields to matter. As we shall see below
all post-Newtonian deviations from general relativity~of any
post-Newtonian order! can be expressed in terms of the as
ymptotic value ofaa(w) at spatial infinity~i.e., far from all
material sources! and of its successive scalar-field deriva
tives. Denoting byDa the covariant derivative with respect
to the internal metricgab , we define

bab[Daab5
]ab

]wa 2gab
c ac , ~2.12a!

babc8 [DaDbac . ~2.12b!

Denoting byw0
a the ~cosmologically imposed! background

values of the scalar fields, we then setaa
0[aa(w0),

bab
0 [bab(w0), babc80 [babc8 (w0), etc., the index 0 always

meaning that theses-model tensors are calculated atw0 . As
shown in@24#, the effects of the scalar fields on any observ
able effect at the first post-Newtonian level depend only o
two contractions ofaa

0 andbab
0 : namely,3

a0
2[aa

0a0
a5aa

0gab~w0!ab
0 , ~2.13a!

~aba!0[a0
abab

0 a0
b . ~2.13b!

Indeed, the effective gravitational constant between tw
massive particles is given by

G̃[G*A0
2~11a0

2!, ~2.14!

@with A0[A(w0)# instead of the bare constantG* involved
in the action~2.4!, and the Eddington parametersb̄, ḡ read

ḡ 522a0
2/~11a0

2!, ~2.15a!

b̄5
1

2
~aba!0 /~11a0

2!2, ~2.15b!

instead of their general relativistic valuesb̄5 ḡ 50 . Let us

recall again thatb̄ and ḡ are usually denoted as (b21) and
(g21) in the literature. We will avoid the notationb, g in
the present paper to prevent a possible confusion with t
s-model tensorsbab and gab . Note, however, from Eqs.
~2.13! and ~2.15!, that our notation has been chosen so tha

ḡ}gaba
aab andb̄}baba

aab. As shown in@24#, the results
~2.14!–~2.15! can be simply interpreted~and remembered! in
terms of the exchange of gravitons and scalar particles b
tween material sources. For instance, Eq.~2.14! is the sum of
the usual contribution of a graviton exchange,G* , together
with the contributions of scalar exchanges,(aG*aa

0a0
a ; see

Fig. 1. The global factorA0
2 is due to the change of units

between the Einstein metric and the physical on
g̃mn5A2(w)gmn* used to measure forces@see Eqs.~2.6!

3Note that in the simplest one-scalar casew5w1, these contrac-
tions reduce to simple products, a0

25a03a0 ,
(aba)05a03b03a0 , where a05a(w0)5] lnA(w0)/]w0, and
b05]a(w0)/]w0 .
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above#. Similarly, the parameter (aba)0 involved in ~2.15b!
corresponds to an exchange of scalar particles between t
massive bodies, as shown in Fig. 2. The method that we w
use in Sec. III below to study the second post-Newtoni
approximation is a straightforward generalization of the
diagrammatic observations.

C. Self-gravitating bodies

When studying the motion of massive bodies in the so
system, several dimensionless ratios happen to be smal
we denote bym, v, andR the typical mass, orbital velocity,
and radius of a body, and byr the typical distance between
two bodies, we findGm/rc2;v2/c2&231028 for the fast-
est planets, whileGm/Rc2'231026 for the Sun and
'7310210 for the Earth. This is the reason why the forma
‘‘post-Newtonian’’ expansion in powers of 1/c2 is so useful
for analyzing the predictions of relativistic theories of grav
ity in the solar system. However, in situations involvin
compact bodies, like neutron stars~pulsars! in binary sys-
tems, it is necessary to distinguish the self-gravity parame
s;Gm/Rc2;0.2 from the orbital parameters
Gm/rc2;v2/c2!1. In that case, one can still describe th
motion of the bodies by means of an expansion in powers
Gm/rc2;v2/c2;1/corbital

2 , but one must not expand in pow
ers of the compactnessess. Such an expansion scheme ha
been called ‘‘post-Keplerian’’ in@24#, since it is closely
linked with the phenomenological approach to the analy
of binary pulsar data, introduced in@31,32# under the name
of ‘‘parametrized post-Keplerian’’ formalism.

In the present paper, our main goal is to analyze tens
multiscalar theories of gravity at the second post-Newtoni
level, i.e., including all terms of formal order 1/c4 ~be them
of ‘‘orbital,’’ ‘‘self-gravity,’’ or mixed type!. We found that
the most efficient way of doing so is to derive first the se
ond post-Keplerian~2PK! limit of these theories by means o
a diagrammatic method. The 2PN approximation is then o
tained by expanding our general 2PK results in powers of
compactnesses, up to the required order ins.

Let us recall how the motion of self-gravitating bodies
described in tensor-scalar theories. Following a suggestion
Eardley@33#, one skeletonizes extended self-gravitating bo
ies as pointlike particles whose inertial massesm̃A depend on

FIG. 1. Diagrammatic interpretation of the effective gravita
tional constantG̃5G*A0

2(11a0
2).

FIG. 2. Diagrammatic interpretation of the contractio
(aba)0 involved in the Eddington paramete

b̄5
1
2 (aba)0 /(11a0

2)2.
hree
ill
an
se

lar
l. If

l

-
g

ter

e
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-
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or-
an
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f
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the
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the scalar fieldswa, as opposed to the constantm̃A’s in Eq.
~2.2! describing non-self-gravitating bodies. This scalar de
pendence of the inertial mass is due to the influence of t
local scalar field background on the equilibrium configura
tion of the body. The action describingN self-gravitating
bodies is thus written as

Sm52 (
A51

N E m̃A~wa!cds̃A52 (
A51

N E mA~wa!cdsA* ,

~2.16!

wheremA(w)[A(w)m̃A(w). The validity of the skeleton-
ized action~2.16! has been justified in Appendix A of@24#
by a matching argument.

Note that the second expression~2.16!, in terms of the
Einstein line elementdsA* , is formally identical to Eq.~2.7!
describing non-self-gravitating bodies. However, the impo
tant difference is thatmA(w) can now be a nonuniversal
~body-dependent! function of the scalar fields, instead of be-
ing merely proportional toA(w). It is therefore convenient
to generalize to the case of self-gravitating bodies th
s-model tensors defined in Eqs.~2.10!–~2.12! above:

aa
A[

] lnmA~w!

]wa 5aa~w!1
] lnm̃A~w!

]wa , ~2.17a!

bab
A [Daab

A , ~2.17b!

babc8A [DaDbac
A . ~2.17c!

~As above, we will raise and lower thes-model indices
a,b, . . . with gab or gab .) Here againaA

a plays the funda-
mental role of measuring the coupling strength of the scal
fields to the self-gravitating bodyA. Indeed, equation~2.8b!
now reads

h ~g* ,g!w
a52

4pG*
c4 (

A
aA
aTA* , ~2.18!

whereTA*52mAc
2(dsA* /dx

0)d (3)(x2xA)/Ag*( xA) is local-
ized on the position of theAth ‘‘particle.’’ Note that the
body-dependent quantities~2.17! reduce to the definitions
~2.10!–~2.12! for non-self-gravitating bodies, since the iner-
tial massesm̃A are constant in that case.

As shown in @24#, the 1PK approximation of tensor-
multiscalar theories can then be expressed very simply
terms of contractions ofaa

A and bab
A . More precisely, the

Lagrangian describing the motion ofN ~spherical! self-
gravitating bodies at the 1PK level reads~in Einstein-frame
units!

L5(
A

LA
~1!1

1

2(
AÞB

LAB
~2!1

1

2 (
BÞAÞC

L ~3!
BC
A1OS 1c4D ,

~2.19!

where the notationBÞAÞC excludesA5B andA5C but
not B5C, and where

-

n
r
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LA
~1!52mA

0c2A12vA
2/c252mA

0c21
1

2
mA
0vA

21
1

8c2
~vA

2 !21OS 1c4D , ~2.20a!

LAB
~2!5

GABmA
0mB

0

r AB
F11

3

2c2
~vA

21vB
2 !2

7

2c2
~vA•vB!2

1

2c2
~nAB•vA!~nAB•vB!1

ḡAB

c2
~vA2vB!2G , ~2.20b!

L ~3!
BC
A52

GABGACmA
0mB

0mC
0

r ABr ACc
2 ~112b̄BC

A !. ~2.20c!
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Here we have setmA
0[mA(w0), and we have denoted b

nAB[rAB /r AB ~with rAB[xA2xB) the unit vector directed
from body B to body A. This Lagrangian involves three
body-dependent parameters generalizing the effective gr
tational constant~2.14! and the 1PN Eddington paramete
~2.15!: namely,

GAB[G* @11~aAaB!0#, ~2.21a!

ḡAB[22
~aAaB!0

11~aAaB!0
, ~2.21b!

b̄BC
A[

1

2

~aBbAaC!0
@11~aAaB!0#@11~aAaC!0#

, ~2.21c!

where4 (aAaB)[aA
agabaB

b , (aBbAaC)[aB
ab ab

AaC
b , and the

index 0 means that these contractions are calculated
wa5w0

a . Of course, when using physical units related to t
asymptotic metricg̃mn , the effective gravitational constan
readsG̃AB5G*A0

2@11(aAaB)0#, and the parametersḡAB ,

b̄BC
A do not change since they are dimensionless. Note

Figs. 1 and 2 give again a diagrammatic interpretation
GAB and (aBbAaC)0 , with the coupling coefficientsa

a and
bab of each body being replaced by their strong-field cou
terpartsaA

a andbA
ab .

The pointlike description~2.16! neglects all finite size ef-
fects. The finite size corrections induced by tensor-media
couplings to the mass and spin multipole moments of or
l >1 ~i.e., the general relativistic multipole interaction!
have been recently worked out in detail@34#, and we assume
that they are properly added. One must still worry abo
scalar-mediated finite-size effects whose existence has b
established by Nordtvedt@35#. Such effects can be incorpo
rated by a suitable formal generalization of Eq.~2.16!: it
suffices to considermA ~or m̃A) as afunctional of w ~and
gmn* ) rather than as a function of the local value ofw along
the Ath world line. ~In particle physics language, the func
tional mA@w# is the ‘‘form factor’’ describing the nonloca
interaction of the extended bodyA with the fieldw.) Then
the quasilocality expansion of the functionalmA@w# in in-
creasing number of derivatives ofw along the worldline cor-
responds to the usual expansion in powers of the small fin
size parametere[R/r . If one considers extended bodie

4Again, in the simplest case of one scalar fieldw[w1, these quan-
tities reduce simply to aA3aB and aB3bA3aC , where
aA5] lnmA /]w, bA5]aA /]w.
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which would, in absence of interaction, be spherical, the fir
finite-size effects must, for symmetry reasons, contain tw
derivatives ofw, i.e., they must be of ordere25(R/r )2. We
leave to future work a study of finite-size effects by means
such an effective action approach. In the case of weak
self-gravitating bodies, direct calculations at the 1PN a
proximation have found that finite-size effects are propo
tional to h54b̄2 ḡ @35#, and therefore introduce, in the
equations of motion, essentially only small fractional corre
tions ~of order e25(R/r )2!1) to the usual orbital post-
Einsteinian effects proportional toḡ /c2 and b̄ /c2. Such
fractionally small corrections can be safely neglected wh
looking for the numerically dominant deviations from gen
eral relativity. In the case of strongly self-gravitating bodie
finite-size effects are even more negligible than in the sola
system case becausee2;(10 km/106 km)2;10210 is ex-
tremely small in all observed binary pulsars.

III. N-BODY LAGRANGIAN

Before entering the technical details of our derivation o
the N-body Lagrangian, let us clarify the approximation
methods we shall employ. As discussed in the previous s
tion, we shall first study the second post-Keplerian approx
mation of tensor-multiscalar theories, before particularizin
our results to the second post-Newtonian case. In oth
words, the compactnessess;Gm/Rc2 of the bodies will not
be considereda priori as small parameters. In order to con
struct the Lagrangian describing the motion ofN self-
gravitating bodies, we will eliminate the field degrees o
freedom, i.e., we will solve for the Einstein metricgmn* and
the scalar fieldswa in terms of the material sources, using th
field equations~2.8a!, ~2.8b!. To perform this elimination,
we shall consider that the interaction is propagated by
time-symmetric~half-retarded–half-advanced! Green’s func-
tion. This leaves out radiation damping effects. However, t
latter are negligible when studying weakly self-gravitatin
bodies at 2PN order. Indeed, in general relativity, the leadi
dissipative effects occur at order 1/c5, because of the well-
known quadrupolar radiation of gravitational waves. I
tensor-scalar theories of gravity, the leading radiation em
ted by systems ofcompactbodies is dipolar and occur at
orders2/c3. In the solar system case,s;1/c2 and the dipolar
radiation is negligible compared to theO(1/c5) effects due
to the spin-2 quadrupolar waves and spin-0 monopolar a
quadrupolar waves@24#. In either case, we compute the con
servative part of the gravitational interaction and assume t
~tensor and scalar! radiation damping effects are added sep
rately when they are not negligibly small.
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A. Diagrammatic expansion

We want to construct a ‘‘Fokker’’ Lagrangian@36,17# de-
scribing the motion ofN massive bodies by eliminating the
field degrees of freedom from the total Lagrangian of th
theory. In order to prove formally that such a constructio
reproduces the correct dynamics of the bodies, let
introduce a global notation for the fields
F[(gmn* 2 f mn ,w

a2w0
a), where f mn5diag(21,1,1,1) is the

flat metric andw0
a are the background values of the scal

fields. Similarly, we denote globally bys the matter vari-
ables, i.e., theN massive worldlinesxA involved in the mat-
ter action~2.16!. The total action of the theory can therefor
be written in the schematic form

Stot@s,F#5SF@F#1Sm@s,F#, ~3.1!

from which we want to eliminate the fieldsF by expressing
them in terms of the matter variabless. This elimination
cannot be done when working directly with the Einstein
Hilbert action ~2.4! because of its invariance under diffeo
morphisms~technically, the kinetic term of the gravitons i
noninvertible!. We need to reduce the field equations b
means of a specific coordinate condition in order to solve
gmn* . In the language of particle physics, we need to fix th
gauge in order to define the propagator of the gravitons. W
will choose theg* -harmonic gauge for our explicit calcula
tions. We then replaceSF@F# by its gauge-fixed version
SF
GF@F#5SF@F#1 gauge-fixing terms~see Appendix A be-
low!, and the field equations deriving from the total actio
S tot
GF@s,F# read

dStot
GF@s,F#

dF
5

dSF
GF@F#

dF
1

dSm@s,F#

dF
50, ~3.2a!

dStot
GF@s,F#

ds
5

dSm@s,F#

ds
50. ~3.2b!

Equation ~3.2a! can now be solved perturbatively, and w

denote byF̄@s# its solution. The Fokker action~which is a
functional of the matter variables only! is then defined as

SF@s#[Stot
GF
†s,F̄@s#‡5SF

GF
†F̄@s#‡1Sm†s,F̄@s#‡,

~3.3!

and its variation with respect tos reads

dSF@s#

ds
5S dStot

GF@s,F#

ds D
F5F̄@s#

1S dStot
GF@s,F#

dF D
F5F̄@s#

dF̄@s#

ds
. ~3.4!

SinceF̄@s# is precisely the solution which annuls the func
tional derivativedStot

GF/dF, the second term on the right
hand side vanishes, and one finally gets
e
n
us

ar

e

-
-
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e
e
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-
-

dSF@s#

ds
5S dStot

GF@s,F#

ds D
F5F̄@s#

5S dSm@s,F#

ds D
F5F̄@s#

.

(3.5)

Comparing~3.5! with ~3.2b!, we see that we have formally
proved that the Fokker action~3.3! gives indeed the correct
equations of motion, i.e., describes the actual dynamics

the matter variabless in presence of the fieldsF̄@s#. It
should be noted thatSF@s# is not simply given by the matter

action Sm†s,F̄@s#‡ embedded in the self-consistent back

ground fieldF̄@s#, but that the field actionSF
GF
†F̄@s#‡ also

contributes to the dynamics of the material bodies.
To start with, we do not need to assume that the bod

are moving slowly with respect to the velocity of light. In
technical terms, we shall expand the Lagrangian in powers
G, i.e.,Gm/rc2 ~‘‘nonlinearity expansion’’!, while keeping
unrestricted the magnitudes ofv/c ands. We need to retain
the terms up to orderG3 in the nonlinearity expansion of the
Fokker action~3.3!. The zeroth order term inSF is of course
the action describing free bodiesS0@s#[Sm@s,F50#, i.e.,
the matter action computed forgmn* 5 f mn andwa5w0

a . It can
be written explicitly asS05(A*dtLA

(1) , where LA
(1) was

given in Eq. ~2.20a! and has the structure
mc2(11v2/c21v4/c41v6/c61•••). The next approxima-
tion, first power of G, has the structuremc2(Gm/rc2)
3(11v2/c21v4/c41•••) and describes the two-body in-
teraction, starting with the Newtonian termGABmAmB /r AB
@with the self-gravity-modified effective gravitational con
stant GAB of Eq. ~2.21a!#. The second power ofG,
mc2(Gm/rc2)2(11v2/c21•••), describes three-body in-
teractions starting with the self-gravity-modified 1PK term
}GABGACmAmBmC /r ABr ACc

2. Finally, theG3 level corre-
sponds to four-body interactions:G3mAmBmCmD /r

3c41
self-gravity and velocity modifications. Instead of countin
powers ofG, we can count the number of matter sourc
terms involved: we must keep up to four powers ofs, i.e., of
the masses. Since the matter actionSm@s,F# is linear ins

@see Eq.~2.16!#, the solutionF̄@s# of the field equations
~3.2a! starts at orders. We need therefore to expand the
total actionStot

GF@s,F# up to ordersO(F4) andO(sF3) in-

cluded, before replacingF by its solutionF̄@s#.
Let us first expandStot

GF in powers of the fieldsF, and
define

Stot
GF@s,F#5S0@s#1S1@s,F#1S2@s,F#1S3@s,F#1•••,

~3.6!

where the termSi@s,F# involves thei th power ofF ~and
zero or one power of the material sourcess). For instance,
S1 is the linear interaction term between the fields and ma
ter, and has the formal structureS15asF, wherea is a
coupling constant. On the other hand, the term quadratic

F has the formS252 1
2 FP21F1 1

2 bsF2, and involves
both the kinetic operator}h ~or ‘‘inverse propagator’’
P21) of the fields and a vertex describing the interaction
matter with two fields~with a coupling constantb). It will be
convenient to introduce a diagrammatic notation for this e
pansion.~Bertotti and Plebanski@37# were the first to intro-
duce a similar diagrammatic notation for solving Einstein
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equations perturbatively.! Let us denote the propagatorP by
a straight line, the material sources by a white blob, and the
term (P21F) by a black one; see Fig. 3. As this diagram
matic representation will be an important tool in the prese
paper, let us explain it in detail with a simpler example.

Let us consider the action~in Minkowski spacetime!

S@w#5E d4xF2
1

8p
~]w!21

g

3
w~]w!21

l

4
w4

1s~x!w~x!G , ~3.7!

where (]w)2[ f mn]mw]nw and wheres(x) is a given
~spacetime distributed! source for w(x). Integrating
by parts, the kinetic terms for w(x) read
1(1/8p)*d4xw(x)h fw(x), where h f is the flat

d’Alembertian. Identifying this with2 1
2 wP21w @which is a

symbolic notation5 for 2 1
2 **d4xd4yw(x)Pxy21w(y), where

Pxy21 is the kernel of an operator acting on functions ofxm#,
we get Pxy2152(4p)21hxd

(4)(x2y). The inverse of the
operator Pxy21 is the propagatorPxy5G(x2y), where
G(x2y) is a ~translation-invariant! Green function, solution

FIG. 3. Diagrammatic notations for the material sources, t
fields, and their propagator.
-
nt

of hxG(x2y)524pd (4)(x2y). The cubic vertexV3 is de-
fined as the distributional kernel entering the ter
3S3[*dxgw(]w)2, i.e., 3S35*dx1dx2dx3V3(x1 ,x2 ,x3)
3w(x1)w(x2)w(x3). Requiring this kernel to be symmetric
in its arguments leads to the explicit expression

V3~x1 ,x2 ,x3!5
g

3 F ]

]x1
m d~x12x2!

]

]x1
m d~x12x3!

1
]

]x2
m d~x22x3!

]

]x2
m d~x22x1!

1
]

]x3
m d~x32x1!

]

]x3
m d~x32x2!G ,

~3.8!

where the factor 1/3 comes from the average over the th
different permutations needed to symmetrizeV3(x1 ,x2 ,x3).
Similarly, the quartic vertex, defined by 4S4[
*dx1dx2dx3dx4V4(x1 ,x2 ,x3 ,x4)w(x1)w(x2)w(x3)w(x4), is

V4~x1 ,x2 ,x3 ,x4!5ld~x12x2!d~x12x3!d~x12x4!.
~3.9!

In the diagrammatic notation of Fig. 3, the blobs deno
some spacetime functions@s(x) for the white blob and
2(4p)21hw(x) for the black one#, and a line denotes a
propagatorPxy5G(x2y). Connecting a line to a blob or to a
vertex ~which is a cluster of several infinitesimally clos
points! means that one ‘‘contracts’’~i.e., integrates! over the
points at the extremities of the line. For instance t
T-shaped diagram on the left of the third line of Fig. 7 belo
would represent, in the model~3.7!,

he
E dx1dx2dx3dy1dy2dy3V3~x1 ,x2 ,x3!G~x12y1!G~x22y2!G~x32y3!s~y1!s~y2!s~y3!

5gE dxdy1dy2dy3G~x2y1!
]

]xmG~x2y2!
]

]xmG~x2y3!s~y1!s~y2!s~y3!. ~3.10!

Similarly, theX diagram on the left of the last line of Fig. 7 would denote

E dx1dx2dx3dx4dy1dy2dy3dy4V4~x1 ,x2 ,x3 ,x4!G~x12y1!G~x22y2!G~x32y3!G~x42y4!s~y1!s~y2!s~y3!s~y4!

5lE dxdy1dy2dy3dy4G~x2y1!G~x2y2!G~x2y3!G~x2y4!s~y1!s~y2!s~y3!s~y4!. ~3.11!
or-

e
n
in
Having explained the precise meaning of our symbolic no
tion, let us come back to the general action~3.6!.

The different terms of the expansion~3.6! can be repre-

5Note that in the operator notation used here, any ‘‘contraction
spacetime indices’’ means an integration over the correspond
spacetime coordinates, e.g., (Pw)(x)[*d4yPxyw(y).
ta-sented as in Fig. 4, whichdefinesthe different diagrams.
Note that, as in our example, we have conventionally fact
ized a coefficient 1/i in defining thei -linear vertexVi from
the O(F i) action: Si5Vi / i . This coefficient is chosen in
order to simplify the field equations~3.2a!, whose diagram-
matic expansion is displayed in Fig. 5.@The reader is invited
to derive for himself the field equations of Fig. 5 from th
action of Fig. 4, keeping in mind that the multilinear forms i
F appearing in Fig. 4 are supposed to be symmetric

of
ing
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F(x1), . . . ,F(xi).# Thanks to Euler’s theorem on homoge
neous functions, the field equations imply the useful resu

F3
dStot

GF@s,F#

dF
5S112S213S31•••1 iSi1•••50.

~3.12!

In diagrammatic terms, this corresponds to inserting a bla
blob at the free ends of the propagators in Fig.
i.e., to express the kinetic term of the fields
1
2 FP21F[ 1

2 (P21F)P(P21F), in terms of the other dia-
grams.

The Fokker action~3.3! can now be written straightfor-
wardly by replacing in the total action~3.6! the fieldsF by

their solution F̄@s#, i.e., by replacing the black blobs in
terms of the white ones through an iterative use of Fig.
The most delicate term to compute would be the contributi
due to the kinetic term of the fields inS2 , because one must
expand up to orders3 the two fieldsF it involves. Fortu-
nately, one can avoid estimating this term by using the Eu
identity ~3.12! to eliminate it from the Fokker action:

SF@s#5@~S01S11S21••• !

2 1
2 ~S112S213S31••• !#F5F̄@s#

5S01@ 1
2 S12

1
2 S32S4#F5F̄@s#1O~s5!.

~3.13!

The result of inserting Fig. 5 into Eq.~3.13! is displayed in
Fig. 6. @The different diagrams have been drawn so th
angles appear only at the vertices involving matter source#
In the following, we will designate these diagrams by th
letter they most naturally evoke, so that the final result f
the Fokker action reads

FIG. 4. Diagrammatic expression of theF i-linear terms of the
total action~3.6!, for i51,2,3,4.

FIG. 5. Equation~3.2a! satisfied by the fieldF̄@s#.
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SF@s#5S0@s#1~ 1
2 I !1~ 1

2 V1 1
3 T!1~ 1

3 e1 1
2 Z1F1 1

2 H

1 1
4 X!1O~s5!. ~3.14!

The explicit form of this action is now only a question of
straightforward algebra: one must expandStot

GF@s,F# up to
orderF4 included to get the expressions of the field propa
gatorP and of the vertices defined by Fig. 4, and merely
replace them in Fig. 6, i.e., Eq.~3.14!. In doing so, one must
take into account the fact thatF is a global notation for both
the gravitonshmn[gmn* 2 f mn and the scalar fieldswa2w0

a ,
and therefore that each propagator link in Fig. 6 is to b
replaced by a sum of terms corresponding to the differe
fields. To simplify the expansion of the scalar-field action
~2.5!, it is convenient to choose Riemann normal coordinate
at w0

a , so that the metricgab(w) can be written as

gab~w!5gab~w0!103~wa2w0
a!2 1

3 Racbd~w0!~wc2w0
c!

3~wd2w0
d!1O„~w2w0!

3
…, ~3.15!

whereRabcd is the Riemann curvature ofgab . This choice
cancels the term of orderw]w]w in Sspin 0, i.e., the ‘‘T’’

FIG. 6. Diagrammatic expansion of the Fokker action~3.13!.

FIG. 7. Expression of the diagrams of Fig. 6 when the gravito
and scalar propagators are represented respectively as curly
straight lines.
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vertex connecting three scalar fields. The different diagra
of Eq. ~3.14! can thus be decomposed into the elemen
diagrams displayed in Fig. 7, where curly and straight li
represent the graviton and scalar propagators, respecti
The coefficients appearing in this figure are simple binom
coefficients coming from the various ways of choosing
lines ~see Appendix A!. The diagrams involving only gravi
tons give theO(G3) approximation of general relativity
which has been studied in the literature~see notably@14,17#!.
The diagrams involving at least one scalar propagator
therefore all the looked for deviations from general relativ
predicted by tensor-scalar theories at this order. Their
plicit calculation is performed in Appendix A below. The
ms
tary
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global structure is easy to grasp. Denoting byG a Green
function, solution ofh fG(x)524pd (4)(x) whereh f is the
flat d’Alembertian, each scalar propagator isPw

ab

}G(xA2xB)g
ab, while each graviton propagator isPabgd

h

}G(xA2xB)( f ag f bd1 f ad f bg2 f ab f gd). Each matter vertex
containing a single scalar coupling brings a factoraa

A , those
containing double scalar couplings bring a facto
bab

A1aa
Aab

A , while triple scalar couplings bring a factor
b8A

abc together with extrabab
A andaa

A terms@see Eqs.~A11!–
~A14! in Appendix A below#. Each link implies a contraction
over the internal indices.6 Finally, the global structure of the
action is
(
A

(
B
•••E dtAE dtB•••G~xA2xB!G••• f @uA,B, . . .m ;aA,B, . . .

a ~w0!,bA,B, . . .
ab ~w0!,b8A,B, . . .

abc ~w0!,Rabcd~w0!#,

~3.16!

wheretA is the Minkowski proper time along the world linexA
m(tA), anduA

m[dxA
m/cdtA . We use in our calculations the

symmetric Green function12 (G retarded1Gadvanced), given by@34#

Gsym~xA2xB!5d„f mn~xA
m2xB

m!~xA
n 2xB

n !…5@d~xA
02xB

02r AB!1d~xA
02xB

01r AB!#/2r AB . ~3.17!
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The power of our diagrammatic approach shows up in
fact that one can identify the theory-dependent parame
appearing in each term of the action without doing any c
culation. For instance, the interaction between two bod
A andB is described by the two ‘‘I ’’ diagrams of Fig. 7, and
involves therefore~because of the first diagram! the contrac-
tion (aAaB)0 . This explains why the effective gravitationa
constantGAB and the 1PK Eddington parameterḡAB appear-
ing in LAB

(2) , Eq. ~2.20b!, depend only on this contraction
Similarly, the interaction between three bodies is describ
by the ‘‘V’’ and ‘‘ T’’ diagrams of Fig. 7, and we see that i
depends not only on contractions like (aAaB)0 @cf. the sec-
ond V diagram and the firstT diagram#, but also on
(aAbBaC)0 @cf. the firstV diagram, involving only scalar
propagators#. Here again, we understand very simply wh
the three-body interaction LagrangianL (3)BC

A of Eq. ~2.20c!
depends only on these two types of contractions, involved

GAB and b̄BC
A .

The new parameters appearing at orderG3 can now be
found by examining the diagrams connecting four bodies
Fig. 7. While theH and F diagrams depend only on the
previous contractions ofaA,B, . . .

a and bA,B, . . .
ab , three new

contractions occur in the firste, Z, andX diagrams. Indeed,
they involve respectively the contraction
(b8abc

A aB
aaC

baD
c )0 , (aA

abab
B bC

bcac
D)0, and

(RabcdaA
aaB

baC
c aD

d )0 , which are independent from (aAaB)0
and (aAbBaC)0 in generic tensor-multiscalar theories. It
convenient to introduce compact notations for these para
eters; we define

«BCD
A [

~bA8aBaCaD!0

@11~aAaB!0#@11~aAaC!0#@11~aAaD!0#
,

~3.18a!
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zABCD[
~aAbBbCaD!0

@11~aAaB!0#@11~aBaC!0#@11~aCaD!0#
,

~3.18b!

xABCD[~RabcdaA
aaB

baC
c aD

d !0 , ~3.18c!

where the choice of the carrier letters«, z, x is made by
pictorial analogy with the corresponding diagramse, Z, and
X. The introduction of factors@11(aAaB)0#

21 is made to
simplify some equations below, where we shall factorize th
effective gravitational constantGAB , Eq. ~2.21a!.

The main conclusion of our diagrammatic analysis o
tensor-multiscalar theories is therefore that onlythree new
self-gravity-dependent parameters appear at theG3 level. By
contrast, previous studies in the literature suggested the ne
for a much larger number of parameters in the general fram
work of Lorentz-invariant theories of gravity@21,22#. Let us
note that if we had restricted ourselves to theories involvin
only one scalar field, only two self-gravity-dependent param
eters«BCD

A andzABCD would have showed up, the Riemann
tensor of the scalar manifold being then identically zero.7 We
are going to see that the parameterxABCD disappears anyway
when considering the weak self-gravity limit.

6Those internal contractions make it very easy to work withn
scalar fields. Actually, once one is used to the notation, it is easi
to see which new 2PN parameters can occur in the multiscalar ca
rather than in the monoscalar one.
7In the one scalar case, we could also express formal

zABCD in terms of 1PK parameters, using~aAbBbCaD)
5(aAbBaC) (aBbCaD)/(aBaC!, but this expression is singular
whenaB or aC→0.
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B. 2PK approximation

The diagrammatic results of the previous subsection gave the structure of the nonlinearity expansion, in pow
Gm/rc2, of the N-body Lagrangian, keeping unexpanded all powers ofv/c and of the self-gravitys. The second post-
Keplerian limit of tensor-multiscalar theories can now be obtained by expanding the results above in powers ofv2/c2 ~still
keepings unexpanded!. First of all, the Minkowski proper timetA involved in ~3.16! is obviously expanded as

dtA5dtAA12vA
2/c25dtAF12

1

2

vA
2

c2
2
1

8 S vA2c2 D
2

2
1

16S vA
2

c2 D
3

1OXS vA2c2 D 4CG. ~3.19!

The (vA
2/c2)3 term is necessary to writeS0@s# at the 2PK order, but the expansion~3.19! can be truncated to order

(vA
2/c2)2 for the two-body diagram ‘‘I , ’’ and to order (vA

2/c2) for the three-body diagramsV andT. In the 2PK diagrams
e, Z, F, H, X, it is enough to replace the proper timetA by the coordinate timetA .

Similarly, one must expand in powers ofv/c the unit four-velocityuA
m5dxA

m/cdtA5(1,vA
i /c)/A12vA

2/c2, and in particular
the contraction 2(fmnuA

muB
n )221 which appears for each graviton propagator connecting two bodies~see Appendix A!. One

gets easily

2~uAuB!2215112
~vA2vB!2

c2
12

~vA2vB!2~vA
21vB

2 !2~vA3vB!2

c4
1OS 1c6D , ~3.20!

wherevA3vB denotes the usual vector skew product. Finally, the Green function~3.17! can be expanded as

cGsym~xA2xB!5@d~ tA2tB2r AB /c!1d~ tA2tB1r AB /c!#/2r AB5 (
n50

` uxA2xB~ tB!u2n21

~2n!!c2n
]2n

~]tB!2n
d~ tA2tB!

5
d~ tA2tB!

r AB
1

uxA2xB~ tB!u
2c2

]2d~ tA2tB!

]tB
2 1

uxA2xB~ tB!u3

24c4
]4d~ tA2tB!

]tB
4 1OS 1c6D . ~3.21!
y

n
r-

to
The three terms in~3.21! are needed for the ‘‘I ’’ diagram,
while only the first two are needed for theV andT diagrams,
and only the instantaneous Green functiond(tA2tB)/r AB for
the 2PK diagramse, Z, F, H, X. The time derivatives of
d functions in~3.21! imply that the 2PK Lagrangian depend
not only on the positionsxA and the velocitiesvA of the
bodies, but also on their accelerationsaA . ~Higher deriva-
tives can be eliminated, at 2PK order, by means of suita
integrations by parts.! As discussed in@17#, this is a conse-
quence of our choice of gauge for the Einstein-Hilbert actio
Sspin 2. Indeed, all the accelerations can be eliminated
choosing for instance the Arnowitt-Deser-Misner~ADM !
gauge@10#, instead of the harmonic one we use in Append
A below to simplify our calculations.~Actually, the simplest
practical way of going from the harmonic gauge to a highe
derivatives-free gauge is to ‘‘wrongly’’ eliminate the highe
derivatives by using the equations of motion in the Lagran
ian @17#.!

The 2PK Lagrangian describing the motion ofN self-
gravitating bodies is hence obtained straightforwardly fro
the action~3.14!. We refer the reader to Appendix A below
for its explicit derivation, and quote here only its gener
structure. It can be written as a sum ofi -body interaction
terms (1< i<4)

L5L ~1!1L ~2!1L ~3!1L ~4!1O~1/c6!, ~3.22!

whereL (1)5(ALA
(1)52(AmA

0c2A12vA
2/c2 is the Lagrang-

ian describing free bodies. Its 2PK expansion, generalizi
s

ble

n
by

ix

r-
r
g-

m

al

ng

~2.20a! to ordermAc
2(vA

2/c2)3, is given by~3.19!. The two-
body interaction LagrangianL (2), given by the ‘‘I ’’ dia-
grams of Fig. 7, has the structure

L ~2!5
1

2(
AÞB

FGAB

G*
LAB

~2!GR1
GABmA

0mB
0 ḡAB

c2
S ~vA2vB!2

r AB

1
f 1~rAB ,vA ,vB ,aA ,aB!

c2
D G , ~3.23!

whereLAB
(2)GR is the expression obtained in general relativit

~pure spin-2 interaction!:

LAB
~2!GR5G*mA

0mB
0F 1

r AB
1
f 2~rAB ,vA ,vB!

c2

1
f 3~rAB ,vA ,vB ,aA ,aB!

c4 G , ~3.24!

and where the expression of the functionf 1 entering the
ḡAB /c

4 term in ~3.23! is given in Eqs.~A17! and ~A18!.
In other words, the two-body interaction Lagrangia

L (2) in tensor-multiscalar theories presents two main diffe
ences with respect to the general relativistic result:~i! the
bare gravitational constantG* is replaced by the effective
oneGAB , Eq. ~2.21a!; ~ii ! a correcting term proportional to
ḡAB /c

2 must be added.
The three-body interaction Lagrangian, corresponding

theV andT diagrams of Fig. 7, has the structure
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L ~3!5
1

2 (
BÞAÞC

GABGACmA
0mB

0mC
0

c2
F2

~112b̄BC
A !

r ABr AC
1
f 4
c2

1
b̄BC

A f 5
c2

G1 (
A,B,C

O~ ḡAB , ḡAC , ḡBC!

c4
, ~3.25!

where the functionsf 4 and f 5 depend only on the positions and the velocities of the three bodies. The last term in Eq.~3.25!
denotes a sum of terms which are at least linear in the indicatedḡAB , and which depend also on positions and velocities.

Finally, the four-body interaction Lagrangian, corresponding to thee, Z, F, H, andX diagrams of Fig. 7, has the structure

L ~4!5 (
A,B,C,D

LABCD
~4!RG1

1

6 (
AÞ~B,C,D !

GABGACGADmA
0mB

0mC
0mD

0

r ABr ACr ADc
4 «BCD

A 1
1

2 (
AÞBÞCÞD

GABGBCGCDmA
0mB

0mC
0mD

0

r ABr BCr CDc
4 zABCD

1
1

24p (
A,B,C,D

G
*
3mA

0mB
0mC

0mD
0

c4
xABCDE d3x

~x2xA!•~x2xC!

ux2xAu3ux2xBuux2xCu3ux2xDu
1 (

A,B,C,D

O~ ḡAB , ḡAC ,••• !

c4

1 (
A,B,C,D

O~ b̄BC
A ,b̄AD

B ,••• !

c4
, ~3.26!
-

es
f

s:

c

whereLABCD
(4)RG}G

*
3mA

0mB
0mC

0mD
0 is the general relativistic re-

sult, and where the 2PK parameters«BCD
A , zABCD , and

xABCD have been defined in Eqs.~3.18! above. Note that the
notationAÞBÞCÞD excludes only the equalitiesA5B,
B5C, or C5D.

C. 2PN approximation

The expression of the second post-Newtonian approxim
tion can now be obtained by expanding the results of
previous subsection in powers of the compactnes
s;Gm/Rc2 of the bodies. To do this, we make use of resu
derived in @24#. Following section 8 of this reference, w
define

cA[22
] lnm̃A

] lnG̃
5O~s!, ~3.27a!

cA8[
]cA

] lnG̃
5O~s!, ~3.27b!

aA[24
] lnm̃A

] ḡ
5O~s2!, ~3.27c!

bA[
] lnm̃A

]b̄
5O~s2!. ~3.27d!

Using the results~3.4! of @24# and neglecting the rotationa
kinetic energy terms with respect to the pressure~as is ap-
propriate for solar system bodies!, we can write these com-
pactness parameters explicitly at 2PN order:
a-
the
ses
lts
e

l

cA5
1

c2
^Ũ&A1

2

c4 K 3ḡ
p̃

s̃
Ũ22b̄Ũ2L

A

1OS 1c6D ,
~3.28a!

cA8;
1

c2
^Ũ&A1OS 1c4D , ~3.28b!

aA5
12

c4 K p̃s̃ Ũ L
A

1OS 1c6D , ~3.28c!

bA5
1

c4
^Ũ2&A1OS 1c6D . ~3.28d!

Here s̃[(T̃ 001T̃ ii )/c2 denotes the mass density,p̃ the
pressure,Ũ the potential satisfyingD̃Ũ524pG̃s̃, and the
angular brackets denote an average weighted bys̃:
^ f &[*s̃ f d3x̃/*s̃d3x̃. The tilde decorating the various quan
tities means that they are measured in physical unitsand
expressed in terms of physically rescaled local coordinat
x̃m5A„w(xA)…x

m adapted to describing the neighborhood o
bodyA. The mass densitys̃ can be expressed in terms of the
coordinate-conserved baryonic-rest-mass density, saym̃, as
s̃5m̃1(m̃h̃12p̃2m̃Ũ)/c21O(1/c4), whereh̃ denotes the
enthalpy. Note that Eq.~3.28a! is more accurate than the
usually employed 1PN expression for the compactnes8

cA5^Ũ&A /c
21O(1/c4)522ẼA

grav/m̃Ac
2 1O(1/ c4). A pre-

cise value ofcA8 is not needed for the following as it will only

appear through the combination (4b̄2 ḡ )2cA8 .
As shown in section 8 of@24#, the body-dependent param-

eters~2.21! can then be expanded as

8Note also that it simplifies very much in the general relativisti
case where the 1/c4 correction vanishes.
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GAB /G5G̃AB /G̃512
h

2
~cA1cB!1S z14b̄2

ḡ

2
D cAcB1 b̄ ~21 ḡ !~aA1aB!1S «

2
1z28b̄2D ~bA1bB!1O~s3!,

~3.29a!

ḡAB5 ḡ 1hS 11
ḡ

2
D ~cA1cB!1O~s2!, ~3.29b!

b̄BC
A5 b̄2S «

2
1

z

2
1 b̄28b̄21 b̄ ḡ D cA2S z

2
1 b̄2

hb̄

2
D ~cB1cC!2

h2

4
cA81O~s2!. ~3.29c!
er

f

-

ly
wo
on

vity
K

lly
Here we have setG[G* (11a0
2) for the Einstein-frame ef-

fective gravitational constant, and, as usual,h[4b̄2 ḡ . We
have also introduced the notation

«[
~babc8 aaabac!0

~11a0
2!3

, ~3.30a!

z[
~aabb

abc
bac!0

~11a0
2!3

. ~3.30b!

These parameters are the weak-self-gravity limits of the
rameters~3.18a! and ~3.18b! corresponding to the diagram
e andZ:

«BCD
A 5«1O~s!, zABCD5z1O~s!. ~3.31!

The parameterxABCD , Eq. ~3.18c!, vanishes in the weak-
self-gravity limit because of the antisymmetry of the Ri
mann tensorRabcd(w)52Rbacd(w):

xABCD5~Rabcda
aabacad!01O~s!501O~s2!.

~3.32!
pa-
s

e-

Indeed, for the same reason, the first correction of ord
O(s) is easily seen to vanish too.

Our final conclusion is therefore that the 2PN limit o
tensor-multiscalar theories involves only thetwo new
parameters9 « andz, Eqs.~3.30!, besides the usual 1PN Ed

dington parametersb̄ and ḡ . These parameters consistent
enter into several 2PN effects. First, they parametrize t
new independent contributions to the four-body interacti
Lagrangian:

L2PN
~4! ~«,z!5

«

6 (
AÞ~B,C,D !

G3mA
0mB

0mC
0mD

0

r ABr ACr ADc
4

1
z

2 (
AÞBÞCÞD

G3mA
0mB

0mC
0mD

0

r ABr BCr CDc
4 . ~3.33!

Second, they parametrize the dependence upon self-gra
effects of the effective gravitational constant and of the 1P

parametersḡAB and b̄BC
A . Discarding from Eqs.~3.29! the

2PN corrections proportional to the already experimenta

constrained 1PN parametersb̄ and ḡ , we can rewrite them
in the simpler form
tion

as

repre-
ss
GAB /G511hS EA
grav

mAc
2 1

EB
grav

mBc
2D 14zS EA

grav

mAc
2D S EB

grav

mBc
2D 1S «

2
1z D ^U2&A1^U2&B

c4
1O~ b̄ , ḡ !O~s2!1O~s3!, ~3.34a!

ḡAB5 ḡ 1O~ b̄ , ḡ !O~s!1O~s2!, ~3.34b!

b̄BC
A5 b̄1~«1z!

EA
grav

mAc
2 1zS EB

grav

mBc
2 1

EC
grav

mCc
2D 1O~ b̄ , ḡ !O~s!1O~s2!. ~3.34c!

Equation~3.34a! shows that« andz are two independent 2PN generalizations of the well-known Nordtvedt 1PN modifica
of the gravitational coupling @second term of the right-hand side of ~3.34a!, h(EA

grav/mAc
2

1EB
grav/mBc

2)#. In Eqs. ~3.34!, we have simplified the writing by dropping all tildes in dimensionless ratios such
EA
grav/mAc

2 or ^U2&A /c
4. We shall continue doing so in the following each time this does not lead to any ambiguity.

In fact the two roles~3.33!, ~3.34! of « andz are deeply connected. Indeed, the Lagrangian~3.33! represents the interaction
between an arbitrary number of non-self-gravitating mass points. From it we can formally reconstruct the Lagrangian
senting the interaction betweenN weakly-self-gravitating bodies,A, B, . . . by considering each body as a collection of ma

9Note, as in footnote 7 above, that in the one scalar casez can be formally expressed in terms of 1PN parameters:z528b̄2/ ḡ . However,

this expression is singular whenḡ→0.
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pointsmA , mB , . . . ~held together by a slow orbital motion within the volumeA). Let us denote bys(x) the average mass
density withinA, such that*Ad3xs(x)5mA

0 5(APAmA
0 gives the total Einstein mass of bodyA. Then, ifA andB label two

point masses belonging to the same bodyA, one can rewrite the sum(AÞBGmA
0mB

0/r AB as an integral

E
A

Gs~x1!s~x2!d
3x1d

3x2
ux12x2u

5mA
0 ^U&A1OS 1c2D , ~3.35!

whereU(x)[*d3xGs(x8)/ux2x8u and where the angular brackets denote an average weighted bys. Similarly, if A, B, and
C belong to the same bodyA, the sum(AÞBÞCG

2mA
0mB

0mC
0 /r ABr BC can be rewritten as an integral:

E
A

G2s~x1!s~x2!s~x3!d
3x1d

3x2d
3x3

ux12x2uux22x3u
5mA

0 ^U2&A1OS 1c2D . ~3.36!

Using such results, the interaction Lagrangian~3.33! leads to

L~«,z!5 (
AÞ~B,C,D!

G3mA
0mB

0mC
0mD

0

rABrACrADc
4

«

6
1 (
AÞBÞCÞD

G3mA
0mB

0mC
0mD

0

rABrBCr CDc
4

z

2
1 (
BÞAÞC

G2mA
0mB

0mC
0

rABrACc
4 F S 33

«

6
1

z

2D ^U&A1
z

2
~^U&B

1^U&C!G1 (
AÞB

GmA
0mB

0

rABc
4 F z

2
^U&A^U&B1S 323

«

6
1

z

2D ~^U2&A1^U2&B!G , ~3.37!
ts
t-

ew

ly

he
nt
where we have taken into account the different ways
choose infinitesimal elements in the same body to comp
the correct multiplicities.@In pictorial language, if we denote
the first two terms by (eBCD

A /3) and (ZABCD/2),
respectively,10 the following ones correspond to
33(eABC

A /3)1(ZBAAC/2), (ZBBAC/21ZBACC/2), (ZAABB/2),
3
23(eAAB

A /31eBBA
B /3)1(ZAAAB/21ZABBB/2), where a re-

peated index means infinitesimal volume elements inside
same body.#

The results~3.34! can be directly read off the Lagrangia
~3.37!. Indeed, the last sum in~3.37! leads to the« and z
renormalizations of the effective gravitational consta
~3.34a!, while the three-body sum(BÞAÞC yields the renor-
malizations~3.34c! of the body-dependent Eddington param

eter b̄BC
A .

IV. SECOND POST-NEWTONIAN ORDER METRIC

A. N-body physical metric

As is well known, theN-body Lagrangian contains
enough information to derive the physical metricg̃mn at any
spacetime pointxl outside the bodies generatingg̃mn . De-
riving this metric is important because it allows one to com
pute 2PN effects on, for instance, clock comparison, lig
deflection or time-delay experiments. To computeg̃mn(x

l),

10The normalization of thee term is chosen for consistency with
Appendix A.
to
ute

the

n

nt

-

-
ht

one introduces a test particle of negligible mass11 m̃0 located
at xl5(x0,xi), with an arbitrary four-velocityvm5(c,v i).
We can now write the (N11)-body Lagrangian describing
theN massive bodies and this test particle, and identify i
m̃0-dependent part with the individual Lagrangian of the la
ter: namely,

L test particle~xl,v i !52m̃0cA2g̃mn~xl!vmvn

52m̃0c
2@2g̃00~x

l!22g̃0i~x
l!v i /c

2g̃i j ~x
l!v iv j /c2#1/2. ~4.1!

This identification therefore allows us to computeg̃mn(x
l)

up to order 1/c6 included forg̃00 @i.e., up toO„(Gm/rc2)3…
included#, 1/c5 for g̃0i , and 1/c4 for g̃i j .

If we are concerned only by the dependence upon the n
parameters« and z appearing at the 2PN order, Eq.~3.37!,
we can consider a particle at rest, since the« andz terms are
not velocity dependent. We therefore conclude immediate
that g̃0i andg̃i j do not involve the parameters« andz at the
2PN approximation~i.e., at order 1/c5 for g̃0i and 1/c4 for
g̃ i j ), and thatg̃005211dg̃00 can be deduced from the La-
grangian

11The index 0 of this test mass should not be confused with t
time componentx0. It has been chosen so that the body-depende
quantitiesaA

a , bA
ab , . . . of Eqs.~2.17! reduce to their background

valuesa0
a[aa(w0), b0

ab[bab(w0), . . . for the test massm̃0 .
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L test particle~xl!52m̃0c
2A12dg̃00~x

l!

52m̃0c
21

1

2
m̃0c

2dg̃001O„~dg̃00!
2
…. ~4.2!

Comparing~4.2! with ~3.37! yields

d2PNg̃00~«,z!5
«

3 (
A,B,C

G3mAmBmC

r 0Ar 0Br 0Cc
6 1« (

AÞ~B,C!

G3mAmBmC

r 0Ar ABr ACc
6 12« (

AÞB

G2mAmB

r 0Ar ABc
6 ^U&A12z(

A
(
BÞC

G3mAmBmC

r 0Ar 0Br BCc
6

12z (
AÞBÞC

G3mAmBmC

r 0Ar ABr BCc
6 1z(

A,B

G2mAmB

r 0Ar 0Bc
6 ~^U&A1^U&B!12z (

AÞB

G2mAmB

r 0Ar ABc
6 ~^U&A1^U&B!

1~«12z!(
A

GmA

r 0Ac
6 ^U2&A , ~4.3!
as

the
m-

-

-
hat
where r 0A[ux2xAu. @All the masses entering this equatio
are evaluated atw5w0 , although we have dropped their in
dex 0 for easier reading.# When a continuous description of
the source bodies is used, this takes the simpler form

d2PNg̃00~«,z!5
«

3c6
U3~x!1

«

c6E d3x8
Gs~x8!U2~x8!

ux2x8u

1
2z

c6E d3x8
Gs~x8!

ux2x8u E d3x9
Gs~x9!U~x9!

ux82x9u

1
2z

c6
U~x!E d3x8

Gs~x8!U~x8!

ux2x8u
. ~4.4!

Using a self-explanatory notation, the four terms of~4.4!
correspond to the diagramseAAA

0 , eAA0
A , ZAAA0 , and

ZAA0A , respectively, the indexA meaning here any infini-
tesimal volume of matter, and the index 0 referring to th
spacetime pointxl where the metric is computed. It should
be noted that formulas~4.3! and ~4.4! are valid in the
g* -harmonic gauge used to derive theN-body Lagrangian in
Sec. III A. However, it is easy to see that the correction
proportional to« andz are the same in all usual coordinat
systems~ADM gauge,g̃-harmonic, . . .!, since these param-
eters appear for the first time at order 1/c6 in the time-time
component of the metric.12 In particular, the fact thatg̃0i and
g̃ i j do not involve« andz at the 2PN order is valid in any of
these coordinate systems.

Let us mention for completeness that the presence o«
andz modifies the total energy of a gravitating system by th
amount

12Of course, it is always possible to introduce by hand a spurio
dependence on these parameters, by redefining for instance the
tial variables asx8 i5xi1O(«,z)/c4, whereas any usual coordinate
transformation involves« andz at order 1/c6.
n
-

e

s
e

f
e

d2PNẼ~«,z!52
«

6c4E d3x̃s̃~ x̃!Ũ3~ x̃!2
z

2c4E E d3x̃d3x̃8

3
s̃~ x̃ !Ũ~ x̃!s̃~ x̃8!Ũ~ x̃8!

ux̃2 x̃8u
, ~4.5!

where the tilde decorating the various quantities means
before that they are measured in the physical units~2.6!.

B. Exact one-body metric

In the present subsection, we verify and complement
above results by using the exact static and spherically sy
metric solution of the field equations~2.8a! and ~2.8b! de-
rived in section 2 of@24#. In the coordinate system intro
duced by Just@38,39#,

ds
*
2 52enc2dt21e2n@dr21el~du21sin2udf2!#,

~4.6!

we found the solution

el5r 22ar, ~4.7a!

en5~12a/r !b/a, ~4.7b!

where

b[
2G*mA

c2
5
2G*
c4 E Ag* d

3x~2T
* 0
0 1T

* i
i ! ~4.8!

is the Einstein-frame mass parameter, anda is a
constant of integration. Introducing the parameterp
[(1/a)ln(12a/r), the equations controlling the radial vari
ation of the scalar fields can be expressed by saying t
wa(p) follows a geodesic of the metricgab(w

c), i.e.,
d*gab(w

c(p))(dwa/dp)(dwb/dp)dp50. In particular, p
being an affine parameter, the norm ofdwa/dp is constant
and given by

us
spa-
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4gab~w!
dwa

dp

dwb

dp
5a22b25const. ~4.9!

The actual geodesic traced out bywa(p) in the internal scalar
space is uniquely determined by the initial values atp50
~i.e., at spatial infinity!: wa(p50)5wa(r5`)5w0

a and
(dwa/dp)(p50)5ka, say. Assumingw0

a and ka given, we
can choose field variables in the scalar space so that
metric gab(w) reduces to the constantdab all along the line
w(r ) rP@0,̀ # ~Fermi coordinate system in thew space!. This
allows us to write the solution of~4.9! in the simple form

wa5w0
a1pka5w0

a1
ka

a
lnS 12

a

r D . ~4.10!

Using then the results of@24#, we can relate then integration
constantska to the matter distribution:

ka5
G*
c4 E Ag* d

3xaa~w!~2T
* 0
0 2T

* i
i !. ~4.11!

Note that ~4.11! is valid only if the wa coordinates are
‘‘Fermi’’ all along the solutionwa(r ). When using generic
scalar variables, the quantityaa(w) appearing on the right-
hand side of ~4.11! must be replaced by the paralle
transported value of the vectoraa(w) up to the pointw0

a . To
simplify, the reader can think that we work from the begi
ning with aflat s-model metricgab(w)5dab . The only 2PN
contribution that we would forget in that case would deriv
from the firstX diagram of Fig. 7, and would involve the
contractionRabcd(w)aA

aaA
baA

ca0
d which vanishes identically

because of the antisymmetry of the Riemann curvature t
sorRabcd(w)52Rbacd(w).

By comparing the behavior at infinity of the solutio
~4.10!,

wa5w0
a2

ka

r
1OS 1r 2D , ~4.12!
the

l-

n-

e

en-

n

with the one obtained for an isolated pointlike bodyA @see
Eq. ~2.18!#,

wa5w0
a2

G*aA
amA

rc2
1OS 1r 2D5w0

a2aA
a b

2r
1OS 1r 2D ,

~4.13!

we can deduce thatka5G*mAaA
a /c2 so that, using~4.8! and

~4.11!, the actual expression of the parameteraA
a for ex-

tended bodies reads

aA
a5

2ka

b
5

E Ag* d
3xaa~w!~2T

* 0
0 2T

* i
i !

E Ag* d
3x~2T

* 0
0 1T

* i
i !

. ~4.14!

Note the change of sign of the pressure termT
* i
i between the

numerator and the denominator, which makesaA
a differ from

a0
a at order 1/c2 even if the functionaa(w) is a constant, as

in the Jordan-Fierz-Brans-Dicke theory. In the latter ca
one findsaa

A5aa
03(122*Ag* d

3xT
* i
i /mAc

2). When com-
paring this result with aa

A5aa
01(]m̃A /] lnG̃)(]lnG̃/

]wa)5aa
03(12cA), we get the following expression for the

compactness in Jordan-Fierz-Brans-Dicke theory:

cA52E Ag* d
3xT

* i
i /mAc

2. ~4.15!

This result is an~exact! generalization of the Newtonian
virial theorem*d3xsU56*d3xp1O(1/c2) which is valid
in the Jordan-Fierz-Brans-Dicke theory and therefore also
general relativity~in the limit aa→0).

The exact solution~4.7!–~4.10! can now be expandedà
la Eddington in powers of 1/r . Although the coordinate sys-
tem ~4.6! is as good as any other to verify the 2PN term
involving the new parameters« and z, it is convenient to
express our results in isotropic coordinates, to make be
contact with the general relativistic result. Let us then defi
a new radial coordinater such thatr(11a/4r)25r . The
Einstein line element~4.6! now reads@39#
ds
*
2 52S 12

a

4r D 2b/aS 11
a

4r D 22b/a

c2dt21S 12
a

4r D 222b/aS 11
a

4r D 212b/a

@dr21r2~du21sin2udf2!#

52c2dt2F12
b

r
1

b2

2r2
2

b3

6r3 S 11
11aA

2

8 D 1OS 1r4D G
1@dr21r2~du21sin2udf2!#F11

b

r
1

b2

2r2 S 12
11aA

2

4 D 1OS 1r3D G , ~4.16!

where we have used Eqs.~4.9! and ~4.14! to replace the constanta2 in terms ofb2 andaA
2[(aA

agabaA
b)w5w0

. The metric

which determines the dynamics of test particles in the vicinity ofA is not the Einstein metricgmn* , but the physical one
g̃mn5A2(w)gmn* . We must therefore expand alsoA2(w) in powers of 1/r, by using the exact solution~4.10! of the scalar
fields. We get



-

article

the
nt

53 5557TESTING GRAVITY TO SECOND POST-NEWTONIAN ORDER: . . .
A2~w!

A2~w0!
512~aAa0!

b

r
1F ~aAa0!

21
~aAb0aA!

2 G b22r2

2F ~b8AAA
0 !16~aAa0!~aAb0aA!14~aAa0!

31
~aAa0!~11aA

2 !

2 G b3

24r3
1OS 1r4D , ~4.17!

where we have set (aAa0)[(aA
agaba

b)w5w0
, (aAb0aA)[(aA

ababaA
b)w5w0

, b8AAA
0 [(babc8 aA

aaA
baA

c )w5w0
, and where the

s-model tensorsaa, bab , andbabc8 have been defined in Eqs.~2.10!–~2.12! above. Finally, when using the physical coordi
natesr̃ [A(w0)r and t̃[A(w0)t @see Eq.~2.6!#, we find that the physical line elementd s̃ 25A2(w)ds

*
2 reads

d s̃ 252c2d t̃ 2F122
m̃A

r̃c2
12S m̃A

r̃c2D
2

~11 b̄AA
0 !2

3

2S m̃A

r̃c2D
3

~11B̄!1OS 1

r̃ 4D G
1@d r̃ 21 r̃ 2~du21sin2udf2!#F112

m̃A

r̃c2
~11 ḡA0!1

3

2S m̃A

r̃c2D
2

~11Ḡ!1OS 1

r̃ 3D G , ~4.18!

where

B̄[
2

9
«AAA

0 1
8

3
b̄AA

0 1~41 ḡA0!
ḡA0

36
2

~11 ḡA0/2!2

~11 ḡAA/2!

ḡAA

18
, ~4.19a!

Ḡ[
4

3
b̄AA

0 1~28115ḡA0!
ḡA0

12
1

~11 ḡA0/2!2

~11 ḡAA/2!

ḡAA

6
, ~4.19b!

and where we have set

m̃A[mA /A~w0![G̃A0m̃A5G*A
2~w0!@11~aAa0!#mA , ~4.20a!

ḡA0[22
~aAa0!

11~aAa0!
, ḡAA[22

aA
2

11aA
2 , ~4.20b!

b̄AA
0 [

1

2
~aAb0aA!/@11~aAa0!#

2, ~4.20c!

«AAA
0 [~babc80 aA

aaA
baA

c !/@11~aAa0!#
3. ~4.20d!

As a check of the consistency of our method, it is useful to compare the 2PK Lagrangian of Sec. III B with the test-p
Lagrangian~4.1! written for the metric~4.18!. Let us first rewrite this metric ing* -harmonic coordinates. We find

2g̃005122
mA

rc2
12S mA

rc2D 2~11 b̄AA
0 !22S mA

rc2D 3S 11
3B̄

4
1

ḡA0~41 ḡA0!

8~21 ḡAA!
2

ḡAA

4~21 ḡAA!
D 1OS 1c8D , ~4.21a!

g̃ i j5d i j F112
mA

rc2
~11 ḡA0!1S mA

rc2D 2S 112b̄AA
0 13ḡA01

7

4
~ ḡA0!

21
ḡAA~21 ḡA0!

2

4~21 ḡAA!
D G1

xixj

r 2 S mA

rc2D 2 ~21 ḡA0!
2

2~21 ḡAA!
1OS 1c6D ,

~4.21b!

wherer5Ad i j x
ixj denotes theg* -harmonic radius, related to the isotropic radiusr by

r5rF11S mA

2rc2D 2 ~11 ḡA0/2!2

11 ḡAA/2
1OS 1c6D G . ~4.22!

@This g* -harmonic radiusr should not be confused with the Just radius used in Eqs.~4.6!–~4.13! above, also denoted byr.#
The test-particle Lagrangian deduced from the metric~4.21! agrees with the Lagrangian~3.22!–~3.26!, written in the particular
case of two bodiesm0 , mA . It is notably easy to check the16 «AAA

0 contribution in ~3.26!, which comes from

the 3
4B̄ term of~4.21a!. @ThezA0A0 andxA0A0 contributions in~3.26! cannot be checked, because they involve the square of

test massm0 .# To ease the reading, we have used a slightly inconsistent notation in expressing the metric coefficieg̃mn
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~corresponding to the coordinate systemx̃ ! in terms of the original~Einstein-frame! coordinatesx. We use here, as we did
above, the simplifying fact that dimensionless ratios such asm/rc2 are numerically equal to their physical-units counterpar
m̃/ r̃ c2.

The 2PN ~weak-self-gravity! limit of the one-body metric~4.18! @or ~4.21!# can be obtained by expanding the body
dependent parameters in powers of the compactness of bodyA, as in Eqs.~3.29! above:

mA5GmAF12
h

2
cA1 b̄ ~21 ḡ !aA1S «

2
1z28b̄2DbAG1O~s3!, ~4.23a!

b̄AA
0 5 b̄2~z12b̄2hb̄ !cA1O~s2! ⇔ mA

2~11 b̄AA
0 !5~GmA!2@11 b̄2~z16b̄2 ḡ !cA1O~s2!#, ~4.23b!

B̄5
2

9
«1

8

3
b̄1

ḡ

18
1O~s!, ~4.23c!

ḡA05 ḡ 1hS 11
ḡ

2
D cA1O~s2! ⇔ mA~11 ḡA0!5GmAS 11 ḡ 1

h

2
cA1O~s2! D , ~4.23d!

Ḡ5
4

3
b̄1

1518ḡ

6
ḡ 1O~s!. ~4.23e!

We thus recover that the spatial metricg̃i j does not depend on the parameters« andz at the 2PN order, as shown by Eqs
~4.23d! and ~4.23e!. On the other hand, the« andz contributions tog̃00 can easily be deduced from the above results,

d2PNg̃00~«,z!5
~«12z!

c6
GmA

r
^U2&A1

2z

c6 SGmA

r D 2^U&A1
«

3c6 SGmA

r D 31O~ b̄ , ḡ !1OS 1c8D , ~4.24!

consistently with Eqs.~4.3! and ~4.4!.
V. 2PN EXPERIMENTS

A. Constraints from 1PN experiments

Solar-system experiments impose tight bounds on the Eddington parametersḡ and b̄ @28,29#. Using Eqs.~2.15!, they can
be written as

u ḡ u,231023 ⇔ 21023,2
ḡ

21 ḡ
5~aagaba

b!0,1023, ~5.1a!

u b̄ u,631024 ⇔ 21.231023,
8b̄

~21 ḡ !2
5~aababa

b!0,1.231023. ~5.1b!
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Let us first discuss the lessons one can draw from the bou
~5.1! if one interprets them within what we consider a mo
natural theoretical framework. Since we assume that
(s-model! metric gab is positive definite, so that the theor
does not incorporate any negative-energy excitation,
~5.1a! constrains the magnitude of all the components
a0
a . 1PN experiments thereby constrain the linear interact

of the scalar fields to matter to be small. On the other ha
our diagrammatic analysis of Sec. III shows that any obse
able deviation from general relativity involves at least tw
factorsa0

a , to fill the end blobs connected to scalar propag
tors, in diagrams such as Fig. 7 or any higher order on
Moreover, theoretical ‘‘naturalness’’ leads us to expect t
coupling functionA(w) entering Eq.~2.3! not to involve any
large dimensionless number, so that the successive de
tives of lnA(w) @such asbab

0 , babc80 , . . .# are a priori ex-
pected to be of order unity. The conclusion is that we anti
pate the new parameters entering any post-Newtonian o
nds
st
he

q.
of
on
d,
rv-
o
a-
es.
e

iva-

i-
der

to be at most of the same order of magnitude asḡ . In par-
ticular, the 2PN parameters~3.30!, which involve respec-
tively 3 and 2 factorsa0

a , are expected to be of order
u«u;ua0u3&331025 and uzu;a0

2&1023. The correspond-
ing 2PN deviations from general relativity are thus gener
cally constrained at the level&10233(Gm/Rc2)2;10215,
too small to be detectable in the solar system, even in futu
high-precision experiments. From this point of view, ou
conclusion is therefore that solar-system tests cannot pro
the 2PN structure of gravity. However, they can give a clea
access to the Eddington parameterḡ , which is of greatest
significance as it measures the basic coupling strength
tween matter and the scalar fields, and constrains all t
other PN parameters. Within this viewpoint, the only mean
ingful testing ground for 2PN and higher-order effects ar
binary-pulsar experiments. Indeed, since the self-ener
Gm/Rc2 of a neutron star is typically of order 0.2, the 2PN
effects&10233(Gm/Rc2)2 can yield significant deviations
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on timing data. Moreover, in such strong-field conditions, t
sum of the series of all higher post-Newtonian orders may
large enough to compensate the globala0

2 factor of all the
parameters. We have indeed shown in@40# that nonperturba-
tive strong-field effects can compensate even a vanishin

smalla0
2'2 1

2 ḡ . The overall conclusion is that two differen
regimes of gravity must be distinguished:~i! the weak-field
conditions of the solar system can give a clean access to
fundamental parameterḡ ; ~ii ! higher post-Newtonian effects
can be tested in the strong-field regime of binary pulsars

These conclusions, derived from an assumption of ‘‘na
ralness’’ of the coupling functionA(w), must be qualified if
we adopt~still within the context of tensor-scalar theories! a
more ‘‘phenomenological’’ point of view, i.e., ifA(w) is
permitted to involve large dimensionless numbers. In suc
case, the 2PN parameters~3.30! can be of order unity in spite
of the bounds~5.1a! on ḡ . This is particularly true of the
parameterz, which can be of order unity even ifA(w) does
not involve numbers larger than;30. For instance, in a
model with two scalar fields and a flats-model metric
gab5dab , the values

a1
2'1023, a250, b11'1, b12'30, ~5.2!

give (a2)05a1
2'1023 and (aba)05a1b11a1'1023, con-

sistently with ~5.1!, but z'(abba)05a1b11
2 a1

1a1b12
2 a1'1. By contrast, getting«;1 seems less natural

as some components ofbabc80 would have to be as large a
33104 to compensate thea0

aa0
ba0

c factor.
More generally, it is easy to see thatz is a priori uncon-

strained by the solar-system bounds~5.1!. Indeed, from the
positive definiteness of the metricgab , we can use the
Cauchy-Schwarz inequality to obtain a lower bound13 for
z:

~abba!0>@~aba!0#
2/a0

2 ⇔ z>8b̄2/u ḡ u. ~5.3!

On the other hand,z hasa priori no upper bound, and we

can have z@8b̄2/u ḡ u if the (w-space! vector
(ba

ba
b)0[(ba)0

a is almost orthogonal toa0
a , as in the ex-

ample~5.2! above.
In Ref. @24#, we adopted an even more ‘‘phenomenolog

cal’’ point of view, by assuming that thes-model metric
gab could havea priori any signature~i.e., that the theory
could involve negative-energy scalar fields!. In that case, the
bounds~5.1a! on ḡ do not constrain the magnitude ofa0

a ,
but only its direction: It should be almost a null vector in th
w space. Then, it is easy to see that« is not constrained at all
by the experimental limits~5.1!, and thatz is not constrained
either if the theory involves at least three scalar fields. Ho
ever, from a theoretical point of view, it seems more pla
sible that the gravitational interaction involves only a sm
number of massless scalar fields. If it involves only two
them ~or less!, the Cayley-Hamilton theorem yields

13The fact that we are able to derive relations between 1PN
2PN parameters is a further illustration of the power of our fie
theory approach.
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~ab2a!5~Trb!~aba!2~detb!~a2!, ~5.4!

where the trace and determinant are taken for the 232 ma-
trix (ba

b). This relation shows that even in the case of
hyperbolic metricgab , the parameterz is constrained to van-

ish with b̄ and ḡ .
On the other hand, one can make more definite assertio

if we assume that there is only one scalar field. In th
monoscalar case, the phenomenology of theoretically e
pected deviations depends upon the magnitude of the cur
ture parameterb05]2lnA(w0)/]w0

2. Indeed, we have then the
following links between 1PN and 2PN parameters:

b̄5
1

2
b0a0

2/~11a0
2!2'2

1

4
b0ḡ , ~5.5a!

z5b0
2a0

2/~11a0
2!3'2

1

2
b0
2ḡ . ~5.5b!

Therefore, if b0 is somehow known~or assumed! to be
rather large14 ~say ub0u.5), we could conclude that~i!
among weak-field experiments, the most sensitive probes
possible deviations from general relativity are high-precisio

measurements ofb̄ and ~ii ! pulsar measurements~discussed
below! of the parameterz appear, at face value, to be even
more sensitive probes of non-Einsteinian physics. Howev
the latter conclusion is not quite justified because the a
proximate analytical treatment given here is inappropria
when ub0u.5, and must be replaced by a complete numer
cal treatment to correctly take into account the nonperturb
tive effects discovered in@40# ~more about this below!.

The conclusion of this lengthy discussion is therefore th
the 1PN experimental limits~5.1! most plausibly constrain
the 2PN parameters« andz to be very small, but that there
is no theoretical impossibility that the latter be of order unity
In the following, we will adopt a phenomenological point o
view, and consider that these parameters area priori uncon-
strained to discuss the possible experiments which may m
sure them. Let us underline, however, that this ‘‘phenomen
logical’’ attitude is still in the framework of our field-theory
approach, and should not be confused with previous stud
in the literature@20–22# which aimed at describing any con-
ceivable deviation from general relativity.

B. Solar-system experiments

1. Light deflection and time delay

As discussed in the previous subsection, the most impo
tant parameter to determine experimentally isḡ , as it mea-
sures the basic coupling strength and constrainsa priori all
the possible deviations from general relativity. It has bee
shown in@27,26# that the cosmological evolution of tensor-

and
ld-

14Let us note in this respect that in the string-derived model
Ref. @26#, b0'40k where the more fundamental parameterk is
expected to be of order unity if the considered scalar field is th
dilaton proper. On the other hand, in the case of a modulus fie
k can be expected to involve a small ‘‘loop factor’’;(4p2)21

which can naturally compensate the factor 40.
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multiscalar theories generically drivesḡ towards 0, and that
its present value is expected to be&1027. The 1PN devia-
tions proportional toḡ , entering light-deflection and time
delay experiments, are thus expected to be comparabl
2PN effects, if we adopt the phenomenological point of vie
that the 2PN parameters« andz area priori unconstrained

~and that b̄ may be much larger thanḡ !. It is therefore
important to determine whether these effects can be dis
guished from each other. We shall see here that lig
deflection and time-delay experiments are ideally suited
an accurate determination ofḡ in the solar system.

First of all, it is immediate to see that these experime
do not depend on« and z at the 2PN level. Indeed, ou
results of Sec. III and IV show that these parameters app
for the first time at orderO(1/c6), in the time-time compo-
nent of the metricg̃00. Therefore, they do not enter the 2P
geodesic equation satisfied by light, which involves only t
O(1/c2) and O(1/c4) orders of the metric. Consequently
any experiment probing the propagation of light is indepe
dent from« andz at the 2PN level.

We compute in Appendix C the 2PN light deflection by
massive body and find

Df5
2mA~21 ḡA0!

r0c
2 F12

mA~21 ḡ !

r0c
2 G

1
p

4
S mA

r0c
2D 2 F151 31

2
ḡ 14ḡ 2G1OS 1

c6
D .

~5.6!

Herer0 denotes the minimal distance between the light r
and the center of bodyA measured in isotropic coordinates
The body-dependent parameterḡA0 entering the first term of
~5.6! can be expanded in powers of the self-gravity of bo
A, as in Eq.~4.23d! above:

ḡA05 ḡ 2~4b̄2 ḡ !~21 ḡ !
EA
grav

mAc
2 1OS 1c4D . ~5.7!

Note thatb̄ appears in the self-energy corrections to the 1P
effects, whereas it is absent from theO„(Gm/rc2)2… contri-
butions.

Contrary to the hopes of Refs.@12,13,15,16#, a conclusion
of our approach is that improved light-deflection~or time-
delay! experiments do not give access to any theoretica
significant 2PN parameter. In fact, the formal 2PN genera
zation of the Eddingtong parameter introduced in Refs
@12,13# ~under the different notationse andd; see also@15#
where it is denotedL) is equal to 11Ḡ , where Ḡ is the
function of 1PN parameters given in Eq.~4.23e! above:

eEpstein-Shapiro5dFischbach -Freeman5LRichter-Matzner

511
4

3
b̄1

1518ḡ

6
ḡ . ~5.8!

Our conclusion concerning the impossibility to probe si
nificant 2PN deviations from general relativity in light
deflection and time-delay experiments should not be view
only negatively. The positive aspect is that these experime
can give a clean access to the fundamental parameterḡ , i.e.,
-
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that no 2PN deviation from general relativity can complicat
their interpretation in the case where the data are too scar
to allow a clean separation of 1/r and 1/r 2 effects. Indeed, at
the level ḡ &1026 that these experiments aim for, the 2PN
effects proportional to this parameter in Eq.~5.6! are totally
irrelevant.15 On the other hand, one remarks that theḡ pa-
rameter which will be measured by these experiments
the body-dependent quantityḡA0 rather than its weak-field
limit ḡ . However, the self-gravity renormalization ofḡ dis-
played in Eq.~5.7! is already strongly constrained by the

LLR ~lunar laser ranging! bounds on h[4b̄2 ḡ
(uhu,231023 @29#!. Using uE(

gravu/m(c
2;231026 for the

Sun, one gets

~4b̄2 ḡ !~21 ḡ !uE(
gravu/m(c

2,1028. ~5.9!

Therefore, an experimental determination ofḡ (0 at the
1026 or 1027 level, which is expected to be reachable in
missions presently considered by the European Spa
Agency such as GAIA~Global Astrometric Interferometer
for Astrophysics! or SORT~Solar Orbit Relativity Test!, will
indeed give a clean measurement ofḡ . The same conclusion
a fortiori applies to the expected measurement, at the 1025

level, of ḡ %0 by NASA’s Gravity Probe B mission. In this

case, the relevant inequality is (4b̄2 ḡ )(2
1 ḡ )uE%

gravu/m%c
2,2310212.

Finally, let us remark that the value ofḡ we are talking
about in this work is the one corresponding to the value o
the scalar-field backgroundw0

a around the solar system. As
remarked in@22#, it differs from, say, the cosmological av-
erage ofḡ ~which is the one discussed in Refs.@27,26#! by
the effect of the spatial fluctuationDU of the gravitational
potential. However, we show in Appendix B that the corre

sponding change inḡ is given by 4b̄ (21 ḡ )DU/c2 and is
therefore expected to represent only a very smallfractional
change ofḡ of order16 2uba

buDU/c2, where uba
bu is the

norm of the matrixba
b ~say the modulus of its largest eigen-

value!.

2. Other possible 2PN experiments

The previous subsection showed that experiments on t
propagation of light in the solar system cannot give acce
~within our framework! to any post-Newtonian parameter
but ḡ . The question that we will address now is whether th
2PN parameters« andz can be measured in the solar system
or at least if it is possible to constrain their magnitudes at a
interesting level.

15At the qualitative level, it remains that checking the coefficien
15p/4 appearing in the second term of~5.6! will be a new confir-
mation of the nonlinear structure of general relativity, even if i
does not constrain any plausible theoretical alternatives.
16Even if uba

bu;30, the fact thatDUcosmo/c
2;1025 indicates a

negligible fractional changed ḡ / ḡ;631024. Independently of

this argument, we note that the present observational limits onb̄

give udcosmoḡ u&531028.
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One of the most famous tests of post-Newtonian gravity
the perihelion shift of Mercury, and more generally tests o
tained through a global fit to the orbital motion of the pla
ets. Before any calculation, it is clear that we cannot hope
measure the Mercury perihelion advance by tradition
means to an accuracy of 2PN significance. Indeed, the 2
effect is smaller than the 1PN prediction by a fact
;(Gm( /rc2), and corresponds to an advance of;1026 arc
sec per century. However, it may be, one day, possible
reach this level by using an artificial satellite orbiting aroun
Mercury and tracked with very high accuracy from Earth. T
increase the parameterGm( /rc2, one could also observe th
perihelion shift of a drag-free satellite in close elliptical orb
around the Sun, but the construction of such a satellite se
unrealistic with present technology. Anyway, several reaso
show that such experiments could not constrain« andz at an
interesting level. Indeed, we compute in Appendix C belo
the perihelion shift per orbit for a test massm0!m( , and
we get in isotropic coordinates

Df5
6pGm(

a~12e2!c2
F11

2ḡ 2 b̄1zc(

3
1
Gm(

ac2
S 7
2

1
«

6

1O~e2!D G1
O~ b̄ , ḡ !

c4
1OS 1

c6
D , ~5.10!

wherea is the coordinate semimajor axis of the orbit,e its
coordinate eccentricity, andc(;431026 is the compact-
ness of the Sun. Althoughz enters this expression, it canno

be distinguished from a small contribution of 2ḡ 2 b̄ at the
1PN level. In fact, it comes from the expansion~4.23b!

of the body-dependent parameterb̄((
0 5 b̄2zc(

1O( b̄ , ḡ )/c21O(1/c4), and is thus a mere renormalizatio

of b̄ . On the contrary, the contribution proportional to« can
in principle be distinguished from the 1PN effects, since
involves a different power of (Gm/a). Numerically, we find
that Mercury’s perihelion is deviated from the general re
tivistic prediction by'0.5« mm per year, too small to be o
observational significance. In the totally unrealistic situati
of a drag-free satellite grazing the surface of the Sun, t
2PN deviation would be of order'30« m yr21, which isa
priori much easier to detect. However, to distinguish t
O(Gm/ac2) andO„(Gm/ac2)2… contributions, it would be
necessary to compare several satellites at different distan
from the Sun, or alternatively to look at periodic effects on
given orbit, which may be much more difficult to observ
than secular effects. Moreover, one will have the difficulty
separating the 2PN contribution from the Newtonian cont
bution due to the quadrupole moment of the Sun, which h
the same dependence17 on a ~not to mention the huge ther
mal and electromagnetic effects of the Sun on a close sa
lite!. In conclusion, perihelion-shift experiments in the sol
system can in principle give access to the 2PN parame
«, but present technology does not give the hope of mea
ing it to any significant level.

17The peculiar anisotropy of multipolar effects will, however, he
in this respect.
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We have seen in Eqs.~3.29a! and ~3.34a! above that the
effective gravitational constantGAB depends on the self-
energies of the bodiesA and B. In particular, the Earth
(% ) and the Moon (C) do not fall with the same acceleration
towards the Sun, sinceG( %ÞG(C . This violation of the
strong equivalence principle implies a polarization of th
Moon’s orbit ~Nordtvedt effect!, that can be tested in the
lunar laser ranging data. The deviations from general rela
ity are proportional to the ratio

G( % 2G(C

G
52

h

2
~c% 2cC!1@z1O~ b̄ , ḡ !#c(~c% 2cC!

1O~a% ,b% ,aC ,bC!, ~5.11!

wherecC!c% !c( are the compactnesses of the three bo
ies, and where we have neglecteda%;b%;c%

2 ~as well as
aC andbC) with respect toc(c% . The first term, involving

the parameterh[4b̄2ḡ , is the standard 1PN deviation
which has been constrained at the leveluhu,231023 by
LLR data. The dominant 2PN contribution,zc((c% 2cC), is
equivalent to a renormalization of h into
(h22zc()'(h21025z). From a theory-based viewpoint
such a renormalization is of no consequence: ash andz are
both proportional to the basic coupling strengthḡ , we can
always neglect thefractionally small correction 1025z to h
~in the same way, as explained above, that one does not h
to worry about ‘‘cosmic variance’’ effects!. However, from a
phenomenological viewpoint,z is an independent quantity
which would complicate the interpretation of a high
precision LLR experiment reaching theh;1025 level. @This
level would correspond to measuring the Earth-Moon d
tance with 0.1 millimeter accuracy.# In other words, the phe-
nomenological point of view obliges us to look for othe
independent experiments allowing one to separate the eff
of h andz.

The polarization of Mercury’s orbit around the Sun due
the presence of Jupiter~i.e., the Nordtvedt effect for Mer-
cury! can give access to a different combination ofh and the
2PN parameters«, z. The corresponding deviation from
general relativity is proportional to

GJ(2GJM

G
52

h

2
c(1S «

2
1z Db(1z3O~c(cJ!

1O~ b̄ , ḡ !O~cM ,c(
2 !, ~5.12!

where cM!cJ!c( are respectively the compactnesses
Mercury, Jupiter, and the Sun, and where we have neglec
c(cJ with respect tob(;c(

2 . The dominant 2PN contribu-
tion plays again the role of a renormalization ofh, but this
time into @h2(«12z)b( /c(#'@h21025(«/21z)#. Note
that« enters now this expression, whereas it was absent fr
the corresponding lunar result. This complicates the probl
of separating the contributions ofh andz. It would be nec-
essary to dispose of a third experiment giving access to«,
for instance by using the perihelion shift~5.10!. However,
we have seen that such a measure is not likely to be p
formed with current~or foreseeable! technology.

Another attempt to determine« could be to compare ul-
trastable clocks: one located on Earth and another one so

lp
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where close to the Sun. Indeed, the Einstein effect giv
access toA2g̃00, where2g̃00 is given by Eq.~4.21a! in
g* -harmonic coordinates and by the first bracket of E
~4.18! in isotropic coordinates. The general relativist
prediction for the rates of clocks is thus multiplied by

factor @11(Gm( /rc2)2b̄((
0 2 1

6 (Gm( /rc2)3«1O( b̄ , ḡ )/
c6]. This gives~relative to a clock on Earth! effects of order
'1.6310218« for a clock located at the surface of the Su
and'3310224« for a clock on Mercury. With foreseeable
technology (10218 stability!, one might barely be able to
constrain« at theO(1) level. As for the perihelion shift
~5.10!, it should be noted that the parameterz contained in

b̄((
0 'b̄2zc( is a mere renormalization ofb̄ and cannot

be accessed independently.

A possible way to access thisz contribution inb̄AA
0 would

be to measure bothb̄((
0 'b̄2zc( and b̄ % %

0 'b̄2zc%'b̄
at a level,c(;431026. This would necessitate the track
ing of Mercury with few cm accuracy, and the observation
a drag-free artificial Earth satellite at the 1022 cm level@41#.
This second condition is two orders of magnitude smal
than what can be done presently.

The conclusion of the above discussion is that the 2
parameters« andz are extremely difficult to measure in th
solar system. Within a phenomenological approach, the o
role of these parameters is negative: they complicate the
terpretation of high-precision 1PN experiments. Hence
solar system appears not to be an appropriate testing gro
for probing the 2PN structure of gravity. On the contrary,
is perfectly suited for measuring the fundamental parame
ḡ , as underlined in Sec. V B 1.

C. Binary-pulsar experiments

Let us now consider binary-pulsar experiments, whi
will turn out to be much better testing grounds for the 2P
structure of gravity. Since the self-energy of a neutron sta
typically of order 0.2~as compared to;1026 for the Sun!,
the 2PN and higher-order effects play an important role
the behavior of binary pulsars. In the present subsection,
will show that the combined analysis of several binary-puls
data has the capability of constraining both« and z at an
interesting level.18 Our aim is not to perform a full statistica
analysis, but rather to illustrate the different types of co
straints that can be obtained. We will consider four bina
pulsars, for which different observable quantities can
measured.

The Hulse-Taylor binary pulsar PSR 1913116 has been
continuously observed since its discovery in 1974. Besid
the Keplerian orbital parametersP ~orbital period! and e
~eccentricity!, three ‘‘post-Keplerian’’ @31,32# observables
have been measured with great accuracy: the periastron
vancev̇, the secular change of the orbital periodṖ, and the
time-dilation parameterg timing which describes both the
second-order Doppler effect due to the velocity of the puls
and the redshift due to the presence of its companion.@This
last parameter should not be confused with the metricgab ,

18In the language of@32,42#, we perform a combined theory-
dependent analysis of several independent pulsar data.
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the Eddington parameterḡ , nor its body-dependent generali-
zation ḡAB .# Within a given theory of gravity, these three
timing observables19 can be predicted in terms of the masse
mA andmB of the pulsar and its companion, which area
priori unknown. The theory is consistent with experiment
there exists a pair of masses (mA ,mB) giving the correct
observed values for the three quantitiesṖ, v̇, andg timing .
This is the so called ‘‘Ṗ-v̇-g ’’ test, that general relativity
passes with flying colors, and which establishes the reality
gravitational waves. We give below the experimental value
quoted in@43#:

P527906.9807804~6! s, ~5.13a!

e50.6171308~4!, ~5.13b!

Ṗ522.422~6!310212, ~5.13c!

v̇54.226621~11!° yr21, ~5.13d!

g timing54.295~2!31023 s, ~5.13e!

where figures in parentheses represent 1s uncertainties in the
last quoted digits. In fact the determination ofṖ is so precise
that it is necessary to take into account the small variab
Doppler effect due to the acceleration of the binary puls
towards the center of the Galaxy@44#. This induces an extra
contribution to Ṗ, which takes the value Ṗgal
520.0124(64)310212 in general relativity. The intrinsic
variation of the orbital period~due to gravitational radiation
damping! is thus given by

Ṗobserved2 Ṗgal522.4101~85!310212. ~5.14!

In tensor-scalar theories of gravity,Ṗgal is modified by a
small contribution,d Ṗgal, that we will take into account in
our calculations below.

The binary pulsar PSR 1534112 has been observed only
since 1991, and the present experimental accuracy on its
rameter Ṗ is not comparable with the one of Eq.~5.13c!
above. However, this pulsar is much closer to the Earth th
PSR 1913116, and it has been possible to measurev̇ and
g timing ~with very good precision!, as well as two new timing
observables,r ands, measuring the amplitude and the shap
of the Shapiro time-delay caused by the companion. Out
these two parameters, onlys is measured with precision.
@Note that, geometrically,s[sin i is the sine of the angle
between the orbit and the plane of the sky.# As above, the
three quantitiesv̇, g timing, ands can be predicted as func-
tions of the massesmA , mB within a given theory of gravity.
One can therefore test if this theory agrees with experime
by looking for a pair of masses (mA ,mB) consistent with the
three observed values ofv̇, g timing, and s ~‘‘ v̇-g-s’’ test!.
We shall make use of the latest experimental data discus
in @45#:

19In order not to create any confusion with our use of the wor
post-Keplerian in the present paper, we refer to these quantities
‘‘timing observables’’ instead of ‘‘post-Keplerian’’ parameters as
used in@31,32#.
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53 5563TESTING GRAVITY TO SECOND POST-NEWTONIAN ORDER: . . .
P536351.70267~2! s, ~5.15a!

e50.2736771~4!, ~5.15b!

x53.729458~2! s, ~5.15c!

v̇51.75573~4!° yr21, ~5.15d!

g timing52.081~16!31023, ~5.15e!

s50.981~8!. ~5.15f!

Herex5a1s/c is the projection of the semimajor axis (a1)
of the pulsar orbit on the line of sight~in light seconds!. A
precision should be given concerning the quoted experim
tal uncertainties. Reference@45# gives ~for the more reliable
1.4 GHz data! theDx252.30 andDx256.17 contours in the
(r ,c) plane with c[A12s2. We deduced from these the
Dx254 contour which defines, when projected onto thec
axis, a 2sstat interval for c considered alone. We use the
corresponding 2sstat interval for s5A12c2 as a realistic
1s interval ~in other words, we double the statistical 1s
interval for s to take into account possible systematic e
fects!. We similarly doubled the statistical 1s uncertainties
obtained in@45# for v̇ andg timing .

The binary pulsar PSR 0655164 is composed of a neu-
tron star of mass'1.4m( , and a light companion of mass
'0.8m( , which is probably a white dwarf. The gravita
tional waves emitted by such a dissymmetrical system
volve a large dipolar contribution of order 1/c3 in tensor-
scalar theories, whereas the dominant radiation in gene
relativity is quadrupolar and of order 1/c5. The fact that the
observed value ofṖ is very small~and consistent with zero!
constrains therefore the existence of scalar fields, or m
precisely the magnitude of their interaction with matter. W
will see below that this system imposes a tight bound on t
2PN parameterz. The experimental data that we will need
for our analysis are taken from@45#:

P588877.06194~4! s, ~5.16a!

e,331025, ~5.16b!

Ṗ5~164!310213. ~5.16c!

The masses of the pulsar and its companion are not kno
independently; several pairs (mA ,mB) are thusa priori pos-
sible, such as (1.30m(,0.7m(), (1.35m(,0.8m() or
(1.40m(,0.9m(). In our calculations below, we will choose
the mass pair which gives the most conservative bounds
the 2PN parameters, namelymA51.30m( , mB50.7m( .
@Smaller masses could be consistent with experimental da
but current lore favors neutron star masses close
1.4m( .#

The fourth and last binary pulsar that we will conside
PSR 1800227, is also a dissymmetrical system, involving
neutron star of massmA'1.4m( and a light companion of
negligible self-energy. The acceleration of the pulsar towar
en-
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the center of the Galaxy is therefore proportional to the se
gravity-modified effective gravitational constantG̃A0 @cf.
Eqs. ~4.20a! and ~4.23a! above#, whereas the companion is
accelerated by a force proportional to the weak-field gravit
tional constantG̃005G̃, Eq. ~2.14!. As shown in@46#, this
violation of the strong equivalence principle causes a ‘‘grav
tational Stark effect’’ on the orbit of the system, polarizing
its eccentricity in a particular direction. A highly circular
orbit, like the one of PSR 1800227, is therefore very im-
probable. A statistical study can thus be performed to co
strain the magnitude of the matter-scalar field interactio
Following the method of@46#, Ref. @45# has obtained the
bound

udAu,1.431023 ~5.17!

on the parameterdA characterizing this gravitational Stark
effect. This bound corresponds to the 90% confidence lev
which plays the role of an ‘‘effective 1s level’’ for the non-
Gaussian statistics of this test.@Twice this value gives the
95% C.L., i.e., the standard 2s level. Note that this ‘‘effec-
tive 1s level’’ is more secure than the standard 1s ~68%!
level.# We note, without making use of it, that Ref.@47#
recently advocated a more conservative boun
udAu,431023 at the 90% C.L.~deduced from the analysis
of seven older binary pulsars! on the ground that the binary
system PSR 1800227 might be too young to provide a fully
secure test.

The analytic expressions of all the observable quantiti
discussed above have been derived in@46,32,24#. The theo-
retical prediction for the observed time derivative of the o
bital period has the form

Ṗ5 Ṗspin 0
monopole1 Ṗspin 0

dipole1 Ṗspin 0
quadrupole1 Ṗspin 2

quadrupole1 Ṗgal1d Ṗgal

1OS 1c7D , ~5.18!

where the different contributions are given in Eqs.~6.52! and
~9.22! of @24#. The same reference gives also the expressio
of the periastron shiftv̇ and of the time-dilation parameter
g timing in Eqs.~9.20!, as well as the ‘‘Stark’’ parameterdA in
Eq. ~9.16!. Finally, the theoretical prediction for the timing
observables is given in Eq.~3.15! of @32#. Introducing the
notation

M[mA1mB , XA[mA /M ,

XB[mB /M , n[2p/P, ~5.19!

it can be written as

x

s
5
XB

n
~GABMn/c3!1/3. ~5.20!
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These theoretical predictions give~when written out in de-
tail! the various timing observables as theory-depend
functions of the masses of the bodies. In general, becaus
possible nonperturbative strong-field effects@40#, the latter
functions should be considered asfunctionals of the
11n(n21)/2 arbitrary functions entering the definition of
tensor-scalar theory@notablyA(w)#. However, if we assume
the absence of genuine nonperturbative effects, we can
pand the functions giving the observables in powers of
compactnessescA , cB of the bodies. This has the effect o
reducing the functional dependence of the observables
dependence upon a finite number of theory parameters
the lowest orders, there appear the 1PN Eddington par

etersb̄ and ḡ . As these are already tightly constrained b
solar-system data, Eqs.~5.1!, we will neglect them in the
following, and investigate the limits that can be set on furth
theory parameters. The 2PN parameters« andz appear pre-
cisely at the next significant order of the expansion in co
pactnesses@24#. The deeper layers of theory parameters
troduced in@24# always appear with higher powers of th
compactnesses.@As shown in Table 3 of@24#, this is true
even for the different contributions of the gravitational radi
tion, in spite of their rather complicated structure.#
ent
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Here we shall estimate what constraints are imposed
binary-pulsar data on« andz, when restricting our attention
to the lowest-order terms in compactnesses involving the
From a numerical point of view, our approximation is rathe
rough, as the next orders that we neglect are on
O(cA);0.3 smaller than the terms we will consider. A way
of justifying our approach is to say that we assume that the
is no fine-tuned compensation between the« and
z-dependent terms we retain and the higher-order term
which involve new~3PN, 4PN, . . .! parameters. We believe
that our simplified analysis will give at least the right orde
of magnitude for the constraints on« andz that would fol-
low from a more complete theory-dependent analysis.

To write in closed form the truncated expressions of th
different observables, let us introduce the notation20

V[~G*Mn!1/3, ~5.21!

whereM andn have been defined in Eq.~5.19! above, and
whereG* is the bare gravitational constant. Note that sinc
we neglect herea0

2}ḡ , the bare constantG* can be identi-
fied with the gravitational constantG5G* (11a0

2) mea-
sured in weak-field conditions. The timing observables ca
now be written as
Ṗspin 0
monopole5212p

V5

c5
XAXBz

e2~11e2/4!

~12e2!7/2
1O~s!, ~5.22a!

Ṗspin 0
dipole522p

V3

c3
XAXBF ~cA2cB!2z

11e2/2

~12e2!5/2
1O~s3!G14p

V5

c5
XAXBF ~XA2XB!~cA2cB!z

113e213e4/8

~12e2!7/2
1O~s2!G ,

~5.22b!

Ṗspin 0
quadrupole52

32p

5

V5

c5
XAXB@~cBXA1cAXB!2z1~bBXA1bAXB!~«12z!1O~s3!#

1173e2/24137e4/96

~12e2!7/2
, ~5.22c!

Ṗspin 2
quadrupole52

192p

5

V5

c5
XAXBF11

2

3
cAcBz1

1

3
~bA1bB!~«12z!1O~s3!G1173e2/24137e4/96

~12e2!7/2
, ~5.22d!

d Ṗgal
191311652

1.22310218

n
~bAXA1bBXB!~«12z!1O~s3!, ~5.22e!

v̇5
V2

c2
n

12e2 F31~cAXA1cBXB!z1
1

2
~cBXA1cAXB!~«1z!1O~s2!G , ~5.22f!

g timing5
V2

c2
eXB
n

@11XB22kAcBz1O~s2!#, ~5.22g!

dA5bAS «

2
1z D1O~s3!, ~5.22h!

x

s
5
V
c

XB

n F11
1

3
cAcBz1

1

3
~bA1bB!S «

2
1z D1O~s3!G . ~5.22i!



e

e

R

d

ta

53 5565TESTING GRAVITY TO SECOND POST-NEWTONIAN ORDER: . . .
As in Eqs.~3.27! above,s in the error terms on the right-
hand side is a global notation for the compactnesses of
bodies, which should not be confused with the timing o
servables on the left-hand side of~5.22i!. The O(V5/c5)
contribution inṖspin 0

dipole can of course be neglected with respe
to itsO(V3/c3) term. On the other hand, the monopolar an
quadrupolar contributions should not be neglected in spite
their being also of orderO(V5/c5). Indeed, the dipolar term
~5.22b! can become very small if the pulsarA and its com-
panionB are almost identical, and the monopolar and qu
drupolar contribution then dominate. The galactic contrib
tion to Ṗ given in Eq.~5.22e! corresponds to the case of PS
1913116, and should not be used for other pulsars. T
parameterkA entering~5.22g! is ~minus! the logarithmic de-
rivative of the inertia momentI A of the pulsar with respect to
the gravitational constant:kA[2] lnIA /]lnG. It has been es-
timated in Ref.@48# to range between 0.5 and 1.7, dependi
on the nuclear equation of state used to describe the neu
star matter. The ‘‘Ṗ-v̇-g ’’ test in PSR 1913116 is almost
insensitive21 to the value chosen forkA . On the contrary, the
‘‘ v̇-g-s’’ test in PSR 1534112 gives slightly tighter bounds
on « andz for kA51.7 than forkA50.5. In order to derive
conservative bounds for these parameters, we will use
valuekA50.5 in the following.

In all the equations~5.22!, the compactnesses of the bod
ies can be estimated by using the results of Appendix B
@24#. For a realistic equation of state of matter inside a ne
tron star, we found in this reference

cA'0.21mA /m( , ~5.23a!

aA'2.16cA
2 , ~5.23b!

bA'1.03cA
2 . ~5.23c!

The coefficient 0.21 of Eq.~5.23a! can be lowered to
'0.15 for a stiff equation of state, and increased to'0.30
for a soft equation of state. We will choose the central va
0.21 in our calculations. When the companion of the puls
is not itself a neutron star, but a weakly self-gravitating bo
like a white dwarf, its compactnesscB!cA can be neglected.
This is the case for PSR 0655164 and PSR 1800227.

The predictions~5.22! of tensor-scalar theories can now
be confronted to the experimental data~5.13!–~5.17!. Since
we are working at the first order in« andz, we can replace
the massesmA , mB of the bodies~as well as the correspond
ing compactnessescA , cB , aA , aB , bA , bB) by their general
relativistic predictions in all the terms involving one of thes
parameters. By contrast, the dominant contributions
Ṗspin 2
quadrupole, v̇, g timing, andx/s should be considered as func

tions of two a priori unknown massesmA , mB . For each
value of « and z, we can thus determine if the above fou
tests can be passed. More precisely, in the cases of P
0655164 or PSR 1800227, the measurement of the obser

20The notationV is a reminder of the fact that this quantity mea
sures some mean orbital velocity.
21This follows from the near parallelism of theṖ andv̇ curves in

the mass plane.
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ables Ṗ or dA directly defines~when assuming the above
indicated values of the masses! a 1s constraint on some
linear combination ofz and«. In the cases of PSR 1913116
or PSR 1534112, the simultaneous measurement of thre
observables (Ṗ-v̇-g or v̇-g-s), which are predicted to be
some functions of the four quantitiesmA , mB , z, and «,
defines~by eliminating the two unknown masses between th
three equations and by adding in quadrature the 1s errors on
the three observables! a 1s constraint22 on some linear com-
bination of z and «. Summarizing: each set of pulsar
data leads to a reduced x2 of the form
xP
2 (z,«)5(z1lP«2mP)

2/sP
2 , equivalent to the 1s con-

straint2sP,z1lP«2mP,sP . We find the bounds~at the
1s level for the first three tests, and at the 90% C.L. for PS
1800227!

PSR 1913116: 2431024,z2531022«,731023,
~5.24a!

PSR 1534112: 2831022,z10.15«,21024,
~5.24b!

PSR 0655164: 2731023,z,431023, ~5.24c!

PSR 1800227: uz1«/2u,1.531022. ~5.24d!

These four allowed regions of the«-z plane are displayed in
Fig. 8. Clearly pulsar data favor only a small neighborhoo
of the origin«5z50, i.e., of general relativity. To combine

-

22An alternative method is to start from the full
x2(mA ,mB ,z,«)[(a@qa

obs2qa
th(mA ,mB ,z,«)#

2/sa
2 associated

with the three measurementsqa5qa
obs6sa , and to reduce it to a

function of z and« by minimizing overmA andmB . Note that we
neglect the correlations between the three observablesqa .

FIG. 8. Constraints imposed by four different binary-pulsar da
on the 2PN parameters«, z.
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the constraints on« andz coming from different pulsar ex-
periments, we have added their individualx2 ~as defined
above! as if they were part of a total experiment with unco
related Gaussian errors: x tot

2 («,z)5x1913116
2 («,z)

1x1534112
2 («,z)1x0655164

2 («,z)1x1800227
2 («,z). @In spite

of the non-Gaussian statistics of the gravitational Stark eff
in PSR 1800227, we used the bound~5.17! as an ‘‘effective
1s level.’’# In the approximation explained above, eachx2 is
quadratic in« andz. Therefore, the sumx tot

2 («,z) is a qua-
dratic form in« and z. The contour levelDx tot

2 («,z)52.3,
where23 Dx tot

2 [x tot
2 2(x tot

2 )min , defines for two degrees o
freedom the 68% C.L.~1s level! ellipse represented in
Fig. 9.

In conclusion, our analysis of these four binary-puls
tests yields the bounds~at the combined 68% C.L.!

u«u,731022, uzu,631023. ~5.25!

Because of our truncation of the observables~5.22! to their
lowest order term in« andz, these values should be consid
ered only as estimates of the constraints that binary-pu
data can provide. They show nevertheless that possible 2
deviations from general relativity can be tested with gre
accuracy in binary-pulsar experiments, whereas we saw
Sec. V B that they are almost impossible to detect in t
solar system.

It should be noted that though the inequalities~5.25! look
numerically less stringent than the solar-system constrai

u ḡ u,231023, u b̄ u,631024, they may, in some theoretica

23The nice global consistency of the independent pulsar te
proven by the overlapping of the strips in Fig. 8, means that
overall goodness-of-fit criterion associated with (x tot

2 )min is satisfied.
This entitles us to use the variation ofx tot

2 above (x tot
2 )min to define

meaningful error levels on« andz.

FIG. 9. Region of the«-z plane allowed at the 1s level by the
four tests of Fig. 8.
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models, yield stronger bounds on the basic coupling para
eters. For instance, in the single scalar case, we deduce fr
Eqs. ~5.5! and ~5.25! that pulsars give the limit
a0
2,(6/b0

2)31023, while solar tests give
a0
2, inf(1,1.2/ub0u)31023. Therefore, whenub0u.5 pulsar

tests seem more restrictive. This conclusion is, however, n
quite justified within our present approximate analytica
treatment, because whenub0u.5 nonperturbative effects
@40# become important so that one cannot neglect the high
order termsO(sn) in Eqs.~5.22!. For a detailed study of the
regions in the (a0 ,b0) plane actually allowed when taking
into account nonperturbative effects, see@49,50#.

VI. CONCLUSIONS

We proposed in this paper a theory-based framework f
conceiving and interpreting experimental tests of relativist
gravity. Previous frameworks were characterized by a ph
nomenological attitude. Eddington@1# initiated such an ap-
proach by assuming that the~static! spherically symmetric
one-body solution in a generalized relativistic theory of grav
ity could differ from the Schwarzschild solution in having
arbitrary coefficients in front of the different powers of the
small parameterGm/rc2. Namely, he wrote

2g005122a
Gm

rc2
12bSGmrc2 D

2

1•••, ~6.1a!

gi j5d i j F112g
Gm

rc2
1••• G , ~6.1b!

thereby introducing at the first post-Newtonian~1PN! level
two independent phenomenological parametersb andg with
values one in general relativity@after having remarked that
the Newtonian level parametera can be conventionally fixed
to unity#. The Eddington approach has been extended in se
eral directions. Following some pioneering work of Schif
@2# and Baierlein@4#, Nordtvedt@5# and Will @6# introduced
ten independent phenomenological parameters,b, g, j,
a1 , a2 , a3 , z1 , z2 , z3 , z4 , to describe the most genera
N-bodymetric at the 1PN level. Their subsequent work de
lineated the various symmetries~e.g., boost symmetry, local
position invariance! broken by the inclusion of some subse
of these ten ‘‘PPN’’ parameters. In particular, their work
made it clear thatb andg play a privileged role in respecting
more symmetries than the other parameters. Epstein and S
piro @12#, and Fischbach and Freeman@13#, extended the
original Eddington expansion~6.1! of theone-bodymetric by
introducing a parametereES[dFF describing thesecond
post-Newtonian~2PN! order contribution to the~isotropic!
spatial metric:

gi j5d i j F112g
Gm

rc2
1
3

2
eESSGmrc2 D

2

1••• G . ~6.2!

Benacquista and Nordtvedt@20–22# tried to extend directly
the N-bodyPPN formalism to thesecond post-Newtonian
order by introducing a large number ofa priori independent
parameters. Finally, in a somewhat different vein, Damo
and Taylor@31,32# introduced a phenomenological approac

sts,
the
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specifically adapted to extracting the maximum possib
number of relativistic gravity tests from binary-pulsar da
~‘‘parametrized post-Keplerian’’ formalism!.

By contrast with such phenomenological approaches,
have systematically adopted in the present paper~which is an
extension of our previous work@24#! a theory-basedap-
proach. Instead of trying to parametrize any conceivable p
nomenological deviation from general relativity, we wor
within the simplest and best motivated class of no
Einsteinian theories: the tensor-multiscalar theories in wh
gravity is mediated by a tensor field (gmn* ) together with one
or several scalar fields (wa; a51,2, . . . ,n). These theories
are, in our opinion, preferred for three types of reasons:~i!
massless scalars naturally appear as partners of the gra
in most unified theories~from Kaluza-Klein to string theory!;
le
ta

we

he-
k
n-
ich

viton

~ii ! this is the only known class of theories respecting t
basic tenets of field theory~notably the absence of negative
energy excitations! in which very high precision tests of the
equivalence principle can naturally be compatible with po
Newtonian deviations at a measurable level;24 ~iii ! they natu-
rally ‘‘explain’’ the key role played by the original Edding-
ton parametersb andg at the 1PN level, and have a simpl
enough structure~in spite of their great generality25! to allow
one to work out in detail their observational consequences
the 2PN level.

Our main results are the following. Two, and only two
new parameters~beyond the non-Einsteinian 1PN paramete

b̄[b21, ḡ[g21) quantify possiblenon-Einsteinianef-
fects at the 2PN level:« and z. The role of these 2PN pa-
rameters is threefold.
-

~i! They parametrize 2PN deviations from the general relativistic (N-body! physical metric tensor:

dg00~x!5
«

3c6
U3~x!1

«

c6E d3x8
Gs~x8!U2~x8!

ux2x8u
1
2z

c6E d3x8
Gs~x8!

ux2x8u E d3x9
Gs~x9!U~x9!

ux82x9u

1
2z

c6
U~x!E d3x8

Gs~x8!U~x8!

ux2x8u
1OS b̄

c6
,

ḡ

c6
D 1OS 1

c8
D , ~6.3a!

dg0i~x!5OS b̄

c5
,

ḡ

c5
D 1OS 1

c7
D , ~6.3b!

dgi j ~x!5OS b̄

c4
,

ḡ

c4
D 1OS 1

c6
D . ~6.3c!

~ii ! They determine the renormalizations, due toself-gravityeffects, of the various effective gravitational coupling param
eters between massive bodies:
r-

he

r-
n

y

GAB /G511hS EA
grav

mAc
2 1

EB
grav

mBc
2D 14zS EA

grav

mAc
2D S EB

grav

mBc
2D

1S «

2
1z D ^U2&A1^U2&B

c4
1O~ b̄ , ḡ !O~s2!

1O~s3!, ~6.4a!

ḡAB5 ḡ 1O~ b̄ , ḡ !O~s!1O~s2!, ~6.4b!

24For instance, in all positive-energy vector theories coupled~at
the linear level! to some current, the existing equivalence princip
tests at the 10212 level necessarily constrain all post-Newtonia
deviations at the;1029 level. Though current unified models sug
gest the existence of massless scalar fields with composit
dependent couplings, they leave open the possibility of a very sm
parameter relating post-Newtonian deviations to equivalen
principle tests~e.g., a factor;1025 was found in string-inspired
models@26#!.
b̄BC
A5 b̄1~«1z!

EA
grav

mAc
2 1zS EB

grav

mBc
2 1

EC
grav

mCc
2D

1O~ b̄ , ḡ !O~s!1O~s2!. ~6.4c!

Here,GAB denotes the effective Newtonian constant measu
ing the strength of theO(mAmB /r AB) leading gravitational

coupling betweenA andB, while ḡAB and b̄ BC
A denote ef-

fective Eddington parameters measuring the strength of t
O„mAmB(vA2vB)

2/r ABc
2
… and O„mAmBmC /(r ABr ACc

2)…
post-Newtonian couplings. Moreover,h stands for the com-

bination 4b̄2 ḡ[4b2g23 , while s;Egrav/mc2 denotes
the strength of self-gravity effects. The more complete ve
sion of our results on self-gravity renormalizations is give
in Eqs.~3.29!.

~iii ! They determine the renormalizations of the locall
measured coupling parameters~e.g., the local gravitational

le
n
-
ion-
all
ce-

25Indeed, we consider the most generaln-scalar models described
by 11n(n21)/2 arbitrary functions ofn variables.
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constant in physical unitsG̃loc) due to the presence of distan
‘‘spectator’’ matter~say, a massmS at a distanceD) around
the considered gravitating system:

G̃loc5G̃`F12
GmS

Dc2
h G1OS 1

D2D , ~6.5a!

ḡ loc5 ḡ `14
GmS

Dc2
b̄ ~21 ḡ !1OS 1

D2D , ~6.5b!

b̄ loc5 b̄`2
GmS

Dc2 S «

2
1z28b̄2D1OS 1

D2D . ~6.5c!

On the other hand, we find that« and z do not enter
light-deflection nor time-delay experiments at the 2PN lev
~see Appendix C!. In particular, we find that the ‘‘post-
Eddington’’ formal 2PN parameter introduced in Ref
@12,13#, as recalled in Eq.~6.2! above, is the following func-

tion of the 1PN parametersb̄[b21, ḡ[g21:

eES511
4

3
b̄1

1518ḡ

6
ḡ . ~6.6!

This shows that second-order light-deflection~or time-delay!
experiments do not probe any theoretically-motivated 2P
deviations from general relativity. More generally, after di
cussing observable effects linked to«Þ0 or zÞ0 ~in plan-
etary perihelia, lunar laser ranging, or other stron
equivalence-principle tests, and clock experiments!, we
conclude that the solar system is not an appropriate tes
ground for probing possible 2PN deviations from gene
relativity. More precisely, we find that in the best cases, fo
seeable technology might barely be able to constrain« and
z at the order unity level, while, in the worst cases, the
parameters might complicate the interpretation of 1PN e
periments by contaminating some observables.

This seemingly negative conclusion is, however, to
tempered by the following two positive conclusions of our

~a! We identified binary pulsar experiments as an exc
lent testing ground for the 2PN structure of relativistic gra
ity. By a simplified ~linearized! analysis of existing data on
the binary systems PSR 1913116, PSR 1534112, PSR 0655
164, and PSR 1800227, we were in fact able to constrai
already« andz at the level

u«u,731022, uzu,631023. ~6.7!

~b! We stressed that solar-system experiments are well su
to measuring with high precision the 1PN parameterḡ which
is of greatest significance among all post-Einstein para
eters. Indeed, our theory-based analysis shows very cle
that ḡ is a direct measure of the coupling strength of mat
to the scalar fields. All the other post-Einstein paramet

( b̄ , «, z, . . .! necessarily tend to zero withḡ in all theories
having only positive-energy excitations~more about this be-
low!. From this~theory-based! point of view, the most im-
portant solar-system experiments would be high-precis
light-deflection or time-delay experiments reaching the lev
say, ḡ &331027, which comes out naturally from mecha
nisms of cosmological attraction of tensor-scalar models
t

el

s.
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ward general relativity@27,26#.26 This conclusion should not
be interpreted as meaning that high-precision measureme

of b̄ are uninteresting. As we saw above, they can, in som
cases~e.g., a largeb0 in the single scalar case! be more
sensitive probes of possible non-Einsteinian effects. How
ever, in absence of anya priori information on the magni-
tude ofb0 ~or, more generally,ba

b), it remains thatḡ is the
only securely direct measurement of the scalar coupling.

Let us end by stressing again some of the conceptual a
technical differences between the theory-based framewo
introduced here, and the usual Eddington-Nordtvedt-W
PPN framework~and its extensions!. The natural range of
values of the PPN parameters is uniformly supposed to be
order unity, independently of the post-Newtonian order
which they appear. In our approach, there is one basic set
~experimentally small! coupling parameters,

aa5
] lnm~w!

]wa , ~6.8!

wherem(w) is the mass of a particle in the Einstein confor
mal frame.~This way of writing the definition ofaa is of
great generality as it encompasses both self-gravity effe
@24# and possible composition-dependent effects@26#.!

All the phenomenological parametersḡ , b̄ , z, «, . . .
measuring the 1PN, 2PN, etc. deviations from general re
tivity ~see@24# for a list of the 3PN and higher parameters!
are explicitly constructed by contracting at least two of th
basicaa’s with objects built from successive covariant field
derivatives of theaa’s: bab[Daab , babc8 [DaDbac , etc.
~see Sec. II B for the definition ofDa). In particular, internal
indices in the scalar-field space being raised and lowered
means of the positive-definite metricgab(w

c) defining the
kinetic energy of the scalar fields,

ḡ 522
aaa

a

11aaa
a , ~6.9a!

b̄5
1

2

aababa
b

~11aaa
a!2

, ~6.9b!

z5
aabb

abc
bac

~11aaa
a!3

, ~6.9c!

«5
babc8 aaabac

~11aaa
a!3

. ~6.9d!

Therefore, contrary to the PPN philosophy where, say, t

1PN parametersḡ andb̄ could be accidentally small and the
2PN onesz and« of order unity, our approach suggests tha
all of them tend to zero withḡ , or more precisely with
a252 ḡ /(21 ḡ ) which is a positive measure of the tota
coupling strength of matter to the scalar field.@The ones, like

26We note that the space mission concept SORT~Solar Orbit
Relativity Test!, proposed to the European Space Agency, aims

the level ḡ;1027.
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«, which are cubic in thea ’s are even expected to be muc

smaller than the quadratically small ones27 ḡ , b̄ , z.#
Finally, let us note that, as far as we are aware, the pres

work is the first one to use in an effective way a dire
classical diagrammatic approach to the relativisticN-body
problem.28 We hope to have convinced the reader of th
technical power of this method. Indeed, once one is used
the notation, our results~6.9! on the complete set of param
eters entering the first two post-Newtonian levels can be o
tained in drawing just half a page of simple diagrams.
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APPENDIX A: EXPLICIT DIAGRAMMATIC
CALCULATIONS

In order to compute explicitly the diagrams of Fig. 7, w
must first derive the expressions of the propagators and
the different vertices of Fig. 4. As discussed in Sec. III A, w
need to expand the gauged-fixed action of the theory up
the fourth order inhmn[gmn* 2 f mn and wa2w0

a . We need
only the terms quadratic inhmn in the Einstein-Hilbert action
~2.4! to define the graviton propagator~see, e.g.,@51# for
higher-order terms!. We get easily

Sspin 25
c3

16pG*
E d4xF2

1

2
~]mhab!Qabgd~]mhgd!

1
1

2 S ]nhm
n 2

1

2
]mhn

nD 21O~h3!G , ~A1!

where the indices are raised with the flat metr

fmn5 diag(21,1,1,1), and where Qabgd[ 1
4 ( f

ag f bd

1 f ad f bg2 f ab f gd). To invert this kinetic term, it is neces-
sary to fix the gauge. The most convenient choice for o
calculations will be the harmonic gauge, corresponding to

gauge-fixing term 2(c3/32pG* )*d
4x(]nhm

n 2 1
2 ]mhn

n)2

1O(h3) ~see, e.g.,@17# for the exact harmonic-gauge-fixing
term!. This cancels exactly the second term of~A1!, and we
get, after an integration by parts,

Sspin 2
GF 5

c3

16pG*
E d4x

1

2
habQ

abgdh fhgd

1tot. div.1O~h3!, ~A2!

27Note that the expected extra smallness of« gives a mnemonic
rule for remembering its definition.
28Bertotti and Plebanski@37# mainly discussed general features o

a classical diagrammatic expansion, while previous work by t
Japanese school@10,51# had used quantum diagrams and then co
vertedS-matrix elements into an effectiveN-body potential.
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whereh f[ f mn]m]n is the flat d’Alembertian. This kinetic

term has therefore the form*d4x(2 1
2hPh21h), wherePh

defines the graviton propagator, represented as a curly line
Fig. 7. In terms of the Green function~3.17!, satisfying
h fG(x)524pd (4)(x), we thus get

Pabgd
h ~x,y!5

4G*
c3

PabgdG~x2y!, ~A3!

where Pabgd[ f ag f bd1 f ad f bg2 f ab f gd is the inverse of
Qabgd.

Let us now expand the action~2.5! of the scalar fields up
to the fourth order inwa2w0

a or hmn . To simplify the ex-
pressions, it is convenient to choose Riemann normal co
dinates atw0 in the internal scalar space, so that the metr
gab can be expanded as in Eq.~3.15!. It is also useful to
define the origin of this scalar space atw0 , i.e., to choose the
coordinateswa of this space so thatw0

a50. Then, the scalar-
field action~2.5! can be expanded as

Sspin 052
c3

4pG*
E d4x

1

2
]mwa]nwb

3~ f mn2hmn1hr
mhrn1O~h3!!

3S 11
1

2
ha

a2
1

2
habQ

abgdhgd1O~h3! D
3S gab~w0!2

1

3
Racbd~w0!w

cwd1O~w3! D ,
~A4!

where the terms inside parentheses are respectively the
pansions ofg

*
mn , Ag* , andgab(w). The kinetic term of the

scalar fields reads therefore

~c3/4pG* !E d4x 1
2wagab~w0!h fw

b1 tot. div.

5E d4x~2 1
2wPw

21w!,

where

Pw
ab~x,y!5

G*
c3

gab~w0!G~x2y! ~A5!

is the scalar propagator, represented as a straight line in F
7. @As before,gab denotes the inverse ofgab .#

We can also derive from~A4! the expressions of the ver-
tices connecting scalar fields and gravitons. Our conventio
for defining vertices are the following:~i! We first define
some formal ‘‘global’’ verticesVi[ iSi when considering~as
in Figs. 3 and 4! the gravitational sector as a whole
F5(w,h). ~ii ! We then define the individual vertices
Vi(w,h) by formally expanding the global multilinear forms
Vi(F) as if F were equal to the sumw1h, e.g.,

V3~w1h,w1h,w1h!5V3~w,w,w!13V3~w,w,h!

13V3~w,h,h!1V3~h,h,h!.

~A6!

f
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This convention allows us to use directly the simple glob
diagrams of Fig. 6 with the intuitive replacements of Fig.
For instance, the vertex of orderO(wwh), entering the first
T diagram of Fig. 7 as well as the first fourF diagrams and
the first threeH diagrams, reads

Twwh5
c3

4pG*
E d4xgab~w0!Q

mnab]mwa]nwbhab ,

~A7!

whereQmnab is the same tensor as in~A1! above. In other-
words, the kernel defining theTwwh vertex is

~Twwh!ab
ab~x1 ,x2 ,x3!5

c3

4pG*
gab~w0!Q

mnab

3
]

]x3
m d~x32x1!

]

]x3
n d~x32x2!.

~A8!

Note that it is symmetric inx1 , x2 ~scalar lines!, but not in
all variables since they represent physically inequivale
lines. The vertex connecting two scalar lines and two gra
ton lines, entering the secondX diagram of Fig. 7, reads

Xwwhh52
c3

12pG*
E d4xgab~w0!

3S 2 f maQnbgd2
1

2
f mnQabgdD ]mwa]nwbhabhgd .

~A9!

Finally, the vertex connecting four scalar lines, entering t
first X diagram of Fig. 7, reads

Xw45
c3

6pG*
E d4xRacbd~w0!w

cwd]mwa]mwb, ~A10!
al
7.

nt
vi-

he

where Rabcd is the Riemann curvature tensor ofgab . It
should be noted that the four scalar lines of this vertex a
not equivalent, since two of them involve the derivative
]mwa of the fields. The same remark holds also for the mu
graviton vertices of orderO(h3) andO(h4) in ~A1!. One
should therefore symmetrize these vertices@i.e., write the
distributional kernelXw4(x1 ,x2 ,x3 ,x4) read off ~A10! as a
symmetric function ofx1 , x2 , x3 , x4# before computing the
Fokker action~3.14!. Alternatively, one can also use thei
nonsymmetric form, but take into account the different wa
to choose the lines involving derivatives in the diagrams
Fig. 7. This does not change anything for theX diagrams,
since the Lagrangian is anyway symmetrized over the fo
bodiesA,B,C,D, but this leads to the numerical weight
displayed in Fig. 10 for theF andH diagrams.

Let us now consider the matter action~2.16!, describing
N self-gravitating bodies. As shown in Sec. III A, we need
expand it only up to the third order inhmn andwa. Still using
Riemann normal coordinates atw050 in thew space, we get
easily

FIG. 10. Decomposition of theF andH diagrams of Fig. 6,
showing in bold the lines involving derivatives in the verte
F]F]F. Such a decomposition is useful to compute the last tw
F and H diagrams of Fig. 7 without symmetrizing the three
graviton vertex they contain.
Sm52 (
A51

N E mA
0c2dtAF11~aa

A!0w
a1

1

2
~bab

A 1aa
Aab

A!0w
awb1

1

6
~babc8A 1bab

A ac
A1bbc

A aa
A1bca

A ab
A1aa

Aab
Aac

A!0w
awbwc

1O~w4!GF12
1

2
hmnuA

muA
n 2

1

8
~hmnuA

muA
n !22

1

16
~hmnuA

muA
n !31O~h4!G , ~A11!
where the first bracket comes from the expansion ofmA(w)
aroundw0 , and the second one from the expansion ofdsA*
around the flat metric. All the fields appearing in~A11! must
be evaluated on the world linexm5xm(tA). As above,
dtA[(12vA

2/c2)1/2dt denotes the Minkowski proper time o
body A, uA

m[dxA
m/cdtA denotes its~Minkowski! unit four-

velocity, and the index 0 means that the corresponding qu
tities are evaluated atwa5w0

a (50). The different vertices
connecting material bodies to gravitons or scalar fields c
thus be read directly from~A11!, taking into account both
the factors 1, 2, or 3 entering their definition in Fig. 4 and t
f

an-

an

he

binomial factors coming from our convention~ii ! above; cf.
Eq. ~A6!. The linear interaction terms read

I w52(
A

E dtAmA
0c2~aa

A!0w
a~xA!, ~A12a!

I h5(
A

E dtAmA
0c2

1

2
uA

auA
bhab~xA!. ~A12b!

The corresponding spacetime sources~white blobs! read thus
explicitly
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sa~x!52(
A

E dtAmA
0c2~aa

A!0d
~4!
„x2xA~t!…,

~A13a!

sab~x!5
1

2(A E dtAmA
0c2uA

auA
bd~4!

„x2xA~t!….

~A13b!

As for the nonlinear interaction with the source~vertices
connecting matter to several field lines!, they read, when
omitting a common(A*dtAmA

0c2d (4)„x2xA(t)… in front,

Vww : 2~bab
A 1aa

Aab
A!, ~A14a!

Vwh :
1

2
aa
AuA

auA
b , ~A14b!

Vhh :
1

4
uA

auA
buA

guA
d , ~A14c!

ewww : 2
1

2
~babc8A 13b (ab

A ac)
A 1aa

Aab
Aac

A!,

~A14d!

ewwh :
1

4
~bab

A 1aa
Aab

A!uA
auA

b , ~A14e!
ewhh :
1

8
aa
AuA

auA
buA

guA
d , ~A14f!

ehhh :
3

16
uA

auA
buA

guA
duA

e uA
z . ~A14g!

The calculation of the different diagrams of Fig. 7 ca
now be performed straightforwardly. Let us summarize ou
diagrammatic rules: The Fokker action is a sum of contrib
tions, each of which is represented by a diagram endow
with a numerical coefficient obtained by combining the fac
tors indicated in Fig. 6 and in Fig. 7. Each~bare! diagram is
computed by the following rules:~i! replace the white blobs
by Eqs.~A13! if they have only one incident line, or by Eqs.
~A14! @with an extra(A*dtAmA

0c2d (4)„x2xA(t)…# if they
have several incident lines;~ii ! replace each internal line by
the appropriate propagatorP(x,y); ~iii ! replace each field
vertex by a suitably symmetrized distributional kernel;~iv!
integrate over all the spacetime points. An additional rule
that infinite self-interactions are discarded.~As they have the
same structure as in general relativity, this rule can probab
be justified by methods similar to the ones used in derivin
the 2PN Lagrangian in Einstein’s theory@14#.! In order to
save space, we will not compute each of the diagrams in t
present Appendix, but rather show the technique on the m
important of them.

Let us start with the two-body interaction term12 I of Eq.
~3.14!. We get
plerian
1

2
I5

1

2E E dxdy@sa~x!Pw
ab~x,y!sb~y!1sab~x!Pabgd

h ~x,y!sgd~y!#

5
1

2(
AÞB

E dtAE dtB~mA
0c2!~mB

0c2!
G*
c3
G~xA2xB!@~aAaB!012~uAuB!221#, ~A15!

where (aAaB)5aa
Agabab

B comes from the scalar propagator~first I diagram of Fig. 7!, and
2(uAuB)

2215uA
auA

bPabgduB
guB

d comes from the graviton propagator~second I diagram!. Introducing the notation

GAB[G* @11(aAaB)0# and 21 ḡAB[2/@11(aAaB)0# as in Eqs.~2.21! above, we thus get

1

2
I5

1

2(
AÞB

E dtAE dtBGABmA
0mB

0@11~21 ḡAB!„~uAuB!221…#cG~xA2xB!. ~A16!

This action describes the two-body interaction of self-gravitating bodies having arbitrary velocities. The second post-Ke
approximation can now be obtained by expanding this result in powers ofv/c, using Eqs.~3.19!–~3.21! above. We get an
expression of the form~3.23!, where the corrections proportional toḡAB /c

4 involve the function

f 1~rAB ,vA ,vB ,aA ,aB ,ȧB!5@~vA2vB!2~vA
21vB

2 !/22~vA3vB!2#/r AB1
1

2

]2

]tB
2 @ uxA2xB~ tB!u„vA2vB~ tB!…2# tB5t . ~A17!

Note that onlyxB andvB are time differentiated in the second term, before settingtB5t. The derivative ofaB can be eliminated
by an integration by parts, and up to a total derivative, we finally get

f 1~rAB ,vA ,vB ,aA ,aB!5
vAB
2

2r AB
@vA

21vB
21vA•vB2~vA•nAB!~vB•nAB!#2

~vA3vB!2

r AB
1~vA•nAB!~aB•vAB!1~vB•nAB!~aA•vAB!

1~aA•aB!r AB , ~A18!
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wherevAB[vA2vB andnAB[(xA2xB)/r AB .
Let us now consider the three-body interaction, written as1

2V1 1
3T in ~3.14! and Fig. 6. The threeV diagrams of Fig. 7 give

the contribution

1

2
V5

1

2 (
BÞAÞC

E dtAE dtBE dtC~mA
0c2!~mB

0c2!~mC
0c2!

G
*
2

c6
G~xA2xB!G~xA2xC!

3@„2~uAuB!2212~aAaB!0…„2~uAuC!2212~aAaC!0…2~aBbAaC!022~aAaB!0~aAaC!0#. ~A19!

Introducing as in Eqs.~2.21! the notationGAB , ḡAB , and b̄BC
A , this contribution can therefore be written as

1

2
V5 (

BÞAÞC
E dtAE dtBE dtC

GABGACmA
0mB

0mC
0

c2
cG~xA2xB!cG~xA2xC!

3H @11 ḡAB1~21 ḡAB!„~uAuB!221…#@11 ḡAC1~21 ḡAC!„~uAuC!221…#22b̄BC
A2

ḡABḡAC

2 J . ~A20!

The 2PK approximation can now be obtained easily by expanding this expression in powers ofv/c. Note that the Newtonian
approximation of the Green function~3.21!, cG(xA2xB)5d(tA2tB)/r AB1O(1/c2), is sufficient for the terms proportional to
(uAuB)

2215(vA2vB)
2/c21O(1/c4), or (uAuC)

221. The accelerations introduced by these Green functions in the ot
terms can be eliminated by suitable integrations by parts. For instance, one can write

1

r AB
3

1

2c2
]2

]tC
2 uxA2xC~ tC!u5tot. div.2

~vAB•nAB!~vC•nAC!

2r AB
2 c2

1
vA•vC2~vA•nAC!~vC•nAC!

2r ABr ACc
2 . ~A21!

TheT diagrams of Fig. 7 are a little more subtle to compute, because the central vertex is not located on a material bo
also because it involves derivatives of the fields. For instance, the firstT diagram, involving one graviton and two scalar lines
gives the contribution

T15 (
A,B,C

E dtAE dtBE dtCE d4x
G
*
2mA

0mB
0mC

0

2p
~aAaB!0uC

muC
n

]G~x2xA!

]xm

]G~x2xB!

]xn G~x2xC!, ~A22!

wherexm is the arbitrary spacetime location of the vertex. The lowest order term of the post-Keplerian approximation r
thus,

T15 (
A,B,C

E dtAE dtBE dtCE dtE d3x
G
*
2mA

0mB
0mC

0

2pc2
~aAaB!0uC

muC
n

]

]xm Fd~ t2tA!

r xA
G ]

]xn Fd~ t2tB!

r xB
Gd~ t2tC!

r xC
3F11OS 1c2D G

52 (
A,B,C

E dtE d3x
G*GABḡABmA

0mB
0mC

0

4pc4
~vAC•nxA!~vBC•nxB!

r xA
2 r xB

2 r xC
1OS 1c6D , ~A23!

where we have useduC
m]m@d(t2tA)/r xA#5d(t2tA)vAC•nxA /r xA

2 c1O(1/c3). Therefore, although thisT diagram is of the
same formal orderG2m3/r 2c2 as theV diagrams in the nonlinearity expansion~arbitrarily large velocities!, it reduces to order
O(1/c4) in the post-Keplerian approximation (uv/cu!1). This is due to the particular form of theTwwh vertex, Eq.~A7!, which
involves a specific combination of derivatives of the fields with the inverse of the tensorPabgd entering the graviton
propagator~A3!. It should be noted that the presence of derivatives is not sufficient to conclude that the diagram is reduc
a factor (v/c)2. For instance, the secondT diagram of Fig. 7, involving three graviton lines, does contribute at the fir
post-Keplerian order,

1

3
T252 (

BÞAÞC
E dt

G
*
2mA

0mB
0mC

0

r ABr ACc
2 1OS 1c4D , ~A24!

although the three-graviton vertex is also of the formh]h]h. Indeed, the dominant contribution to this diagram is proportion
to the contraction]mG(x2xA)]

mG(x2xB)5d(t2tA)d(t2tB)nxA•nxB /r xA
2 r xB

2 c21O(1/c4), which starts at order 1/c2. @An
integration by parts reduces one of the Green functions toh fG(x)524pd (4)(x), and one gets Eq.~A24! easily.# The sum of
~A24! with the lowest order term of~A20! gives the 1PK contribution to the three-body interaction Lagrangian, displayed
Eqs.~2.20c! or ~3.25!.

Let us turn now to the most important four-body interaction terms, namely thee, Z, andX diagrams of Fig. 7, which
involve the new parameters~3.18!. At the second post-Keplerian approximation, it is sufficient to use the instantaneous G
function cG(xA2xB)5d(tA2tB)/r AB in these diagrams, and one easily gets
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1

3
e5

1

2 (
AÞ~B,C,D !

E dt
GABGACGADmA

0mB
0mC

0mD
0

r ABr ACr ADc
4 F11

1

3
«BCD

A 1
2

3
~ b̄BC

A1 b̄BD
A 1 b̄CD

A !1
2

3
~ ḡAB1 ḡAC1 ḡAD!

1
1

2
~ ḡABḡAC1 ḡABḡAD1 ḡACḡAD!1

1

3
ḡABḡACḡADG1OS 1c6D , ~A25!

1

2
Z5

1

2 (
AÞBÞCÞD

E dt
GABGBCGCDmA

0mB
0mC

0mD
0

r ABr BCr CDc
4 F11zABCD12~ b̄AC

B1 b̄BD
C !1

1

2
~21 ḡBC!~ ḡAB1 ḡCD1 ḡABḡCD!G

1OS 1c6D . ~A26!

@Note that the« contribution to thee diagram has a nontrivial normalization:e; 1
2 «G3m4/r 3c4, while Z;zG3m4/r 3c4.# The

contribution of the firstX diagram of Fig. 7 reads

1

4
X15

1

4 (
A,B,C,D

E dtAE dtBE dtCE dtDE dtE d3x
G
*
3mA

0mB
0mC

0mD
0

6pc4
~RacbdaA

aaB
baC

c aD
d !0

3
d~ t2tC!

r xC

d~ t2tD!

r xD
]mFd~ t2tA!

r xA
G]mFd~ t2tB!

r xB
G1OS 1c6D

5
1

24p (
A,B,C,D

E dtE d3x
G
*
3mA

0mB
0mC

0mD
0 ~nxA•nxB!

r xA
2 r xB

2 r xCr xD
xACBD1OS 1c6D . ~A27!

Note that althoughxACBD is antisymmetric inA,C ~andB,D), and although the sum is taken over all possible choices
A,B,C,D, this contribution does not vanish identically since the integrand (nxA•nxB)/r xA

2 r xB
2 r xCr xD is not symmetric in

A,C. This contribution vanishes nevertheless in the 2PN approximation, cf.~3.32!, or if the theory involves only one scala
field @Rabcd(w)50#. The contributions of the two otherX diagrams of Fig. 7 are computed in the same way. The last one g
the usual contribution obtained in general relativity, and we find for the secondX diagram

6

4
X252

1

8p (
A,B,C,D

E dtE d3x
G
*
2GABḡABmA

0mB
0mC

0mD
0

c4
~nxA•nxB!

r xA
2 r xB

2 r xCr xD
1OS 1c6D . ~A28!
d
.

or-

he
in
Let us end this Appendix by a brief discussion of theF and
H diagrams of Fig. 7, which are less important since t
deviations from general relativity they give at 2PN order a
proportional toḡ , ḡ 2, or b̄ , and therefore already tightly
constrained by present experimental data, Eqs.~5.1!. It is
easy to see that the first fourF diagrams do not contribute a
the second post-Keplerian level, because of the presenc
theTwwh vertex whose graviton is directly coupled to a m
terial body. Indeed, the calculation is similar to that of th
first T diagram, Eqs.~A22! and ~A23!, and the factor
(um]mG)2}v2 reduces theseF diagrams to the order
G3m4v2/r 3c6. Similarly, the secondH diagram is even of
orderG3m4v4/r 3c8, and contributes only at the fourth pos
Keplerian level. On the contrary, the first and thirdH dia-
grams do contribute at the 2PK level, because the graviton
their Twwh vertices is connected to a second vertex, and
directly to a material body. These diagrams involve therefo
contractions of the form]mG]mG, like in ~A24!, and are in-
deed of orderG3m4/r 3c4. Note that the four material bodie
of theseH diagrams are not supposed to be necessarily
ferent from each other, since they are not directly connec
by a propagator~as opposed to theI , V, e, or Z diagrams!.
Together with the firstT diagram~A23! and the secondX
diagram~A28!, they thus yield contributions proportional t
he
re

t
e of
a-
e

t-

of
not
re

s
dif-
ted

o

ḡAA

11ḡAA/2
5
GAA

G*
ḡAA522~aAaA!0 . ~A29!

This explains the presence of this factor in the static an
spherically symmetric solution discussed in Sec. IV, Eq
~4.21!. @The isotropic form~4.18! contains extraaA

2 terms
due to the change of coordinates~4.22!.# In fact, the contri-
bution of the firstH diagram to this one-body metric is pro-
portional to (aAa0)(aA

2): One of the white blobs, involving
the background valuea(w0)[a0 , corresponds to the point
where the metric is computed, and the three other blobs c
respond to bodyA. Note also that the firstT diagram, Eq.
~A23!, does not contribute to theaA

2 terms of g̃00, since it
vanishes in the static case. Finally, let us mention that t
lastF andH diagrams are the usual contributions obtained
general relativity, and that the fifthF diagram is obviously
proportional to the secondT diagram:

F55 (
DÞC

1

3
T2

~A,B,C!3
3GCDḡCDmD

0

2r CDc
2 1OS 1c6D , ~A30!

where1
3 T2

(A,B,C) is given by~A24! above, symmetrized over
the three bodiesA,B,C.
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APPENDIX B: 2PN RENORMALIZATIONS OF
COUPLING PARAMETERS, THE STRONG

EQUIVALENCE PRINCIPLE, AND ALL THAT

As emphasized by Nordtvedt@22#, the coupling param-

eters (G̃, m̃, b̄ , ḡ , . . .! of Lorentz-invariant gravitational
theories are influenced not only by the self-gravity of th
interacting bodies, but also by the presence of distant ‘‘sp
tator’’ matter around the system. We have already stud
the self-gravity renormalizations in the main text. In this A
pendix, we relate our self-gravity results to the ones of R
@22# and show how, within the context to tensor-multiscal
theories, one can derive very easily the influence of exter
matter.

Let us first mention that, from the 1PK Lagrangian~2.19!,
one can easily give explicit expressions for all the mass
rametersM (G),M (g),M (b), . . . introduced in@22#. For
the convenience of the reader, we give in Table I a transla-
tion of Nordtvedt’s notation in terms of our body-depende
parametersG̃AB , ḡAB, and b̄BC

A defined in Eqs.~2.21!
above. As before an index 0 in one of these parameters
responds to a non-self-gravitating body, so that t
s-model tensorsaA

a ,bA
ab of Eqs. ~2.17! should be replaced

by their weak-field counterparts~2.10!–~2.12!. For instance,

b̄00
A5 1

2 (abAa)0 /@11(aAa)0#
2 instead of ~2.21c!. The

2PN renormalizations ofG̃AB , ḡAB , and b̄BC
A due to the

self-energy of the bodies have been obtained in Eqs.~3.29!
above. Using them in the translation of notation of Table
we recover the corresponding~less complete! results of@22#.

Let us now turn to the study of the influence of extern
matter. The effect of a distant spectator body on local gra
tational physics can be analyzed straightforwardly in t
context of tensor-multiscalar theories. Indeed, if this spec
tor S is located at a distanceD from a local system, the loca
background values of the scalar fields are changed from t
valuesw0

a far from the spectator to

w loc
a 5w0

a2
G*aS

amS

Dc2
1OS 1

D2D . ~B1!

All the physical quantitiesf which depend on these back
ground values are therefore renormalized~compared to the
value they would be measured to have at infinity! by the
presence of the spectator as

f → f loc5 f2
G*mS

Dc2
aS
a ] f

]w0
a 1OS 1

D2D . ~B2!

In particular, if the spectator body is supposed to have
negligible self-energy (aS

a5a0
a), we get, for the effective

gravitational constant~2.14! and the Eddington parameter
~2.15!,

G̃ → G̃F12
GmS

Dc2
h G1OS 1

D2D , ~B3a!

ḡ → ḡ 14
GmS

Dc2
b̄ ~21 ḡ !1OS 1

D2D , ~B3b!
e
ec-
ied
p-
ef.
ar
nal

pa-

nt

cor-
he

I,

al
vi-
he
ta-
l
heir

-

a

s

b̄ → b̄2
GmS

Dc2 S «

2
1z28b̄2D1OS 1

D2D , ~B3c!

whereh[4b̄2 ḡ as before, and where the dimensionles
ratioGmS /Dc

2 may be replaced by its expression in phys
cal units G̃m̃S /D̃c

2. Equation ~B3a! is the well-known
renormalization of the gravitational constant derived in@8#.
The renormalizations ofḡ and b̄ have also been studied in
Eqs. ~5.15! and ~3.7! of @22#, but they were expressed in
terms of more 2PN parameters than the simple results~B3b!
and ~B3c!. Note that the analysis of Ref.@22# is done in a
different context within which it has not~yet! been possible

to relate the 2PN renormalization ofḡ to b̄ . In our context,
Eq. ~B3b! shows that the renormalization ofḡ is already
constrained by the 1PN experimental bounds o
ub̄u,631024.

Of course, the renormalizations~B3! can be generalized
straightforwardly to the strong-field regime, by considerin
the body-dependent parametersG̃AB(w0), ḡAB(w0),

b̄BC
A (w0), and a compact spectator body (aS

aÞa0
a). This has

been done in section 7.2 of Ref.@24#, where we analyzed the
consequences of the strong equivalence principle~SEP! in
tensor-multiscalar theories. This principle states that loc
gravitational physics is totally independent of the presence
spectator bodies. In other words, the renormalizations~B3!
and their strong-field analogs are supposed to vanish. Let
prove that the only tensor-multiscalar theories containin
only positive-energy excitations (gab.0) and satisfying the
strong equivalence principle are perturbatively equivalent
general relativity~to all orders!. Indeed, we showed in@24#,
using Eqs.~B3!, that any such theory must satisfyḡ 50,
among other relations. From Eq.~2.15a! and the positivity of
gab , this impliesa0

a50. Using now the diagrammatically
evident29 fact that any observable deviation from genera
relativity must involve at least two factorsa0

a ~to fill the end
blobs connected to scalar propagators, in diagrams such
Fig. 7 or any higher-order ones!, we find that all non-
Einsteinian terms necessarily vanish. It should be noted th
this result cannot be extended to the pure scalar theories

29Note that this would not be true if we were considering quantu
~loop! diagrams.

TABLE I. Expression of Nordtvedt’s mass parameters in tenso
multiscalar theories of gravity.

Nordtvedt’s parameters Tensor-multiscalar theories

M (I ) m̃A

G i j /M (I ) iM (I ) j G̃AB

gQ i j /G i j 11 ḡAB

(2b21)G i jk /M (I ) iM (I ) jM (I )k (112b̄BC
A )G̃ABG̃AC

M (G)/M (I ) G̃A0 /G̃
M (g)/M (I ) G̃A0(11 ḡA0)/G̃(11 ḡ )
M (b)/M (I ) G̃A0(112b̄A0

0 )/G̃(112b̄ )
M (b8)/M (I ) G̃A0

2 (112b̄00
A)/G̃2(112b̄ )
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also considered in section 7.2 of@24#, in which the gravita-
tional interaction is mediated by one or several scalar fie
without any tensorial contribution. We showed that the S

implies in that case G̃AB5G̃, ḡAB5 ḡ 522, and

b̄BC
A 5 b̄521/2, i.e., that the theory is equivalent t

Nordström’s theory at the 1PK level. The assumption th
thes-model metric is positive does not allow us to compl
ment this result to higher orders.

We can also prove that some assumptions made in R
@21# are inconsistent within the tensor-scalar framework.
deed, Ref.@21# assumed one could work within a class o
theories containing no dipolar radiation and still differin
from general relativity at 2PN order. However, we can u
the fact that the dominant dipolar radiation emitted by a
nary system is proportional togab(aA

a2aB
a)(aA

b2aB
b). Let

us first assume~as we generally do! thatgab is positive defi-
nite. Then the assumption that the dipolar radiation vanis
implies thataA

a5aB
a for any bodyA andB, and in particular

that aA
a5aa if we choose a non-self-gravitating bodyB

(m̃B5const). Using now the expansion ofaA
a in powers of

the compactness of bodyA, that we derived in Eqs.~8.3! and
~8.4! of @24#, and the fact thataA

a5aa must be verified for
any bodyA, we can conclude thataa50. In other words, the
scalar fields are totally decoupled from matter, and t
theory is strictly equivalent to general relativity. Even if w
drop the assumption of a positive definitegab , i.e., if we
phenomenologically allow the presence of scalar fields w
negative energy~ghost modes!, then the same Eqs.~8.3! and
~8.4! of @24# can be used to show that the theory is equivale
to general relativity up to the 2PN order included, but n
beyond~which means that it can differ from it at the 1PK
order, as illustrated in section 9 of@24#!.

The ease with which we derived the results of this Appe
dix illustrates again the power of our field-theoretical a
proach.

APPENDIX C: EXPLICIT EXPRESSIONS OF THE 2PN
LIGHT DEFLECTION AND PERIHELION SHIFT

Before computing the explicit expression of the ligh
deflection angle for the one-body metric~4.18!, let us show
how our diagrammatic approach allows one to get, witho
any calculations, the structure of the final result. More p
cisely, let us show that the light-deflection angle for a se
gravitating body has the structure

O~ ḡA0!~GA0mA /rc
2!1O~ ḡA0 , ḡAA!~GA0mA /rc

2!2

1O~1/c6!, ~C1!

in which neitherb̄BC
A nor the new 2PK parameters we intro

duced above enter. Indeed, the action describing the elec
magnetic field minimally coupled to the physical metr
g̃mn is a conformal invariant, and can thus be written as
lds
EP

o
at
e-

ef.
In-
f
g
se
bi-

hes

he
e

ith

nt
ot

n-
p-

t-

ut
re-
lf-

-
tro-
ic

SEM52
1

4E d4x

c
Ag̃ g̃lng̃mrFlmFnr

52
1

4E d4x

c
Ag* g*

lng
*
mrFlmFnr . ~C2!

The second expression, involving the Einstein metricgmn* ,
shows that photons are coupled to the gravit
hmn[gmn* 2 f mn , but not to the scalar fieldswa2w0

a . There-
fore, the only diagrams describing the 2PK interaction
light with the gravitational field generated by material bodi
are those of Fig. 11.@The e, Z, F, H, andX diagrams enter
the metric at orderO(1/c6), and influence the propagation o
light at the third post-Keplerian level.# The dominant contri-
bution does not involve any scalar field, and is thus prop
tional toG*mA /rc

2. However, we do not have a direct ex
perimental access toG* , and this contribution should be
rewritten in terms of the Newtonian potentialGA0mA /r felt
by a test mass in the vicinity of bodyA. This can be done
thanks to the identityG*[GA0(11 ḡA0/2), which derives
from the definitions~2.21a! and ~2.21b!. We have thus re-
covered without any explicit calculation that the deflection
light and its time delay are both proportional to 21 ḡA0 at
the 1PK level, and to 21 ḡ at the 1PN level.@Remember that
ḡ is usually denoted asg21 in the literature, so that 21 ḡ is
the usual factor 11g.# The corrections appearing at orde
O„(Gm/rc2)2… are due to the five remaining diagrams o
Fig. 11. Three of them do not involve any scalar field, a
are thus proportional to G

*
2 5GA0GB0(11 ḡA0/2)(1

1 ḡB0/2). The other two involve a scalar line between tw
material bodies, and yield therefore contributions propo
tional to G

*
2 (aAaB)052G

*
2 ḡAB /(21 ḡAB), where G

*
2

should be rewritten as above in terms of effective gravi
tional constants. In the case of a single material bodyA, it
should be noted that the first twoV diagrams of Fig. 11 do
not contribute, since the same body cannot be directly c
nected by a propagator. On the contrary, the firstT diagram
of this figure does contribute, because the two blobs rep
senting the same bodyA are connected to a scalar-scala
graviton vertex, and not directly to each other. Hence th
diagram yields a contribution proportional to
ḡAA /(21 ḡAA) in second-order light-deflection and time
delay experiments. In conclusion, our diagrammatic a
proach has allowed us to prove is a streamlined way t

these experiments do not depend onb̄BC
A at the 2PK level,

and more precisely that they can differ from general relat

FIG. 11. Diagrams describing the interaction of light~wavy
lines! with the gravitational field generated by material bodies,
ordersO(Gm/rc2) –1PK– andO„(Gm/rc2)2… –2PK–.
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ity only by terms of the form indicated in Eq.~C1! in the
case of a single material bodyA.

Let us now give explicit expressions for the 2PN ligh
deflection and perihelion advance. Following Weinberg@52#,
we use here Schwarzschild-like coordinates~i.e., an ‘‘area
radius’’ r ) and write the integral giving the polar anglef in
the plane of the trajectory as

f56E JAABdr/r 2

@E2/c22~m0
2c21J 2/r 2!B#1/2

, ~C3!

where E denotes the conserved energy~including the rest
mass contribution! of a test particle of massm0, andJ its
t

angular momentum.@Note that these conserved quantities ar
related in a nonobvious way to the constantsEW andJW used
by Weinberg in Eq. ~8.4.30! of @52#: EW[(m0c

2/E!2;
JW[Jc/E.# The area radiusr should not be confused with
the Just radius nor theg* -harmonic radius, both denoted also
by r in Sec. IV B. To rewrite the metric~4.18! in Schwarzs-
child coordinates

d s̃ 2/A2~w0!52B~r !c2dt21A~r !dr2

1r 2~du21sin2udf2!,
~C4!
lar
we need to express the area radiusr in terms of the isotropic oner. We find easily

r5rF11
mA

rc2
~11 ḡA0!1

1

4 S mA

rc2D
2

~113Ḡ24ḡA022ḡA0
2 !1OS 1c6D G , ~C5!

wheremA[GA0mA is the Keplerian mass of the attracting bodyA, andḡA0 , Ḡ are the deviations from general relativity in the
spatial isotropic metric~4.18!. Equations~4.19! and ~4.20! give the expressions of these coefficients in tensor-multisca
theories. Note, however, that our present calculation is valid for any static and spherically symmetric metric of the form~4.18!,
not necessarily the one predicted by tensor-scalar theories. The replacement of~C5! in ~4.18! yields

A~r !5112
mA

rc2
~11 ḡA0!14S mA

rc2D
2S 11

3

4
Ḡ1

1

2
ḡA01

1

4
ḡA0
2 D1OS 1c6D , ~C6a!

B~r !5122
mA

rc2
12S mA

rc2D
2

~ b̄AA
0 2 ḡA0!2

3

2 S mA

rc2D
3S B̄1Ḡ2

8

3
~11 ḡA0!b̄AA

0 2
2

3
~22 ḡA0! ḡA0D1OS 1c8D . ~C6b!
e,

ng

r

e

The polar angle~C3! can now be obtained by a straightfor
ward integration. The case of light corresponds tom050,
and the deflection angleDf is found to have the form

Df5Df11Df21O~1/c6!, ~C7!

where

Df15
2mA~21 ḡA0!

r0c
2 F12

mA~21 ḡA0!

r0c
2 G ~C8!

is the 1PK result up to a global correcting factor, and

Df25
p

4 S mA

r0c
2D 2@1513Ḡ24b̄AA

0 18ḡA0# ~C9!

is the actual 2PK contribution. Note that, after having pe
formed the integral~C3! in Schwarzschild coordinates, w
have expressed the results in terms ofr0 , the minimal dis-
tance between the light ray and the center of bodyA, mea-
sured inisotropiccoordinates.@Note thatr0 differs from the
impact parameter.# The results are unchanged if one us
-

r-
e

es

g* -harmonic coordinate to measure this minimal distanc
since the transformation~4.22! introduces corrections only at
order O(1/c6). By contrast, the use of Schwarzschild
coordinates transforms~C8! into Df15@2mA(21 ḡA0)/
r 0c

2][12(mA /r 0c
2)], while ~C9! remains unchanged. This

second-order light deflection~C7!–~C9! agrees with previous
calculations in the literature@12,13,15#. It can now be par-
ticularized to the case of tensor-multiscalar theories by usi

the expression~4.19b! for Ḡ. We find that the term43 b̄AA
0 in

Ḡ cancels exactly the24b̄AA
0 contribution in~C9!, and we

get

Df25
p

16S mA~21 ḡA0!

r0c
2 D 2F151 ḡAA

21 ḡAA
G . ~C10!

Together with Eq.~C8!, this result confirms therefore the
conclusion~C1! of our diagrammatic analysis: The first orde
deviation from general relativity is proportional toḡA0 ,
while the second order contributions involve bothḡA0 and

ḡAA , but not b̄AA
0 . Note also the appearance of the sam



as

is-
m-

e
h

n

ion

53 5577TESTING GRAVITY TO SECOND POST-NEWTONIAN ORDER: . . .
coefficientmA(21 ḡA0)[2G*mA in ~C8! and ~C10!, which
is in fact a mere rewriting of the bare gravitational consta
G* in terms of observable quantities. The coefficien
ḡAA /(21 ḡAA)[2(aAaA)0 entering ~C10! is due to the
first T diagram of Fig. 11, where both blobs represent bo
A.

Let us now take the second post-Newtonian limit of th
above 2PK result, as appropriate for interpreting future hig
precision experiments in the solar system. The coefficie
ḡA0 of the leading term in~C8! should therefore be ex-
panded as in Eq.~5.7!, together with the renormalization
~B3b! due to the gravitational potential of external masse
while the 2PK contribution~C9! becomes

Df2
2PN5

p

4 S mA

r0c
2D 2F151 31

2
ḡ 14ḡ 2G . ~C11!
nt
t

dy

e
h-
nt

s,

The explicit expression of the second-order time delay h
been derived in@16# for a general metric of the form~4.18!.
This result confirms also the diagrammatic analysis d
cussed at the beginning of the present Appendix: The para

eterb̄AA
0 appears again in the combination 3Ḡ24b̄AA

0 , like in
~C9! above, and it vanishes therefore in th
case of tensor-multiscalar theories, for whic

Ḡ5 4
3 b̄AA

0 1O( ḡA0 , ḡAA).
The integral~C3! can also be used to derive the periastro

advance of a test massm0!mA . Let us introduce as in Ref.
@9# the notationE[(E2m0c

2)/m0 for the specific conserved
energy minus rest mass, andh[J/m0mA for the reduced
conserved angular momentum. A straightforward integrat
yields the 2PK periastron shift per orbit:
d

as
Df5
6p

h2c2
F32 b̄AA

0 12ḡA0

3
1

1

h2c2
S 35
4

1
3

4
B̄1

3

2
Ḡ29b̄AA

0 1
1

2
~ b̄AA

0 !218ḡA012ḡA0
2 24b̄AA

0 ḡA0D
1
E

c2
S 5
2

1
1

2
Ḡ2

2

3
b̄AA

0 1
4

3
ḡA0D G1OS 1

c6
D . ~C12!

This expression agrees with the general relativistic result derived in@11,9#. Note that contrary to the light-deflection an

time-delay formulas, the periastron advance involves not onlyb̄AA
0 but also the 2PK parameter«AAA

0 , entering

B̄5 2
9«AAA

0 1O( b̄ , ḡ ); cf. Eq. ~4.19a!. The 2PN limit of Eq.~C12! can be obtained easily by using the expansions~4.23! of the
different body-dependent parameters.

The result~C12! is coordinate independent since it is expressed in terms of the conserved quantitiesE and h. It can
nevertheless be helpful to rewrite it in a particular coordinate system. Both isotropic andg* -harmonic coordinates give the
same result at the 2PK order. Let us denote bya(12e) the coordinate periastron radius, and bya(11e) the coordinate
apoastron radius~in isotropic or, equivalently,g* -harmonic coordinates!. The conserved quantities can then be rewritten

E52
mA

2a
1

1

8c2 S mA

a D 2~714ḡA0!1OS 1c4D , ~C13a!

1

h2
5

mA

a~12e2!
2

4

c2 S mA

a~12e2! D
2S 11

e2

2
2
1

2
b̄AA

0 1
3

4
ḡA01

e2

4
ḡA0D1OS 1c4D . ~C13b!

We recover in particular the standard 1PN formula,Df52pmA(32 b̄12ḡ )/a(12e2)c21O(1/c4), in terms of thesemilatus
rectum a(12e2). The 2PN result takes the form displayed in Eq.~5.10! above.
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