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Testing gravity to second post-Newtonian order: A field-theory approach
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A field-theory-based framework for discussing and interpreting experimental tests of relativistic gravity,
notably at the second post-Newtonig2PN) level, is introduced. Contrary to previous frameworks which
attempted at parametrizing any conceivable phenomenological deviation from general relativity, we focus on
the most general class of gravity models of the type suggested by unified theories: namely, models in which
gravity is mediated by a tensor field together with one or several scalar fields. The 2PN approximation of these
“tensor-multiscalar” theories is obtained thanks to a diagrammatic expansion which allows us to compute the
Lagrangian describing the motion Nf bodies. In contrast with previous studies which had to introduce many
phenomenological parameters, we find that, within this tensor-multiscalar framework, the 2PN deviations from
general relativity can be fully described by introducing only two new 2PN parametand / beyond the usual
(Eddington 1PN parameterg=—1 andy=y—1. It follows from the basic tenets of field theory, notably
the absence of negative-energy excitations, fat, and ¢ (as well as all the further parameters entering
higher post-Newtonian ordersnust tend to zero withy. It is also found that and{ do not enter the 2PN
equations of motion of light. Therefore, within our field-theory framework, second-order light-deflection or
time-delay experiments cannot probe any 2PN deviation from general relativity. On the other hand, these
experiments can give a clean accesgtovhich is of greatest significance as it measures the basic coupling
strength of matter to the scalar fields. Because of the importance of self-gravity effects in neutron stars,
binary-pulsar experiments are found to constitute a unique testing ground for the 2PN structure of relativistic
gravity. A simplified analysis of current data on four binary-pulsar systems already leads to significant con-
straints on the two 2PN parametgeg<<7Xx10 2, |{|<6X 10 3.

PACS numbes): 04.25.Nx, 04.50+h, 04.80.Cc

[. INTRODUCTION Nordtvedt and Benacquista ii20-22 tries to extend di-
rectly the PPN formalism at ordercff i.e., it aims at intro-
The past three decades have been the golden era of edtcing a large number of parameters describing any possible
perimental gravity: from Pound and Rebka to Hulse and Tayrelativistic theory at this order. Although it has only been
lor, many complementary aspects of general relativity havepartially implemented at the present time, this approach al-
been successfully tested. In particular, solar-system experiowed one to derive some relations between these 2PN pa-
ments allowed one to map out fairly completely weak-fieldrameters by imposing the concept of “extended Lorentz in-
gravity at the first post-NewtoniailPN) approximation, i.e., variance” (i.e., by requiring that the gravitational physics of
to put stringent numerical constraints on a large class of possubsystems, influenced by external masses, exhibit Lorentz
sible deviations from general relativity at ordec?/Let us  invariance [23,22. In spite of its partial achievements, the
recall the useful role played in this respect by the first-ordebility of such a general phenomenological approach to de-
parametrized post-Newtonid®PPN formalism[1-8] which lineate the physically most important structures at the 2PN
introduced, in its extended versions, about 10 independenevel is unclear. For instance, it was claimed 1] that 10
phenomenological parameters to describe possible noriparameters” are required to map Lorentz-invariant theories
Einsteinian 1PN effects. Improved experiments are nowof gravity at the 2PN level; however, a careful reading of this
planned to reach the second post-Newtonf@RN) level,  article shows that several of these “parameters” are in fact
order 1¢4, such as microsecond level light deflection experi-functionsof the distances between massive bodies, and could
ments. Let us also mention that a 2PN treatment of the peridependa priori on an infinite number of real parameters.
astron advance is already significant for the binary pulsar In the present paper, we shall follow an entirely different
PSR 1913-16[9]. It is therefore timely to undertake a sys- methodology by developing a “theory-dependent” approach
tematic theoretical study of gravitational theories at this apinitiated in[24]: Instead of considering any conceivable phe-
proximation. nomenological deviation from general relativity, we focus on
The 2PN limit of general relativity has already been stud-the simplest and best motivated class of non-Einsteinian
ied in depth[10-18,9,19 but we also need to know what theories, in which gravity is mediated by a tensor field
can be the possible deviations from these results in alternz(g;V) together with one or several scalar fields?]. These
tive theories of gravity. An ambitious program developed by“tensor-multiscalar” theories arise naturally in theoretical
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attempts at quantizing gravity or at unifying it with other grounds by Eddington1].? In [27,26], it was shown that the
interactions(Kaluza-Klein and superstrings theonie®ore-  cosmological evolution generically drives these parameters
over, they are the only consistent field theories, containingowards valuess10 ' at our present epoch. This class of
only fields of infinite range, able to satisfy the weak equiva-theories gives therefore a natural explanaticeguiring no
lence prmmqle(umversahty of free fall of laboratory-size fine tuning nor thea priori presence of small parametgte
objects [25]." Indeed, massless gravitational theories iNCOr-a bound$ y[<2x 10~3 [28] and| 8[<6x 10~* [29] found

. . . :
porating, besides the metrg,,,, vector fields, a second at the 1PN level in solar-system experiments, and furnish a

symmetric tensor_ﬂeld or an antisymmetric tensor field A8otivation for increasing the precision of these measure-
known to present in general many flaws, such as discontinui-

7 . -
ties in the field degrees of freedom, negative-energy modements to the 10’ level. Such an increase in accuracy down

2_10-6
cavsalty vilaions.  posedness o e Cauey pralem” 2% TP 1 27 SIeee (R 100
etc., not to mention the lack of theoretical motivations for y

L . L : : ence such high-precision measurements, i.e., whether there
considering equivalence-principle-preserving couplings for gn-p

such fields. By contrast, tensor-multiscalar theories are weff'e new and priori unknown 2PN parameters which could

motivated, consistent and simple enough to allow their Ob_compllcate the interpretation of 1PN experiments. An ex-

servational predictions to be fully worked of24]. More- ample of this is given by higher-order light-deflection experi-

over, we believe that these field theories are the only onelg]aﬁqnetfe\r’[\'f;;‘shfg eV\?siEaﬁ:aLrg\?vi\}grmvrgl\\/lg t?elr(])?/:INch;[’:IhiF;a-
satisfying the extended Lorentz invariance requirediaa- claim is inc’orréct.in the frar"nework of’ tl?ansor—scalar theories
23]. It would be an interesting program to prove it rigor- :

ously. In that case, our field-theoretical approach gives %eTrzzgugft;fenjd\gﬁSgggg?b%ess{haée tggssi:b\(\e/hgé\?;igfsng}lv
technically much more efficient way of controlling their 9 9 P

structure than that of Ref§20—23, as exemplified by our tensor-multiscalar theories from_ general relativity at the 2PN
results below. order, and can the cgrespondlng effects be separated from

A detailed study of the 1PN limit of tensor-multiscalar those associated wit and y? On the other hand, do ex-
theories has been performed[2¥], as well as the generali- perimental bounds o@ and y give constraints on possible
zation of this approximation to the case of compact bodie2PN non-Einsteinian effects?

(such as neutron starsalled the first post-KepleriafiPK) Before entering into a detailed study of the 2PN limit of
limit. We recall some of our results in Sec. Il below. Out of tensor-scalar theories, let us quote one of our main results:
the 10 post-Newtonian parameters describing conceivabl@wo, and only two, new parameters arise at the 2PN level.
deviations from general relativity at the 1PN level, only two We have denoted them hy and ¢, cf. Egs.(3.30 below.

do not vanish in this class of theories: the parameterThe possible 2PNdeviationsfrom the general relativistic
B=pB—1 and y=y—1, introduced long aggon different  physical metric tensor are given by

& € ,Go(xX)UA(x')  2¢  Go(x") ,Go(x")U(X")
5900(X):FU3(X)+ FJ’ d3X W—i_?f d3X _X,|j S/ ——— —~

|X |X/_XII
2¢ ., Ga(x)U(X) By 1

+FU(X)fd X —|X—X'| +0 i +0 B/ (1.1a

By 1
590i(X):O(;.C—45) +0 o7/ (1.1b

By 1
5gij(x)zo<?,(;4) +0 5), (1.10

|
where  o(X) is the mass density and Newtonian or 1PN quantities under the influence of self-

U(x)=Sd3x'Go(x")/|x—x'| the Newtonian potential. To gravity or external gravitational fields.

increase the readability of Eg4..1), we have suppressed the  In Sec. Il, we recall the action and the equations of mo-
tilde which should decorate all the quantities appearing in ittion of tensor-multiscalar theories, as well as a few useful
TooX),U,G,7, .. .; seebelow. The same parametess ¢  results concerning their 1PN limit. We also recall how the

will be found to define the 2PN renormalizations of various

2The intuitively preferred role played bx&Tand 'y in the PPN
!Note, however, that the scalar couplings coming out naturallyformalism is a further argument for working in the framework of
from unifying theories violate the equivalence princips]. tensor-scalar theories.
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motion of self-gravitating bodies can be described in theseersal coupling tag,, implies in particular that laboratory
theories. The main discussion of our paper, in Sec. lll, isods and clocks measure this metric, which will therefore be
devoted to the Lagrangian describing the motiorNofmnas-  called the “physical metric’[the names Jordan, Fierz, or
sive bodies at the 2PN level. Our main technical tool is aPauli metric are also used in the literathre
diagrammatic expansion, which allows us to compute The difference with general relativity lies in that the
straightforwardly all the 2PN effects. In Sec. IV we derive physical metricg,,,, instead of being a pure spin-2 field, is
the 2PN metric corresponding to the Lagrangian of Sec. llljn tensor-scalar theories a mixing of spin-2 and spin-0 de-
and we verify and complement our results by considering thgrees of freedom. More precisely, it can be written as
metric generated by one static and spherically symmetric
body, whose exact solution has been derivefP#i. In Sec. §MV=A2(<P3)QZV, 2.3
V, we discuss the impact of our findings on future relativistic ) ) _
experiments. We summarize our results and give our concludhere A(¢?) is a function ofn scalar fields(we choose
sions in Sec. VI. To relieve the tedium, technical details areéA>0 to simplify some equations belgwThe dynamics of
relegated to various appendixes. Appendix A gives the exthe pure spin-2 fieldy;,, usually called the “Einstein met-
plicit diagrammatic calculation of the 2PN Lagrangian. Infic,” is described by the Einstein-Hilbert action
Appendix B, we discuss the renormalizations of the Newton- 4 4 .
ian and 1PN coupling parameters due to 2PN effects. Finally, Sepn = ¢ d_X\/— R_ (2.4)
Appendix C derives the explicit 2PN formulas for the deflec- PNZAnG, ] c 9 7 '
tion of light and the perihelion shift of test masses.
where G, is a constant(the bare gravitational constant
R* is the scalar curvature @, (with the sign conventions

Il. TENSOR-MULTISCALAR THEORIES of [30]), and g, =|deg},,|. On the other hand, the action

) . i . ) _describing then scalar fieldsp? reads
In this section we define our notation for dealing with

tensor-scalar theories, and recall the result§2df that we c? d*x 1, . o b
need below to study their 2PN approximation. Sspin o=mf iy Ox 2 & Yan(9°)3,9%9,0° |,
*
(2.9
A. Action and field equations
MV ; * indi
For simplicity, we consider in the present paper only theoWhereg, " is the inverse og,,, the indicesa,b,c, ... vary

o : .
ries respecting exactly the weak equivalence principle, i.e.f,rorn 1 ton, and yap(¢®) is ann-dimensional ¢-mode)

theories in which matter is universally coupledonesecond ~ Metric in the internal scalar space spanned by ¥s.
rank symmetric tensor, saEyM(x*). The action describing [ Yap Must be p05|t|ve—_def|n|te to get posmvg klngtlc-energy
matter can then be written as a functional: terms] A tensorjmultlscala_r theory cc_Jntalns in general

1+n(n—1)/2 arbitrary functions oh variables: the “cou-

Sl ¥m 9,0 (2.1)  pling function” A(¢® involved in Eg. (2.3, and the

n(n+1)/2 components ofy,, from which must be sub-
wherey,, denotes globally all matter fields, including gauge tractedn arbitrary functions parametrizing arbitrary changes
bosons. Actually, from the perspective of modern unifiedof scalar-field variables’2=f2(¢"). In the simplest case
theories, this class of models seems rath@rhoc For in-  where there is only one scalar field= 1), the only arbitrary
stance, string theory does suggest the possibility that theminction in the problem iA(¢), the unique component of
exist long-range scalar fields contributing to the interactionthe o-model metric being always reducible to the trivial form
betweer] macroscopic bodles,. but all such scalar fields havg, (o) =1. The reader should note that the consideration of
composition-dependent couplings. However, a recent studsultiple scalar fields, far from complicating uselessly our
of a large class of superstring-inspired tensor-scalar modelgnalysis, is in fact a technically powerful tool for delineating
[26] has found that(because of deep physical facthe the structure of the possible deviations from general relativ-
composition-dependent effects represent only fractionallyty. Once one is used to some notation, working with several
?m?II (~107°) corrections to standard post-Newtonian ef-fields is anyway not more difficult than working with only
ecCts. one.

At a fundamental level, the matter acti®y, should be We could also have added a potential te¥ify?) in the
chosen as the curved-spacetime version of the action of thgction (2.5), but we will restrict our attention to infinite-
standard model of electroweak and strong interactions, obrange fields in the present papsee[24] for more details
tained by replacing the flat metrit, ,=diag(~1,1,1,1) by  Note thatg}, and then scalar fieldse® are considered as
d,, and partial derivatives bg-covariant ones. At a phe- forming the gravitational sector of the theory, by contrast
nomenological level, the action describing a systemNof wjith the matter sector described by the fields of Eq. (2.1).

(non-self-gravitating pointlike particles is Although one should always keep in mind that the metric
N measured by normal physical standards’jjg,, it will be

_ ~ convenient in the following to formulate the theory in terms
Sm= AZ‘l f Macds,, 22 of the pure spin-2 and spin-0 fieldgfw and ¢? The

Einstein-frame infinitesimal lengths, time intervalst, and
wheredS,=[ —,,,(x))dxidxz]*?% and them,'s denote the  massesn will therefore be related to the physidaheasurel
(constank inertial masses of the different particles. The uni-ones by
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/=A"Ye)/, t=A"XeJl, m=A(e)M. (2.6

For instance, the action2.2) describing N (non-self-
gravitating pointlike particles can be rewritten as

N
Sv== 3 | MacAG o)V GE, X 0XEax,

N
-3 [ maettoeass, @7
where the Einstein-frame masges(¢?) =A(¢?)m, are no
longer constant, as opposed to fhg’s.

The field equations deriving from the total action
Sspin ot Sspin O+Sm read

*

1
RY,=2Yan(0)d,0%3,0°+ (wa— ET*QZV),

C4
(2.89
a 47G* a .
Dgrye"=~—2a a®(@)T*, (2.8
8Sml ¥m Q! 8m=0. (2.80
Here R* is the Ricci tensor of g:‘w,

wv
T#'=(2¢/Vg,) 8Sul ¥m.A%gE, 1/ 89% , is the Einstein-frame
energy tensofrelated to the conserved “physical” energy
tensorT# by T#"= AST#”; see[24]), and the d’Alembertian

C(g*,y) is covariant with respect to both space-time and
o-model indices, i.e., involves the Levi-Civita connections

A
v

of bothg},, andy,(¢), denoted ag’;,
tively:

andy;(¢), respec-

A
v

W@+ Vo @),9°9,¢°].
(2.9

Oge,»9*=04"10,9,¢* =T,

In Egs.(2.8) and everywhere else in this paper, the various
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the ¢®'s) plays the crucial role of measuring tlwupling
strengthof the scalar fields to matter. As we shall see below,
all post-Newtonian deviations from general relativiof any
post-Newtonian ordercan be expressed in terms of the as-
ymptotic value ofa®(¢) at spatial infinity(i.e., far from all
material sourcesand of its successive scalar-field deriva-
tives. Denoting byD, the covariant derivative with respect
to the internal metricy,,, we define

&ab

Bap= Daab:a_@a - 'ygbac ) (2.123

Bip=DaDpac. (2.12p
Denoting by ¢§ the (cosmologically imposedbackground
values of the scalar fields, we then seﬁz a(eo),
BI=Bab(90), Biab=Bap{®o), etc., the index 0 always
meaning that these-model tensors are calculatedgf. As
shown in[24], the effects of the scalar fields on any observ-
able effect at the first post-Newtonian level depend only on
two contractions ofx? and 82,: namely?

agE agaSZ agyab( ©0) ag, (2.133
(aBa)o=agBiaf. (2.13D

Indeed, the effective gravitational constant between two
massive particles is given by

(2.19

[with Ag=A(¢o)] instead of the bare consta@t, involved
in the action(2.4), and the Eddington parametg8s y read

G=G,A¥1+a?),

Y

—2ad/(1+a}), (2.153

(aBa)ol(1+aj)?, (2.15h

N[ =

B=

indices are moved by their corresponding metric, for instance

Th =05, 05sTe?, T*=gh TV, T, =01, etc., but
also a®(¢) = v?°(¢) a,(¢) wherey® is the inverse ofy,;
and where we have introduced the notation

_ JlnA( )

P (2.10

as(e

Note that, in view of the third equatiof2.6), the definition
of a,(¢) can be rewritten as

dlnm( @)

FPoa (2.11

(@)=

wherem(¢) is the mass of any non-self-gravitating particle

in the Einstein conformal frame. This secondwayofdefining;betwe(:)n the Einstein metric and the physical

a, is quite general as it encompasses both self-gravity e

fects[24] (see below and possible composition-dependenth

effects[26].

B. 1PN approximation

As is clear from Eq(2.8b), the quantitya®(¢) (which is
a vector field in the internal -model” space spanned by

instead of their general relativistic vamE';?:o . Let us

recall again thap and y are usually denoted ag( 1) and
(v—1) in the literature. We will avoid the notatig8, v in

the present paper to prevent a possible confusion with the
o-model tensorsB,, and y,,. Note, however, from Egs.
(2.13 and(2.19, that our notation has been chosen so that

Y= yapala® and B B,a?al. As shown in[24], the results
(2.14—(2.19 can be simply interprete@nd remembergdn
terms of the exchange of gravitons and scalar particles be-
tween material sources. For instance, &j14) is the sum of

the usual contribution of a graviton exchan@s, , together
with the contributions of scalar exchanges,G, agag; see

Fig. 1. The global factoA3 is due to the change of units
one
=A2(go)gfw used to measure forcesee EQs.(2.6)

SNote that in the simplest one-scalar case ¢!, these contrac-
tions reduce to simple products, a§= apX ag,
(aBa)o=agX BoX ag, Where ay=a(pg)=dInA(g)/dpy, and
Bo=3da(¢o)ldgq.
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OO Ga the scalar fields?, as opposed to the constanj’s in Eq.
(2.2) describing non-self-gravitating bodies. This scalar de-

O—O G o’ pendence of the inertial mass is due to the influence of the

a ¥ 0 local scalar field background on the equilibrium configura-

tion of the body. The action describing self-gravitating
FIG. 1. Diagrammatic interpretation of the effective gravita- bodies is thus written as
tional constanG=G, A3(1+ a?).

N N
abovd. Similarly, the parametera(8«), involved in(2.15h Sm= _Azl J Ma(@®)cdsy= —Azl j ma(e?)cdsy
corresponds to an exchange of scalar particles between three (2.16
massive bodies, as shown in Fig. 2. The method that we will
use in Sec. lll below to study the second post-Newtonian

approximation is a straightforward generalization of thes@/Nere Ma(@)=A(¢)Ma(¢). The validity of the skeleton-
diagrammatic observations. Ized action(2.16 has been justified in Appendix A ¢24]

by a matching argument.

Note that the second expressi@h16), in terms of the
Einstein line elemends; , is formally identical to Eq(2.7)
describing non-self-gravitating bodies. However, the impor-

When studying the motion of massive bodies in the solatant difference is tham,(¢) can now be a nonuniversal
system, several dimensionless ratios happen to be small. {hody-dependeifunction of the scalar fields, instead of be-
we denote bym, v, andR the typical mass, orbital velocity, ing merely proportional tA(¢). It is therefore convenient
and radius of a body, and bythe typical distance between to generalize to the case of self-gravitating bodies the
two bodies, we findsm/rc2~v?2/c2<2x 108 for the fast-  g-model tensors defined in EqR.10—(2.12 above:
est planets, whileGm/Rc®~2x10° for the Sun and
~7x10 1 for the Earth. This is the reason why the formal Jlnma( @) dlnMa( @)
“post-Newtonian” expansion in powers of & is so useful ap= T:aa(¢)+ EryCE (2173
for analyzing the predictions of relativistic theories of grav- ¢ ¢
ity in the solar system. However, in situations involving
compact bodies, like neutron stafulsar$ in binary sys-
tems, it is necessary to distinguish the self-gravity parameter
s~GmRP~0.2 from the orbital parameters Bib=D.Dpat. (2.179
Gm/rc2~v?/c?<1. In that case, one can still describe the
motion of the bodies by means of an expansion in powers O{As above. we will raise and lower the-model indices
Gm/rc2~v?/c?~1/c?,;, but one must not expand in pow- ’

; a,b, ... with y®® or v,,.) Here againa} plays the funda-
ers of the corppactnesses_ SUCh an expansion _scheme hasmental role of measuring the coupling strength of the scalar
been called “post-Keplerian” in[24], since it is closely

linked with the phenomenological approach to the analysigleIds to the self-gravitating bodk. Indeed, equatiof2.80)

of binary pulsar data, introduced 81,32 under the name how reads
of “parametrized post-Keplerian” formalism. 4G

In the present paper, our main goal is to analyze tensor- Ogr . @2=— 774 > alATE, (2.18
multiscalar theories of gravity at the second post-Newtonian ’ c
level, i.e., including all terms of formal ordercf/ (be them
of “orbital,” “self-gravity,” or mixed type). We found that x_ 20 4k A0y S3) (v o
the most efficient way of doing so is to derive first the sec-whgreTAt; mAC.t.(dSA/ fd:(h;ih (X )'E'A)I/ 9 ,\(IX{*) Itil('chr:-
ond post-Kepleriati2PK) limit of these theories by means of Ized on the position of particie.” Note that the
a diagrammatic method. The 2PN approximation is then Obpody—dependent quantme(i.l_?) r.educe FO th"-.‘ def|n|t|9ns
tained by expanding our general 2PK results in powers of th%Z-ll@—(Z-lg)_ for non—setlf-gtrqw;ﬁu?g bodies, since the iner-
compactnesses, up to the required ordes.in a Amasrs]esmA f'irezion?han 1I|2K at case. i f i

Let us recall how the motion of self-gravitating bodies is It's S IOW'?h |n[_ ] eth bapprOX|ma |((j)n N e.nsolr- .
described in tensor-scalar theories. Following a suggestion Jputiscaiar theories can A en eAexpresse Very simply in
Eardley[33], one skeletonizes extended self-gravitating boderms Of contractions otr, and B,. More precisely, the

ies as pointlike particles whose inertial masSesdepend on ~ L-@grangian describing the motion d (spherical self-
gravitating bodies at the 1PK level reags Einstein-frame

units)
1
F 1

(2.19

C. Self-gravitating bodies

Bap=D.ap, (2.17H

Oy Oy,
O\/j y, L 2, 1 3) A
L=> L+ L@+ > LOR+0
oy 2575 2B4A%C

Bab

FIG. 2. Diagrammatic interpretation of the contraction
(aBa)o  involved  in  the  Eddington  parameter where the notatioB# A# C excludesA=B andA=C but
B=3(aBa)yl(1+ad)?. notB=C, and where
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1 1 1
LY =—mdc?V1-Vvi/c?=—mdc?+ Emgv§\+ W(Vi)ZJFO ?) : (2.203
GABmgmB 3 7 1 748
L= | 1+ 52 (VatVe) ~ 52 (Va-Ve) = 53 (Nas Vi) (Mg Vo) + ~ 7~ (Va~—Ve)? . (2.200
GG acmamam2 —
LOA= - AR AR € 11280, (2.200
I'aglacC

Here we have semn2=mj,(¢o), and we have denoted by which would, in absence of interaction, be spherical, the first
Nag="rap/rag (With rag=X,—Xg) the unit vector directed finite-size effects must, for symmetry reasons, contain two
from body B to body A. This Lagrangian involves three derivatives ofp, i.e., they must be of ordes*=(R/r)% We

body-dependent parameters generalizing the effective gravieave to future work a study of finite-size effects by means of
tational constant2.14 and the 1PN Eddington parameters such an effective action approach. In the case of weakly

(2.19: namely, self-gravitating bodies, direct calculations at the 1PN ap-
proximation have found that finite-size effects are propor-

Gap=Cy[1+ (anas)ol, (22138 fional to n=4B— v [35], and therefore introduce, in the
equations of motion, essentially only small fractional correc-

Yag=— M, (2.21p  tions (of order €’=(RIr)?<1) to the usual orbital post-

1+ (anas)o Einsteinian effects proportional tg/c? and B/c?. Such

fractionally small corrections can be safely neglected when
ﬂ_BACE 1 (asBacclo , (2219 looking for the numerically dominant deviations from gen-
2 [1+ (apap)ol[1+ (@pac)o] eral relativity. In the case of strongly self-gravitating bodies,

a b  asA b finite-size effects are even more negligible than in the solar-
wheré (aaag)=aavanes, (asBaac)=agBapac, andthe oo™ cace becausé~ (10 km/16 km)2~10"1 is ex-
index 0 means that these. contrac.tlons are calculated mely small in all observed binary pulsars.
2= @f. Of course, when using physical units related to the
asymptotic metricg uv» the effective gravitational constant Ill. N-BODY LAGRANGIAN

e ) g
readsGug=G. Al 1T (aaas)o], and the parameters,g, Before entering the technical details of our derivation of

Bg¢ do not change since they are dimensionless. Note thahe N-body Lagrangian, let us clarify the approximation
Figs. 1 and 2 give again a diagrammatic interpretation ofnethods we shall employ. As discussed in the previous sec-
Gag and (agBaac)o, With the coupling coefficienta® and  tion, we shall first study the second post-Keplerian approxi-
2° of each body being replaced by their strong-field coun-mation of tensor-multiscalar theories, before particularizing
terpartsa’i and,Bf_‘\b. our results to the second post-Newtonian case. In other
The pointlike descriptiori2.16) neglects all finite size ef- words, the compactnesses Gn/Rc? of the bodies will not
fects. The finite size corrections induced by tensor-mediatetde considerec priori as small parameters. In order to con-
couplings to the mass and spin multipole moments of ordestruct the Lagrangian describing the motion Wf self-
/=1 (i.e., the general relativistic multipole interactions gravitating bodies, we will eliminate the field degrees of
have been recently worked out in defe#], and we assume freedom, i.e., we will solve for the Einstein meti¢, and
that they are properly added. One must still worry abouthe scalar fieldg? in terms of the material sources, using the
scalar-mediated finite-size effects whose existence has beggid equations(2.83, (2.80). To perform this elimination,
established by Nordtved85]. Such effects can be incorpo- we shall consider that the interaction is propagated by a
rated by a suitable formal generalization of Hg.16: it  time-symmetrig(half-retarded—half-advanceGreen’s func-
suffices to considem, (or my) as afunctional of ¢ (and tion. This leaves out radiation damping effects. However, the
g;,,) rather than as a function of the local valuegfalong Iatter are negligible when studying weakly self-gravitating
the Ath world line. (In particle physics language, the func- bodies at 2PN order. Indeed, in general relativity, the leading
tional ma[ ¢] is the “form factor” describing the nonlocal dissipative effects occur at orderct/ because of the well-
interaction of the extended body with the field ¢.) Then  known quadrupolar radiation of gravitational waves. In
the quasilocality expansion of the functiomal ¢] in in-  tensor-scalar theories of gravity, the leading radiation emit-
creasing number of derivatives @falong the worldline cor- ted by systems otompactbodies is dipolar and occur at
responds to the usual expansion in powers of the small finitesrders?/c3. In the solar system case;- 1/c? and the dipolar
size parametee=R/r. If one considers extended bodies radiation is negligible compared to ti@(1/c®) effects due
to the spin-2 quadrupolar waves and spin-0 monopolar and
guadrupolar waveg24]. In either case, we compute the con-
“4Again, in the simplest case of one scalar figte ¢, these quan-  servative part of the gravitational interaction and assume that
tites reduce simply toasXag and agXBaXac, where (tensor and scalaradiation damping effects are added sepa-
ap=dlnmy/dp, Ba=danldp. rately when they are not negligibly small.
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A. Diagrammatic expansion 5Se[ o] - 53(%5[01@] ~ 8S,[o,®]
We want to construct a “Fokker” Lagrangid86,17] de- So So ool ]_ So o] :
scribing the motion oN massive bodies by eliminating the i e (3.5)

field degrees of freedom from the total Lagrangian of the
theory. In order to prove formally that such a constructionComparing(3.5 with (3.2b), we see that we have formally
reproduces the correct dynamics of the bodies, let ugroved that the Fokker actio.3) gives indeed the correct
introduce a global notation for the fields equations of motion, i.e., describes the actual dynamics of

®=(gy,~ fur 9%~ @), wheref,, =diag(-1,1,1,1) is the e matter variables in presence of the fieldd[o]. It

flat metric andeg are the background values of the scalargnouid be noted tha@:[ o] is notsimply given by the matter
fields. Similarly, we denote globally by the matter vari- action S, [ qT[ 1] embedded in the self-consistent back-
ables, i.e., th&\ massive worldlinex, involved in the mat- Smlo PLo

ter action(2.16). The total action of the theory can therefore ground field®[ o], but that the field actiosg ®[ o] also

be written in the schematic form contributes to the dynamics of the material bodies.
To start with, we do not need to assume that the bodies
Sl 7, @ ]=Se[P]+ Syl o, P], (3.)  are moving slowly with respect to the velocity of light. In

technical terms, we shall expand the Lagrangian in powers of

from which we want to eliminate the fieldB by expressing ©: |.e.,.Gm/r02 (“nonlinearity expansion), while keeping
them in terms of the matter variables This elimination unrestricted the magnitudes ofc ands. We need to retain
cannot be done when working directly with the Einstein-the terms up to orde®® in the nonlinearity expansion of the
Hilbert action (2.4) because of its invariance under diffeo- FOKker action(3.3). The zeroth order term i is of course
morphisms(technically, the kinetic term of the gravitons is the action describing free bodi&[ o ]=S,[o,®=0], i.e,
noninvertiblg. We need to reduce the field equations bythe matter action computed fgf, ,=f,,, ande®= 5. It can
means of a specific coordinate condition in order to solve fobe written explicitly asSy=3/dtLS’, where L) was
g%, . In the language of particle physics, we need to fix thegiven in  Eq. (2.203 and has the structure
gauge in order to define the propagator of the gravitons. Wa¢*(1+v?/c?+v*/c*+v%c®+ - - -). The next approxima-
will choose theg* -harmonic gauge for our explicit calcula- tion, first power of G, has the structurenc?(Gmirc?)
tions. We then replac&,[®] by its gauge-fixed version ><(1+_vz/02+ v_4/C4+_~ -+) and describes the two-body in-
S$T®]=S,[®]+ gauge-fixing termgsee Appendix A be- teraction, starting with the Newtonian ter@,gmamg /I op
low), and the field equations deriving from the total action[With the self-gravity-modified effective gravitational con-
S o, @] read stant Gag Of EQ. (2.213]. The second power ofG,
mc(Gmirc?)?(1+v?/c?®+--.), describes three-body in-
G G teractions starting with the self-gravity-modified 1PK term
5Spil o, P] _ 5S¢ 1®] N 0Sy[ o, P] 0, (323 %G agGacMaMsMc /T agf acC?. Finally, theG® level corre-
5D 5D 5D ’ ' sponds to four-body interactionss3mamgmemp /r3c*+
self-gravity and velocity modifications. Instead of counting
G powers of G, we can count the number of matter source
50l 7. P] = OSml o, P] =0. (3.2p  termsinvolved: we must keep up to four powersrofi.e., of
oo oo the masses. Since the matter act@yj o, ®] is linear ino

_ _ [see Eq.(2.16], the solutiond_>[cr] of the field equations
Equation(3.28 can now be solved perturbatively, and we (3.29 starts at ordewr. We need therefore to expand the

denote byd[ o] its solution. The Fokker actiofwhich is a  total actionSgi o, ®] up to ordersO(d*) ‘and O(a®3) in-
functional of the matter variables onlis then defined as cluded, before replacing by its solution®[ o].

Let us first expandser in powers of the fieldsb, and
Se[o]1=S o, D[ o]]= ST D[ o]]+ Splo, D[ o ]], define
3

33 P o, ®]=Sy[ o]+ Si[0, D]+ S[7,®]+ Sy 0, D] + (3 .6,)

and its variation with respect t@ reads ) _
where the tern5[ o, ®] involves theith power of® (and

zero or one power of the material sourees For instance,
S, is the linear interaction term between the fields and mat-

0Selo] _ ( 5So, @]

So oo ®=lo] ter, and has the formal structu®=aoc®, wherea is a
_ coupling constant. On the other hand, the term quadratic in

+(5S[%'t:[0-1q)] oP[ o] (3.4 ® has the formS,=— 3 ®P '+ 3 Bod?, and involves

6P ®=dlo] So ' both the kinetic operator<(] (or “inverse propagator”

P~ 1) of the fields and a vertex describing the interaction of
_ matter with two fieldgwith a coupling constang). It will be
Since®[ o] is precisely the solution which annuls the func- convenient to introduce a diagrammatic notation for this ex-
tional derivative S5t/ 5®, the second term on the right- pansion.(Bertotti and PlebansKi37] were the first to intro-
hand side vanishes, and one finally gets duce a similar diagrammatic notation for solving Einstein’s
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P = ———  propagator of the fields
G = material sources

P =
® = —@ fields

FIG. 3. Diagrammatic notations for the material sources, the

fields, and their propagator.

equations perturbativelyLet us denote the propagatBrby

a straight line, the material soureeby a white blob, and the
term (P~ 1®) by a black one; see Fig. 3. As this diagram-
matic representation will be an important tool in the present

paper, let us explain it in detail with a simpler example.
Let us consider the actiofin Minkowski spacetimg

1 g A
5[<P]=f d*X| — g-(99)*+ 3 0(de)?+ 7 ¢*

: 3.7

+o(X)e(X)

where @cp)zEf“V&M(p&,,go and where o(x) is a given
(spacetime distributed source for ¢(x). Integrating
by parts, the kinetic terms for ¢(x) read
+(1/87) fd*xe(x)sp(x), where O; is the flat
d’Alembertian. Identifying this with— 3 P~ 1 [which is a
symbolic notatiof for — 3 [ fd*xd*y(X) Py, ¢(y), where
P;yl is the kernel of an operator acting on functionsxéf,

we get Py'=—(4m) '0,8“(x—y). The inverse of the
operator_ P;yl is the_z p_ropagatorPXy= g(x—_y), Whe_re
G(x—vy) is a(translation-invariantGreen function, solution

f dx;dX%dx3dy;dy,dy3V3(X1,X2,X3) G(Xq

J J
= gf dxdy,dy,dy;G(x— yl)mg(x_yz)mg(x_ya)U'(yl)O'(Y2)0'(Y3)-

THIBAULT DAMOUR AND GILLES ESPOSITO-FARESE 53

of 0,G(x—y) = —476™(x—y). The cubic verte¥; is de-
fined as the distributional kernel entering the term
3S;=/dxge(d¢)?, i.e., 3S3=[dx;dXdX3V5(X1,Xp,X3)

X @(X1) ¢(X2) ¢(X3). Requiring this kernel to be symmetric
in its arguments leads to the explicit expression

af @ P
V3(Xy,X2,X3) = 3 W&erz)ﬁx—ﬂ (X1 —X3)
1 1

J J
+ —— 6(Xo— X3)— O(Xo— X
(7X’g ( 2 3)(9X’2’“ ( 2 1)

Jd J
+ ——0(X3— X1)— 6(X3—X») |,
i O™ X0) o (X x2)

(3.9

where the factor 1/3 comes from the average over the three
different permutations needed to symmetrizgx,,X5,X3).
Similarly, the quartic vertex, defined by S4=
JdXd%0X30 %4V 4(X1,X2,X3,X4) @(X1) @(X2) @(X3) ¢(Xa), IS

Va(X1,X2,X3,X2) = N 6(X1—X2) 8(X1— X3) (X1~ Xg).
(3.9

In the diagrammatic notation of Fig. 3, the blobs denote
some spacetime functionso(x) for the white blob and
—(4m) " 'Oe(x) for the black ong and a line denotes a
propagatofP,,=G(x—y). Connecting a line to a blob or to a
vertex (which is a cluster of several infinitesimally close
pointg means that one “contracts(i.e., integratesover the
points at the extremities of the line. For instance the
T-shaped diagram on the left of the third line of Fig. 7 below
would represent, in the modés.7),

—Y1)G(X2—Y2)G(X3—Y3)o(y1)o(y2)a(y3)

(3.10

Similarly, the X diagram on the left of the last line of Fig. 7 would denote

f dxdXdX3dX,4d Y, dY,dY3dY,Va(X1,X2,X3,X4) G(X1—= Y1) G(X2—Y2) G(X3—Y3) G(Xa—Ya) 0(Y1) 0(Y2) 0(Y3) 0(Ya)

=kf dxdy,dy,dysdy,G(X—Y1)G(X—Y2)G(X—Y3)G(X—Ya)a(Y1) o(Y2) 0(Y3) 0(Ya).

(3.11

Having explained the precise meaning of our symbolic notasented as in Fig. 4, whickefinesthe different diagrams.

tion, let us come back to the general acti@®g).
The different terms of the expansid8.6) can be repre-

Note that, as in our example, we have conventionally factor-
ized a coefficient 1/in defining thei-linear vertexV; from

the O(®'") action: S;=V,/i. This coefficient is chosen in
order to simplify the field equation®.23, whose diagram-
matic expansion is displayed in Fig.[d.he reader is invited

SNote that in the operator notation used here, any “contraction oto derive for himself the field equations of Fig. 5 from the
spacetime indices” means an integration over the correspondingction of Fig. 4, keeping in mind that the multilinear forms in

spacetime coordinates, e.gR4)(x)=/[ d4y73xyqo(y).

@ appearing in Fig. 4 are supposed to be symmetric in
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1§,= O—@ linear interaction of matter and fields I 1 1 1
sol =501+ {+ o—e-1 -4 -1 Yooz )

25,=-0—@ + \C/ =so[cl+(%I)+(% 3 )

. . R
2 x kinetic term

of the fields vertex
(Lol +I:8+%E_I+%><)+o(«s)
38,= + ‘T/‘

FIG. 6. Diagrammatic expansion of the Fokker act{8rlL3).

4S4E >< + 0(0.4)
(”_5) Selo]=S[o]+ (G D)+ (GV+3T)+(3 e+ 3 Z+F+ 3 H
Olo
FIG. 4. Diagrammatic expression of tde-linear terms of the + %XH'O(O'S)- (3.19

total action(3.6), fori=1,2,3,4.

The explicit form of this action is now only a question of
d(xy), ..., P(x;).] Thanks to Euler's theorem on homoge- straightforward algebra: one must expa8gf] o, ®] up to
neous functions, the field equations imply the useful result order®# included to get the expressions of the field propa-

58? ] gator P and of the vertices defined by Fig. 4, and merely
otl0,® ] . _ replace them in Fig. 6, i.e., E(3.14). In doing so, one must
P55 ~S1T25+ 35+ +iS+- - =0. take into account the fact thdt is a global notation for both
(3.12  the gravitonsh,, =g}, —f,, and the scalar fieldg®— ¢g,
In diagrammatic terms, this corresponds to inserting a blacRnd therefore that each propagator link in Fig. 6 is to be

ie., to express the kinetic term of the fields, fields. To simplify the expansion of the scalar-field action

L pp =1 (P 1D)P(P 1), in terms of the other dia- (2.5), it is convenient to choose Riemann normal coordinates

a ! .
grams. at ¢, So that the metriey,p(¢) can be written as

The Fokker action(3.3) can now be written straightfor- _ a1 c
wardly by replacing in the total actiof8.6) the fieldsd by~ Yab(®)= Yan(@0) + 0X(¢"= ¢6) = 3 Racud ¢0) (¢"~ o)

their solution®[ o], i.e., by replacing the black blobs in X (4= od)+0(¢—¢0)%), (3.19
terms of the white ones through an iterative use of Fig. 5.

The most delicate term to compute would be the contributiorwhere R, .4 is the Riemann curvature of,;,. This choice
due to the kinetic term of the fields B, because one must cancels the term of ordepdede in Sgpino, i-€., the “T”
expand up to ordes? the two fields® it involves. Fortu-

nately, one can avoid estimating this term by using the Euler

identity (3.12 to eliminate it from the Fokker action: I . I . é

Se[o]=[(So+ S+ S+ )

1 _ v—> v + Zc\g + C%%gp
—3($51+25,+35+ - ) lo=a[s]
=So+[3S1— 3 S5~ Sulo—a[o1+O(0). — 3 E + E
(3.13
The result of inserting Fig. 5 into Eq3.13 is displayed in — < +3 C%* 3 + %
Fig. 6. [The different diagrams have been drawn so that
angles appear only at the vertices involving matter soufces. . N . . . K
In the following, we will designate these diagrams by the Z Z ZZ E 2@ X
letter they most naturally evoke, so that the final result for
the Fokker action reads Fg — 23&+?§+2$§+?§+§5&$§
H— Pl fed gt
o T s

—®=—20+ -—I + + + +0(c%)
FIG. 7. Expression of the diagrams of Fig. 6 when the graviton

o and scalar propagators are represented respectively as curly and
FIG. 5. Equation(3.29 satisfied by the fieldb[ o]. straight lines.
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vertex connecting three scalar fields. The different diagramglobal structure is easy to grasp. Denoting Gya Green
of Eq. (3.14) can thu_s b_e decomposed into the elgmer!taryfunction' solution ofJ;G(x) = — 47 5“(x) wherell; is the
diagrams displayed in Fig. 7, where curly and straight lines;5; d’Alembertian, each scalar propagator ig)zb

represent the graviton and scalar propagators, respectively. _ ab : : h

The coefficients appearing in this figure are simple binomiaiggiA_iB;Z’f afWhﬂ? e]:’:lch_gf]ra\?to)n Eraofr??;a;?treri@sg&x
coefficients coming from the various ways of choosing the A TBIATay BT Tad By Tafiyd)

lines (see Appendix A The diagrams involving only gravi- containing a single scalar coupling brings a fgczi@r, those
tons give theO(G3) approximation of general relativity, containing double scalar couplings bring a factor
which has been studied in the literatisee notablj14,17).  Bap+ @aap, while triple scalar couplings bring a factor
The diagrams involving at least one scalar propagator gived' 3 together with extrg8,p anda’ terms[see Eqs(A11)—
therefore all the looked for deviations from general relativity (A14) in Appendix A below]. Each link implies a contraction
predicted by tensor-scalar theories at this order. Their exever the internal indice$Finally, the global structure of the

plicit calculation is performed in Appendix A below. Their action is

; EB "'deAf dTB'"Q(XA_XB)g"'f[uK,B,...;az,B,..,(‘PO)yﬂf\?B,...(‘PO):ﬂ,?\?&g,...((PO)vRabcd(‘PO)]:
(3.16

where 7, is the Minkowski proper time along the world lin&(7,), andui=dxi/cdr,. We use in our calculations the
symmetric Green functioB (G retardedt Gadvanced, diven by[34]

GeyniXa—Xg) = 8(F ,, (X — XB) (XK —XE)) = [ S(Xqa— X3 =T ap) + S(Xqa—XB+1 ap) 1/2r pp- (3.17
|
The power of our Qiagr_ammatic approach shows up in the B (aBrBcap)o
ot e can ey e oy depentert prameters {h0c0” [T ool (ssacio L (ncoel

culation. For instance, the interaction between two bodies

A andB is described by the twol"" diagrams of Fig. 7, and _ a b c d

involves thereforébecause of the first diagrarthe contrac- xasco=(Rabca¥a®gacap)o, (3.189

tion (apap)q. This explains why the effective gravitational

constantG,g and the 1PK Eddington parametggs appear-  Where the choice of the carrier lettess £, x is made by
ing in ngg, Eq. (2.20h, depend only on this contraction. pictorial analogy with the corresponding diagraemsZ, and

. . 71 .
Similarly, the interaction between three bodies is describedt: The introduction of factor§l+(aaas)o] "~ is made to
by the “V" and “ T diagrams of Fig. 7, and we see that it simplify some equations below, where we shall factorize the

depends not only on contractions like {ag), [cf. the sec- effective gr_avitational .ConSta'GAB’ .Eq. (2'2132 .

ond V diagram and the firstT diagran, but also on The main conclusmn of_ our diagrammatic analysis of

(@nBgac)o [cf. the firstV diagram, involving only scalar tensor-m.ultlscalar theories is therefore that otilyee new

propagators Here again, we understand very simply why self-graV|ty-dgpendent parameters appear aGheevel. By

the three-body interaction Lagrangiaf® 2 of Eq. (2.200 contrast, previous studies in the literature suggested the need
BC . .

. : -for a much larger number of parameters in the general frame-
depends only on these two types of contractions, involved |r5N0rk of Lorentz-invariant theories of gravif21,23. Let us

Gap and 135/2:- note that if we had restricted ourselves to theories involving
The new parameters appearing at or@ can now be only one scalar field, only two self-gravity-dependent param-

fo_und by e>.<amining the diagrams connecting four bodies i’bterSSBéD and ¢ xpcp Would have showed up, the Riemann

Fig. 7. While theH and F diagrams depend only on the tensor of the scalar manifold being then identically Zevide

. . b . .
previous contractions ofia g . and S . three new  are going to see that the parametgk . disappears anyway
contractions occur in the firet, Z, andX diagrams. Indeed, when considering the weak self-gravity limit.
they involve respectively the contractions
A b B ,bc D
(ﬁ/abcagabca%)%v _ (ai/?abﬁccac)o- and
(Rapco@aapacap)o, Which are independent fromagag)o ®Those internal contractions make it very easy to work with

and (epBgac)o in generic tensor-multiscalar theories. It is scalar fields. Actually, once one is used to the notation, it is easier
convenient to introduce compact notations for these parame see which new 2PN parameters can occur in the multiscalar case

eters; we define rather than in the monoscalar one.
, In the one scalar case, we could also express formally
e A = (Baaacap)o {apep In terms  of 1PK  parameters, usindaaBgBcap)
BCD™ 1+ (apap)ol[ 1+ (apac)ol[ 1+ (@pap)o]’ =(apBpac) (apBeap)/(agac), but this expression is singular

183  whenag or ac—0.
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B. 2PK approximation

The diagrammatic results of the previous subsection gave the structure of the nonlinearity expansion, in powers of
Gm/rc?, of the N-body Lagrangian, keeping unexpanded all powers faf and of the self-gravitys. The second post-
Keplerian limit of tensor-multiscalar theories can now be obtained by expanding the results above in pavfécg till
keepings unexpanded First of all, the Minkowski proper time, involved in (3.16) is obviously expanded as

2 U/za 3 ( U/ZA 4)
) 1—6(?) o (‘) |
The (vf\/cz)3 term is necessary to writ§[ o] at the 2PK order, but the expansidB.19 can be truncated to order
(va/c?)? for the two-body diagram I and to order ¢34/c?) for the three-body diagramé¢ andT. In the 2PK diagrams
e, Z, F, H, X, itis enough to replace the proper timg by the coordinate time, .
Similarly, one must expand in powerswfc the unit four-velocityuﬁ=dx§/cdrA=(1,vL/c)/\/1—vi/c2, and in particular

the contraction 2f(ﬂ,,uﬁu§)2— 1 which appears for each graviton propagator connecting two béskesAppendix A One
gets easily

dra=dty1—va/c?=dt,

1-52-3 =

2c® 8lc

1vi l(vi (3.19

2,02 1\ 2 2
(VA_VB)2+ (VA—Vg)“(Va+Vg) — (VaXVp)

2(UAUB)2_1:1+2 C2 C4

1
o] ?), (3.20

wherev, X vg denotes the usual vector skew product. Finally, the Green fun¢3id) can be expanded as

o)

|Xa—Xg(tg)
COsym(Xa—Xpg) =[8(ta—tg—rag/c) + 5(tA_tB+rAB/C)]/2rAB:n§0 2 (22)!i2n (ota)

|2n71 2n

77 O(ta—tg)

_ o(ta—tg) N |Xa—xg(tg)| 9?5(ta—tg) N |Xa—xg(tg)|? 9*S(ta—tp) tol L (3.2
I AB 2c? g 24c* atg 8/ '

The three terms i113.21) are needed for the I diagram,  (2.203 to ordermc?(va/c?)®, is given by(3.19. The two-
while only the first two are needed for theandT diagrams, body interaction Lagrangiah(®, given by the ‘1" dia-
and only the instantaneous Green functift, —tg)/r ag for grams of Fig. 7, has the structure

the 2PK diagrams, Z, F, H, X. The time derivatives of

5 functions in(3.21) imply that the 2PK Lagrangian depends 2 1 » Gag, (2)6R GasMam3 yas [ (Va—Vg)?
not only on the positions, and the velocities/, of the L T24%6|G, *B + c? Mg
bodies, but also on their acceleratioms. (Higher deriva-

tives can be eliminated, at 2PK order, by means of suitable f1(rag,Va,Vg,aa,88)

integrations by parts.As discussed if17], this is a conse- + o2 , (3.23

quence of our choice of gauge for the Einstein-Hilbert action

Sqpin 2. Indeed, all the accelerations can be eliminated bywhereL (2)°R is the expression obtained in general relativity
choosing for instance the Arnowitt-Deser-Misn@kDM)  (pure spin-2 interaction

gauge[10], instead of the harmonic one we use in Appendix
A below to simplify our calculationgActually, the simplest
practical way of going from the harmonic gauge to a higher-
derivatives-free gauge is to “wrongly” eliminate the higher
derivatives by using the equations of motion in the Lagrang- n f3(rag,Va.Vs,aa,ag)
ian[17].) c?

The 2PK Lagrangian describing the motion Mf self- _ ] )
gravitating bodies is hence obtained straightforwardly from@nd where the expression of the functibp entering the
the action(3.14. We refer the reader to Appendix A below yag/c* term in(3.23 is given in Eqs(A17) and (A18).
for its explicit derivation, and quote here only its general In other words, the two-body interaction Lagrangian
structure. It can be written as a sum iebody interaction L) in tensor-multiscalar theories presents two main differ-

1 f5(rag,Va,Vg)
2)GR_ 0,.-0 2(l'aB,Va VB
L(AB) _G*mAmBr — 2

AB c

: (3.29

terms (I=i<4) ences with respect to the general relativistic restjt:the
bare gravitational constar@, is replaced by the effective
L=LD+L@+LO+ LW+ 0(1/cP), (3.22  oneGug, Eq.(2.213; (ii) a correcting term proportional to
vag/Cc? must be added.
whereLM=3,L=-3,m%c?\1-Vva/c? is the Lagrang- The three-body interaction Lagrangian, corresponding to

ian describing free bodies. Its 2PK expansion, generalizingheV andT diagrams of Fig. 7, has the structure
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@ 1 GasGacmamame | (1+2Bg0) fs  Bacfs O(7p8: YaC ¥B0)
L :E 2 - +_2+ 2 +Z 4 y (323
BZLA#C c r'aglac c c AB.C c

where the functions, andfs; depend only on the positions and the velocities of the three bodies. The last term{3r28q.

denotes a sum of terms which are at least linear in the indicaigd and which depend also on positions and velocities.
Finally, the four-body interaction Lagrangian, corresponding toeth&, F, H, andX diagrams of Fig. 7, has the structure

L= S L@Re, 1 GABGACGAD"ng'“%mocm%8 A L 1 GaeGecGeomamgmemy,
aBtp "BCP 6arElD) F M act ADC” BCD™ 2a48%Cc+D raBlBcl cpC” ABCD
N G} mﬁim‘ém?;m% f o T xXo) O(¥as: Yac:" ")
241 AgZ¢D c* XABCD | X = xaPTx— xgl X=X X —Xo| * a&Z0 c*
O(Bgt . Bad.+ )
BC 4AD ' (3.26
AB,C,D c
|
whereL (3RS G2 mdmIm2m is the general relativistic re- 1~ 2/ _p~ ) 1
sult, and where the 2PK parametefgfy, {agcp. and ca=z(U)at { 3y=U-2BU%) +0| 5|,
Xascp have been defined in Eg8.18 above. Note that the A (3.283
notation A#B+# C#D excludes only the equalitieA=B,
B=C, orC=D. 1
CA~—2<U>A+O ?>, (328@
C. 2PN approximation 1215 1
The expression of the second post-Newtonian approxima- aA:—<£U> +0 —6), (3.289
tion can now be obtained by expanding the results of the C\o o €
previous subsection in powers of the compactnesses
s~Gm/R¢ of the bodies. To do this, we make use of results 1 - 1
derived in[24]. Following section 8 of this reference, we bA=g(U2>A+ O(EG) (3.280
define
~_dInmy Here o= (T°°+T”)/c denotes the mass density, the
CA=— =0(s), (3.273
JInG pressurelJ the potential satlsfymg&U— —47Go, and the

angular brackets denote an average weighted day
(f)=[0ofd®X/ [Fd>X. The tilde decorating the various quan-
tities means that they are measured in physical uaitg
cp=——==0(s), (3.270 expressed in terms of physically rescaled local coordinates

JinG X*=A(p(xa))x* adapted to describing the neighborhood of
bodyA. The mass densify can be expressed in terms of the
e coordinate-conserved baryonic-rest-mass gensity,fe,ays
aAE—4anEA=O(sz), (3.279 &=+ (rh+2p—xU)/c®+0(1/c?), whereh denotes the
dy enthalpy. Note that Eq(3.283 is more accurate than the
usually employed 1PN expression for the compactfiess:
ca=(U)alc?+0(1lcty=—2EJ?Muc? +O(1/ c?). A pre-
dlnmpy ) cise value of, is not needed for the following as it will only
ba= B =0(s%). (3270 appear through the combination g4 y)2ch.

As shown in section 8 df24], the body-dependent param-
eters(2.21) can then be expanded as
Using the result$3.4) of [24] and neglecting the rotational
kinetic energy terms with respect to the pressia® is ap-
propriate for solar system bodjesve can write these com-  8Note also that it simplifies very much in the general relativistic
pactness parameters explicitly at 2PN order: case where the &/ correction vanishes.
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GAB/G=6AB/6=1—g(CA+CB)+ §+4B__ QCACB'FRZ'F%(aA"‘aB)'F %-l—é’—BP (bA+bB)+O(SB),
(3.29a3
VA=Yt 7 1+§)(CA+CB)+O(SZ), (3.299
_ - o _ 2
Bee=B— g+g+ﬁ—832+ﬁﬁ0;\— §+B— %E)(CBHC)—%C,HO(SZ). (3.290

Here we have se6=G, (1+ a2) for the Einstein-frame ef- Indeed, for the same reason, the first correction of order
O(s) is easily seen to vanish too.

Our final conclusion is therefore that the 2PN limit of
tensor-multiscalar theories involves only thevo new
(Blpea?aPa’)y parameterse and ¢, Egs.(3.30, besides the usual 1PN Ed-

(3.308 dington parameterg and7 These parameters consistently

fective gravitational constant, and, as usugk 4,8_—7 We
have also introduced the notation

E=

T 1L o 2\3
(1+ap) enter into several 2PN effects. First, they parametrize two
( a b 3 new independent contributions to the four-body interaction
— (@aBbBca o Lagrangian:
¢ 3 (3.300
(1+ ap)
@ € Gemimgm2mY
These parameters are the weak-self-gravity limits of the pa- Lop(e.0)= EA#B t.0) aglaclapC?
rameters(3.183 and(3.18h corresponding to the diagrams o 5 0000
andZ: G mymgmem
€ N 4 ATEMcMD 5 g

s 2.
2p287c+D [aglBclcDC

egep=e+0(S), {apco={+O(S). (3.3)
_ ) Second, they parametrize the dependence upon self-gravity
The parameteiapco, EQ. (3.180, vanishes in the weak- effects of the effective gravitational constant and of the 1PK
self-gravity limit because of the antisymmetry of the Rie- parametersy s and BBA(\:. Discarding from Eqs(3.29 the

mann tensoRaped @) = ~ Roacd ¢): 2PN corrections proportional to the already experimentally

xaep=(Rapcga®a’ata®) o+ O(s)=0+0O(s?). _constrai_ned 1PN parametegsand y, we can rewrite them
(3.32 in the simpler form

Gap/G=1+ Egrav+ E5™ +4 BT (EeT I <U2>A+<U2>B+o B0(s2) £ O(s?) (3.34
as/G=1tm| ot 5@ MaC’ EgT (B,y)0(s%)+0(s%), (3.34a
Yas=y+0O(B,7)0(s)+0(s?), (3.34h

grav EgBrav Egrav .

+0(B,7)0(s)+0(s?). (3.349

Bee=B+(e+{) micz +{ mgC2 + mzcz
Equation(3.34a shows thak and{ are two independent 2PN generalizations of the well-known Nordtvedt 1PN modification
of the gravitational coupling [second term of the right-hand side of(3.349, #(EX®/mac?
+EZ®mgc?)]. In Egs. (3.34, we have simplified the writing by dropping all tildes in dimensionless ratios such as
EQ®mac? or (U?)a/c*. We shall continue doing so in the following each time this does not lead to any ambiguity.

In fact the two roleg3.33), (3.39 of £ and{ are deeply connected. Indeed, the Lagrang®83 represents the interaction
between an arbitrary number of non-self-gravitating mass points. From it we can formally reconstruct the Lagrangian repre-
senting the interaction betwe&hweakly-self-gravitating bodies4, B, ... by considering each body as a collection of mass

Note, as in footnote 7 above, that in the one scalar ¢asm be formally expressed in terms of 1PN parameters: 8?/7 However,
this expression is singular whep— 0.
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pointsmy, Mg, ... (held together by a slow orbital motion within the volurd@. Let us denote byr(x) the average mass
density withinA, such thatf 4d3xo(x)=m%=3,_,m3 gives the total Einstein mass of body Then, ifA andB label two
point masses belonging to the same botlyone can rewrite the su¥i,..gG mﬁmg/rAB as an integral

GU(Xl)U(XZ)d3X1d3X2 0
=mU),+0
fA X1 =X AV

1
?> , (3.39

whereU (x)= [d®xGa(x')/|x—x’| and where the angular brackets denote an average weighted ®inilarly, if A, B, and
C belong to the same body, the sumS 5.g.cG2MamMImM2/r sgr s can be rewritten as an integral:

[ Sttt ,of1)
Using such results, the interaction Lagrang{8r83 leads to
o0 Gmimimfmy o GEmymimtmy ¢ GEmlmsme 3+ £ v Sy
A#(Bep) VAl act upC” 6 axb7ceD TaplpelepC” 2 BEA#c Vsl AcC 6 2 2
U+ 3, ijf;:‘% Uyt 3o+ S (VP UD), 337

where we have taken into account the different ways tone introduces a test particle of negligible mass, located
choose infinitesimal elements in the same body to computat x*=(x%x'), with an arbitrary four-velocity*=(c,v').
the correct multiplicities[In pictorial language, if we denote We can now write the N+ 1)-body Lagrangian describing
the first two terms by (BéDIB) and Es:p/2), the N massive bodies and this test particle, and identify its
respectively’® the following ones correspond to My-dependent part with the individual Lagrangian of the lat-
BX(EA:ZSC/3)+(ZBBAAC/2)1 (Zspacl2+Zpacel2), (Zaappl2),  ter: namely,
3X (€ japl3+ €apal3)+ (Zsunsl2+ Z appil2), Where a re- . . _ _ .
peateéAilrg]dex rl:lBeAans infinitesimal volume elements inside the - P2Tx",01) = —Mocy=G,,,(x")v*v
same body]. - T~ NIV S -~ S
The resultg3.34) can be directly read off the Lagrangian Moc’l _gO_O(X )= 2a(x)vile
(3.37). Indeed, the last sum ifB.37) leads to thes and ¢ =G (xMo'vlic?2 4.2
renormalizations of the effective gravitational constant
(3.343, while the three-body sum gz 4. yields the renor- _
malizations(3.349 of the body-dependent Eddington param- This identification therefore allows us to compigg,(x")
eter g up to order 1¢° included forgoo [i.e., up toO((Gm/rc?)®)
Be: included, 1/c® for Gy;, and 1¢* for j; .
If we are concerned only by the dependence upon the new
IV. SECOND POST-NEWTONIAN ORDER METRIC parameters and { appearing at the 2PN order, E®.37),
we can consider a particle at rest, since éhend{ terms are
not velocity dependent. We therefore conclude immediately
As is well known, the N-body Lagrangian contains thatQy andgj; do not involve the parametersand{ at the
enough information to derive the physical mefig, at any 2PN approximatiorfi.e., at order 16° for Go; and 1£* for
spacetime poink outside the bodies generatiigg,, . De- "g'ij), and thafgy,,= — 1+ 8gy, can be deduced from the La-
riving this metric is important because it allows one to com-grangian
pute 2PN effects on, for instance, clock comparison, light
deflection or time-delay experiments. To comp’ﬁ;g(xx),

A. N-body physical metric

The index 0 of this test mass should not be confused with the
time componenk®. It has been chosen so that the body-dependent
%The normalization of the term is chosen for consistency with quantitiesa? , ,Bib, ... of Egs.(2.17 reduce to their background
Appendix A. valuesad= a?(¢o), B2P=B2(¢,), ... for the test masB,.
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Ltest particl%x)\) — _'r‘ﬁocz 1— 5@'00()()\)

~ 1_
= —Moc?+ §m0025§00+ 0((8900)?). (4.2
Comparing(4.2) with (3.37) yields
G3mAmBmc G3mamgme G3mamgmc
) +2 Ulp+2
vt )= 5 3 (o e BT 2eZ b (U @ 2 o ool 0"
G3mamgmc G’mymg
+2f X (> —6<<U>A+<U>B>+2§E 6<<U>A+<U>B>
a#B=C loal aBlBCC AB loalosC AZB I
Gmy
+(8+20) 2 ——5(U?)a, 43
A ToaC
|
whereroa=|x—xX,|. [All the masses entering this equation - € )T s
are evaluated ap= ¢, although we have dropped their in-  92pnE(,8) =~ 5 | d°)0o(X) U3(X)— —f f d°xd"x
dex O for easier readingWhen a continuous description of _
the source bodies is used, this takes the simpler form XU TFEHUKX) @5
X=X’ ’ '
SoprBoo &:0) = ius(X)Jr ij 43y’ Go(x")U*(x') where the tilde decorating the various quantities means as
2PNZ0 3¢’ |x—x'| before that they are measured in the physical u@is).

a(x ,Go(X")U(X"
§j d3x’ )j U(, )X,,( ) B. Exact one-body metric
In the present subsection, we verify and complement the
Go(x")U(X) Al above results by using the exact static and spherically sym-
Ix—x'| (4.4) metric solution of the field equation2.8a and (2.8 de-
rived in section 2 off24]. In the coordinate system intro-

duced by Jusf38,39,

+ %U(X)J d3x’

Using a self-explanatory notation, the four terms (df4)
correspond to the diagrameapa, €anrs Zaaso, and ds2 = —e’c?dt?+e "[dr?+eNd 6>+ sirfad$?)],
Zapoa, respectively, the inde meaning here any infini- (4.6
tesimal volume of matter, and the index O referring to the

spacetime poink where the metric is computed. It should we found the solution
be noted that formulag4.3) and (4.4 are valid in the

g* -harmonic gauge used to derive tRebody Lagrangian in

Sec. Il A. However, it is easy to see that the corrections

proportional toe and{ are the same in all usual coordinate

systems/ADM gauge,g-harmonic, ..), since these param- e’=(1—alr)"a, (4.7b
eters appear for the first time at ordec®in the time-time
component of the metrit In particular, the fact thai,; and

e=r2-ar, (4.7a

— . , S where
gi; do not involves and{ at the 2PN order is valid in any of
these coordinate systems.
Let us mention for completeness that the presence of _2G,my 26, 3 0 i
and{ modifies the total energy of a gravitating system by the T2 A @d X(=TaotTei) (4.8

amount

is the Einstein-frame mass parameter, amad is a
constant of integration. Introducing the parametpr
=(1/a)In(1—alr), the equations controlling the radial vari-
ation of the scalar fields can be expressed by saying that
120f course, it is always possible to introduce by hand a spuriousp®(p) follows a geodesic of the metriey,p(¢°), i
dependence on these parameters, by redefining for instance the sp¥v.5(¢°(p))(de?/dp)(de®/dp)dp=0. In particular, p
tial variables ax’''=x'+ O(e,{)/c*, whereas any usual coordinate being an affine parameter, the normdx?/dp is constant
transformation involves and{ at order 1¢°. and given by
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de? deP

2_
A¥an(®) 77— dp dp —b®=const.

4.9

The actual geodesic traced out ¥(p) in the internal scalar
space is uniquely determined by the initial valuespatO
(i.e., at spatial infinity ¢?(p=0)=¢?(r=x)=¢J and
(de?/dp)(p=0)=Kk?, say. Assumingp§ andk? given, we
can choose field variables in the scalar space so that t
metric y,p(¢) reduces to the constaay, all along the line
@(r)rc[o~7 (Fermi coordinate system in the space. This
allows us to write the solution df.9) in the simple form

-

Using then the results $24], we can relate tha integration
constantk? to the matter distribution:

a
gog+ pka= (,Dg'f' gm

p?= (4.10

G, ‘
?f VO Bxa (@) (T2~ T). (4.1

Note that (4.11) is valid only if the ¢? coordinates are
“Fermi” all along the solutiong?(r). When using generic
scalar variables, the quantity®(¢) appearing on the right-
hand side of(4.11) must be replaced by the parallel-
transported value of the vectaf(¢) up to the pointpg. To
simplify, the reader can think that we work from the begin-
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with the one obtained for an isolated pointlike bo#lyfsee

Eq.(2.18],
1 1
of 2| -et-etr+of 3.
(4.13

we can deduce th&f=G, m,ai/c? so that, using4.8) and
.11, the actual expression of the paramete} for ex-
tended bodies reads

b+O
o

G, a,z'i-\mA
rc?

¢*=¢5—

[ Voaxator -T2
f Vo, d3x(= T2+ )

Note the change of sign of the pressure t@rj,[ri\ between the
numerator and the denominator, which makégdiffer from

a§ at order 1¢2 even if the functiona®(¢) is a constant, as

in the Jordan-Fierz-Brans-Dicke theory. In the latter case,
one findsa=a’x (1—2/ /g, d3xT. ./mac?). When com-
paring this result with o4=al+(dMa/aING)(ANG/
dp?) = agx (1—cp), we get the following expression for the
compactness in Jordan-Fierz-Brans-Dicke theory:

(4.19

Ca= Zf VO, d3xTL /muc?. (4.15

ning with aflat o-model metricy,p(¢) = 8. The only 2PN This result is an(exacl generalization of the Newtonian

contribution that we would forget in that case would derivevyirial theorem fd®xocU=6[dxp+O(1/c?) which is valid

from the firstX dlagram of F'Q 7, and would involve the in the Jordan-Fierz-Brans-Dicke theory and therefore also in

contractionR . ¢) @aahasa§ which vanishes identically general relativity(in the limit «®—0).

because of the antisymmetry of the Riemann curvature ten- The exact solutior(4.7)—(4.10 can now be expandea

SOr Raped(¢) = — Rpacd ¢)- la Eddington in powers of t/ Although the coordinate sys-
By comparing the behavior at infinity of the solution tem (4.6) is as good as any other to verify the 2PN terms

(4.10, involving the new parameters and ¢, it is convenient to

express our results in isotropic coordinates, to make better

contact with the general relativistic result. Let us then define

k@ 1 : ; 2_
a_a_ " | . a new radial coordinate such thatp(1+a/dp)“=r. The
L © r_z)’ (4.12 Einstein line element4.6) now readq 39]
a 2b/a —2bl/a 2—-2bla 2+2b/a
— _ _ 2442 _ . 2 2 2 H 2
ds? (1 4p) 1+ P c2dt’+| 1 4p) 1+4p [dp?+ p?(d 6%+ sirfd¢?)]
bz s 1+ a} 1
__e2qg2l 2 _ A il
c-dt [ PRy 6p3(1+ 8 @) o
b b? 1+ a4 1
+[dp?+ p?(de?+sirfodp?)]| 1+ ;+ Zz( 1- TA +O<;g”, (4.16

where we have used Eq&t.9) and(4.14 to replace the constam@ in terms ofb? and aiz(aiyabag)(p:%. The metric

which determines the dynamics of test particles in the vicinityAos not the Einstein metrig;w but the physical one
’g‘W=A2(¢)g;V. We must therefore expand al#d(¢) in powers of 1p, by using the exact solutio®.10 of the scalar
fields. We get
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A%(p) b (apBoan)| b?
_% 1_(0‘Aa'0);+ (aAao)2+%Zz

( )(1+ a?)
—| (B’ aan) +B(@nao)(@aBoan) +4(anao)®+ aAaOZ =

b3 1
247 +o(—4) (4.17

where we have seta(AaO)z(af\yabab)(P:%, (aA,BOaA)E(aiﬁabag)F%, /B’A,i’Az(ﬁ;bcaiaﬁaj)@:%, and where the
o-model tensors?, B,,, and By, have been defined in Eq.10—(2.12 above. Finally, when using the physical coordi-
natesp=A(go)p andt=A(go)t [see Eq(2.6)], we find that the physical line elemed® ?=A?(¢)ds? reads

4

ﬁ) 14T +o(1” (4.18
pcC ( ) e ’

3 Fa)\®

f.‘ )<1+/3AA> 23z (1+B)+0

ds2=—c?dt? {1 2~ 2+z

3
1+2—2-(1+ Va0 +5

+[dp 2+ 7 2(d6?+sirfod ¢?) ]

where

2 8 — Y A0 (1 )A()/Z) YAA

0 0

=—g _|__8 + 4+ ) — —_—, 4]93
9 AAA 3 AA ( YA0) 36 ( — /2) 18 (

— 4— — Va0 (14 ¥ad/2? van
3mas 12 (14 yau2) 6
and where we have set
A= fal A@0) = GagMa= G, A%(0o)[ 1+ (aao) IM, (4.209
— (apa) — a/zx
’}/AO_ 1+ (aAao) ) ’}/AA_ 21+ ai' (4zob
ho 1 2
Bar= E(aAﬁoaA)/[1+(aAao)] , (4.200
0 _ 10 _a_b _c 3
eapn=(Bapcaaaaan)/[1+ (apag)]°. (4.200

As a check of the consistency of our method, it is useful to compare the 2PK Lagrangian of Sec. Il B with the test-particle
Lagrangian(4.1) written for the metric(4.18. Let us first rewrite this metric iig* -harmonic coordinates. We find

3B yao(4+ ya YA 1
1422, ¥ ol _7A0)_ 'yAi )+O(_8)’ 4.213
4 8(2+ yan) A2+ van) ¢

2 3

T Ma
~Go=1-275+2| 75| (1+ Bl —2| L5

Xix]

2 — — 2 2 — 2

~ Ma — a— [ — 5 YaA(2+ yao) Ha) (24 vp0) 1
i = Gii 1+2 1+ + 1+2B8%+3ya0+ = + 2887 A | 2D 2 s ol &,

dij = 9jj 2( 3’Ao) ( Cz) Baat37a0 4(7Ao) 42+ yap) 2 | re? 22+ yan) P
(4.210

wherer =/§;;x'x! denotes thegy* -harmonic radius, related to the isotropic radiusy
5 _
1+ ya0/2)2 1

r=p| 14| —2 L+ yad2” =1 1. (4.22

[This g* -harmonic radius should not be confused with the Just radius used in Eg6—(4.13 above, also denoted hy]
The test-particle Lagrangian deduced from the meé#i21) agrees with the LagrangidB.22—(3.26), written in the particular
case of two bodiesmy, mp. It is notably easy to check thésAgA contribution in (3.26, which comes from

the %B_term of(4.213. [The {a0a0 @ndx aoao CONtributions in(3.26) cannot be checked, because they involve the square of the
test masam,.] To ease the reading, we have used a slightly inconsistent notation in expressing the metric cogfficient
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(corresponding to the coordinate syst&min terms of the originalEinstein-framg coordinates<. We use here, as we did
above, the simplifying fact that dimensionless ratios sucjp/as? are numerically equal to their physical-units counterparts
-~ 2
wlree.

The 2PN (weak-self-gravity limit of the one-body metria4.18 [or (4.21)] can be obtained by expanding the body-
dependent parameters in powers of the compactness of dpdyg in Eqs(3.29 above:

a=Gmy| 1= et B2+ )apt| 5+~ 887 |bs|+O(s?), (4.233
BAA=B—(L+2B—nB)ca+O(s?) & mi(1+BL)=(Gmy)Y1+B—({+6B8— y)ca+O(s?)],  (4.23H
— 2 8— vy
B—§8+§IB+1—8+O(S), (423@
Yao= v+ 7 1+90A+O(52) & pa(l+ ya)=Gmyl 1+ y+ gCA-I—O(SZ)), (4.2309
— 4— 15+8y__
=3B+ ——r+0(s). (4.238

We thus recover that the spatial met'(jpr‘ does not depend on the parameterand { at the 2PN order, as shown by Egs.
(4.230 and(4.239. On the other hand, the and ¢ contributions tog,, can easily be deduced from the above results,

~ (e+2¢) Gm
SomnBod e, 0)= g5~

consistently with Eqs(4.3) and (4.4).

20 (Gmy\2 Gmy\®  —
<U2>A+§(TA> <U>A+% — +0(B8,y)+0

1
?) , (4.29

V. 2PN EXPERIMENTS

A. Constraints from 1PN experiments

Solar-system experiments impose tight bounds on the Eddington paran?eﬂed;ﬁ_[zs,zq. Using Egs.(2.15), they can
be written as

7[<2x10°3 & —1073<— —— =(aPy,paP)o<10"3, (5.19
2+ vy
_ 83
|B|<6x107% & —1.2x103< lg_zz(aaﬁabab)0<1.2x10*3. (5.1b
(2+7y)

Let us first discuss the lessons one can draw from the boundg pe at most of the same order of magnitudeyasn par-

(51) if one interprets them within what we consider a mOStticu|ar, the 2PN paramete(§_3@1 which involve respec-
natural theoretical framework. Since we assume that th@vely 3 and 2 factorsa§, are expected to be of order
(o-mode) metric y,;, is positive definite, so that the theory |e|~|ao|<=3%x107° and|{|~a3=<10"%. The correspond-
does not incorporate any negative-energy excitation, Edng 2PN deviations from general relativity are thus generi-
(5.1a constrains the magnitude of all the components ofcally constrained at the levet 107 3% (Gn/Rc?)2~10"15,

ag. 1PN experiments thereby constrain the linear interactionoo small to be detectable in the solar system, even in future
of the scalar fields to matter to be small. On the other handhigh-precision experiments. From this point of view, our
our diagrammatic analysis of Sec. Ill shows that any observeonclusion is therefore that solar-system tests cannot probe
able deviation from general relativity involves at least twothe 2PN structure of gravity. However, they can give a clean
factorsag, to fill the end blobs connected to scalar propaga-access to the Eddington parameter which is of greatest
tors, in diagrams such as Fig. 7 or any higher order onesignificance as it measures the basic coupling strength be-
Moreover, theoretical “naturalness” leads us to expect thaween matter and the scalar fields, and constrains all the
coupling functionA(¢) entering Eq(2.3) not to involve any  other PN parameters. Within this viewpoint, the only mean-
large dimensionless number, so that the successive derivimgful testing ground for 2PN and higher-order effects are
tives of InA(e) [such as,ng, ;gc, ...] area priori ex-  binary-pulsar experiments. Indeed, since the self-energy
pected to be of order unity. The conclusion is that we antici-Gm/R¢? of a neutron star is typically of order 0.2, the 2PN
pate the new parameters entering any post-Newtonian ordeffects<10 3X (Gm/Rc?)? can yield significant deviations
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on timing data. Moreover, in such strong-field conditions, the (aB?a)=(TrB)(aBa)— (deB)(a?), (5.4
sum of the series of all higher post-Newtonian orders may be

large enough to compensate the globgl factor of all the ~ where the trace and determinant are taken for the2 2na-
parameters. We have indeed showi48] that nonperturba- trix (8%,). This relation shows that even in the case of a
tive strong-field effects can compensate even a vanishinglityperbolic metricy,;,, the parametef is constrained to van-

small a§~ — 3 v. The overall conclusion is that two different ish with 8 and .

regimes of gravity must be distinguished) the weak-field On the other hand, one can make more definite assertions

conditions of the solar system can give a clean access to tlie we assume that there is only one scalar field. In this

fundamental parameter ; (ii) higher post-Newtonian effects monoscalar case, the phenomenology of theoretically ex-

can be tested in the strong-field regime of binary pulsars. pected deviations depends upon the magnitude of the curva-

These conclusions, derived from an assumption of “natuiure parameteB,=d°InA(¢o)/d¢;. Indeed, we have then the

ralness” of the coupling functioA(¢), must be qualified if ~following links between 1PN and 2PN parameters:

we adopt(still within the context of tensor-scalar theories

more “phenomenological” point of view, i.e., iA(¢) is ,3_:

permitted to involve large dimensionless numbers. In such a

case, the 2PN parametéB30 can be of order unity in spite

of the bounds(5.19 on y. This is particularly true of the _ 2 2 203 _ E e

parameter, which can be of order unity even K(¢) does £=Boag/ (1+ap)™~ 7 Por: (5.50

not involve numbers larger than 30. For instance, in a

model with two scalar fields and a flat-model metric  Therefore, if B, is somehow known(or assumedto be

yab=6ap, the values rather larg&* (say |Bo|>5), we could conclude thati)

among weak-field experiments, the most sensitive probes of

a§~10*3, @,=0, Bi~1, B17~30, (5.2 possible deviations from general relativity are high-precision

measurements g8 and(ii) pulsar measuremengdiscussed
give (a?) o= a§~10‘3 and (@Ba)o=a1B112;~10"3, con-  below) of the parametet appear, at face value, to be even
sistently ~ with (5.1, but ¢~(aBBa)o=a 8%, more sensitive probes of non-Einsteinian physics. However,
+a1,8§2a1~1. By contrast, getting ~ 1 seems less natural, the latter conclusion is not quite justified because the ap-

as some components @.0. would have to be as large as proximate analytical treatment given here is inappropriate
3% 10* to compensate thagagag factor. when|By|>5, and must be rep_laced by a complete numeri-
More generally, it is easy to see thais a priori uncon- qal treatment_ to correct!y take into account_the nonperturba-
strained by the solar-system boun@sl). Indeed, from the tve effects discovered iPA0] (more about this below
positive definiteness of the metrig,,, we can use the The conclus[on of thlS"; Igngthy dlscussmn.ls therefore.that
Cauchy-Schwarz inequality to obtain a lower bothtbr the 1PN experimental limit¢5.1) most plausibly constrain
‘: the 2PN parameters and ¢ to be very small, but that there
is no theoretical impossibility that the latter be of order unity.
2 2 — .= In the following, we will adopt a phenomenological point of
(apBa)o=[(aBa)]lay & {=8B|y[. (53  \jew, and consider that these parametersaapeiori uncon-
o strained to discuss the possible experiments which may mea-
On the other hand/ hasa priori no upper bound, and we syre them. Let us underline, however, that this “phenomeno-
can have (>8pB%|y| if the (e-space vector logical” attitude is still in the framework of our field-theory
(/!B’f"bab)oz(,Ba)gl is almost orthogonal tad, as in the ex- approach, and should not be confused with previous studies
ample(5.2) above. in the literaturd 20—22 which aimed at describing any con-
In Ref.[24], we adopted an even more “phenomenologi- ceivable deviation from general relativity.
cal” point of view, by assuming that the--model metric
vap could havea priori any signature(i.e., that the theory B. Solar-system experiments
could involve negative-energy scalar figldim that case, the

bounds(5.18 on y do not constrain the magnitude ef},

but only its direction: It should be almost a null vector inthe ~ As discussed in the previous subsection, the most impor-

¢ space. Then, it is easy to see thdb not constrained at all tant parameter to determine experimentallyyisas it mea-

by the experimental limit¢5.1), and that/ is not constrained sures the basic coupling strength and constraipsiori all

either if the theory involves at least three scalar fields. Howthe possible deviations from general relativity. It has been

ever, from a theoretical point of view, it seems more plau-shown in[27,26 that the cosmological evolution of tensor-

sible that the gravitational interaction involves only a small

number of massless scalar fields. If it involves only two of

them (or less, the Cayley-Hamilton theorem yields et us note in this respect that in the string-derived model of
Ref. [26], Bo~40x where the more fundamental parameieiis
expected to be of order unity if the considered scalar field is the

13The fact that we are able to derive relations between 1PN andilaton proper. On the other hand, in the case of a modulus field,
2PN parameters is a further illustration of the power of our field-«x can be expected to involve a small “loop factor? (47?) !
theory approach. which can naturally compensate the factor 40.

1
Poagl(1+ag)?~—7Boy, (553

N -

1. Light deflection and time delay
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multiscalar theories generically drivestowards 0, and that that no 2PN deviation from general relativity can complicate
its present value is expected to kel0~’. The 1PN devia- their interpretation in the case where the data are too scarce

tions proportional toy, entering light-deflection and time- t0 allow a clean separation ofrland 1f* effects. Indeed, at
delay experiments, are thus expected to be comparable tbe level y=< 10 © that these experiments aim for, the 2PN
2PN effects, if we adopt the phenomenological point of vieweffects proportional to this parameter in E§.6) are totally
that the 2PN parameteesand { area priori unconstrained jrrelevant!® On the other hand, one remarks that thepa-
(and thatB may be much larger thaw). It is therefore rameter which will be measured by these experiments is
important to determine whether these effects can be distir‘me body-dependent quanti%o rather than its weak-field
gg:‘fgg%nﬁg% ﬁ?nceh- dce)tlger.eXWe_shaItI see .Zere” that.tl'ghttﬁmit v. However, the self-gravity renormalization ¢f dis-
) _y _perlmen S are ldeally suite %Iayed in Eq.(5.7) is already strongly constrained by the

an accurate determination of in the solar system. . — —

First of all, it is immediate to see that these experimentd LR (Iuna[3 laser rgngln)gra boundzs on ’Zf‘lﬂ_ Y
do not depend or: and ¢ at the 2PN level. Indeed, our (|71<2x10"°[29]). Using |EZ™|/mpc~2Xx10"° for the
results of Sec. Ill and IV show that these parameters appearun, one gets
for the first time at orde©(1/c®), in the time-time compo- . L
nent of the metri@y,. Therefore, they do not enter the 2PN (48— v)(2+ y)|ELM/myc?<1078. (5.9
geodesic equation satisfied by light, which involves only the

O(1/c?) and O(1/c*) orders of the metric. Consequently, Therefore, an experimental determination f, at the
any experiment probing the propagation of light is indepen-10-6 or 10-7 level, which is expected to be reachable in

dent frome and{ at the 2PN level. _ _ missions presently considered by the European Space
We compute in Appendix C the 2PN light deflection by a Agency such as GAIAGlobal Astrometric Interferometer
massive body and find for Astrophysic or SORT(Solar Orbit Relativity Test will

indeed give a clean measurementofThe same conclusion

2uA(2+ YA 2+7y)
Ap= el ZYAO) 1-— #al 2)/) a fortiori applies to the expected measurement, at the> 10
PoC PoC level, of y5o by NASA’s Gravity Probe B mission. In this
2 : . : — —
T pa 31— 1 case, the relevant  inequality is 84 v)(2
T4\ poc?) [T TAY |0 +9)|[EY™Y/m,c?<2x 10712 B
(5.6) Finally, let us remark that the value of we are talking

about in this work is the one corresponding to the value of

Here p, denotes the minimal distance between the light raythe scalar-field background3 around the solar system. As
and the center of bodf measured in isotropic coordinates. remarked in[22], it differs from, say, the cosmological av-
The body-dependent parametgx, entering the first term of erage ofy (which is the one discussed in Ref27,26) by
(5.6) can be expanded in powers of the self-gravity of bodythe effect of the spatial fluctuatioAU of the gravitational
A, as in Eq.(4.230 above: potential. However, we show in Appendix B that the corre-

L __Eg¥ sponding change iry is given by 48(2+ y)AU/c? and is

Yao=Y— (48— y)(2+ ’y)m'f'o ?)' (5.7 therefore eﬁ)ected to represent only a very srralitional
A change ofy of ordef® 2|83,|AU/c?, where|B?,| is the
Note thatB appears in the self-energy corrections to the 1PN10rm of the matrixg®, (say the modulus of its largest eigen-
effects, whereas it is absent from tBé(Gm/rc?)?) contri- ~ Value.

butions. _ .
Contrary to the hopes of Refi&l2,13,15,18 a conclusion 2. Other possible 2PN experiments
of our approach is that improved light-deflecti¢or time- The previous subsection showed that experiments on the

delay experiments do not give access to any theoreticallypropagation of light in the solar system cannot give access
significant 2PN parameter. In fact, the formal 2PN generali{within our framework to any post-Newtonian parameter
zation of the Eddingtony parameter introduced in Refs. b1’ " The question that we will address now is whether the
[12,13 (under the different notations and 5; see alsd15]  2pN parameters and¢ can be measured in the solar system,
where it is denoted\) is equal to #I', wherel is the or at least if it is possible to constrain their magnitudes at an
function of 1PN parameters given in E@.23¢ above: interesting level.

€Epstein-Shapird- OFischbach -Freeman A Richter-Matzner

4 — 15+ 87_ 15t the qualitative level, it remains that checking the coefficient
=1+ 3 B+ 3 Y. (5.9 15x/4 appearing in the second term @&.6) will be a new confir-
mation of the nonlinear structure of general relativity, even if it
Our conclusion concerning the impossibility to probe sig-does not constrain any plausible theoretical alternatives.
nificant 2PN deviations from general relativity in light- Even if |3%|~30, the fact that\ U oems/c®~10"° indicates a
deflection and time-delay experiments should not be viewedegligible fractional changesy/y~6x10"*. Independently of
only negatively. The positive aspect is that these experimentsis argument, we note that the present observational limitg on

can give a clean access to the fundamental paran%tiee., give | Scosmey| =5X 1078
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One of the most famous tests of post-Newtonian gravity is We have seen in Eq$3.299 and (3.34a above that the
the perihelion shift of Mercury, and more generally tests ob-effective gravitational constanB,g depends on the self-
tained through a global fit to the orbital motion of the plan- energies of the bodieA and B. In particular, the Earth
ets. Before any calculation, it is clear that we cannot hope t¢) and the Moon () do not fall with the same acceleration
measure the Mercury perihelion advance by traditionatowards the Sun, sinc&g,# Gg. This violation of the
means to an accuracy of 2PN significance. Indeed, the 2Pbtrong equivalence principle implies a polarization of the
effect is smaller than the 1PN prediction by a factorMoon’s orbit (Nordtvedt effect that can be tested in the
~(Gmg /rc?), and corresponds to an advance~af0 ® arc  lunar laser ranging data. The deviations from general relativ-
sec per century. However, it may be, one day, possible tity are proportional to the ratio
reach this level by using an artificial satellite orbiting around

Mercury and tracked with very high accuracy from Earth. To Goe— G@L on. — _
increase the parametém, /rc2, one could also observe the G 2 (Co=Cc) +[{+O(B, v)]co(Ce —Cc)
perihelion shift of a drag-free satellite in close elliptical orbit

around the Sun, but the construction of such a satellite seems +0(ag ,bg ,ac,bo), (5.11

unrealistic with present technology. Anyway, several reasons
show that such experiments could not consteaand{ at an Wherecg<Cq<Co are the compactnesses Of the three boa-
interesting level. Indeed, we compute in Appendix C below®S: and where we have neglectad~b 5 ~C% (as well as
the perihelion shift per orbit for a test masg<mg, and  ac @ndbe) with respect tacsC,, . The first term, involving

we get in isotropic coordinates the parameternz4,8—7 is the standard 1PN deviation

o which has been constrained at the leVg|<2x10 2 by

_ 67Gmg 2y—B+iceg GCGmg |7 ¢ LLR data. The dominant 2PN contributiof¢o(Cg —C¢), iS

Ad= a(1—e?)c? 3 + ac? §+ 6 equivalent to a renormalizaton of x into
. (p—2¢ce)~(n—10"°¢). From a theory-based viewpoint,

O(B,v) 1 such a renormalization is of no consequenceyamnd{ are

+0(e?) | |[+ —5—+0| =% (5.10 - : - ~h
C C both proportional to the basic coupling strength we can

always neglect théractionally small correction 10 to 7

(in the same way, as explained above, that one does not have
wherea is the coordinate semimajor axis of the orlatits  to worry about “cosmic variance” effectsHowever, from a
coordinate eccentricity, and,~4x10"° is the compact- phenomenological viewpoint, is an independent quantity
ness of the Sun. Although enters this expression, it cannot which would complicate the interpretation of a high-
be distinguished from a small contribution of2 8 at the  precision LLR experiment reaching the-10"° level.[This
1PN level. In fact, it comes from the expansi¢f.23b level would correspond to measuring the Earth-Moon dis-
of the body-dependent parameterB.C =B— {co tance with 0.1 millimeter e}ccurad}dn other words, the phe-

— 4 _ >~ nomenological point of view obliges us to look for other

+0(B,v)/c*+0(1/c”), and is thus a mere renormalization jhgependent experiments allowing one to separate the effects
of B. On the contrary, the contribution proportionaldé@an of » and{.
in principle be distinguished from the 1PN effects, since it The polarization of Mercury’s orbit around the Sun due to
involves a different power ofGm/a). Numerically, we find  the presence of Jupitdi.e., the Nordtvedt effect for Mer-
that Mercury’s perihelion is deviated from the general rela-cury) can give access to a different combination;oand the
tivistic prediction by~0.5%¢ mm per year, too small to be of 2PN parameterg, . The corresponding deviation from
observational significance. In the totally unrealistic situationgeneral relativity is proportional to
of a drag-free satellite grazing the surface of the Sun, this

2PN deviation would be of order 30 myr2, which isa Gww—Gm_ 7 €

priori much easier to detect. However, to distinguish the G =T pCef 2+§ bo+{x0(CoCy)
O(Gm/ac?) and O((Gm/ac?)?) contributions, it would be .

necessary to compare several satellites at different distances +0O(B,y)0(cy ,cé), (5.12

from the Sun, or alternatively to look at periodic effects on a
given orbit, which may be much more difficult to observe where ¢y, <c;<cp are respectively the compactnesses of
than secular effects. Moreover, one will have the difficulty of Mercury, Jupiter, and the Sun, and where we have neglected
separating the 2PN contribution from the Newtonian contri-CoC; with respect td3@~c® The dominant 2PN contribu-
bution due to the quadrupole moment of the Sun, which hation plays again the role of a renormalization gf but this
the same dependertéemn a (not to mention the huge ther- time into [ p— (e +2¢)bo/co]~[ n—107%(e/2+ ¢)]. Note
mal and electromagnetic effects of the Sun on a close satethate enters now this expression, whereas it was absent from
lite). In conclusion, perihelion-shift experiments in the solarthe corresponding lunar result. This complicates the problem
system can in principle give access to the 2PN parametaf separating the contributions ef and{. It would be nec-
e, but present technology does not give the hope of measuessary to dispose of a third experiment giving access, to
ing it to any significant level. for instance by using the perihelion shi.10. However,
we have seen that such a measure is not likely to be per-
formed with currentor foreseeabletechnology.
"The peculiar anisotropy of multipolar effects will, however, help  Another attempt to determine could be to compare ul-
in this respect. trastable clocks: one located on Earth and another one some-
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where close io the Sun. lndeed, the Einstein effect giVEﬁ']e Edd|ngton parameta_r, nor its body-dependent genera”-
access toy—Qgoo, Where —goo is given by Eq.(4.218 in  zation y,5.] Within a given theory of gravity, these three
g*-harmonic coordinates and by the first bracket of Edtiming observables can be predicted in terms of the masses
(4.13) in isotropic coordinates. T_he general_ rc_elat|V|st|c m, and mg of the pulsar and its companion, which aae
prediction for the rates of clocks is thus multiplied by a priori unknown. The theory is consistent with experiment if
factor [1+(Gmy/rc?)?Bn—2(Gme/rc?)®e+0(B,y)  there exists a pair of massem/,mg) giving the correct
c®]. This gives(relative to a clock on Earjreffects of order  observed values for the three quantitles w, and Yijming-
~1.6x 10 8 for a clock located at the surface of the Sun, This is the so called P-w-y” test, that general relativity
and~3x 10 *% for a clock on Mercury. With foreseeable passes with flying colors, and which establishes the reality of
technology (10'® stability), one might barely be able to gravitational waves. We give below the experimental values
constraine at the O(1) level. As for the perihelion shift quoted in[43]:
(5.10, it should be noted that the parametecontained in

B~ B—{cy is a mere renormalization g8 and cannot P=27906.9807808) s, (5.133
be accessed independently. o e=0.61713084), (5.13bH
A possible way to access thiscontribution in,B,i’A would _

be to measure botB %~ B—{Co and B~ B— {Ce~f P=-2.4226)x10 12 (5.139
at a level<cy~4x 10 °. This would necessitate the track- _ . g

ing of Mercury with few cm accuracy, and the observation of 0=4.22662111)° yr -, (5.13d
a drag-free artificial Earth satellite at the ¥ocm level[41]. 3

This second condition is two orders of magnitude smaller Yiming=4.2992) X107 s, (5.13¢

than what can be done presently. here figures in parentheses representiicertainties in the
The conclusion of the above discussion is that the 2P 9 b P -

parameters and( are extremely difficult to measure in the ast quoted digits. In fact the determinationP®is so precise

solar system. Within a phenomenological approach, the onll_i[g‘at it is necessary to take into account the sr_nall variable
role of these parameters is negative: they complicate the i _opplder er:]ffect due t? ;[]he Gaclceleiatlﬁ? qf (tjhe binary pulsar
terpretation of high-precision 1PN experiments. Hence thdowards the center of the Galakg4]. This induces an extra
solar system appears not to be an appropriate testing groug@ntribution  to Fi’lz which  takes the value Pgq

for probing the 2PN structure of gravity. On the contrary, it = — 0-0124(64)<10"°“ in general relativity. The intrinsic

is perfectly suited for measuring the fundamental parameteyariation of the orbital perioddue to gravitational radiation
Tas underlined in Sec. V B 1. damping is thus given by

_ _ Pobserved™ Pga= —2.410185)x10 2 (5.19
C. Binary-pulsar experiments
Let us now consider binary-pulsar experiments, whichln tensor-scalar theories of gravitfy, is modified by a
will turn out to be much better testing grounds for the 2PNsmall contribution,6Py,, that we will take into account in
structure of gravity. Since the self-energy of a neutron star igur calculations below.
typically of order 0.2(as compared te- 10 ° for the Sun, The binary pulsar PSR 153412 has been observed only
the 2PN and higher-order effects play an important role irsince 1991, and the present experimental accuracy on its pa-
the behavior of binary pulsars. In the present subsection, weameterP is not comparable with the one of E¢.139
will show that the combined analysis of several binary-pulsaabove. However, this pulsar is much closer to the Earth than
data has the capability of constraining bathand ¢ at an PSR 1913-16, and it has been possible to measirend
interesting level® Our aim is not to perform a full statistical Yiiming (With very good precision as well as two new timing
analysis, but rather to illustrate the different types of con-observables;, ands, measuring the amplitude and the shape
straints that can be obtained. We will consider four binaryof the Shapiro time-delay caused by the companion. Out of
pulsars, for which different observable quantities can behese two parameters, only is measured with precision.
measured. [Note that, geometricallys=sini is the sine of the angle
The Hulse-Taylor binary pulsar PSR 19486 has been between the orbit and the plane of the gk&s above, the
continuously observed since its discovery in 1974. Besidethree quantitiesb, yiming, ands can be predicted as func-
the Keplerian orbital parametef® (orbital period and e  tions of the masse®,, mg Within a given theory of gravity.
(eccentricity, three “post-Keplerian”[31,32] observables One can therefore test if this theory agrees with experiment
have been measured with great accuracy: the periastron agy looking for a pair of massesr(, ,mg) consistent with the
vancew, the secular change of the orbital periBdand the three observed values @f, Yiming ands (" w-y-s” test).
time-dilation parametery;,ing Which describes both the We shall make use of the latest experimental data discussed
second-order Doppler effect due to the velocity of the pulsam [45]:
and the redshift due to the presence of its comparjibhis
last parameter should not be confused with the meyyig,
%N order not to create any confusion with our use of the word
post-Keplerian in the present paper, we refer to these quantities as
¥n the language 0f32,42, we perform a combined theory- “timing observables” instead of “post-Keplerian” parameters as
dependent analysis of several independent pulsar data. used in[31,32.
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P=236351.7026{2) s, (5.153  the center of the Galaxy is therefore proportional to the self-
gravity-modified effective gravitational constaf,, [cf.
e=0.27367714), (5.15h Egs. (4.2039 and (4.233 abovd, whereas the companion is
accelerated by a force proportional to the weak-field gravita-
X=3.7294582) s, (5.150  tjonal constantGy,=G, Eq. (2.14). As shown in[46], this
. . 1 violation of the strong equivalence principle causes a “gravi-
w=1.755734)° yr -, (5.150  tational Stark effect” on the orbit of the system, polarizing
its eccentricity in a particular direction. A highly circular
YViiming= 2-08416) X 10" %, (5150 orpit, like theyone oprSR 180027, is therefo?e zery im-

probable. A statistical study can thus be performed to con-
strain the magnitude of the matter-scalar field interaction.
Following the method of46], Ref. [45] has obtained the
bound

s=0.9818). (5.15)

Herex=a,s/c is the projection of the semimajor axig,()
of the pulsar orbit on the line of sigtiin light seconds A
precision should be given concerning the quoted experimen-

tal uncertainties. Referen¢d5] gives (for the more reliable

1.4 GHz datathe A y?>=2.30 andA xy>=6.17 contours in the |6al<1.4x107° (5.17
(r,c) plane withc=1—s?. We deduced from these the

AX2:4 contour which defines, _When projected onto the on the parameteb, characterizing this gravitational Stark

axis, a drg interval for ¢ considered alone. We use the gfect This bound corresponds to the 90% confidence level,

corresponding &, interval for s=y1-c® as a realistic hich plays the role of an “effectived. level” for the non-

1o interval (in other words, we double the stafistical 1 Gayssjan statistics of this tegTwice this value gives the

interval for s to take into account possible systematic ef-gso, C.L ., i.e., the standards2level. Note that this “effec-

fects. We similarly doubled the statisticalvluncertainties tjiye 14 level” is more secure than the standarc 168%)

obtained in[45] for @ and y jming- level] We note, without making use of it, that Rd#7]
The binary pulsar PSR 065%4 is composed of a neu- recently advocated a more conservative bound

tron star of mass=1.4mg, and a light companion of mass |s,|<4x 102 at the 90% C.L(deduced from the analysis

~0.8my, which is probably a white dwarf. The gravita- of seven older binary pulsarsn the ground that the binary

tional waves emitted by such a dissymmetrical system iHSystem PSR 180027 might be too young to provide a fully

volve a large dipolar contribution of orderc®/ in tensor-  gecure test.

scalar theories, whereas the dominant radiation in general The analytic expressions of all the observable quantities

relativity is quadrupolar and of ordercPl The fact that the giscussed above have been derived4i6,32,24. The theo-

observed value o is very small(and consistent with zeJo  retical prediction for the observed time derivative of the or-

constrains therefore the existence of scalar fields, or morital period has the form

precisely the magnitude of their interaction with matter. We

will see below that this system imposes a tight bound on the

]czoljl\éuﬁ,a;?]g};e/;?ga;.;h?ai:r?i:gn{:g]tal data that we will need p= Prsnp?rr]l%pole+ Pg;)pi‘r?lg"_ ngﬁ]d(r)upole_i_ Pg;ﬁ]d;upol_F Pgal+ 5Pgal

+0

i) (5.18
P=88877.0619M) s, (5.163 ¢’/ '

where the different contributions are given in E@52 and

(9.22 of [24]. The same reference gives also the expressions

of the periastron shifto and of the time-dilation parameter

. 5 Yiming IN EQS.(9.20), as well as the “Stark” parametef, in
P=(1x4)x10 %, (5.169 Eq. (31@. Finally, the theoretical prediction for the timing

observables is given in Eq.(3.15 of [32]. Introducing the

The masses of the pulsar and its companion are not knownotation

independently; several pairsnf ,mg) are thusa priori pos-

sible, such as (1.305,0.7mg), (1.35M5,0.8mg) or

(1.40mp,0.9mg). In our calculations below, we will choose M=mp+mg, Xa=ma/M,

the mass pair which gives the most conservative bounds on

the 2PN parameters, nameip,=1.30ng, mg=0.7mg .

[Smaller masses could be consistent with experimental data, Xg=mg/M, n=2m/P, (5.19

but current lore favors neutron star masses close to

1.4mg .]

The fourth and last binary pulsar that we will consider, it can be written as
PSR 1806- 27, is also a dissymmetrical system, involving a
neutron star of massiy~1.4mg and a light companion of X _ ﬁ 3\1/3
. : = —(GagMn/c®)™~. (5.20
negligible self-energy. The acceleration of the pulsar towards n

e<3x10°°, (5.16b
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These theoretical predictions giverhen written out in de- Here we shall estimate what constraints are imposed by
tail) the various timing observables as theory-dependenbinary-pulsar data on and{, when restricting our attention
functions of the masses of the bodies. In general, because tif the lowest-order terms in compactnesses involving them.
possible nonperturbative strong-field effef#®], the latter ~From a numerical point of view, our approximation is rather
functions should be considered dsnctionals of the rough, as the next orders that we neglect are only
1+n(n—1)/2 arbitrary functions entering the definition of a ©O(ca) ~0.3 smaller than the terms we will consider. A way
tensor-scalar theorjnotably A(¢)]. However, if we assume _ofjustifyir_mg our approach is to say that we assume that there
the absence of genuine nonperturbative effects, we can el@ No fine-tuned compensation between the and
pand the functions giving the observables in powers of th¢-dependent terms we retain and the higher-order terms
compactnesses, , cg of the bodies. This has the effect of Which involve new(3PN, 4PN, ..) parameters. We believe
reducing the functional dependence of the observables to at our simplified analysis will give at least the right order

dependence upon a finite number of theory parameters. magnitude for the constraints anand{ that WOUId.fO|
. ow from a more complete theory-dependent analysis.
the lowest orders, there appear the 1PN Eddington param- L )
To write in closed form the truncated expressions of the

etersg and y. As these are already tightly constrained by gitferent observables, let us introduce the notafion
solar-system data, Eq$5.1), we will neglect them in the

following, and investigate the limits that can be set on further V=(G,M n)3 (5.21)
theory parameters. The 2PN parametei@nd { appear pre- i .

cisely at the next significant order of the expansion in comWhereM andn have been defined in E¢5.19 above, and
pactnessef24]. The deeper layers of theory parameters in-whereG, is the bari gravitational constant. Note that since
troduced in[24] always appear with higher powers of the we neglect herexj y, the bare constar@, can be identi-
compactnesse$As shown in Table 3 of24], this is true fied with the gravitational constarE=G, (1+ aé) mea-
even for the different contributions of the gravitational radia-sured in weak-field conditions. The timing observables can

tion, in spite of their rather complicated structgre. now be written as
|
: P e’(1+e%/4
POneoe — 12w§xAngﬁ2—)+0(s), (5.223
- dipole ,. 1+e%2 . VP 1+3e?+3e%/8 X
Pspino— ~27 3 XaXg| (Ca—Cp) Z(l_T)s,/?+O(S )| +4m 5 XaXp (XA_XB)(CA_CB)§WZ_+O(S )|
(5.22H
Squadrupol 32m V° 2 3 1+ 73e%/24+ 37196
Popin0 = — 5 §XAXB[(CBXA+ CaXg) L+ (bpXa+baXp)(e+2{)+0O(s%)] (1-e?)" ,  (5.229
- quadrupole 1927 V° 2 1 5 |1+ 736?124+ 37e*/96
Pspin 2 —_TﬁxAXB 1+§CACB§+ §(bA+bB)(8+2§)+O(S ) 1-e)™? : (5.220
: 1.22x10° '8
P g 1P= — ————(bpXa+bpXp) (e +20)+O(s?), (5.22¢
Vo 1 )
w= ? 1—62 3+(CAXA+CBXB)§+ E(CBXA+CAXB)(8+§)+O(S ) y (522f)
eXg )
'ytiming:EZ T[1+XB_2KACB§+O(S )1, (5.229
&
Sa= bA(EJrg +0(sY), (5.22h
x_VXs[ 1 Lop[® o -
s~ ¢ |1t 3lacelt 5(batbe){ 5+ +O(s7)]. (5.22)
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As in Egs.(3.27) above,s in the error terms on the right-
hand side is a global notation for the compactnesses of the §
bodies, which should not be confused with the timing ob- 01
servables on the left-hand side 0§5.22). The o(V/cd)
contribution inngf,ﬂ"S can of course be neglected with respect
to its O(1®/c®) term. On the other hand, the monopolar and |
guadrupolar contributions should not be neglected in spite of g5k
their being also of orde®(1°/c%). Indeed, the dipolar term
(5.22h can become very small if the pulsArand its com-
panionB are almost identical, and the monopolar and qua- i
drupolar contribution then dominate. The galactic contribu- 0
tion to P given in Eq.(5.229 corresponds to the case of PSR
1913+16, and should not be used for other pulsars. The
parameterc, entering(5.229 is (minug the logarithmic de- L
rivative of the inertia momerit, of the pulsar with respect to -0.05 “ PSR 1913+16
the gravitational constank,= —dInl,/dInG. It has been es- I
timated in Ref[48] to range between 0.5 and 1.7, depending
on the nuclear equation of state used to describe the neutron
star matter. The P-w-y” test in PSR 1913-16 is almost B e —
insensitivé! to the value chosen fot, . On the contrary, the -1 -05 0 05 !
* w-y-s” test in PSR 1534-12 gives slightly tighter bounds
on e and/{ for k,=1.7 than fork,=0.5. In order to derive
conservative bounds for these parameters, we will use th
value ko= 0.5 in the following.

In all the equation$5.22), the compactnesses of the bod- : ) . .
ies can be estimated by using the results of Appendix B oftPIesP or &, directly defines(when assuming the above

[24]. For a realistic equation of state of matter inside a neyindicated values of the mas3es 1o constraint on some
tron star, we found in this reference linear combination of ande. In the cases of PSR 19336

or PSR 153412, the simultaneous measurement of three

PSR 1800-27

PSR 0655+64 | €

FIG. 8. Constraints imposed by four different binary-pulsar data
an the 2PN parametets .

ca~0.2Imp/mg, (5.233  Observables R-w-y or w-vy-s), which are predicted to be
some functions of the four quantitien,, mg, ¢, ande,
aA%Z.lﬁci, (5.23H defines(by eliminating the two unknown masses between the

three equations and by adding in quadrature #esfrors on
the three observablea 1o constraint? on some linear com-
bination of { and . Summarizing: each set of pulsar

- data leads to a reducedy? of the form
The coefficient 0.21 of Eq(5.2338 can be lowered to X3(£,)=({+Npe—up)2la?, equivalent to the & con-

~0.15 for a stiff equation of state, and increased~t6.30 straint— op< {+\pe — up<op. We find the boundéat the

for a .SOft equation qf state. We will choose Fhe central valuela level for the first three tests, and at the 90% C.L. for PSR
0.21 in our calculations. When the companion of the pulsa 800-27) '

is not itself a neutron star, but a weakly self-gravitating body

like a white dwarf, its compactnesg<<c, can be neglected. . —4_ s —2 -3

This is the case for PSR 065%4 and PSR 180027. PSR1913-16: —4x107<{~5x10 8<7X1(g_24’13
The predictiong5.22) of tensor-scalar theories can now

be confronted to the experimental d&a®a13—(5.17). Since PSR 153412 —8x10 2<{+0.15<—10"*

we are working at the first order i#r and {, we can replace ’(5-245

the massem, , mg of the bodieqas well as the correspond-

ing compactnesses, , Cg, aa, ag, b, bg) by their general PSR 0655-64: —7X1073<7<4x1073, (5.249

relativistic predictions in all the terms involving one of these

parameters. By contrast, the dominant contributions in PSR 1806-27: |{+&/2<1.5x10 2. (5.249

PIaduPole (). ¥ timing: @ndx/s should be considered as func-

tions of twoa priori unknown masses,, mg. For each  These four allowed regions of the{ plane are displayed in

value ofe and ¢, we can thus determine if the above four Fig. 8. Clearly pulsar data favor only a small neighborhood

tests can be passed. More precisely, in the cases of PS# the origine=({=0, i.e., of general relativity. To combine

0655+64 or PSR 1806 27, the measurement of the observ-

ba~1.0%5. (5.230

2An  alternative method is to start from the full
20The notationV is a reminder of the fact that this quantity mea- x*(ma,mg,,e)=2,[q°"—q"(ma,mg,¢,€)]%/0>  associated
sures some mean orbital velocity. ) with the three measuremerm%=q§bst o,, and to reduce it to a
2'This follows from the near parallelism of ti2andé curves in  function of £ ande by minimizing overm, andmg . Note that we

the mass plane. neglect the correlations between the three observaples
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4 models, yield stronger bounds on the basic coupling param-
eters. For instance, in the single scalar case, we deduce from
001 —————T———F Egs. (6.5 and (5.25 that pulsars give the limit

i 1 a’3<(6/B2)x 1073, while solar  tests give

] a5<inf(1,1.218,|) X 10~ 2. Therefore, whetBo|>5 pulsar

. tests seem more restrictive. This conclusion is, however, not
. quite justified within our present approximate analytical
| treatment, because wheBy|>5 nonperturbative effects
[40] become important so that one cannot neglect the higher-
order terms0(s") in Egs.(5.22. For a detailed study of the
regions in the &q,B,) plane actually allowed when taking

1 € into account nonperturbative effects, $48,50.

0.005

: -3 ; 1 VI. CONCLUSIONS
—0.005 P : : .
‘T'oi g g ] We proposed in this paper a theory-based framework for

R 2 Zi 1 conceiving and interpreting experimental tests of relativistic
, G 2 Xy 1 gravity. Previous frameworks were characterized by a phe-
Y1 IS I N B A nomenological attitude. Eddingtdd] initiated such an ap-

—o1 — 005 0 0.05 0.1 proach by assuming that thstatio spherically symmetric
one-body solution in a generalized relativistic theory of grav-
ity could differ from the Schwarzschild solution in having
arbitrary coefficients in front of the different powers of the
small parameteG m/pc?. Namely, he wrote

FIG. 9. Region of the:-¢ plane allowed at thedt level by the
four tests of Fig. 8.

the constraints os and ¢ coming from different pulsar ex- B Gm 2

periments, we have added their individygt (as defined _900_1_20‘F+25 pc? oo (6.13
above as if they were part of a total experiment with uncor-

related  Gaussian  errors: x3.(&,0)=x3913:16(8,0) B Gm

+ Xs341 108:) + Xes5+ 64(2.0) + XTs00-2/(2.¢). [In spite 9i =i 1+27F+ ) (6.1

of the non-Gaussian statistics of the gravitational Stark effect

in PSR 1806- 27, we used the boun@.17) as an “effective  thereby introducing at the first post-NewtoniétPN) level

1o level.”] In the approximation explained above, eachis  two independent phenomenological paramegesd y with
quadratic ine and{. Therefore, the suny3,(¢,¢) is a qua-  values one in general relativifiafter having remarked that
dratic form ine and¢. The contour leveiA thot(&f) =2.3, the Newtonian level parametercan be conventionally fixed
wheré® Ax2 = x2,— (x3)min. defines for two degrees of 0 unity]. The Eddington approach has been extended in sev-
freedom the 68% C.L(1o level) ellipse represented in €ral directions. Following some pioneering work of Schiff

Fig. 9. [2] and Baierlein 4], Nordtvedt[5] and Will [6] introduced
In conclusion, our analysis of these four binary-pulsarten independent phenomenological parametgs,y, ¢,
tests yields the boundsit the combined 68% C.).. ai, ay, ag, {1, {2, {3, {4, to describe the most general
N-bodymetric at the 1PN level. Their subsequent work de-
le|<7x1072, |¢|<6x103. (5.29 lineated the various symmetriés.g., boost symmetry, local

position invariancebroken by the inclusion of some subset
Because of our truncation of the observalg®? to their  of these ten “PPN" parameters. In particular, their work
lowest order term iz and{, these values should be consid- made it clear thaB andy play a privileged role in respecting
ered only as estimates of the constraints that binary-pulsanore symmetries than the other parameters. Epstein and Sha-
data can provide. They show nevertheless that possible 2Ppiro [12], and Fischbach and Freeméi3], extended the
deviations from general relativity can be tested with greawriginal Eddington expansiof6.1) of the one-bodymetric by
accuracy in binary-pulsar experiments, whereas we saw iitroducing a parameteegs= 6 describing thesecond
Sec. V B that they are almost impossible to detect in thegpost-Newtonian2PN) order contribution to theisotropig
solar system. spatial metric:

It should be noted that though the inequalitie25 look

numerically less stringent than the solar-system constraints, 3 (Gm

- Gm 2
| y|<2x1073, | B|<6x10"4, they may, in some theoretical gij= ;| 1+ ZyPJr 5 €es W) + .. } (6.2

ZThe nice global consistency of the independent pulsar testd3enacquista and Nordtvef?0-22 tried to extend directly
proven by the overlapping of the strips in Fig. 8, means that theéhe N-body PPN formalism to thesecond post-Newtonian
overall goodness-of-fit criterion associated wiitf,() min is satisfied.  order by introducing a large number afpriori independent
This entitles us to use the variation g§, above {2 ) to define  parameters. Finally, in a somewhat different vein, Damour
meaningful error levels oa and{. and Taylor[31,37 introduced a phenomenological approach
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specifically adapted to extracting the maximum possiblgii) this is the only known class of theories respecting the
number of relativistic gravity tests from binary-pulsar databasic tenets of field theorgnotably the absence of negative-
(“parametrized post-Keplerian” formalism energy excitationsin which very high precision tests of the
By contrast with such phenomenological approaches, wéquivalence principle can naturally be compatible with post-
have systematically adopted in the present paphich is an  Newtonian deviations at a measurable I¥/fji ) they natu-
extension of our previous work24]) a theory-basedap- rally “explain” the key role played by the original Edding-
proach. Instead of trying to parametrize any conceivable pheon parameterg and y at the 1PN level, and have a simple
nomenological deviation from general relativity, we work €nough structurén spite of their great generalty) to allow
within the simplest and best motivated class of non-One to work out in detail their observational consequences at
Einsteinian theories: the tensor-multiscalar theories in whictihe 2PN level. _
gravity is mediated by a tensor field],) together with one Our main results are the following. Two, and only two,
or several scalar fieldsgf; a=1,2,...,n). These theories New parametertbeyond the non-Einsteinian 1PN parameters
are, in our opinion, preferred for three types of reasdns: B=pB—1, y=y—1) quantify possiblenon-Einsteinianef-
massless scalars naturally appear as partners of the gravitéects at the 2PN levek and{. The role of these 2PN pa-
in most unified theorieffrom Kaluza-Klein to string theogy ~ rameters is threefold.

(i) They parametrize 2PN deviations from the general relativistid6dy) physical metric tensor:

G X,)U2 x) 2 Go(x') Go(xX")U(X")
5900(X)=%U3(X)+%Jd3x’u+c_§Jd3xr o J 3,0 CTX)U(

|x=x']| |x=x'] X" =X
+§U(x)fd3x’%+o Cﬁzc—f)m(%). (6.33
590i(><)=0(§,c—75)+0<§), (6.3b
5gij(x)=o(§,c—74)+o($>. (6.30

(i) They determine the renormalizations, duesédf-gravityeffects, of the various effective gravitational coupling param-
eters between massive bodies:

E%rav E%rav E%rav EgBrav _ - Egrav E%rav E%rav
= A:
R e W)(@) Pec ﬂ+(8+€>mAc2+4(chz+ch2>
e U?),+(U? — +0(8.v) +0(s?
. §+§) W9t U0 . o5 300" O(B.7)0(s)+O($?). (6.49
+0(s%), (6.43 Here,G g denotes the effective Newtonian constant measur-
ing the strength of th®©(mamg/r Ag) Ieadin_g gravitational
coupling betweerA andB, while y,g and 8 4 denote ef-
—  — Ao fective Eddington parameters measuring the strength of the
Yas=7+O(B,7)0(9+0(s),  (6.4D E g 9

O(Mamg(Va—Vg)?/T agc?) and O(mamgMmc/(F agr acC?))

post-Newtonian couplings. Moreovey, stands for the com-

bination 48— y=4B8—vy—3, while s~E¥®m¢ denotes
%For instance, in all positive-energy vector theories cougied the strength of self-gravity effects. The more complete ver-

the linear level to some current, the existing equivalence principle sion of our results on self-gravity renormalizations is given

tests at the 10'2 level necessarily constrain all post-Newtonian in Egs.(3.29.

deviations at the-10"° level. Though current unified models sug-  (iii) They determine the renormalizations of the locally

gest the existence of massless scalar fields with compositionmeasured coupling parametdisg., the local gravitational

dependent couplings, they leave open the possibility of a very small

parameter relating post-Newtonian deviations to equivalence-

principle tests(e.g., a factor~10"° was found in string-inspired ZIndeed, we consider the most genaradcalar models described

models[26]). by 1+n(n—1)/2 arbitrary functions of variables.
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constant in physical uni,,,) due to the presence of distant Ward general relativity27,26.?° This conclusion should not
“spectator’ matter(say, a massng at a distanc®) around ~ Pe interpreted as meaning that high-precision measurements

the considered gravitating system: of B are uninteresting. As we saw above, they can, in some
cases(e.g., a largeB, in the single scalar casde more

=X = |4 i sensitive probes of possible non-Einsteinian effects. How-
Gioc=G,| 1 D2 (6.58 . A . ;
ever, in absence of ang priori information on the magni-

tude of B, (or, more generallyB?,), it remains thaty is the
only securely direct measurement of the scalar coupling.
Let us end by stressing again some of the conceptual and
technical differences between the theory-based framework
introduced here, and the usual Eddington-Nordtvedt-Will
DZ)- (6.50 PPN framework(and its extensions The natural range of
values of the PPN parameters is uniformly supposed to be of
On the other hand, we find that and ¢ do notenter order unity, independently of the post-Newtonian order at
light-deflection nor time-delay experiments at the 2PN leveWwhich they appear. In our approach, there is one basic set of
(see Appendix € In particular, we find that the “post- (experimentally smallcoupling parameters,
Eddington” formal 2PN parameter introduced in Refs.
[12,13, as recalled in Eq6.2) above, is the following func- _alnm(<P)

Gm 1
yloc 'Yoc+4 2,3(2+7)+O(_2> (6.5b

Bloc lgoc +§ 8:8

) - — _ ay= =, (6.8
tion of the 1PN parameteif8=g8—1, y=y—1: Je
4 15+87_ wherem(¢) is the mass of a patrticle in the Einstein confor-
€es= 1+ g+ —%—. (6.60  mal frame.(This way of writing the definition ofw, is of

great generality as it encompasses both self-gravity effects

This shows that second-order light-deflection time-delay ~ [24] and possible composition-dependent efféee).)
experiments do not probe any theoretically-motivated 2PN All the phenomenological parametess B, ¢, &, .
deviations from general relativity. More generally, after dis-measuring the 1PN, 2PN, etc. deviations from general rela-
cussing observable effects linked ¢e¢0 or {#0 (in plan- tivity (see[24] for a list of the 3PN and higher parameters
etary perihelia, lunar laser ranging, or other strong-are explicitly constructed by contracting at least two of the
equivalence-principle tests, and clock experimgntse basica,'s with objects built from successive covariant field
conclude that the solar system is not an appropriate testingerivatives of thea,'s: Bay=Daap, Biap=DaDpac, etc.
ground for probing possible 2PN deviations from generalsee Sec. Il B for the definition db,). In particular, internal
relativity. More precisely, we find that in the best cases, foreindices in the scalar-field space being raised and lowered by

seeable technology might barely be able to constsaand  means of the positive-definite metrig,,(¢°) defining the
¢ at the order unity level, while, in the worst cases, theseinetic energy of the scalar fields,
parameters might complicate the interpretation of 1PN ex-

periments by contaminating some observables. — aya?

This seemingly negative conclusion is, however, to be Y= T2 A (6.9a
tempered by the following two positive conclusions of ours. é

(@) We identified binary pulsar experiments as an excel- — 1 a®Bypad
lent testing ground for the 2PN structure of relativistic grav- =_ —ab“ (6.9
ity. By a simplified (linearized analysis of existing data on 2 (1+ aga?)
the binary systems PSR 19136, PSR 153412, PSR 0655
+64, and PSR 180027, we were in fact able to constrain aaBaBoa’
alreadye and{ at the level T (1 azad)® (6.99

— 2 —3
le|<7x107%, [{]<6X10 °. (6.7 Bl atabal

(b) We stressed that solar-system experiments are well suited £ (1+ aya®)® (6.99

to measuring with high precision the 1PN parametarhich

is of greatest significance among all post-Einstein paramTherefore, contrary to the PPN philosophy where, say, the
eters. Indeed, our theory-based analysis shows very clearlypN parameters and 3 could be accidentally small and the
that y is a direct measure of the coupling strength of mattei2PN ones, ande of order unity, our approach suggests that
to the scalar fields. All the other post-Einstein parameter$l of them tend to zero With? or more precisely with
(B, &, ¢, ...) necessarily tend to zero with in all theories  a?=— y/(2+ y) which is a positive measure of the total
having only positive-energy excitatiofigiore about this be- coupling strength of matter to the scalar fidlfihe ones, like
low). From this(theory-basedpoint of view, the most im-

portant solar-system experiments would be high-precisiom————

light-deflection or time-delay experiments reaching the level, 25ye note that the space mission concept SO®®lar Orbit
say,753>< 10‘7, which comes out naturally from mecha- Relativity Tes}, proposed to the European Space Agency, aims at
nisms of cosmological attraction of tensor-scalar models tothe level y~10"".



53 TESTING GRAVITY TO SECOND POST-NEWTONIAN ORDER: ... 5569

g, which are cubic in thex’s are even expected to be much where [;=1#"9,4, is the flat d’Alembertian. This kinetic

smaller than the quadratically small oAey, 8, ¢.] term has therefore the formid*x(— 3h7P;, *h), where P,
Finally, let us note that, as far as we are aware, the presedefines the graviton propagator, represented as a curly line in

work is the first one to use in an effective way a directFig. 7. In terms of the Green functiof8.17), satisfying

classical diagrammatic approach to the relatividtibbody  [1;G(x)= — 4754 (x), we thus get

problem?® We hope to have convinced the reader of the

technical power of this method. Indeed, once one is used to P (xy)= ﬁp G(x—Yy) (A3)
the notation, our result6.9) on the complete set of param- apys XY c3 T abys (x=y),

eters entering the first two post-Newtonian levels can be ob-

tained in drawing just half a page of simple diagrams. where P, g,s=f.,fgstfasf gy~ fapfys is the inverse of

Qaﬁyﬁ

Let us now expand the actid@.5) of the scalar fields up
to the fourth order inp®— ¢§ or h,,. To simplify the ex-

We thank Zaven Arzoumanian for communicating to us,Pressions, it is convenient to choose Riemann normal coor-
in advance of publication, the results of his thesis work, andlinates atp, in the internal scalar space, so that the metric
Ken Nordtvedt for bringing our attention to finite size effects vap Can be expanded as in E(B.19. It is also useful to
in the tensor-scalaN-body problem. Centre de Physique define the origin of this scalar spacegy, i.e., to choose the
Theorique is UnitePropre de Recherche 7061. coordinatesp? of this space so that3=0. Then, the scalar-

field action(2.5 can be expanded as
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APPENDIX A: EXPLICIT DIAGRAMMATIC 3 1
CALCULATIONS Sepin 0=~ 76 f d4x§ 9,9%9,¢°
*

In order to compute explicitly the diagrams of Fig. 7, we
must first derive the expressions of the propagators and of
the different vertices of Fig. 4. As discussed in Sec. Il A, we
need to expand the gauged-fixed action of the theory up to
the fourth order inhwzgfw—fw and ¢?— ¢§. We need
only the terms quadratic in,,, in the Einstein-Hilbert action
(2.4) to define the graviton propagatdsee, e.g.[51] for
higher-order terms We get easily

X (f#'—h#+h“hP"+0(h?))

1 a 1 aByd) 3
x| 1+ Sha=2h,Q 7%, 5+ O(h°)

1 c d 3
Vab(qoo)—gRacbd(sDo)so e"+0(¢°) |,
(A4)

where the terms inside parentheses are respectively the ex-
pansions ofy5”, Vg, , andy,u(®). The kinetic term of the
scalar fields reads therefore

él,u,haB)Qa'Byg( 0Mh'y5)

_ Cs J’ d4
Sspin 2 167TG* X

1 14 1 V
+§ 3vh,ﬁ_ # v

2

+O(h3)} (A1)
(C3/47TG*)f d*x2 02y ©o) O+ tot. div.

where the indices are raised with the flat metric

f~'= diag(—1,1,1,1), and where Q®*F7=3(f*7fh? =f d*x(— 3P, ¢),
+f@ofBY— f2Bf79) To invert this kinetic term, it is neces-

sary to fix the gauge. The most convenient choice for ouwhere

calculations will be the harmonic gauge, corresponding to a

gauge-fixing term —(c%32rG,)[d*x(d,h}—3d,h’)? PR(x,y) = Eg_yab(%) G(x—y) (A5)
+0(h®) (see, e.g.[17] for the exact harmonlc gauge-fixing
term). This cancels exactly the second term(Afl), and we

. ; is the scalar propagator, represented as a straight line in Fig.
get, after an integration by parts, propag P g ¢

7. [As before,y?? denotes the inverse of,;.]

We can also derive fromA4) the expressions of the ver-
tices connecting scalar fields and gravitons. Our conventions
for defining vertices are the followingi) We first define
some formal “global” vertices/;=iS; when consideringas

+tot. div.+0O(h?), (A2)  in Figs. 3 and % the gravitational sector as a whole,
®=(¢p,h). (ii) We then define the individual vertices
V;(¢,h) by formally expanding the global multilinear forms
2/Note that the expected extra smallnessajives a mnemonic V;(®) as if & were equal to the suma+h, e.g.,
rule for remembering its definition.
28Bertotti and PlebanskB7] mainly discussed general features of ~ Va(@+h,o+h,o+h)=V3(¢,¢,¢)+3V3(e,¢,h)
a classical diagrammatic expansion, while previous work by the
Japanese schofil0,51] had used quantum diagrams and then con- +3Va(e,h,h)+Vy(h.h,h).
vertedS-matrix elements into an effectivié-body potential. (AB)

seF fdx hasQ*#7°0ih 5

p|n2 167 G
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This convention allows us to use directly the simple global

diagrams of Fig. 6 with the intuitive replacements of Fig. 7.
For instance, the vertex of ord&(¢¢h), entering the first Irg =(2 Fg + zzg ) /3
T diagram of Fig. 7 as well as the first folrdiagrams and

the first threeH diagrams, reads

c? H=(H+4H+4H)/9
Toen=7—~ | d*XVan(@0)Q***#d,¢%3,¢"h
oph 4’7TG* Yabl Po u® 0P Nyug,

(A7)
whereQ*"*# is the same tensor as {Al) above. In other- FIG. 10. Decomposition of th& and H diagrams of Fig. 6,

words, the kernel defining thg,,, vertex is showing in bold the lines involving derivatives in the vertex
®gPod. Such a decomposition is useful to compute the last two

B _ c? wvap F and H diagrams of Fig. 7 without symmetrizing the three-

(Tpgh)ab(X1,X2,X3) = m Yan( o) Q graviton vertex they contain.
1% d . .
X — 8(X3—X1)=—5 O(X3—Xy). where R4 IS the Riemann curvature tensor of,,. It

2 X3 should be noted that the four scalar lines of this vertex are

(A8)  not equivalent, since two of them involve the derivatives
o o . . d,¢% of the fields. The same remark holds also for the multi-
Note that it is Symmet”c IXq, Xo (Scalal' ||neS but not in graviton vertices of Ordeo(hs) and O(h4) in (Al) One
all variables since they represent physically inequivalentpgyid therefore symmetrize these verties., write the
Iines_. The verte_x connecting twp scalar Iine_s and two graviyistriputional kernelX ja(x1,X2,X3,X,) read off (A10) as a
ton lines, entering the seconddiagram of Fig. 7, reads symmetric function ok, , X,, X3, X,] before computing the
3 Fokker action(3.14). Alternatively, one can also use their
oghh= " mf d*Xyap( @o) nonsymmetric fprm, .but ta_ke into.acqount. the diﬁgrent ways
* to choose the lines involving derivatives in the diagrams of
1 b Fig. 7. This does not change anything for tKediagrams,
2freQ YO~ Ef’”Qa’gWs) 9,9%9,9 Naghys. since the Lagrangian is anyway symmetrized over the four
bodiesA,B,C,D, but this leads to the numerical weights
(A9) displayed in Fig. 10 for th& andH diagrams.
Finally, the vertex connecting four scalar lines, entering the L€t Us now consider the matter acti¢.16, describing
first X diagram of Fig. 7, reads N self-gravitating bodies. As shown in Sec. lll A, we need to
expand it only up to the third order m,,, and¢?. Still using

Riemann normal coordinates @=0 in the ¢ space, we get
f d4XRade( (PO) QDCQDda,uQDaaMQDb! (A].O) eas"y

X

X

3

T 67G,

X<P4

1 1
A A A_A A A A A A A A A _A_A
1+ (aa)O‘Pa+ E(:Bab"_ aaab)O‘Pa(Pb+ E(Bébc+ Babac + Bbcaa+:80aab + Xy Oy ac)O(Pa‘Pb‘PC

N
Sm:_Z jmgcszA
A=1

1 1 1
+ 0<<p4>H1— 5 NutkUR— 5 (0, ukuR) 2~ R(hﬂyuxum%om“)} (A1)

where the first bracket comes from the expansiomg(¢) binomial factors coming from our conventigin) above; cf.
arounde,, and the second one from the expansiordsf  EQ. (A6). The linear interaction terms read

around the flat metric. All the fields appearing(#l1) must

be evaluatzed 2olr) the world Iina“; x”(rA). As ab_ove, | = -> f d7amAc2(a?) o0 (X ), (A12a)

dra=(1—va/c?) Y4t denotes the Minkowski proper time of A

body A, uy=dxi/cdr, denotes it§Minkowski) unit four-

v_glocity, and the index 0 means that the cgrrespondin_g quan- = E f dTAmgczluf\uﬁhaB(xA). (A12b)

tities are evaluated ap?= ¢ (=0). The different vertices A 2

connecting material bodies to gravitons or scalar fields can

thus be read directly frontA11), taking into account both The corresponding spacetime sour@shite blobs read thus
the factors 1, 2, or 3 entering their definition in Fig. 4 and theexplicitly
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1
(ra(x)z—zA J'drAmXcz(ag\)O&(“)(x—xA(r)), €ohh ga{:u,‘{uﬁu,{u,‘i, (A14f)
(A133)
3 a Bl ucné
€nhh © TgUAUAUAUAUAUA - (Al4g)

o*P(x) = %E J dramac2usul 84 (x—xu(7)).
A (A13b) The calculation of the different diagrams of Fig. 7 can
now be performed straightforwardly. Let us summarize our
diagrammatic rules: The Fokker action is a sum of contribu-
tions, each of which is represented by a diagram endowed
with a numerical coefficient obtained by combining the fac-
tors indicated in Fig. 6 and in Fig. 7. Eadbare diagram is
computed by the following rulegi) replace the white blobs
by Egs.(A13) if they have only one incident line, or by Egs.
(A14) [with an extraZ,fd7,mac?8™(x—xa(7))] if they
. EaAuauB (Al4b) have several incident line§ij) replace each internal line by
eh - pTatAtA the appropriate propagatd?(x,y); (i) replace each field
vertex by a suitably symmetrized distributional kerng@l)
1 integrate over all the spacetime points. An additional rule is
Vin - ZUXUQUKUZS\, (Al40)  that infinite self-interactions are discardé¢ds they have the
same structure as in general relativity, this rule can probably
1 be justified by methods similar to the ones used in deriving
. T A A AL A A A the 2PN Lagrangian in Einstein’s theof¢4].) In order to
€ : 2(’8achr 3Banac) t daabac), save space, we will not compute each of the diagrams in the
(Al4d)  present Appendix, but rather show the technique on the most
important of them.
Let us start with the two-body interaction terh of Eq.

As for the nonlinear interaction with the sourceertices
connecting matter to several field lineshey read, when
omitting a commor f dramac26 (x—xa(7)) in front,

Vo, @ —(Baptahab), (Alda)

P

1
7(Bavtagap)uiuy,  (Alde

eeh (3.14). We get
1 1 b af h )
§l=§J f dXdY oa()PL(X,Y) T6(Y) + T (X) Pag,s(X,¥) 07 (y)]
1 0.2 0.2 Gy 2
:EEB f dTAf d7g(mac?)(mgc )? (Xa—Xp)[(aaap)ot2(Ualg)“—1], (A15)
where (aAaB)Ia':yabaE comes from the scalar propagator(first | diagram of Fig. 7, and

2(uAuB)2—1=u,"§uﬁPaﬁ75ugu§ comes from the graviton propagatdsecond | diagran). Introducing the notation
Gag=G,[1+ (apag)g] and 2+ ypg=2[1+(apag)o] as in Eqs(2.21) above, we thus get

1

1 0.0 — 2
Elzng f dTAf d75GaAgMAME[ 1+ (2+ yap) ((UaU)“—1)]CG(Xa—Xg). (A16)

This action describes the two-body interaction of self-gravitating bodies having arbitrary velocities. The second post-Keplerian
approximation can now be obtained by expanding this result in powesgcofusing Egqs(3.19—-(3.21) above. We get an

expression of the forni3.23, where the corrections proportional tg.g/c* involve the function
2

. J
f1(TAB.VA Ve a8 ,88) = [ (VA VB) *(VA+VE)/2— (VA X Vp)*]/T pgt > m_2[|XA_XB(tB)|(VA_VB(tB))Z]tB=t . (A17)
B

Note that onlyxg andvg are time differentiated in the second term, before setiirgt. The derivative obg can be eliminated
by an integration by parts, and up to a total derivative, we finally get

2 2
_VaB . 5, o (VaXVg)
f1(rag.Va,Vg,aa,88) = _ZrAB[VA+VB+VA'VB_ (Va'Nag) (V- Nag) | — T +(Va-Nag)(@g°Vap) + (Vg Nag)(aa Vag)

+(aa-ag)rags (A18)
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WhereVABE VA_VB and nABE (XA_ XB)/rAB .
Let us now consider the three-body interaction, writteg¥s- T in (3.14) and Fig. 6. The thre¥ diagrams of Fig. 7 give
the contribution

1 1 G2
V=5 3 | ana dr [ dretmlen mged (mee?) GG —x0) 606 x0)
X[(2(uaUg)®—1—(apap)o)(2(Upuc)®—1—(apac)o)— (@pBaac)o—2(anap)o( @pcc)ol- (A19)

Introducing as in Eqs(2.21) the notationG g, ﬁs, and,B_B’é, this contribution can therefore be written as

1 GagGacmamgmg
EV:B#%#C f dTAf dTBf dre 2 CO(Xa—Xp)CG(Xa—Xc)

YABYAC
2

x{ [1+7as+ (24 7a8) (UaUR)* — D[ 1+ yact (2+ yac) (Ualic)*— 1)]— 28— (A20)
The 2PK approximation can now be obtained easily by expanding this expression in powécs Nbte that the Newtonian
approximation of the Green functidB.21), cG(xa— Xg) = 8(ta—tg)/r ag+ O(1/c?), is sufficient for the terms proportional to
(uaug)?—1=(va—Vg)?/c?+0O(1/c?), or (uauc)®—1. The accelerations introduced by these Green functions in the other
terms can be eliminated by suitable integrations by parts. For instance, one can write

2t (92|x Xc(te)| =tot. d|v—( Vag'Nag) (Ve Nac) | Va Ve (Va-Nac) (Ve Nac)
2@ agh e 2r zgC? 21 pgl AcC?

(A21)

TheT diagrams of Fig. 7 are a little more subtle to compute, because the central vertex is not located on a material body, and
also because it involves derivatives of the fields. For instance, thd fifistgram, involving one graviton and two scalar lines,
gives the contribution

Zmamgmg IG(X—Xa) IG(X—Xg)
= 2 J'dTAf dTBf chf d*x T(aAaB)OuCuC - EN Gg(X—Xc), (A22)
wherex* is the arbitrary spacetime location of the vertex. The lowest order term of the post-Keplerian approximation reads,
thus,
S fdt fdt fdt fdtf 4 G2mIm3m2 by 0 [S(t=ta) S(t—tg) 5(t—tc) 140 1
17 A B C X5 2 (aAaB)oUcUcaXM ra |0x| g Mo o2
G, GagyasMam3me (Vac-n,n) (Vae: N 1
-y J'dtj e AB?’AB4A BMc (Vac 2><A)2( BC XB)+O(_6), (A23)
AB,.C 4mc ryal x8l xc c

where we have usedfd [B(t tp)/Fyal= S(t—ta)Vac- Nealr? 2,c+0(1/c?). Therefore, although thi§ diagram is of the

same formal orde&’m 3/r c? as theV diagrams in the nonlinearity expansi@arbitrarily large velocitiek it reduces to order
O(1/c*) in the post-Keplerian approximatiofv(c|<1). This is due to the particular form of the, ., vertex, Eq.(A7), which

involves a specific combination of derivatives of the fields with the inverse of the tePiggy; entering the graviton
propagatofA3). It should be noted that the presence of derivatives is not sufficient to conclude that the diagram is reduced by
a factor @/c)?. For instance, the seconHl diagram of Fig. 7, involving three graviton lines, does contribute at the first
post-Keplerian order,

1 G2Zmimgm2 1
=0 S f dt—2T20C Lo ), (A24)
3 BLA%C r agl ACC® c

although the three-graviton vertex is also of the fdratngh. Indeed, the dominant contribution to this diagram is proportional
to the contractiornd ,G(X—Xa) 9*G(X—Xg) = 6(t—ta) S(t —tg) Nya- an/rxAprcz+ O(1/c*), which starts at order &7. [An
integration by parts reduces one of the Green functioiSdg(x) = — 4w 8*(x), and one gets EqA24) easily] The sum of
(A24) with the lowest order term ofA20) gives the 1PK contribution to the three-body interaction Lagrangian, displayed in
Egs.(2.200 or (3.25.

Let us turn now to the most important four-body interaction terms, namele tt®& and X diagrams of Fig. 7, which
involve the new paramete(8.18. At the second post-Keplerian approximation, it is sufficient to use the instantaneous Green
function cG(x,—Xg) = 6(to—tg)/r og in these diagrams, and one easily gets
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11 jdtGABGACGADmgmgmgmg

A 2 AL DAL DA 2 — — =
3¢5 1+§8BCD+§(Bsc+ﬁBD+ﬂCD)+§(7AB+ Yact Yap)
A%(B.C,D)

7
I'aglacl apC

1 1
+5 (7AB?’AC+ YaBYAD+ YacYap) + 37A87A07AD

1
+ O( ) (A25)

0,,.0,,:0 .0
1Z_ GaeGecGcpmamgmemp

7
2 2A+BZC#D J’ I'aglecl cpC

_ _ 1 _ _ - _
1+ {agcpt Z(BA%+IBBCD)+ §(2+ Yec)(¥YagT Ycot YaBYcD)

+0

1
F) _ (A26)

[Note that thes contribution to thee diagram has a nontrivial normalizatioa~ 3 e G3m*/r3c?, while Z~ ¢G3m*/r3c*.] The
contribution of the firsiX diagram of Fig. 7 reads

11 G2 mimimam3
ZX]_:ZABEC o f thf dtBJ dtcf dth dtf dSX*GT(Radeaiaga%ag)o

S(t—teo) o(t—t o(t—t o(t—t 1
(At Hito) ) [HE-t)] [0t O(_ﬁ)
l'xc I'xD I'xa xB c
1 G3 mgmgmgmoD(nXA' an) 1
= dtf d3x—= +0 —). A27
24 A,I;‘é,D f I oAl 287 xcl xD XaceD c® (Az7)

Note that althoughyacep is antisymmetric inA,C (andB,D), and although the sum is taken over all possible choices of
A,B,C,D, this contribution does not vanish identically since the integramg\mxB)/riAriBrxcrxD is not symmetric in
A,C. This contribution vanishes nevertheless in the 2PN approximatiof3.88), or if the theory involves only one scalar
field[ Ryped ©) =0]. The contributions of the two othet diagrams of Fig. 7 are computed in the same way. The last one gives
the usual contribution obtained in general relativity, and we find for the seXodidgram

6 1 ‘y mem3mimS  (ngs-n 1
O ym fdtf & Gas ABAA BMcMp 2( x2A xB) "'O(_e)- (A28)
4 8w ABCD c I'xal xg" xcl xD c
|
Let us end this Appendix by a brief discussion of #hend Y_AA Gap
H diagrams of Fig. 7, which are less important since the mze—yAA=—2(aAaA)o. (A29)
AA *

deviations from general relativity they give at 2PN order are

proportional toy, y 2, or 8, and therefore already tightly This explains the presence of this factor in the static and

constrained by present experimental data, E§sl). It is spherically symmetric solution discussed in Sec. IV, Eq.

easy to see that the first foBrdiagrams do not contribute at (4.21. [The isotropic form(4.18 contains extraa3 terms

the second post-Keplerian level, because of the presence dfie to the change of coordinatés22).] In fact, the contri-

the T, n vertex whose graviton is directly coupled to a ma- bution of the firstH dlagram to this one-body metric is pro-

terial body Indeed, the calculation is similar to that of theportional to (aAao)(a'A) One of the white blobs, involving

first T diagram, Eqgs.(A22) and (A23), and the factor the background value(¢y)=ag, corresponds to the point

(u“o’! G)2=xv? reduces theseF diagrams to the order where the metric is computed, and the three other blobs cor-

G3m*v?/r3 c6 Slmllarly, the secondd diagram is even of respond to bodyA. Note also that the firsT diagram, Eq.

orderG3m*v#/r3c8, and contributes only at the fourth post- (A23), does not contribute to the,z_\ terms ofgyg, since it

Keplerian level. On the contrary, the first and thifddia-  vanishes in the static case. Finally, let us mention that the

grams do contribute at the 2PK level, because the graviton dhstF andH diagrams are the usual contributions obtained in

their T, vertices is connected to a second vertex, and nogeneral relativity, and that the fifth diagram is obviously

directly to a material body. These diagrams involve thereforq)roportiona| to the second diagram:

contractions Of3thf forrw GG, like in (A24), and are in- —

gffﬁegfear%?f /r3¢?. ‘Note that the four material bodies ] Fe= S }T(A’BYC)X‘?’GCD'}’CDmD_’_O =], (A30)
grams are not supposed to be necessarily dif §=c3 2 2rcpc? cb

ferent from each other, since they are not directly connected

by a propagatofas opposed to the V, €, or Z diagram$.  where3 T(ZA'B'C) is given by(A24) above, symmetrized over

Together with the firsfT diagram(A23) and the secon& the three bodie&\,B,C.

diagram(A28), they thus yield contributions proportional to
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APPENDIX B: 2PN RENORMALIZATIONS OF TABLE I. Expression of Nordtvedt's mass parameters in tensor-
COUPLING PARAMETERS, THE STRONG multiscalar theories of gravity.
EQUIVALENCE PRINCIPLE, AND ALL THAT
. . Nordtvedt's parameters Tensor-multiscalar theories
As emphasized by Nordtvedi22], the coupling param- —

eters G, M, B, v, ...) of Lorentz-invariant gravitational ™M(}) Ma
theories are influenced not only by the self-gravity of thel i /M(DiM(1); GE
interacting bodies, but also by the presence of distant “spec¥®i; /i 1+ vap
tator” matter around the system. We have already studied28—1)I'ij /M(1)iM(1);M(1) (1+284)GrsCac
the self-gravity renormalizations in the main text. In this Ap- m(G)/M(1) Gpo/G

pendix, we relate our self-gravity results to the ones of Refy,y/m (1)
[22] and show how, within the context to tensor-multiscalar IM(] ~ = 7
theories, one can derive very easily the influence of external /M (1) Gao(1+2Ba0)/G(1+28)
matter. M(B")IM(1) G2,(1+2B4)IG2(1+2p)

Let us first mention that, from the 1PK Lagrangi@19),
one can easily give explicit expressions for all the mass pa-
rametersM(G),M(y),M(B), ... introduced in[22]. For —  — Gmg
the convenience of the reader, we give in Babh transla- B — B-— D2
tion of Nordtvedt’'s notation in terms of our body-dependent

parametersGag, yag and ﬁBAC defined in Egs.(2.2])

above. As before an index 0 in one of these parameters cofthere ”E4B; v as before, and where the dimensionless
responds to a non-self-gravitating body, so that thd@lio Gms/Dc” may be replaced by its expression in physi-

o-model tensora?, 2b of Egs.(2.17) should be replaced cal units 6m5/oc2. Equation (B33 is the well-known

by their weak-field counterpart®.10—(2.12. For instance, rehnormalizati:)n of the %_ravigaﬂ_oaal COTStaSt derive;{Bﬂ;
A_1 2 The renormalizations ofy and 8 have also been studied in
Boo= 2 (a'BAa?O/[.lJr(aia)O] _mstead o_f/£2.21c). The Egs. (5.195 and (3.7) of [22], but they were expressed in
2PN renormalizations 0Gag, yag, and Bgc due to the  tarmg of more 2PN parameters than the simple re¢Bi&)
self-energy of the bodies have been obtained in E329 and (B3c). Note that the analysis of Ref22] is done in a

above. Using them in the t_ranslation of notation of Table |,gifferent context within which it has ndyet) been possible
we recover the correspondirfigss completeresults of{ 22]. —

Let us now turn to the study of the influence of external e
matter. The effect of a distant spectator body on local graviEd: (B3b) shows that the renormalization of is already
tational physics can be analyzed straightforwardly in theconstrained by the 1PN experimental bounds on
context of tensor-multiscalar theories. Indeed, if this specta|-ﬁ|<6>< 10°*.
tor Siis located at a distand® from a local system, the local ~ Of course, the renormalizatiori83) can be generalized
background values of the scalar fields are changed from thefitraightforwardly to the strong-field regime, by considering

Go(1+ 7a0)/G(1+ )

8 RN
E+g—8,32 +0

1
F) , (B3C)

to relate the 2PN renormalization Jto B. In our context,

valuese$ far from the spectator to the body-dependent parameterSap(¢o), Yas(®o).
Bac(¢o), and a compact spectator body3# «3). This has
a 2 G« aimg 1 been done in section 7.2 of R¢24], where we analyzed the
Ploc= %P0~ T D2 D2/ (B1) consequences of the strong equivalence princileP in

tensor-multiscalar theories. This principle states that local
gravitational physics is totally independent of the presence of
spectator bodies. In other words, the renormalizati@®
and their strong-field analogs are supposed to vanish. Let us
prove that the only tensor-multiscalar theories containing
only positive-energy excitationsy(,>0) and satisfying the
strong equivalence principle are perturbatively equivalent to
G*_%aai+o(i) (B2)  9eneral relativity(to all orders. Indeed, we showed if24],
Dc? “Sagh D%/’ using Egs.(B3), that any such theory must satisfy=0,
among other relations. From E@.154 and the positivity of
In particular, if the spectator body is supposed to have ay,,, this implies a§=0. Using now the diagrammatically
negligible self-energy 43=a3d), we get, for the effective evident® fact that any observable deviation from general
gravitational constant2.14 and the Eddington parameters relativity must involve at least two factoeg (to fill the end
(2.15, blobs connected to scalar propagators, in diagrams such as
Fig. 7 or any higher-order ongswe find that all non-

All the physical quantitied which depend on these back-
ground values are therefore renormalizedmpared to the
value they would be measured to have at infiniby the
presence of the spectator as

f — floc:f_

- - Gmg 1 Einsteinian terms necessarily vanish. It should be noted that
G — G1-5z7+0| 52/ (B33 this result cannot be extended to the pure scalar theories we

1 29 ; ; i
52) ’ (B3b) Note that this would not be true if we were considering quantum

Yy _+4—5Gms_2+_+o
Yo r Dc Bl 7) (loop) diagrams.
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also considered in section 7.2 [#4], in which the gravita-
tional interaction is mediated by one or several scalar fields
without any tensorial contribution. We showed that the SEP

implies in that case Gag=G, 7yas=7y=-2, and

Bac=B=—1/2, ie., that the theory is equivalent to  2PK: q%%?;rw E %
Nordstran’s theory at the 1PK level. The assumption that

the o-model metric is positive does not allow us to comple-
ment this result to higher orders. ] o ] ] )
We can also prove that some assumptions made in Ref, F/G- 11. Diagrams describing the interaction of lightavy
[21] are inconsistent within the tensor-scalar framework. In—“nes) with the gzrawtatlonal field ge”eratf‘;_’ by material bodies, at
L ordersO(Gm/rc®) —1PK— andO((Gm/rc?)?) —2PK-.
deed, Ref[21] assumed one could work within a class of
theories containing no dipolar radiation and still differing 17 g
from general relativity at 2PN order. However, we can use Sen= — _f _X\/ﬁ GV GHF) L,
the fact that the dominant dipolar radiation emitted by a bi- 4) c
nary system is proportional tg,p(ad— ad)(ah—ab). Let dix
us first assumeéas we generally dathat v, is positive defi- == T@gi”gﬁf"FMFw. (C2
nite. Then the assumption that the dipolar radiation vanishes
implies thataa = a§ for any bodyA andB, and in particular
that aj=a? if we choose a non-self-gravitating body ~ The second expression, involving the Einstein megjg,
(Mg=const). Using now the expansion ofi in powers of shows that photons are coupled to the graviton
the compactness of body, that we derived in Eq$8.3 and  h.,=d},—f ., but not to the scalar fields®— ¢g. There-
(8.4) of [24], and the fact thatd=a? must be verified for fore, the only diagrams describing the 2PK interaction of
any bodyA, we can conclude thai®=0. In other words, the light with the gravitational field generated by material bodies
scalar fields are totally decoupled from matter, and theire those of Fig. 11Thee, Z, F, H, andX diagrams enter
theory is strictly equivalent to general relativity. Even if we the metric at orde©(1/c®), and influence the propagation of
drop the assumption of a positive definift@b, i_e_, if we I|ght at the third pOSt-Keplerian |eV¢|The dominant contri-
phenomenologically allow the presence of scalar fields witPution does not involve any scalar field, and is thus propor-
negative enernghost modeb then the same qug) and tional to G* mA/rCZ. However, we do not have a direct ex-
(8.4) of [24] can be used to show that the theory is equivalenPerimental access t&, , and this contribution should be
to general relativity up to the 2PN order included, but notrewritten in terms of the Newtonian potenti@loma/r felt
beyond (which means that it can differ from it at the 1PK by a test mass in the vicinity of bod¥. This can be done
order, as illustrated in section 9 (24]). thanks to the identityG, =Gpo(1+ yae/2), which derives
The ease with which we derived the results of this Appenfrom the definitions(2.213 and (2.21h. We have thus re-
dix illustrates again the power of our field-theoretical ap-covered without any explicit calculation that the deflection of

proach. light and its time delay_are both proportional te-2 . at
the 1PK level, and to 2 y at the 1PN level.Remember that

v is usually denoted ag— 1 in the literature, so that2 y is
the usual factor ¥ y.] The corrections appearing at order
O((Gm/rc?)?) are due to the five remaining diagrams of
Fig. 11. Three of them do not involve any scalar field, and
are thus proportional to G:‘; =GpaoGpo(1+ yao/2)(1
Before computing the explicit expression of the light- 1"y /2y The other two involve a scalar line between two

deflection angle for the one-body met(#.18), let us show  material bodies, and yield therefore contributions propor-

how our diagrammatic approach allows one to get, WithouEional to G2(apap)e= G2yl (2+ yag), Where G2
* * ' *

any calculations, the structure of the fmal result. More Pr®should be rewritten as above in terms of effective gravita-
cisely, let us show that the light-deflection angle for a self-

gravitating body has the structure tional constants. In the case of a single material bAgyt
should be noted that the first twé diagrams of Fig. 11 do

not contribute, since the same body cannot be directly con-

nected by a propagator. On the contrary, the firgiagram

1PK :

APPENDIX C: EXPLICIT EXPRESSIONS OF THE 2PN
LIGHT DEFLECTION AND PERIHELION SHIFT

O(¥20)(GaoMa/rc?) + O( Y a9, Yan) (GaoMa/rc?)? of this figure does contribute, because the two blobs repre-
6 senting the same bodf are connected to a scalar-scalar-
+0(1/e”), (€Y graviton vertex, and not directly to each other. Hence this

diagram vyields a contribution proportional to

yaal(2+ yaa) in second-order light-deflection and time-
in which neitherBg2 nor the new 2PK parameters we intro- delay experiments. In conclusion, our diagrammatic ap-
duced above enter. Indeed, the action describing the electrroach has allowed us to prove is a streamlined way that
magnetic field minimally coupled to the physical metric these experiments do not depend ,@g{é at the 2PK level,
G, is a conformal invariant, and can thus be written as  and more precisely that they can differ from general relativ-
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ity only by terms of the form indicated in EC1) in the  angular momentuniNote that these conserved quantities are

case of a single material body. related in a nonobvious way to the constag§sandJ,, used
Let us now give explicit expressions for the 2PN light by Weinberg in Eq.(8.4.30 of [52]: Ey=(myc¥&)>

deflection and perihelion advance. Following Weinbléig], Jw=Jcl€.] The area radius should not be confused with

we use here Schwarzschild-like coordinates., an “area  the Just radius nor thg*-harmonic radius, both denoted also

radius” r) and write the integral giving the polar angfein by r in Sec. IV B. To rewrite the metri¢4.18 in Schwarzs-

the plane of the trajectory as child coordinates
. +f JVABdr/r? ©3
“ ) [E4c—(mac?+ T 2B d3 2/A2( ) = — B(r)c?dt2+ A(r)dr2
where £ denotes the conserved ener@igcluding the rest +r2(do?+sinfad¢?),
mass contributionof a test particle of masm,, and 7 its (C4)
|
we need to express the area radius terms of the isotropic onp. We find easily
A — 1 ua)? -  — .= 1
=p| 1+ P(lJF Yao)t 7 pr (1+30'=4ya0=27a0) +O| 5] |: (CH)

whereu = G oM, is the Keplerian mass of the attracting bodlyand y o, T are the deviations from general relativity in the
spatial isotropic metrid4.18. Equations(4.19 and (4.20 give the expressions of these coefficients in tensor-multiscalar
theories. Note, however, that our present calculation is valid for any static and spherically symmetric metric of {delf®rm
not necessarily the one predicted by tensor-scalar theories. The replaceni€bt iof (4.18 yields

2

— 1 1_2
A(r) 1+2 2(1+ 7A0)+4 l+ZF+§’yAO+Z’yAO +0

5
5/ (Céa

MA MAZ 3MA3——8 ——02 — — 1
B(r)=1—252+2 o2 (BAA— Ya0)— 5| ez B+F—§(1+ 'VAO),BAA_§(2_7AO)7AO +0 3/ (Céb

The polar anglgC3) can now be obtained by a straightfor- g*-harmonic coordinate to measure this minimal distance,
ward integration. The case of light correspondsnig=0,  since the transformatiof.22 introduces corrections only at

and the deflection anglé ¢ is found to have the form order O(1/c®). By contrast, the use of Schwarzschild
coordinates transformgC8) into Ad;=[2ux(2+ yao)!
— 6
Ap=A¢1+A¢,+0(1/c”), €D roc[L - (alroc?)], while (C9) remains unchanged. This
h second-order light deflectidit7)—(C9) agrees with previous
where calculations in the literaturgl2,13,13. It can now be par-
2un(2+ ) (24 7m0) ticularized to the case of tensor-multiscalar theories by using
Apy= KA 2 Y0 _ KA C;/AO (C8  the expressiori4.19h for T. We find that the tern%,BAA in
Po Po T cancels exactly the- 4BAA contribution in(C9), and we
is the 1PK result up to a global correcting factor, and get
3 ,uA A= Ha(2 +7A0) 15+ 7’AA (C10
A¢2—Z pO [15+ 3F 4BAA+8),AO] (Cg) 2 16 POCZ ’)/AA

is the actual 2PK contribution. Note that, after having per
formed the integralC3) in Schwarzschild coordinates, we
have expressed the results in termspgf the minimal dis-
tance between the light ray and the center of bédymea-
sured inisotropic coordinates[Note thatp, differs from the ~ While the second order contributions involve bog, and
impact parametef.The results are unchanged if one Usesyaa, but not,BAA Note also the appearance of the same

“Together with Eq.(C8), this result confirms therefore the
conclusion(C1) of our diagrammatic analysis: The first order

deviation from general relativity is proportional tty_Ao,
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CoeﬁicientMA(erz\o)EzG* m, in (C8) and(C10), which The explicit expression of the second-order time delay has
is in fact a mere rewriting of the bare gravitational constantoeen derived ii16] for a general metric of the forr#.18.
G, in terms of observable quantities. The coefficientThis result confirms also the diagrammatic analysis dis-
Yanl (24 van)=—(apan), entering (C10 is due to the Ccussed at the beginning of the present Appendix: The param-
first T diagram of Fig. 11, where both blobs represent bodyeter3 ., appears again in the combinatiofi-343 2, , like in
A. (C9 above, and it vanishes therefore in the

Let us now take the second post-Newtonian limit of thecase of tensor-multiscalar  theories, for  which
above 2PK result, as appropriate for interpreting future highs~-

¥ 3:8AA+O(7A017AA)

precision experiments in the solar system. The coefficien
Yo OF the leading term in(C8) should therefore be ex- The integralC3) can also be used to derive the periastron
YA0 advance of a test massy<<m, . Let us introduce as in Ref.

panded as in Eq(5.7), together with the renormalization 2
(B3b) due to the gravitational potential of external masses[g] the notatiorE= (£—moc?)/mj for the specific conserved

while the 2PK contributioC9) becomes energy minus rest mass, amd=7/myu, for the reduced
conserved angular momentum. A straightforward integration

yields the 2PK periastron shift per orbit:
2pN_T [ _HA
A% (POC )

31
15+ ?y+4'y (C1)

67 [3-B+2ya0 1 [35 83— 3
Ap= 3 +h 4 4B+ I'= 9BAA+ (lBAA) +8?’A0+27A0 4:8AA7A0
E 5 1 2 4 1

This expression agrees with the general relativistic result derivddiirg]. Note that contrary to the light-deflection and
time-delay formulas, the periastron advance involves not oflf, but also the 2PK parametes,2,, entering

B=2¢,0,+0(B, v); cf. Eq.(4.193. The 2PN limit of Eq(C12) can be obtained easily by using the expansi@n23 of the
different body-dependent parameters.

The result(C12) is coordinate independent since it is expressed in terms of the conserved qu&ht#mesh. It can
nevertheless be helpful to rewrite it in a particular coordinate system. Both isotropig*ahdrmonic coordinates give the
same result at the 2PK order. Let us denotealfy —e) the coordinate periastron radius, and &l +e) the coordinate
apoastron radiuéin isotropic or, equivalentlyg* -harmonic coordinate}sThe conserved quantities can then be rewritten as

MA 1
E=- a2 (7+4yA0)+O (C139
1 pa 40 pa |2 62 1— 3 e __ 1
h?2" a(1-¢e?) c?la(l-¢€?) 1+5- BAA 2 YroT 7 Yo +O (C13b

We recover in particular the standard 1PN formllg= 27-r,uA(3—,8_+ 2y)la(1—e?)c2+0(1/c?), in terms of thesemilatus
rectum g1—e?). The 2PN result takes the form displayed in E§10 above.
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