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Testing a simplified version of Einstein’s equations for numerical relativity
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Solving dynamical problems in general relativity requires the full machinery of numerical relativity. Wilson
has proposed a simpler but approximate scheme for systems near equilibrium, such as binary neutron stars. We
test the scheme on isolated, rapidly rotating, relativistic stars. Since these objects are in equilibrium, it is crucial
that the approximation works well if we are to believe its predictions for more complicated systems such as
binaries. Our results are very encouragif§0556-282(96)00710-3

PACS numbeps): 04.25.Dm, 04.40.Dg

I. INTRODUCTION which the first and second time derivatives of the metric are
zero. In the 3+ 1 formalism, this means in particular that the
Some of the most interesting unsolved problems in gentime derivatives of the three-metriﬁj and the extrinsic cur-
eral relativity require full dynamical solutions of Einstein’s vatureK;; are zero. In quasiequilibrium, the time derivatives
equations in three spatial dimensions. Such solutions have &€ Small, and the metric and extrinsic curvature will not

be found numerically, and this is only barely becoming tech-depa.lrt si_gnifican'gly ffom their !nitial V‘T"IUE?S' Wilson's ap-
nically feasible. An important set of problems in this cat- proximation consists in setting time derivatives exactly equal

to zero in a selected subset of Einstein’s equations, and ig-

egory is the binary coalescence of black holes and the binar?foring the remaining dynamical equations. This approxima-

coalles_c'ence of neutron stars. S.UCh events are expected tol%h results in a smaller, more tractable set of field equations.
a significant source of grawtanonal waves that will be de-part of the strategy for selecting the subset of Einstein's
tectable by new generations of detectors such as the Las@E]uations is to guarantee thgt andK; are solutions of the
Interferometric Gravitational Wave ObservatdtyGO). _initial-value (or constraint equations. Wilson has proposed
In Newtonian physics, binary stars can orbit in an equi-eyolving the system through a sequence of initial-value prob-
librium system. In general relativity, by contrast, a binary lems by solving the full dynamical equations for thetter
system loses energy by gravitational wave emission. The 0lin the instantaneous background metric, and then updating
bit shrinks, and the two stars ultimately coalesce. Thoughhe metric quantities at each time step by re-solving the se-
this is clearly not an equilibrium situation, the orbital decaylected subset of Einstein’s equations. We will outline below
occurs on a much longer time scale than an orbital period, & simpler method to track the evolution, which exploits the
least up until the last plunging orbit when the stars are verynear equilibrium of the matter as well.
close. Preliminary calculations of binary coalescence and As compelling as this idea sounds, it is impossible to
gravitational collapse suggest that the amount of energy rezalibrate the approximation without comparing it with solu-
diated gravitationally is small. Thus, even when the systeniions to the exact equations. No such exact solutions exist for
becomes h|gh|y dynamica| and far from equi"brium’ Onereali_stic, dynamical.three-dimenSi_Onal_Cases. Only recently
might expect that it is still the nonradiative part of the gravi- has it become possible to solve Einstein’s equations numeri-
tational field that controls the evolution. cally for interesting two-d|men5|onal_problems. In fact, it is
Wilson[1—-3] has proposed an approximation scheme thaPn in the last few years that as simple a problem as the
tracks the evolution of coalescing binary neutron stars with£quilibrium structure of a rapidly rotating relativistic star
out solving the full dynamical Einstein field equations. TheCOUId be thoroughly investigated. In this paper, we use these

method may also be applicable to binary black hole system<'2t"9 e?lwllbnun;‘.so.luu«;ns to c;alhbrate V\/fllson r? ahpprrloxr
[4]. The scheme applies to systems that are either in or ne rpaupn scheme. This Is the simplest case for which the ap-
' %rommanon scheme is different from the exact equations.

quh?}nur;gj, ":jWh'Ch lcaze a r%duc;:d set of E'ESte'n'S eqluaBecause the system is a true equilibrium, it is clearly neces-
tion should adequately describe the system. For example, ry that the approximation work well in this case. Only then

binary system is near equilibrium as long as the emission ofi|"we have confidence that the method is at all useful in

gravitational radiation is small. In strict equilibrium, as in the yore complicated situations such as binary systems.
case of a single rotating star, there is a coordinate frame in

Il. BASIC EQUATIONS
“Also at Departments of Physics and Astronomy, Cornell Univer- A general metric may be Yvrlttgn |n—8.1 fOfm as
sity. ds?= — a®dt?+ y;;(dX + g'dt) (dx + gldt). 1
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The dynamical equation foy;; is

dryij=—2aK;;+DiBj+D;Bi, 2

where D; denotes a covariant derivative with respect to

7ij - The trace of this equation is

dIny?=—aK+D;A', 3
where y= dety;; andK = K',. The trace-free part of E2)
is

+DiB;+D;Bi

1

Y3y 7_1/37”): —Za( Kij— §7in
2 K

—37%iDwB" (4)

We fix the six components of the extrinsic curvatitg by

demanding that each data slice be a maximal slice and that

the left-hand side of Eq4) be equal to zero. This gives
K=0, 5

and
2 K
ZaKij:Diﬂj+Djﬂi—§7ijDkﬁ : (6)

Note thatd,y#0 unlessD;8'=0.

To solve the Hamiltonian constraint equation, it is conve-
nient to use a conformal decomposition of the spatial metric.

To satisfy the demand that the left-hand side of Ef.be
zero, we choose the metric to be conformally Bt so that
y~Y¥y,;=fi;, wheref is the flat metric in whatever coor-
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o 2
DIA'+D'f~ 3/ D"

— &4 vini ij_gij k
O VIg'+V'B8 3f ViB<l, (12

and forK=0,

DKl =10y, (K1), (13

whereV; denotes the covariant derivative in flat space. Thus

Eq. (10) becomes

6
—Vd))

V2 + V(Y=
3 ! OB

_Vja_
a

X

2
VJ,8'+V'BJ—§f”Vk,8k)

+167ma®*S. (14)

This equation can be simplified to two equations, one involv-
ing a vector Laplacian and the other a scalar Laplacian, by
setting

dinate system is used. Therefore, we decompose the spatigl

metric as
yij=DM; . (7)

The conformal factod® is determined then by the Hamil-
tonian constraint

2 1 5icij 5
where the source term is
p=nn"T,,. (9)

Heren? is the normal vector to &= constant sliceT ., is the
stress-energy tensor, aRd is the flat-space Laplacian. Note
that although indices,j, ... range over 1 .. 3, indices
a,b, ... range over 0...,3.

The shift vector is determined by substituting Eg). into
the momentum constraint

DK'l=87S, (10)

where
R=

— ¥Ppne TP, (11

. 1
B'=G'— ZV'B. (15
Then the two equations that must be solved are
VG =1V 2,0 |[Vig+vigi- 21,
=\ Vi Vi BHVE—31VB
+16mad*S (16)
V?B=V,G'. 17

Though we are not imposing the full set of dynamical
equations for the evolution d&f;; , we do have the freedom
to preserve the maximal slicing conditidf) by requiring
d:K=0. The resulting equation can also be written with a
simple Laplacian by using Ed8). The result is the lapse
equation

7 }
VZ(a®)=(a®)| g ®*K;K'+27d%p+25)|, (18)

where

The above field equations, in combination with the matter
equations to be discussed below, form a coupled nonlinear
set that must be solved by iteration. The boundary conditions
for the field quantities follow from asymptotic flatness; the
specific form depends on the application. We are especially
interested in uniformly rotating configurations such as binary
neutron stars in synchronous orbit. For such systems we
work in a corotating coordinate system so that there is no
time variation of the fieldgin the near equilibrium approxi-

We use the results that for a conformally flat metric we maymation of the method Following Wilson[2], we can imple-

write

ment this by replacing Eq15) with
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P _ potpitP

,8i=Gi—%ViB+(Q><r)‘, (20) pi=

which leaves Eqs(17) and (16) unchanged. Her€2 is the  |n this approximation, we have reduced all of the hydrody-

constant angular velocity of the system. namics to a single algebraic equation, E2g).
For the matter, we will consider a perfect fluid for which

Tao=(po+pi+P)UUp+Pgap. (22) . AXISYMMETRIC ROTATING STAR: EQUATIONS

. o ] To calibrate the method, we apply it to a true equilibrium
Here po is the rest-mass dens;tp,i is the internal energy gystem in axisymmetry and compare with the complete nu-
density,P is the pressure, and® is the fluid four-velocity.  merical solution found with no approximations. For this pur-

For this source, the densifyin Eq. (9) is pose, we use models of rotating neutron stars supported by a
polytropic equation of state. Fully relativistic models have
p=(po+pi+P)(aU")?~P, (22)  peen constructed by several authgsee Refs[7-9] and
, references therejn Solving Einstein’s equations for these
the momentum sourcg in Eq. (11) is stars is nontrivial numerically. It is only the recent availabil-
- ity of such solutions that makes this calibration feasible.
S'=(potpit+P)(aUhyU;, (23) In spherical polar coordinates and axisymmetry, we find
that Egs.(16) and (17) are satisfied by setting the quantity
and the source terr8 in Eq. (19) is B of Eq. (15) to zero and with the only nonzero component
of the shift vector8%= 8. Note that this implies, not only
S=(po+pi+P)[(aU")?~1]+3P. (24 that the left-hand side of Eq4) is zero, but also that

dyy=0. This means that we are finding a stationary solution
We treat fluids that are in uniform rotation, for which the of the approximate equations. Given this solution for the
four-velocity U2 is given by shift vector, the terniK;; K" appearing in Eq¥8) and(18) is
given by
G=ut| 210’ 25
ot ) (25)

KKl = 2/3 +5%), (32

The normalization condition - U= —1 gives

where commas denote partial derivatives. Only ¢heom-
ponent of the vector Eq16) is nontrivial, and becomes the

. . _ scalar equation
Now consider the equations for the matter in the near

equilibrium approximation. The key approximation is that in

the corotating frame there is a Killing vector that is timelike | g2 — —
everywhere. In the nonrotating coordinates, this vector can ror r< 4o
be written as

aU'=(1+®*fiyu)) 2 (26)

2 9 2cotd 9 1da 6 9P a/s
p= adr D or

1(1 da 6 acb)a,e

PN r?ladd ® d6) a6
Q— 2
a a4 (7) + 16ma S 33
rZsintg > (33

Because the four-velocity25) is proportional to a Killing

vector, the matter equations may be integrated to give the
hydrostatic equilibrium resu(t] The four-velocity components appearing in the matter

sources are given by
t

cmonst, (28 Ut=[a?— &% 2sirto(B+ Q)2 12,
where Ug=dr2sirfoul(p+Q). (34
In h= f (29) The above equations turn out to be simplified versions of
pot P|+ P the exact equations for stationary, axisymmetric configura-
_ _ tions given by Cook, Shapiro, and Teukoldky} (CST[10]).
For a polytropic equation of state The exact metric has four nonzero metric coefficients, de-
noted byvy, p, @, andw by CST, though the approximate
P=Kpy, (300  metric here has only three:, 8, and®. Thus even though

there is no dynamics in the field, and even though the equa-
whereK andI' are constants, we have tion of hydrostatic equilibrium for the matter is rigorously
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obeyed, the Wilson scheme is still an approximation for this )
problem. The correspondence between the approximate and (aUh 1,2 (36)
exact metric coefficients is given by

a/2: eV+P’

(I)4 =Y P= ezaCST,

B=—w.

(39

In spherical symmetry, the approximate scheme reduces to
the exact scheme, with two nonzero metric coefficients. We
will now quantify the degree of error in the nonspherical
axisymmetric case.

We can take over the numerical scheme of CST to solve
the approximate equilibrium equations. In fact, the structure
of the equations is very close in that they involve the same
differential operators on the left-hand sides. In particular,
Egs.(8) and (18) involve V2, as in Eq.(3) of CST, and the

The fluid velocityv in the zero angular momentum observer operator in Eq(33) is the same as that in E¢) of CST.

(ZAMO) frame used by CST is given by

Therefore the solution is computed as in E() and (29)

TABLE I. Quantities characterizing a “normal” evolutionary sequenceef0.5 polytropic neutron star
models. For each value of the central energy densitye first display the results from solving the exact
equations. Below this, indicated with a dash in the energy density column, are the results obtained by solving
the approximate equations.

€c

QP

| (o}

YE

M—Oe

W RS e w Q) w/d Zk

1.0000

0.9029

0.8152

0.7360

0.6645

0.6000

0.5417

0.5148

0.5115

0.5098

0.5094

0.5094

0.5094

0.0000
0.0000
0.3339
0.3332
0.4886
0.4881
0.5923
0.5927
0.6618
0.6632
0.7040
0.7064
0.7224
0.7256
0.7226
0.7260
0.7221
0.7254
0.7218
0.7249
0.7216
0.7248
0.7216
0.7248
0.7216
0.7248

0.01014
0.01014
0.01069
0.01068
0.01144
0.01141
0.01237
0.01231
0.01352
0.01344
0.01496
0.01485
0.01680
0.01665
0.01795
0.01777
0.01812
0.01792
0.01821
0.01799
0.01822
0.01800
0.01822
0.01800
0.01822
0.01800

0.1232
0.1232
0.1237
0.1237
0.1245
0.1245
0.1255
0.1254
0.1265
0.1265
0.1276
0.1276
0.1287
0.1288
0.1293
0.1293
0.1294
0.1294
0.1294
0.1294
0.1294
0.1294
0.1294
0.1294
0.1294
0.1294

0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1485
0.1484
0.1485
0.1484
0.1485
0.1484
0.1485
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484
0.1484

0.0000 0.4137 0.000 0.7482 0.0000 0.5726
0.0000 0.4137 0.000 0.7480 0.0000 0.5725
0.0150 0.4274 0.271 0.7291 0.1594 0.5660
0.0149 0.4270 0.275 0.7289 0.1590 0.5658
0.0360 0.4454 0.418 0.7115 0.2420 0.5641
0.0358 0.4445 0.423 0.7115 0.2413 0.5638
0.0600 0.4674 0.532 0.6946 0.3064 0.5623
0.0597 0.4658 0.537 0.6947 0.3057 0.5620
0.0860 0.4942 0.627 0.6780 0.3604 0.5589
0.0858 0.4920 0.632 0.6782 0.3598 0.5587
0.1134 05279 0.707 0.6612 0.4081 0.5526
0.1132 0.5252 0.712 0.6616 0.4076 0.5527
0.1416 0.5743 0.778 0.6440 0.4552 0.5422
0.1413 0.5710 0.782 0.6445 0.4550 0.5426
0.1559 0.6124 0.817 0.6349 0.4875 0.5348
0.1555 0.6091 0.820 0.6354 0.4876 0.5351
0.1577 0.6217 0.824 0.6337 0.4956 0.5337
0.1572 0.6184 0.827 0.6341 0.4958 0.5339
0.1587 0.6303 0.830 0.6331 0.5034 0.5332
0.1581 0.6272 0.833 0.6334 0.5037 0.5331
0.1588 0.6331 0.832 0.6329 0.5060 0.5330
0.1581 0.6300 0.835 0.6332 0.5063 0.5328
0.1589 0.6332 0.832 0.6329 0.5061 0.5330
0.1581 0.6302 0.835 0.6332 0.5065 0.5328
0.1589 0.6333 0.832 0.6329 0.5062 0.5330
0.1581 0.6302 0.835 0.6332 0.5066 0.5328

&Central energy density.
bAngular velocity measured at infinity.

®Moment of inertia.

Total mass energy.
°Rest mass.
fRotational kinetic energy over gravitational binding energy.
9Circumferential radius.
"Eccentricity.
'Measure of frame dragging.
IMatter velocity at equator.

kPolar redshift.
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of CST. The nondimensionalized source terms analogous to _

1 7 1
Eq. (30) of CST are Si(s,u)=s*(1—5)? 25 (a@®P)sm 5 Ps ® s+ (1-u?)
- 1 @7 2 1 7
- - - 2 ~
So(S:1)= = 75 G214 )( ) {{(1—s)sw 4] X|—5(a®) = 5P o,
. s | 2ot pitP
+(1—u2)wi}—2ﬂ<brf§(rs) —1ewqﬁg(lfs) p°1+_p; (D—a), (39

- _ — 1
X (P0+Pi+P)1_—vz—E}, (37

wheres is an auxiliary radial coordinate defined in CST. The

7 6 s |2 entire iterative scheme used to solve the approximate equa-
aq)(s w)= aq;l[ ——(1—pn )( ) tions is identical to the one in CST.
16 (a®)? 1-s To calibrate the approximation, we first compute an exact
N N sequence of constant rest mass polytropes of increasing an-
< {[(1=8)sd 2+ (1-ud)a2,} B e e ;

gular momentum. Each member of the sequence is specified
s \ 1 by two parameters: the ratio of polar to equatorial radius, and
+27T‘1>4?§<1TS [(P0+Pi+ P)Ez—ﬁ the central rest-mass density. We next compute the approxi-
mate sequence using the same values for these two param-
s VY — p? eters for each model. We then compare the metric coeffi-
+47T(I)4—Z< ) [(po-l—p,-f-P)

cients of corresponding models using the relationships in
(35. We also compare global quantities such as the total

mass and angular momentum. As a further diagnostic, we
+3P1], (38) calculate two relativistic virial quantitigsl1,12 whose val-
ues should be identically one for an exact equilibrium solu-
and the source term analogous to E2p) of CST is tion. In the notation of CST, these quantities are
2
327-rf P+(e+P) I e*rdrd 6
)\Zd:f AT R ) S e LY KT [ “
o Tor) Tr2\ag T ag) "% ar) Tlag) ||T

2

v
xgdzlewf 3P+ (e+P) 7=

e?et(r=p)2r2gingdrd o /(f [6’(7+P)3(7+P)

+ + —
rtan0 060 Jr rtand 960 rtand 06

1 aa 4 da 9 1 dy 4 1 0
—dady+dadp— 5o (1= e”’?*ﬂ( 4 LA p)

3
- Ee‘zf’rzsinzaawaw ely=P2 25ingdrd 0], (41)

where, for example, exact equations. It is a measure of the larigdrerenterror

for our solutions of the approximate equations.
dadp 1 da dp
Jadp=—-——+ 75— (42)
¢9I’ ar r< 96 96 IV. AXISYMMETRIC ROTATING STAR: NUMERICAL
. . RESULTS
and e=py+p; is the total mass-energy density. Hexgy ) ) )
involves an integration with a three-dimensional volume el- To calibrate the approximate scheme against the exact

ementr2singdrdé and is the relativistic generalization of the solution, we choose the most stringent case, in which the

classical virial theorem configuration is very relativistic and rapidly rotating. When it
is rotating rapidly, there are large deviations from spherical
2Eyin+3(I' = 1) Ejne+ U gra=0. (43)  symmetry, so that the approximation is no longer exact. For

polytropes, the largest rotation is attained for nearly incom-
The quantity A\,q involves an integration with a two- pressible matter, i.e., for lardé=1+ 1/n or small polytropic
dimensional volume elememdrd 6. The discrepancy from indexn. We choosen=0.5.
unity is a measure afumericalerror for our solutions of the In constructing an exact sequence of rotating equilibria as
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" _

FIG. 1. Angular profile of the deviation of the exact solution
from conformal flatness at selected radii. The deviatiois defined
in Eq. (44). The star is a rapidly rotating, highly relativistic poly-
trope withn=0.5 and rest mass just below the maximum rest mas
of a nonrotating star for this equation of state. The radire in the
nondimensional units of CST, and=cos.

FIG. 3. Fractional error in the metric coefficieat along an
equatorial radius for the star in Fig. 1.

Table I. The high values of polar redshi}, and T/W con-

firm that the sequence is both highly relativistic and rapidly
rotating. As expected, the deviations are largest near the
) ) ) mass shed limit, but even there they are never worse than
a benchmark, we start with a nonrotating star having a censpq,t 19,

tral value of energy densitg=1 (note that all “barred” We can understand why the overall discrepancy is small
quantities are nondimensional as defined by £3Tis con-  y |50king at Fig. 1. Here we plot a measure of the deviation
figuration is relativistic, withM/R=0.298 and rest mass i, the exact solution from conformal flatness, which is as-
M(=0.148, just below the maximum rest mass of a nonrosymed in the approximate method. In the figure we plot the
tating star for this equation of staté=0.151). Holding angular profile at selected radii of the quantity

the rest mass constant, we construct a sequence of increasing

uniform rotation, up to the point of mass shedding. As de- A acst—(y—p)I2 (42
scribed above, we then construct the corresponding models o acst

with the same central value efand ratio of polar to equa-

torial radius using the approximate scheme. A comparison ofomputed for the exact rotating model with\W=0.159.
some of the global quantities for the sequence is given iMNote that this quantity is identically zero on the axis because

LA AL N L L LB B L BB Y

1 | T T T T T T T T T T T T T T T T T T T T r ; |

~0.0035 |- - 0.5 1
i i 0.4 -]

-0.004 — L ]
i ] 03 .
~0.0045 — - w i ]
o L 4 i ]
@ — . 0.2+ -
-0.005 |- — L ]
- . 0.1 |- -
—0.0055 — ok ]
[ | t \ | T l Lo | T N N Y | Lol | | T I—

o | 1 1 L L | L L L Il l i Il 1 L L 1 L 1 1 | 1 1 1 Il I" O 01 02 03 04 05

0 0.1 0.2 0.3 0.4 0.5 :

B r

r
FIG. 4. Total mass-energy densigyalong an equatorial radius
FIG. 2. Fractional error in the conformal factdr along an  for the star in Fig. 1. The solid line shows the exact solution, the
equatorial radius for the star in Fig. 1. dotted line, the approximate solution.
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of local flatness there. The maximum deviation occurs on the A further comparison is provided by Fig. 5, which shows
equator ¢=0.48), but is only about 5%. Outside the star,the virial quantitiesk,q and \34 along the sequence, com-

A—0 asr—oo, puted for each of the two schemes. In the case of the exact
In Fig. 2 we plot along an equatorial radius the fractionalmethod, the deviation from unity is a measure of numerical
error in the conformal factor, error, which is less than 0.1%. The deviation for the approxi-

mate method measures the inherent error, which is about a
P factor of 10 bigger.
= ﬂ‘, (45) To push the approximate scheme to the limit, we now
D exact consider a second equilibrium sequence, a “supramassive”
sequence. This sequence has no nonrotating member, since
where® ., ..=exf (y—p)/4]. Similarly, in Fig. 3 we plot the its rest mass exceeds the maximum rest mass of a nonrotat-
fractional errorSw. Figure 4 shows the mass-energglong  ing star for this equation of stateM(;=0.151). Thus the
an equatorial radius for the two schemes. The two profilesequence exists only by virtue of rotation. We construct the
are almost coincident. supramassive sequence with,=0.176. We expect the dis-

6P

TABLE II. Quantities characterizing a “supramassive” evolutionary sequenee=di.5 polytropic neu-
tron star models. Entries are as described for Table I.

€ Qb g Mm@ M TIW RS €' w/Q/] wid zZ,k

1.0957 0.9464 0.01552 0.1471 0.1758 0.1248 0.4819 0.703 0.8344 0.5196 0.9282
— 0.9549 0.01525 0.1472 0.1760 0.1246 0.4760 0.714 0.8355 0.5192 0.9294
1.0602 0.9362 0.01571 0.1472 0.1758 0.1254 0.4857 0.705 0.8284 0.5174 0.9132
— 0.9444 0.01544 0.1472 0.1760 0.1251 0.4799 0.717 0.8295 0.5170 0.9144
1.0258 0.9269 0.01592 0.1472 0.1758 0.1264 0.4901 0.709 0.8223 0.5163 0.8989
— 0.9349 0.01566 0.1473 0.1760 0.1261 0.4843 0.720 0.8234 0.5158 0.9001
0.9925 0.9182 0.01615 0.1473 0.1758 0.1277 0.4948 0.714 0.8162 0.5158 0.8851
— 0.9260 0.01588 0.1473 0.1760 0.1274 0.4892 0.724 0.8172 0.5153 0.8861
0.9603 0.9105 0.01640 0.1474 0.1758 0.1294 0.5003 0.720 0.8100 0.5166 0.8719
— 0.9182 0.01614 0.1474 0.1760 0.1291 0.4946 0.730 0.8110 0.5162 0.8730
0.9292 0.9031 0.01668 0.1475 0.1758 0.1314 0.5062 0.726 0.8037 0.5179 0.8591
— 0.9107 0.01641 0.1476 0.1760 0.1311 0.5005 0.736 0.8048 0.5176 0.8602
0.8991 0.8964 0.01698 0.1476 0.1758 0.1337 0.5127 0.734 0.7974 0.5203 0.8467
— 0.9038 0.01671 0.1477 0.1760 0.1334 0.5071 0.743 0.7985 0.5200 0.8478
0.8699 0.8901 0.01731 0.1478 0.1758 0.1365 0.5202 0.742 0.7911 0.5239 0.8348
— 0.8975 0.01703 0.1479 0.1760 0.1362 0.5145 0.751 0.7922 0.5237 0.8361
0.8417 0.8839 0.01766 0.1480 0.1758 0.1395 0.5284 0.752 0.7847 0.5283 0.8231
— 0.8912 0.01738 0.1481 0.1760 0.1392 0.5228 0.760 0.7858 0.5282 0.8244
0.8144 0.8779 0.01805 0.1482 0.1758 0.1429 0.5380 0.763 0.7783 0.5343 0.8117
— 0.8852 0.01776 0.1483 0.1760 0.1426 0.5324 0.771 0.7794 0.5343 0.8129
0.7880 0.8719 0.01847 0.1484 0.1758 0.1466 0.5493 0.775 0.7719 0.5423 0.8004
— 0.8790 0.01817 0.1485 0.1759 0.1462 0.5438 0.782 0.7729 0.5424 0.8015
0.7625 0.8654 0.01894 0.1487 0.1758 0.1506 0.5645 0.790 0.7654 0.5546 0.7891
— 0.8723 0.01862 0.1487 0.1759 0.1500 0.5591 0.797 0.7663 0.5549 0.7898
0.7593 0.8648 0.01901 0.1487 0.1758 0.1512 0.5677 0.793 0.7646 0.5579 0.7878
— 0.8716 0.01868 0.1487 0.1759 0.1506 0.5623 0.800 0.7655 0.5583 0.7884
0.7562 0.8637 0.01907 0.1487 0.1758 0.1517 0.5701 0.795 0.7637 0.5598 0.7863
— 0.8705 0.01873 0.1487 0.1759 0.1510 0.5647 0.802 0.7646 0.5602 0.7867
0.7531 0.8629 0.01914 0.1488 0.1758 0.1522 0.5740 0.799 0.7629 0.5639 0.7849
— 0.8695 0.01878 0.1487 0.1758 0.1514 0.5687 0.805 0.7637 0.5644 0.7851
0.7500 0.8620 0.01921 0.1488 0.1758 0.1528 0.5818 0.806 0.7621 0.5729 0.7835
— 0.8682 0.01881 0.1487 0.1757 0.1517 0.5767 0.812 0.7627 0.5736 0.7828

&Central energy density.

bAngular velocity measured at infinity.
‘Moment of inertia.

Total mass energy.

°Rest mass.

fRotational kinetic energy over gravitational binding energy.
9Circumferential radius.

"Eccentricity.

'Measure of frame dragging.

IMatter velocity at equator.

kPolar redshift.
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FIG. 5. Virial quantities along the sequence in Table |. Results FIG. 6. Virial quantities along the supramassive sequence in
for the exact equations are shown by the solid lineXgy and the ~ Table Il. Results for the exact equations are shown by the solid line
dotted line for\ 34. Results for the approximation are shown by the for A ,4 and the dotted line fokz4. Results for the approximation
short-dashed line fox,4 and the long-dashed line fargy . are shown by the short-dashed line fof; and the long-dashed line

for Na3q.-

crepancy between the approximate and exact methods to be

somewhat larger for this sequence since it is everywhere fdors in any quantities we examined were around 5%, and in
from spherical symmetry. This expectation is borne out ingeneral the errors were much smaller. Global measures such
Table Il and Fig. 6. Nevertheless, the discrepancy is not vergs Vvirial quantities were in error by far less than 1%. This
large. agreement is very encouraging.
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