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Time-symmetric initial data for multibody solutions in three dimensions
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Time-symmetric initial data for two-body solutions in three-dimensional anti–de Sitter gravity are fou
The spatial geometry has a constant negative curvature and is constructed as a quotient of two-dime
hyperbolic space. Apparent horizons correspond to closed geodesics. In an open universe, it is shown t
black holes cannot exist separately, but are necessarily enclosed by a third horizon. In a closed univers
separate black holes can exist provided there is an additional image mass.@S0556-2821~96!05010-2#
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I. INTRODUCTION

Black holes in three spacetime dimensions@1,2# share
many of the features of four-dimensional black holes. In th
paper, the issue of constructing multibody and in particu
multi-black-hole solutions is considered. In@3#, it was shown
that there are no static multi-black-hole solutions in 211
dimensions. Indeed, since there is a negative cosmolog
constant present, one would expect the black holes to att
and only time-dependent solutions to exist. In@4#, it was
shown that additional conical singularities will appear in th
time-dependent solutions. To better understand these m
body solutions, we focus on the problem of constructing i
tial data for two bodies initially at rest. We take advantage
the fact that the space exterior to the sources has cons
negative curvature and therefore can be constructed as a
tient of hyperbolic space.

II. TIME-SYMMETRIC INITIAL DATA
IN THREE DIMENSIONS

Black holes in 211 dimensions are solutions to Einstein
equations with a negative cosmological constantL:

Gmn1Lgmn58pGTmn , L,0. ~2.1!

The initial data constraints for~2.1! on an initial spacelike
sliceS with spatial metrichi j and extrinsic curvatureKi j are
given by

R

2
1Ki jK

i j2K21
1

l 2
58pGTmnn

mnn,

l 252L21, K[Ki
i ,

¹ jKi
j2¹ iK58pGTimn

m, ~2.2!

wherenm is the normal toS andR is the scalar curvature of
hi j . i , j , . . . refer to indices tangent to the spatial slice.
this paper, we are concerned with the caseKi j50 corre-
sponding to time-symmetric or momentarily static initia
data. The momentum constraint is satisfied ifTimn

m50 while
the Hamiltonian constraint becomes
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58pGr, r5Tmnn

mnn. ~2.3!

On an apparent horizon,S, the convergence~or expan-
sion! of outgoing null geodesics vanishes. In terms ofhi j and
Ki j , this corresponds to the condition

H5~hi j2ñi ñ j !Ki j , ~2.4!

whereH is the mean spatial curvature ofS viewed as a
surface embedded in the~D21!-dimensional spaceS with
metric hi j and whereñi is the normal toS in S. For time-
symmetric initial data,S is an apparent horizon ifH50, i.e.,
if S is a minimal surface. A curve which is minimal is
geodesic. Hence, apparent horizons for time-symmetric
tial data in 211 dimensions are closed geodesics.

III. INITIAL DATA FOR STATIC CIRCULARLY
SYMMETRIC ONE-BODY SOLUTIONS

We first consider initial data for the static one-body so
tions. The static circularly symmetric solutions to~2.1! are
given by @1#

dS252S r 2l 228GM Ddt21S r 2l 228GM D 21

dr21r 2df2,

0,f,2p ~3.1!

whereM is the total mass. For various ranges ofM , ~3.1!
describes the following solutions:~1! M.0, black hole
with event horizon located atr H5(8GM)1/2l and singularity
at r50; ~2! M50, black hole vacuum;~3! 21/8G,M,0,
one-particle solutions with a naked conical singularity
r50 and no event horizon@5,6#; ~4! M521/8G, three-
dimensional anti–de Sitter space.

The t50 initial spacelike slices of~3.1! are time symmet-
ric and hence, from~2.3!, have constant negative curvatur
This implies that they can be obtained as quotients of tw
dimensional hyperbolic space. We now review this constr
tion.

A. Two-dimensional hyperbolic space

Two-dimensional hyperbolic space,H2, can be described
as the two-dimensional hypersurface
5527 © 1996 The American Physical Society
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T22X22Y25 l 2 ~3.2!

in the flat three-dimensional space with metric of signatu
~211!:

dS252dT21dX21dY2. ~3.3!

The Poincare disk model for hyperbolic space is

ds25
4

~12zz̄/ l 2!2
dzdz̄, 0<uzu, l , z5reif, ~3.4!

and can be obtained by the stereographic projection of
hypersurface~3.2! through the point~21,0,0! in the (T,X,Y)
space onto the disk of radiusl in theX-Y plane. The bound-
ary uzu5 l in ~3.4! is spatial infinity. Geodesics on the Poin
care disk are segments of circles or lines which intersect
boundary of the disk orthogonally. The isometry group o
~3.4! is SU~1,1! with the action

z/ l→
a~z/ l !1b

b̄~z/ l !1ā
, uau22ubu251. ~3.5!

Another representation ofH2 which will be useful is the
Poincare metric on the upper halfxy plane:

ds25 l 2S dx21dy2

y2 D , y.0. ~3.6!

This can be obtained from~3.3! by the embedding

T1Y5 l 2/y, T2Y5
x21y2

y
, X5

x

y
l . ~3.7!

It can be obtained from~3.4! by applying an inversion in a
circle in the z plane given byz/ l→(z/ l2 i )(2 iz/ l11)21

wherez5x1 iy . Geodesics on the upper-half plane are ve
tical lines or semicircles which intersect the real axis o
thogonally. The isometry group of~3.6! is SL~2,R! with the
action

z/ l→
a~z/ l !1b

c~z/ l !1d
, S a b

c dD PSL~2,R!. ~3.8!

SL~2,R! and SU~1,1! isometries are related by conjugation:

S̃5NSN21,

N5
1

&
S 1 2 i

2 i 1 D ,
SPSL~2,R!, S̃PSU~1,1!. ~3.9!

Finally, in terms of polar coordinatesr52[r/(12r2/ l 2)],
~3.4! takes the form

ds25
dr2

r 2/ l 211
1r 2df2, r>0, 0<f,2p. ~3.10!

This is the t50 spatial geometry of three-dimensiona
anti–de Sitter space~3.1! with M521/(8G).
re
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-
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Let us briefly discuss the conjugacy classes of isometri
of H2. Two isometries are conjugate if and only if the trace
of the corresponding SL~2,R! or SU~1,1! matrices,G, are
equal. There are three types of conjugacy classes:elliptic
@~Tr G!2,4#, hyperbolic @~Tr G!2.4#, or parabolic
@~Tr G!254#. Elliptic isometries are conjugate to rotations
about the origin in the Poincare disk. Hyperbolic isometrie
are conjugate to scalings in the upper-half plane. There
only one parabolic conjugacy class corresponding to isom
tries which are conjugate to a translation in thex direction in
the upper-half plane. Elliptic isometries have one fixed poin
hyperbolic isometries have two fixed points both at infinity
and parabolic isometries have one fixed point at infinity. Th
t50 initial slices for the one-body solutions~3.1! can be
obtained essentially by identifyingH2 periodically in an
isometry generator. Elements conjugate to one another g
erate isometric quotients. As we shall see below, ellipt
isometries generate theM,0 one-particle solutions, hyper-
bolic isometriesM.0 black holes, and the parabolic conju
gacy class generates theM50 black hole vacuum.

B. M>0 black hole solutions

The spatial geometry of the black hole solution can b
obtained by identifyingH2 periodically in a hyperbolic gen-
erator@1#. The t50 spatial slice of the black hole spacetime
~3.1! is given by

ds25S r 2l 228GM D 21

dr21r 2df2, 0,f,2p.

~3.11!

Defining the radial coordinatex5(r 228GMl2)1/2, one ob-
tains

ds25S x2l 2 18GM D 21

dx21~x218GMl2!df2,

2`,x,`, 0,f,2p. ~3.12!

The complete spatial geometry has a wormhole structu
with cylindrical topology, S13R. It is similar to the
Einstein-Rosen bridge in the Schwarzschild solution exce
it is not asymptotically flat. The wormhole mouth is at the
horizon r H5(8GM)1/2l .

The simplest way to see how~3.11! can be obtained from
a quotient ofH2 is using the coordinates (r̃ ,f̃) defined by
the embedding~3.2!:

T5 r̃ coshf̃, X5Ar̃ 22 l 2, Y5 r̃ sinhf̃,

f̃P~2`,`!, l, r̃,`. ~3.13!

Note thatf̃ has infinite range because it parametrizesboosts
in theT-Y plane. Inserting into~3.3!, the metric becomes
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ds25S r̃ 2

l 2
21D 21

dr̃ 21 r̃ 2df̃2, f̃P~2`,`!.

~3.14!

If one identifiesf̃ with period 2(8GM)1/2p whereM is the
mass of the black hole, and rescales the coordinates

r̃5r /~8GM!1/2, f̃5~8GM!1/2f, ~3.15!

one obtains the black hole spatial geometry~3.11!.
In terms of the coordinates~3.7! (x,y) on the upper-half

plane, the identificationf̃;f̃12(8GM)1/2p corresponds to
the identification by the scaling (x,y);e22(8GM)1/2p(x,y).
The black hole spatial geometry is then the semiannulus
the upper-half plane with outer unit radius and inner radi
e22(8GM)1/2p identified @7#. From ~3.9!, the corresponding
SU~1,1! matrix generating the identifications is given by

GM5S cosh@p~8GM!1/2# i sinh@p~8GM!1/2#

2 i sinh@p~8GM!1/2# cosh@p~8GM!1/2#
D .
~3.16!

Hence, theM.0 black hole is obtained by identifying two
geodesics which do not intersect and are not tangential
one another at infinity.

C. 21/„8G…<M<0 solutions as quotients of hyperbolic space

The21/(8G),M,0 solutions

ds25S r 2l 2 1~124Gm!2D 21

dr21r 2df2,

m5
1

4G
2S 2M

2G D 1/2 ~3.17!

are the familiar anti–de Sitter conical spaces with a partic
source @5# obtained by excising a wedge of deficit angl
8pGm from the Poincare disk with vertex located at th
source. The edges of the wedge are then identified by a
tation z→ei8pGmz which as an element of SU~1,1! is given
by

Gm5S ei4pGm 0

0 e2 i4pGmD . ~3.18!

m is the proper mass defined bym5*rdA. The maximum
allowable deficit angle of 2p corresponds tomc[1/4G. For
a particle located at a different point, the wedge excised co
sists of two geodesic edges with the same deficit angle si
the model is conformal.

D. M50 black hole vacuum

The t50 spatial geometry of theM50 black hole vacuum
is given by

ds25 l 2
dr2

r 2
1r 2df2. ~3.19!
in
us

to
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This is a surface of revolution of constant negative curvatu
known as atractroid. Transforming to the new coordinates
y5 l /r , x5f, ~3.19! becomes

ds25 l 2S dx21dy2

y2 D , y.0, 0<x,2p. ~3.20!

Comparing with ~3.6!, the M50 spatial geometry is the
upper-half plane withx identified periodically in 2p. Alter-
natively, using~3.9! it can be obtained as a quotient of the
Poincare´ disk by the SU~1,1! parabolic transformation

GM505S 11p i p

p 12p i D PSU~1,1!. ~3.21!

Identifying in x with different periods are conjugate transfor
mations. Hence, the resulting spaces generated by identify
in x with different periods are all isometric to theM50
solution. TheM50 solution is obtained by identifying two
geodesics which are tangential to one another at`.

The generator for theM50 solution ~3.21! can be ob-
tained by conjugating the generator for theM,0 conical
solution ~3.18! by a translationTd by a distanced in the x
direction in the Poincare´ disk,

Td5S cosh~d/2l ! sinh~d/2l !

sinh~d/2! cosh~d/2l !
D , ~3.22!

and taking the simultaneous limitm→0, d→`,

GM505 lim
m→0,d→`

TdGmTd
21, ~3.23!

with m coshd/ l5mc fixed. This limit is analogous to a con-
traction where a lightlike solution is obtained by taking
simultaneousm→0, v→c limit with the energy held fixed.
TheM50 generator can be obtained in the same way fro
theM.0 black hole generator~3.16!.

IV. TWO-BODY SOLUTIONS

In this section, we construct initial data for two-body so
lutions. As in the one-body case, we obtain these solutio
by taking quotients ofH2. While the quotient group for the
one-body solutions is generated by one element, for t
multibody solutions more generators are required. The to
mass of the system,M , can be obtained from the spatia
metric at large distances. However, a simpler way is to o
tain it from the generator for the system. The generatorG for
the total system is the composition of the generators for t
individual bodies. ExpressG as an effective one-body gen-
erator up to a conjugation corresponding to an overall isom
etry

G5TGMT
21, ~4.1!

where GM is given in ~3.16!. The total mass can then be
obtained from the trace:

cosh@p~8GM!1/2#5
1

2
TrG. ~4.2!
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We now consider three two-body systems: two particles
particle and black hole, and two black holes. Depending
the masses and locations of the bodies, there are three q
tatively different kinds of solutions: the space exterior to t
two bodies is open without horizons; the space exterior to
two bodies is open with the two bodies enclosed by an
parent horizon; or, the space exterior to the two bodies
closed with additional image masses. For some values
these parameters, there may be no solution~at least with
positive-energy matter!. The same kinds of solutions wer
found in the case of a ring of pressure-free dust@8#.

A. Two-particle solutions

Consider two particles initially at rest with massesm, m̃
separated by a geodesic distanced. To construct the spatia
geometry, it is convenient to use the Poincare´ disk represen-
tation. As in the flat case@5#, we excise a wedge for each o
the particles with deficit angles 8pGm and 8pGm̃. For a
particle of massm translated by a distanced, the generator is

G5TdGmTd
21, ~4.3!

whereGm is the one-particle generator~3.18! andTd is the
translation~3.22!. The effective one-body generator for th
whole system is then the product

G5GmTdGm̃Td
21. ~4.4!

From ~4.2!, the total mass of the system is given by

cosh@p~8GM!1/2#5cosh~d/ l !sin~4pGm!sin~4pGm̃!

2cos~4pGm!cos~4pGm̃!. ~4.5!

Depending on the values of the parameters (m,m̃,d), the
space can be open without a horizon, open with the t
particles enclosed by a horizon, or closed with an additio
image mass. Ifm1m̃,mc , the space is open with total mas
given by ~4.5!. If m̃50, we recover the one-particle mas
M52(124Gm)2/(8G) from ~3.17!. When d50, we re-
cover the flat space formulamtotal5m1m̃ where
M52~124Gmtotal!

2/(8G). M increases withd due to the
attractive anti–de Sitter force, and increases with the mas
m,m̃ due to the rest mass contribution to the total energy

Now consider the casem1m̃>mc . Recall that this con-
dition means that the sum of the deficit angles of the partic
exceeds 2p. In flat space, this would imply that the univers
closes with an additional image mass appearing. In anti–
Sitter space, this is not necessarily the case. Consider the
subcasesm<mc/2, m̃.mc/2 ~or equivalently,m.mc/2 and
m̃<mc/2! andm,m̃.mc/2 separately.

For m<mc/2 and m̃.mc/2, the different kinds of solu-
tions that can occur asd decreases are as follows. Ford in
the range

cosh~d/ l !.
tan~4pGm!

2tan~4pGm̃!
, open, no horizon,~4.6!

the space is open with total mass~4.5! and without any ho-
rizon. Ford in the range
, a
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uali-
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f c~m,m̃!,cosh~d/ l !<
tan~4pGm!

2tan~4pGm̃!
black hole

~4.7!

with

f c~m,m̃![
11cos~4pGm!cos~4pGm̃!

sin~4pGm!sin~4pGm̃!
, ~4.8!

the two particles are surrounded by a horizon. The size of
horizon is that of a black hole of massM ~4.5! as can be
verified directly from the geometry. The space outside
horizon is of course the black hole spatial geometry. Wh
cosh(d/ l )5 f c(m,m̃), ~4.5! yieldsM50, and the space out
side the particles forms an infinite thin throat at infini
which is identical to theM50 throat. For

cosh~d/ l !, f c~m,m̃! closed space ~4.9!

the space is closed with an additional image mass,m8, ap-
pearing. The total mass,M , is negative with
m85mtotal51/4G2(2M /2G)1/2.

For m,m̃.mc/2, there are only two kinds of solutions
For d in the range

cosh~d/ l !. f c~m,m̃! black hole ~4.10!

the two particles are enclosed by a horizon.
cosh(d/ l )5 f c(m,m̃), the infinite throat forms at infinity. For
d in the range,~4.9!, the space is closed with an addition
image mass. Sincef c(m,m̃)>1 and from~4.9!, we recover
that the space is closed in thel→` flat space limit.

B. A system consisting of one particle and one black hole

Consider a system consisting of a particle of massm ini-
tially at rest located a geodesic distanceR from the horizon
of a black hole of massM also initially at rest. The spatia
geometry can again be obtained from a quotient of the P
carédisk. Consider the fundamental region on the Poinc´
disk associated with the one-black-hole solution. This is
region bound by two geodesics which do not intersect a
are not tangential to one another at infinity. Now inser
point particle of massm a distanceR from the horizon of the
black hole by excising a wedge of deficit angle 8pGm with
vertex at the point particle and identifying the two edges

The total mass of the system can be found from the eff
tive one-body generatorG obtained from the composition o
the generators for the black hole~3.16! and the inverse of the
generator for the translated particle~4.3!:

G5GM~TRGmTR
21!21. ~4.11!

The inverse is taken because the wedge is beingremoved
from the space. From the trace~4.2!, we find the total mass
M total of the system:

cosh@p~8GM total!
1/2#5coshbM cos~4pGm!

1sinh~R/ l !sinhbM sin~4pGm!,

~4.12!
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wherebM[p(8GM)1/2. As m→0, we recoverM total→M ,
and similarly, as M→21/8G, we recover
M total52(124Gm)2/(8G).

Depending on the values of the parameters (m,M ,R), the
space exterior to the particle and black hole can be op
without a horizon, open with the particle and black hole e
closed by a horizon, or closed with an additional ima
mass. Consider increasing values ofm.

For 0,tan(4pGm),sinhbM , the different kinds of so-
lutions that can occur asR decreases are as follows. ForR in
the range

sinh~R/ l !.
tan~4pGm!

tanhbM
open, no horizon, ~4.13!

the exterior space is open with total mass~4.12!, and without
any additional horizons. Again, the total mass increases w
R and withm. ForR in the range

sinh~R/ l !<
tan~4pGm!

tanhbM
black hole ~4.14!

the particle and black hole are surrounded by a horizon w
mass given by~4.12! as can be verified directly from the
geometry.

Form in the range, sinhbM<tan(4pGm),`, ~4.13! con-
tinues to hold. A horizon forms for

12coshbM cos~4pGm!

sinhbM sin~4pGm!
<sinh~R/ l !

<
tan~4pGm!

tanhbM
black hole.

~4.15!

For R in the range

sinh~R/ l !,
12coshbM cos~4pGm!

sinhbM sin~4pGm!
closed space,

~4.16!

the space exterior to the particle and black hole closes w
an additional image mass appearing.

Finally, for m.mc/2 @tan(4pGm),0#, an open solu-
tion without a horizon is not possible. In addition, ifR is
small enough,

sinh~R/ l !,
tanhbM

tan~4pGm!
no solution, ~4.17!

instead of the space closing, there is no solution.
We now consider solutions describing a point particle

theM50 black hole vacuum~3.19!. These solutions can be
obtained from the solutions above by taking a limit in whic
M→0 andR→` simultaneously. The distanceR to the ho-
rizon of theM.0 black hole from the particle at coordinat
r is given byR5 l cosh21(r /r H). Now substituting this into
the expression~4.12! and takingM→0 yields the total mass
of the system:

cosh@p~8GM total!
1/2#5cos~4pGm!1pr / l sin~4pGm!.

~4.18!
en
n-
ge
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ith
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h

e

As m→0 we recoverM total50. We find similar qualitative
behavior to the finiteM case. Asm increases, a horizon
forms at

tan~4pGm!5pr / l ~4.19!

For a particle far down theM50 throat (r! l ), it requires an
arbitrarily small amount of mass to form a horizon. For
particle far away,r@ l , a horizon forms whenm'mc/2.

C. Two-black-hole solution

Consider two black holes of massesM1 andM2 initially
at rest. Let the geodesic distance between the horizons
given by d. Depending on the values of the paramete
(M1 ,M2 ,d), either the black holes are enclosed by a thir
horizon, or the space is closed with an additional imag
mass. Ford in the range

cosh~d/ l !.gc
1~M1 ,M2! black hole, ~4.20!

with

gc
6~M1 ,M2![

coshbM1
coshbM2

61

sinhbM1
sinhbM2

,

bM1,2
[p~8GM1,2!

1/2, ~4.21!

the two black holes are merged, i.e., surrounded by a ho
zon. The length of the horizonl 0 is determined from the
geometry as follows. By cutting the space in half along ge
desic seams connecting the horizons, one obtains two h
agonal regions with interior right angles. Using hyperboli
geometry, one finds

cosh@ l 0 /~2l !#5cosh~d/ l !sinhbM1
sinhbM2

2coshbM1
coshbM2

. ~4.22!

For cosh(d/ l )5g c
1(M1 ,M2), ~4.22! yields l 050, and the

infinite M50 throat forms at infinity. Ford in the range

gc
2~M1 ,M2!,cosh~d/ l !,gc

1~M1 ,M2! closed space,
~4.23!

the space exterior to the two black holes is closed with a
additional image mass. Finally, ford in the range

cosh~d/ l !<gc
2~M1 ,M2! no solutions, ~4.24!

there are no solutions. For the case of equal masses,
right-hand side of~4.24! is unity and therefore, there are
always solutions. In conclusion, we find the striking featur
that when the space exterior to the two black holes is ope
the black holes are necessarily merged, i.e., surrounded by
apparent horizon. However, if the space exterior to the tw
black holes is closed, the black holes can exist separat
provided there is an additional point mass or a third blac
hole. This can be seen from the fact that the solution descr
ing two black holes surrounded by a horizon can altern
tively be viewed as a closed universe with three separa
black holes. One can also find solutions in which one or bo
of the black holes is theM50 black hole vacuum. As in the
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previous section, these solutions can be obtained by takin
simultaneous limit in whichM1,2→0 andd→`. One finds
the same qualitative features as for nonzero mass.

V. CONCLUSION

The next step is to evolve this initial data. An exact time
dependent solution describing the merging of two bodies
form a black hole should be possible. It would also be inte
esting to see whether critical behavior of the sort found
Choptuik @9# exists in this case. Since previous studies
critical behavior in gravitational collapse were restricted
cases with a high degree of symmetry, this would be
example of critical behavior under more general circum
stances. In addition, the collision of two bodies likely pro
duces a naked singularity for certain initial conditions. Th
is reminiscient of@10,11# where it was shown that extrema
g a

-
to
r-
by
of
to
an
-
-
is
l

charged black holes in four dimensions in a theory with co
mological constant can collide and form naked singularitie
Also, the extremalM50 black hole vacuum is similar in
some ways to the extremal charged~311!-dimensional black
hole.

Note added. Upon completion of this paper, I received a
draft of a paper from Dieter Brill~gr-qc/9511022! which
included a discussion of initial data for multi-black-hole so
lutions.
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