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Solving dynamical problems in general relativity requires the full machinery of numerical relativity. Wils
has proposed a simpler but approximate scheme for systems near equilibrium, such as binary neutron sta
test the scheme on isolated, rapidly rotating, relativistic stars. Since these objects are in equilibrium, it is c
that the approximation works well if we are to believe its predictions for more complicated systems suc
binaries. Our results are very encouraging.@S0556-2821~96!00710-2#
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I. INTRODUCTION

Some of the most interesting unsolved problems in ge
eral relativity require full dynamical solutions of Einstein’
equations in three spatial dimensions. Such solutions hav
be found numerically, and this is only barely becoming tec
nically feasible. An important set of problems in this ca
egory is the binary coalescence of black holes and the bin
coalescence of neutron stars. Such events are expected
a significant source of gravitational waves that will be d
tectable by new generations of detectors such as the La
Interferometric Gravitational Wave Observatory~LIGO!.

In Newtonian physics, binary stars can orbit in an equ
librium system. In general relativity, by contrast, a bina
system loses energy by gravitational wave emission. The
bit shrinks, and the two stars ultimately coalesce. Thou
this is clearly not an equilibrium situation, the orbital deca
occurs on a much longer time scale than an orbital period
least up until the last plunging orbit when the stars are ve
close. Preliminary calculations of binary coalescence a
gravitational collapse suggest that the amount of energy
diated gravitationally is small. Thus, even when the syste
becomes highly dynamical and far from equilibrium, on
might expect that it is still the nonradiative part of the grav
tational field that controls the evolution.

Wilson @1–3# has proposed an approximation scheme th
tracks the evolution of coalescing binary neutron stars wi
out solving the full dynamical Einstein field equations. Th
method may also be applicable to binary black hole syste
@4#. The scheme applies to systems that are either in or n
equilibrium, in which case a reduced set of Einstein’s equ
tion should adequately describe the system. For exampl
binary system is near equilibrium as long as the emission
gravitational radiation is small. In strict equilibrium, as in th
case of a single rotating star, there is a coordinate frame
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which the first and second time derivatives of the metric a
zero. In the 311 formalism, this means in particular that the
time derivatives of the three-metricg i j and the extrinsic cur-
vatureKi j are zero. In quasiequilibrium, the time derivative
are small, and the metric and extrinsic curvature will no
depart significantly from their initial values. Wilson’s ap
proximation consists in setting time derivatives exactly equ
to zero in a selected subset of Einstein’s equations, and
noring the remaining dynamical equations. This approxim
tion results in a smaller, more tractable set of field equation
Part of the strategy for selecting the subset of Einstein
equations is to guarantee thatg i j andKi j are solutions of the
initial-value ~or constraint! equations. Wilson has proposed
evolving the system through a sequence of initial-value pro
lems by solving the full dynamical equations for thematter
in the instantaneous background metric, and then updat
the metric quantities at each time step by re-solving the s
lected subset of Einstein’s equations. We will outline belo
a simpler method to track the evolution, which exploits th
near equilibrium of the matter as well.

As compelling as this idea sounds, it is impossible
calibrate the approximation without comparing it with solu
tions to the exact equations. No such exact solutions exist
realistic, dynamical three-dimensional cases. Only recen
has it become possible to solve Einstein’s equations nume
cally for interesting two-dimensional problems. In fact, it i
only in the last few years that as simple a problem as t
equilibrium structure of a rapidly rotating relativistic sta
could be thoroughly investigated. In this paper, we use the
rotating equilibrium solutions to calibrate Wilson’s approxi
mation scheme. This is the simplest case for which the a
proximation scheme is different from the exact equation
Because the system is a true equilibrium, it is clearly nece
sary that the approximation work well in this case. Only the
will we have confidence that the method is at all useful
more complicated situations such as binary systems.

II. BASIC EQUATIONS

A general metric may be written in 311 form as

ds252a2dt21g i j ~dx
i1b idt!~dxj1b jdt!. ~1!

r-
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5534 53COOK, SHAPIRO, AND TEUKOLSKY
The dynamical equation forg i j is

] tg i j522aKi j1Dib j1Djb i , ~2!

where Di denotes a covariant derivative with respect
g i j . The trace of this equation is

] tlng1/252aK1Dib
i , ~3!

whereg5 detg i j andK5Ki
i . The trace-free part of Eq.~2!

is

g1/3] t~g21/3g i j !522aSKi j2
1

3
g i j K D1Dib j1Djb i

2
2

3
g i j Dkb

k. ~4!

We fix the six components of the extrinsic curvatureKi j by
demanding that each data slice be a maximal slice and
the left-hand side of Eq.~4! be equal to zero. This gives

K50, ~5!

and

2aKi j5Dib j1Djb i2
2

3
g i j Dkb

k. ~6!

Note that] tgÞ0 unlessDib
i50.

To solve the Hamiltonian constraint equation, it is conv
nient to use a conformal decomposition of the spatial metr
To satisfy the demand that the left-hand side of Eq.~4! be
zero, we choose the metric to be conformally flat@5# so that
g21/3g i j5 f i j , where f i j is the flat metric in whatever coor-
dinate system is used. Therefore, we decompose the sp
metric as

g i j5F4f i j . ~7!

The conformal factorF is determined then by the Hamil-
tonian constraint

¹2F52
1

8
F5Ki jKi j22pF5r, ~8!

where the source term is

r5nanbTab . ~9!

Herena is the normal vector to at5constant slice,Tab is the
stress-energy tensor, and¹2 is the flat-space Laplacian. Note
that although indicesi , j , . . . range over 1, . . . ,3, indices
a,b, . . . range over 0, . . . ,3.

The shift vector is determined by substituting Eq.~6! into
the momentum constraint

DjK
i j58pSi , ~10!

where

Sa52ga
bncT

bc. ~11!

We use the results that for a conformally flat metric we m
write
to

that

e-
ic.

atial

ay

Djb i1Dib j2
2

3
g i j Dkb

k

5F24F¹ jb i1¹ ib j2
2

3
f i j¹kb

kG , ~12!

and forK50,

DjK
i j5F210¹ j~F10Ki j !, ~13!

where¹ j denotes the covariant derivative in flat space. Thu
Eq. ~10! becomes

¹2b i1
1

3
¹ i~¹ jb

j !5S 1a ¹ ja2
6

F
¹ jF D

3S ¹ jb i1¹ ib j2
2

3
f i j¹kb

kD
116paF4Si . ~14!

This equation can be simplified to two equations, one involv
ing a vector Laplacian and the other a scalar Laplacian,
setting

b i5Gi2
1

4
¹ iB. ~15!

Then the two equations that must be solved are

¹2Gi5S 1a ¹ ja2
6

F
¹ jF D S ¹ jb i1¹ ib j2

2

3
f i j¹kb

kD
116paF4Si ~16!

and

¹2B5¹ iG
i . ~17!

Though we are not imposing the full set of dynamica
equations for the evolution ofKi j , we do have the freedom
to preserve the maximal slicing condition~5! by requiring
] tK50. The resulting equation can also be written with
simple Laplacian by using Eq.~8!. The result is the lapse
equation

¹2~aF!5~aF!F78F4Ki jK
i j12pF4~r12S!G , ~18!

where

S5g i j Ti j . ~19!

The above field equations, in combination with the matte
equations to be discussed below, form a coupled nonline
set that must be solved by iteration. The boundary conditio
for the field quantities follow from asymptotic flatness; the
specific form depends on the application. We are especia
interested in uniformly rotating configurations such as binar
neutron stars in synchronous orbit. For such systems w
work in a corotating coordinate system so that there is n
time variation of the fields~in the near equilibrium approxi-
mation of the method!. Following Wilson@2#, we can imple-
ment this by replacing Eq.~15! with
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b i5Gi2
1

4
¹ iB1~V3r ! i , ~20!

which leaves Eqs.~17! and ~16! unchanged. HereV is the
constant angular velocity of the system.

For the matter, we will consider a perfect fluid for whic

Tab5~r01r i1P!UaUb1Pgab . ~21!

Here r0 is the rest-mass density,r i is the internal energy
density,P is the pressure, andUa is the fluid four-velocity.
For this source, the densityr in Eq. ~9! is

r5~r01r i1P!~aUt!22P, ~22!

the momentum sourceSi in Eq. ~11! is

Si5~r01r i1P!~aUt!g i j U j , ~23!

and the source termS in Eq. ~19! is

S5~r01r i1P!@~aUt!221#13P. ~24!

We treat fluids that are in uniform rotation, for which th
four-velocityUa is given by

UW 5UtS ]

]t
1V

]

]f D . ~25!

The normalization conditionUW •UW 521 gives

aUt5~11F24f i j UiU j !
1/2. ~26!

Now consider the equations for the matter in the ne
equilibrium approximation. The key approximation is that
the corotating frame there is a Killing vector that is timelik
everywhere. In the nonrotating coordinates, this vector c
be written as

jW5
]

]t
1V

]

]f
. ~27!

Because the four-velocity~25! is proportional to a Killing
vector, the matter equations may be integrated to give
hydrostatic equilibrium result@6#

Ut

h
5const, ~28!

where

ln h[E dP

r01r i1P
. ~29!

For a polytropic equation of state

P5Kr0
G , ~30!

whereK andG are constants, we have
h

e

ar
in
e
an

the

r i5
P

G21
, h5

r01r i1P

r0
. ~31!

In this approximation, we have reduced all of the hydrod
namics to a single algebraic equation, Eq.~28!.

III. AXISYMMETRIC ROTATING STAR: EQUATIONS

To calibrate the method, we apply it to a true equilibrium
system in axisymmetry and compare with the complete n
merical solution found with no approximations. For this pu
pose, we use models of rotating neutron stars supported b
polytropic equation of state. Fully relativistic models hav
been constructed by several authors~see Refs.@7–9# and
references therein!. Solving Einstein’s equations for these
stars is nontrivial numerically. It is only the recent availabi
ity of such solutions that makes this calibration feasible.

In spherical polar coordinates and axisymmetry, we fin
that Eqs.~16! and ~17! are satisfied by setting the quantity
B of Eq. ~15! to zero and with the only nonzero componen
of the shift vectorbf[b. Note that this implies, not only
that the left-hand side of Eq.~4! is zero, but also that
] tg50. This means that we are finding a stationary solutio
of the approximate equations. Given this solution for th
shift vector, the termKi jK

i j appearing in Eqs.~8! and~18! is
given by

Ki jK
i j5

sin2u

2a2 ~r 2b ,r
2 1b ,u

2 !, ~32!

where commas denote partial derivatives. Only thef com-
ponent of the vector Eq.~16! is nontrivial, and becomes the
scalar equation

F¹21
2

r

]

]r
1
2cotu

r 2
]

]uGb5S 1a ]a

]r
2

6

F

]F

]r D ]b

]r

1
1

r 2 S 1a ]a

]u
2

6

F

]F

]u D ]b

]u

1
16pa

r 2sin2u
Sf . ~33!

The four-velocity components appearing in the matt
sources are given by

Ut5@a22F4r 2sin2u~b1V!2#21/2,

Uf5F4r 2sin2uUt~b1V!. ~34!

The above equations turn out to be simplified versions
the exact equations for stationary, axisymmetric configur
tions given by Cook, Shapiro, and Teukolsky@7# ~CST @10#!.
The exact metric has four nonzero metric coefficients, d
noted byg, r, a, andv by CST, though the approximate
metric here has only three:a, b, andF. Thus even though
there is no dynamics in the field, and even though the equ
tion of hydrostatic equilibrium for the matter is rigorously
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obeyed, the Wilson scheme is still an approximation for th
problem. The correspondence between the approximate
exact metric coefficients is given by

a25eg1r,

F45eg2r5e2aCST,

b52v. ~35!

The fluid velocityv in the zero angular momentum observe
~ZAMO! frame used by CST is given by
is
and

r

~aUt!25
1

12v2
. ~36!

In spherical symmetry, the approximate scheme reduces
the exact scheme, with two nonzero metric coefficients. W
will now quantify the degree of error in the nonspherica
axisymmetric case.

We can take over the numerical scheme of CST to sol
the approximate equilibrium equations. In fact, the structu
of the equations is very close in that they involve the sam
differential operators on the left-hand sides. In particula
Eqs.~8! and ~18! involve ¹2, as in Eq.~3! of CST, and the
operator in Eq.~33! is the same as that in Eq.~5! of CST.
Therefore the solution is computed as in Eqs.~27! and ~29!
lving

726
25
660
58
641
38
623
20
589
87
526
27
422
26
348
51
337
39
332
31
330
28
330
28
330
28
TABLE I. Quantities characterizing a ‘‘normal’’ evolutionary sequence ofn50.5 polytropic neutron star
models. For each value of the central energy densityē we first display the results from solving the exact
equations. Below this, indicated with a dash in the energy density column, are the results obtained by so
the approximate equations.

ēc
a V̄b Ī c M̄d M̄0

e T/Wf R̄e
g eh vc /Vc

i v/cj Zp
k

1.0000 0.0000 0.01014 0.1232 0.1484 0.0000 0.4137 0.000 0.7482 0.0000 0.5
— 0.0000 0.01014 0.1232 0.1484 0.0000 0.4137 0.000 0.7480 0.0000 0.57

0.9029 0.3339 0.01069 0.1237 0.1484 0.0150 0.4274 0.271 0.7291 0.1594 0.5
— 0.3332 0.01068 0.1237 0.1484 0.0149 0.4270 0.275 0.7289 0.1590 0.56

0.8152 0.4886 0.01144 0.1245 0.1484 0.0360 0.4454 0.418 0.7115 0.2420 0.5
— 0.4881 0.01141 0.1245 0.1484 0.0358 0.4445 0.423 0.7115 0.2413 0.56

0.7360 0.5923 0.01237 0.1255 0.1484 0.0600 0.4674 0.532 0.6946 0.3064 0.5
— 0.5927 0.01231 0.1254 0.1484 0.0597 0.4658 0.537 0.6947 0.3057 0.56

0.6645 0.6618 0.01352 0.1265 0.1484 0.0860 0.4942 0.627 0.6780 0.3604 0.5
— 0.6632 0.01344 0.1265 0.1484 0.0858 0.4920 0.632 0.6782 0.3598 0.55

0.6000 0.7040 0.01496 0.1276 0.1484 0.1134 0.5279 0.707 0.6612 0.4081 0.5
— 0.7064 0.01485 0.1276 0.1485 0.1132 0.5252 0.712 0.6616 0.4076 0.55

0.5417 0.7224 0.01680 0.1287 0.1484 0.1416 0.5743 0.778 0.6440 0.4552 0.5
— 0.7256 0.01665 0.1288 0.1485 0.1413 0.5710 0.782 0.6445 0.4550 0.54

0.5148 0.7226 0.01795 0.1293 0.1484 0.1559 0.6124 0.817 0.6349 0.4875 0.5
— 0.7260 0.01777 0.1293 0.1485 0.1555 0.6091 0.820 0.6354 0.4876 0.53

0.5115 0.7221 0.01812 0.1294 0.1484 0.1577 0.6217 0.824 0.6337 0.4956 0.5
— 0.7254 0.01792 0.1294 0.1485 0.1572 0.6184 0.827 0.6341 0.4958 0.53

0.5098 0.7218 0.01821 0.1294 0.1484 0.1587 0.6303 0.830 0.6331 0.5034 0.5
— 0.7249 0.01799 0.1294 0.1484 0.1581 0.6272 0.833 0.6334 0.5037 0.53

0.5094 0.7216 0.01822 0.1294 0.1484 0.1588 0.6331 0.832 0.6329 0.5060 0.5
— 0.7248 0.01800 0.1294 0.1484 0.1581 0.6300 0.835 0.6332 0.5063 0.53

0.5094 0.7216 0.01822 0.1294 0.1484 0.1589 0.6332 0.832 0.6329 0.5061 0.5
— 0.7248 0.01800 0.1294 0.1484 0.1581 0.6302 0.835 0.6332 0.5065 0.53

0.5094 0.7216 0.01822 0.1294 0.1484 0.1589 0.6333 0.832 0.6329 0.5062 0.5
— 0.7248 0.01800 0.1294 0.1484 0.1581 0.6302 0.835 0.6332 0.5066 0.53

aCentral energy density.
bAngular velocity measured at infinity.
cMoment of inertia.
dTotal mass energy.
eRest mass.
fRotational kinetic energy over gravitational binding energy.
gCircumferential radius.
hEccentricity.
iMeasure of frame dragging.
jMatter velocity at equator.
kPolar redshift.
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of CST. The nondimensionalized source terms analogou
Eq. ~30! of CST are

S̃F~s,m!52
1

16

F7

~aF!2
~12m2!S s

12sD
2

$@~12s!sv̂ ,s#
2

1~12m2!v̂ ,m
2 %22pF5r̄ e

2S s

12sD
2

3F ~ r̄01 r̄ i1 P̄!
1

12v2
2 P̄G , ~37!

S̃aF~s,m!5aFV 716 F6

~aF!2
~12m2!S s

12sD
2

3$@~12s!sv̂ ,s#
21~12m2!v̂ ,m

2 %

12pF4r̄ e
2S s

12sD
2F ~ r̄01 r̄ i1 P̄!

1

12v2
2 P̄G

14pF4r̄ e
2S s

12sD
2F ~ r̄01 r̄ i1 P̄!

v2

12v2

13P̄G B , ~38!

and the source term analogous to Eq.~32! of CST is
s to
S̃v̂~s,m!5s2~12s!2F 1

aF
~aF! ,s2

7

F
F ,sG v̂ ,s1~12m2!

3F 1

aF
~aF! ,m2

7

F
F ,mG v̂ ,m

216pF4r̄ e
2S s

12sD
2 r̄01 r̄ i1 P̄

12v2
~V̂2v̂ !, ~39!

wheres is an auxiliary radial coordinate defined in CST. The
entire iterative scheme used to solve the approximate equ
tions is identical to the one in CST.

To calibrate the approximation, we first compute an exa
sequence of constant rest mass polytropes of increasing
gular momentum. Each member of the sequence is specifi
by two parameters: the ratio of polar to equatorial radius, an
the central rest-mass density. We next compute the appro
mate sequence using the same values for these two para
eters for each model. We then compare the metric coef
cients of corresponding models using the relationships
~35!. We also compare global quantities such as the tot
mass and angular momentum. As a further diagnostic, w
calculate two relativistic virial quantities@11,12# whose val-
ues should be identically one for an exact equilibrium solu
tion. In the notation of CST, these quantities are
l2d5

32pE FP1~e1P!
v2

12v2Ge2ardrdu

E H S ]g

]r
1

]r

]r D
2

1
1

r 2 S ]g

]u
1

]r

]u D 223e22rsin2uF r 2S ]v

]r D 21S ]v

]u D 2G J rdrdu

, ~40!

l3d516pE F3P1~e1P!
v2

12v2Ge2a1~g2r!/2r 2sinudrdu YH E F]~g1r!]~g1r!

2]a]g1]a]r2
1

2r
~12e2a2g1r!S 4]a

]r
1

4

r tanu

]a

]u
2

]g

]r
2

1

r tanu

]g

]u
1

]r

]r
1

1

r tanu

]r

]u D
2
3

2
e22rr 2sin2u]v]v Ge~g2r!/2r 2sinudrduJ , ~41!
ct
e
t
al
or
-

s

where, for example,

]a]r[
]a

]r

]r

]r
1

1

r 2
]a

]u

]r

]u
~42!

and e5r01r i is the total mass-energy density. Herel3d
involves an integration with a three-dimensional volume e
ementr 2sinudrdu and is the relativistic generalization of the
classical virial theorem

2Ekin13~G21!Eint1Ugrav50. ~43!

The quantity l2d involves an integration with a two-
dimensional volume elementrdrdu. The discrepancy from
unity is a measure ofnumericalerror for our solutions of the
l-

exact equations. It is a measure of the largerinherenterror
for our solutions of the approximate equations.

IV. AXISYMMETRIC ROTATING STAR: NUMERICAL
RESULTS

To calibrate the approximate scheme against the exa
solution, we choose the most stringent case, in which th
configuration is very relativistic and rapidly rotating. When i
is rotating rapidly, there are large deviations from spheric
symmetry, so that the approximation is no longer exact. F
polytropes, the largest rotation is attained for nearly incom
pressible matter, i.e., for largeG5111/n or small polytropic
indexn. We choosen50.5.

In constructing an exact sequence of rotating equilibria a
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a benchmark, we start with a nonrotating star having a c
tral value of energy densityē51 ~note that all ‘‘barred’’
quantities are nondimensional as defined by CST!. This con-
figuration is relativistic, withM /R50.298 and rest mass
M̄050.148, just below the maximum rest mass of a nonr
tating star for this equation of state (M̄050.151). Holding
the rest mass constant, we construct a sequence of increa
uniform rotation, up to the point of mass shedding. As d
scribed above, we then construct the corresponding mod
with the same central value ofē and ratio of polar to equa-
torial radius using the approximate scheme. A comparison
some of the global quantities for the sequence is given

FIG. 1. Angular profile of the deviation of the exact solutio
from conformal flatness at selected radii. The deviationD is defined
in Eq. ~44!. The star is a rapidly rotating, highly relativistic poly
trope withn50.5 and rest mass just below the maximum rest ma
of a nonrotating star for this equation of state. The radiir̄ are in the
nondimensional units of CST, andm5cosu.

FIG. 2. Fractional error in the conformal factorF along an
equatorial radius for the star in Fig. 1.
en-

o-

sing
e-
els

of
in

Table I. The high values of polar redshiftZp andT/W con-
firm that the sequence is both highly relativistic and rapid
rotating. As expected, the deviations are largest near
mass shed limit, but even there they are never worse th
about 1%.

We can understand why the overall discrepancy is sm
by looking at Fig. 1. Here we plot a measure of the deviatio
in the exact solution from conformal flatness, which is a
sumed in the approximate method. In the figure we plot t
angular profile at selected radii of the quantity

D[
aCST2~g2r!/2

a CST
~44!

computed for the exact rotating model withT/W50.159.
Note that this quantity is identically zero on the axis becau

n

-
ss

FIG. 3. Fractional error in the metric coefficientv along an
equatorial radius for the star in Fig. 1.

FIG. 4. Total mass-energy densityē along an equatorial radius
for the star in Fig. 1. The solid line shows the exact solution, th
dotted line, the approximate solution.
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of local flatness there. The maximum deviation occurs on t
equator (r̄50.48), but is only about 5%. Outside the star
D→0 asr→`.

In Fig. 2 we plot along an equatorial radius the fractiona
error in the conformal factor,

dF5
F2Fexact

Fexact
, ~45!

whereFexact[exp@(g2r)/4#. Similarly, in Fig. 3 we plot the
fractional errordv. Figure 4 shows the mass-energyē along
an equatorial radius for the two schemes. The two profil
are almost coincident.
he
,

l

es

A further comparison is provided by Fig. 5, which show
the virial quantitiesl2d and l3d along the sequence, com-
puted for each of the two schemes. In the case of the ex
method, the deviation from unity is a measure of numeric
error, which is less than 0.1%. The deviation for the approx
mate method measures the inherent error, which is abou
factor of 10 bigger.

To push the approximate scheme to the limit, we no
consider a second equilibrium sequence, a ‘‘supramassiv
sequence. This sequence has no nonrotating member, s
its rest mass exceeds the maximum rest mass of a nonro
ing star for this equation of state (M̄050.151). Thus the
sequence exists only by virtue of rotation. We construct t
supramassive sequence withM̄050.176. We expect the dis-
82
4
32
4
89
1
51
1
19
0
91
2
67
8
48
1
31
4
17
9
04
5
91
8
78
4
63
7
49
1
35
8

TABLE II. Quantities characterizing a ‘‘supramassive’’ evolutionary sequence ofn50.5 polytropic neu-
tron star models. Entries are as described for Table I.

ēc
a V̄b Ī c M̄d M̄0

e T/Wf R̄e
g eh vc /Vc

i v/cj Zp
k

1.0957 0.9464 0.01552 0.1471 0.1758 0.1248 0.4819 0.703 0.8344 0.5196 0.92
— 0.9549 0.01525 0.1472 0.1760 0.1246 0.4760 0.714 0.8355 0.5192 0.929

1.0602 0.9362 0.01571 0.1472 0.1758 0.1254 0.4857 0.705 0.8284 0.5174 0.91
— 0.9444 0.01544 0.1472 0.1760 0.1251 0.4799 0.717 0.8295 0.5170 0.914

1.0258 0.9269 0.01592 0.1472 0.1758 0.1264 0.4901 0.709 0.8223 0.5163 0.89
— 0.9349 0.01566 0.1473 0.1760 0.1261 0.4843 0.720 0.8234 0.5158 0.900

0.9925 0.9182 0.01615 0.1473 0.1758 0.1277 0.4948 0.714 0.8162 0.5158 0.88
— 0.9260 0.01588 0.1473 0.1760 0.1274 0.4892 0.724 0.8172 0.5153 0.886

0.9603 0.9105 0.01640 0.1474 0.1758 0.1294 0.5003 0.720 0.8100 0.5166 0.87
— 0.9182 0.01614 0.1474 0.1760 0.1291 0.4946 0.730 0.8110 0.5162 0.873

0.9292 0.9031 0.01668 0.1475 0.1758 0.1314 0.5062 0.726 0.8037 0.5179 0.85
— 0.9107 0.01641 0.1476 0.1760 0.1311 0.5005 0.736 0.8048 0.5176 0.860

0.8991 0.8964 0.01698 0.1476 0.1758 0.1337 0.5127 0.734 0.7974 0.5203 0.84
— 0.9038 0.01671 0.1477 0.1760 0.1334 0.5071 0.743 0.7985 0.5200 0.847

0.8699 0.8901 0.01731 0.1478 0.1758 0.1365 0.5202 0.742 0.7911 0.5239 0.83
— 0.8975 0.01703 0.1479 0.1760 0.1362 0.5145 0.751 0.7922 0.5237 0.836

0.8417 0.8839 0.01766 0.1480 0.1758 0.1395 0.5284 0.752 0.7847 0.5283 0.82
— 0.8912 0.01738 0.1481 0.1760 0.1392 0.5228 0.760 0.7858 0.5282 0.824

0.8144 0.8779 0.01805 0.1482 0.1758 0.1429 0.5380 0.763 0.7783 0.5343 0.81
— 0.8852 0.01776 0.1483 0.1760 0.1426 0.5324 0.771 0.7794 0.5343 0.812

0.7880 0.8719 0.01847 0.1484 0.1758 0.1466 0.5493 0.775 0.7719 0.5423 0.80
— 0.8790 0.01817 0.1485 0.1759 0.1462 0.5438 0.782 0.7729 0.5424 0.801

0.7625 0.8654 0.01894 0.1487 0.1758 0.1506 0.5645 0.790 0.7654 0.5546 0.78
— 0.8723 0.01862 0.1487 0.1759 0.1500 0.5591 0.797 0.7663 0.5549 0.789

0.7593 0.8648 0.01901 0.1487 0.1758 0.1512 0.5677 0.793 0.7646 0.5579 0.78
— 0.8716 0.01868 0.1487 0.1759 0.1506 0.5623 0.800 0.7655 0.5583 0.788

0.7562 0.8637 0.01907 0.1487 0.1758 0.1517 0.5701 0.795 0.7637 0.5598 0.78
— 0.8705 0.01873 0.1487 0.1759 0.1510 0.5647 0.802 0.7646 0.5602 0.786

0.7531 0.8629 0.01914 0.1488 0.1758 0.1522 0.5740 0.799 0.7629 0.5639 0.78
— 0.8695 0.01878 0.1487 0.1758 0.1514 0.5687 0.805 0.7637 0.5644 0.785

0.7500 0.8620 0.01921 0.1488 0.1758 0.1528 0.5818 0.806 0.7621 0.5729 0.78
— 0.8682 0.01881 0.1487 0.1757 0.1517 0.5767 0.812 0.7627 0.5736 0.782

aCentral energy density.
bAngular velocity measured at infinity.
cMoment of inertia.
dTotal mass energy.
eRest mass.
fRotational kinetic energy over gravitational binding energy.
gCircumferential radius.
hEccentricity.
iMeasure of frame dragging.
jMatter velocity at equator.
kPolar redshift.
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crepancy between the approximate and exact methods to
somewhat larger for this sequence since it is everywhere
from spherical symmetry. This expectation is borne out
Table II and Fig. 6. Nevertheless, the discrepancy is not v
large.

V. CONCLUSION

We have tested Wilson’s approximation scheme on ra
idly rotating relativistic stars. Since these are equilibriu
objects, it is necessary that the scheme give reasonably
curate results if we are to believe its predictions for mo
complicated systems such as binaries. In fact, we have fo
that the method works remarkably well, even for highly rel
tivistic objects far from spherical symmetry. The largest e

FIG. 5. Virial quantities along the sequence in Table I. Resu
for the exact equations are shown by the solid line forl2d and the
dotted line forl3d . Results for the approximation are shown by th
short-dashed line forl2d and the long-dashed line forl3d .
be
far
in
ery

p-
m
ac-
re
und
a-
r-

rors in any quantities we examined were around 5%, and
general the errors were much smaller. Global measures s
as virial quantities were in error by far less than 1%. Th
agreement is very encouraging.
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FIG. 6. Virial quantities along the supramassive sequence
Table II. Results for the exact equations are shown by the solid li
for l2d and the dotted line forl3d . Results for the approximation
are shown by the short-dashed line forl2d and the long-dashed line
for l3d .
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