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Time-symmetric initial data for multibody solutions in three dimensions

Alan R. Steif
Department of Physics, University of California, Davis, California 95616
(Received 4 December 1995

Time-symmetric initial data for two-body solutions in three-dimensional anti—de Sitter gravity are found.
The spatial geometry has a constant negative curvature and is constructed as a quotient of two-dimensional
hyperbolic space. Apparent horizons correspond to closed geodesics. In an open universe, it is shown that two
black holes cannot exist separately, but are necessarily enclosed by a third horizon. In a closed universe, two
separate black holes can exist provided there is an additional image [188556-282(96)05010-3

PACS numbg(s): 04.20.Jb, 04.60.Kz

. INTRODUCTION R 1
§+|—2=877Gp, p=T,,n*n". (2.3
Black holes in three spacetime dimensidis2] share
many of the features of four-dimensional black holes. In this On an apparent horizor81 the Convergencéor expan-
paper, the issue of constructing multibody and in particulasion) of outgoing null geodesics vanishes. In termsigfand
multi-black-hole solutions is considered.[[Bﬂ, it was shown Kij , this corresponds to the condition
that there are no static multi-black-hole solutions if 12 S
dimensions. Indeed, since there is a negative cosmological H=(h'1—'ﬁ"ﬁJ)Kij , (2.4
constant present, one would expect the black holes to attract
and only time-dependent solutions to exist. [, it was WhereH is the mean spatial curvature & viewed as a
shown that additional conical singularities will appear in thesurface embedded in th® —1)-dimensional spac& with
time-dependent solutions. To better understand these multin€tric hj; and wheren' is the normal toS in X. For time-
body solutions, we focus on the problem of constructing ini-Symmetric initial datasS is an apparent horizon =0, i.e.,
tial data for two bodies initially at rest. We take advantage off S is a minimal surface. A curve which is minimal is a
the fact that the space exterior to the sources has consta@godesic. Hence, apparent horizons for time-symmetric ini-
negative curvature and therefore can be constructed as a qué! data in 2+1 dimensions are closed geodesics.
tient of hyperbolic space.
lIl. INITIAL DATA FOR STATIC CIRCULARLY
IIl. TIME-SYMMETRIC INITIAL DATA SYMMETRIC ONE-BODY SOLUTIONS

IN THREE DIMENSIONS We first consider initial data for the static one-body solu-

Black holes in 2-1 dimensions are solutions to Einstein’s tions. The static circularly symmetric solutions @.1) are
equations with a negative cosmological constant given by[1]

2

r2 r -1
T 8(3|\/|> dr?+r2d¢?,

G,,+Ag,,=87GT,,, A<O. 2.1
Lt Ag,,=87GT,,, (2.1) ds2=—(|—2—8c3|v|

dt?+

The initial data constraints fof2.1) on an initial spacelike

slice 2 with spatial metrich;; and extrinsic curvaturk;; are 0<¢p<2m 3.1)

given by

R 1 whereM is the total mass. For various rangesMf (3.1

— +K;Ki—K2+ 5 =87GT, n*n", describes the following solutions:(1) M >0, black hole

2 | # with event horizon located at,=(8GM)*4 and singularity
atr=0; (2) M=0, black hole vacuum(3) —1/8G<M <0,

12=—A"% K=Kj, one-particle solutions with a naked conical singularity at
i r=0 and no event horizof5,6]; (4) M=-1/8G, three-
ViKi—ViK=87GT;,n*, (2.2) dimensional anti—de Sitter space.

Thet=0 initial spacelike slices of3.1) are time symmet-
ric and hence, front2.3), have constant negative curvature.
This implies that they can be obtained as quotients of two-
dimensional hyperbolic space. We now review this construc-
tion.

wheren” is the normal t& andR is the scalar curvature of
hij. 1,j,...refer to indices tangent to the spatial slice. In
this paper, we are concerned with the ca§g=0 corre-
sponding to time-symmetric or momentarily static initial
data. The momentum constraint is satisfied;fn*=0 while
the Hamiltonian constraint becomes _ . :
A. Two-dimensional hyperbolic space
Two-dimensional hyperbolic space?, can be described
*Electronic address: steif@dirac.ucdavis.edu as the two-dimensional hypersurface
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T2—X2-Y?%=|? (3.2
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Let us briefly discuss the conjugacy classes of isometries
of H2. Two isometries are conjugate if and only if the traces

in the flat three-dimensional space with metric of signatureof the corresponding SB,R) or SU1,1) matrices,I', are

(—++):

dSP=—-dT?+dX2+dY?. (3.3

The Poincare disk model for hyperbolic space is

4 _ |
=—— < — i
ds’= T —s7pp dzdz 0<[z<l, z=pe’, (39

(1-

and can be obtained by the stereographic projection of th
hypersurfacé3.2) through the point—1,0,0 in the (T, X,Y)
space onto the disk of radilisn the X-Y plane. The bound-
ary |z|=1in (3.4) is spatial infinity. Geodesics on the Poin-
care disk are segments of circles or lines which intersect th
boundary of the disk orthogonally. The isometry group of
(3.4) is SU(1,1) with the action

a(zl)+ B

— = 2_18|%2=1.
Bz ta |a*= 14l

(3.9

Another representation d¢42 which will be useful is the
Poincare metric on the upper haly plane:

dx?+dy?
ds?=12 —yz—y . y>0. (3.6)
This can be obtained frorf8.3) by the embedding
x2+y? X
T+Y=I1%ly, T-Y= , X= y l. (3.7

It can be obtained fron(3.4) by applying an inversion in a
circle in thez plane given byz/l—(z/| —i)(—iz/l+1)7?!

wherez=x+iy. Geodesics on the upper-half plane are ver-

tical lines or semicircles which intersect the real axis or-
thogonally. The isometry group @8.6) is SL(2,R) with the
action

a b

d

. ah+b
A= @ +a

e SL(2R). (3.8

SL(2,R) and SU1,1) isometries are related by conjugation:

S=NSN?,

1 (1 —i
N=—| ,

v2\—i 1

SeSL(2R), SeSULD. (3.9

Finally, in terms of polar coordinates=2[p/(1— p?/1?)],
(3.4) takes the form

dr?
dszzr_zl_l2+_1+r2d¢2’ r=0, 0s¢<2w. (3.10

This is the t=0 spatial geometry of three-dimensional
anti—de Sitter spac€.1) with M = —1/(8G).

equal. There are three types of conjugacy clase#gitic
[(TrT)?<4], hyperbolic [(TrT)?>>4], or parabolic
[(TrT)?=4]. Elliptic isometries are conjugate to rotations
about the origin in the Poincare disk. Hyperbolic isometries
are conjugate to scalings in the upper-half plane. There is
only one parabolic conjugacy class corresponding to isome-
tries which are conjugate to a translation in hdirection in

the upper-half plane. Elliptic isometries have one fixed point,
Qyperbolic isometries have two fixed points both at infinity,
and parabolic isometries have one fixed point at infinity. The
t=0 initial slices for the one-body solution8.1) can be
obtained essentially by identifyingi? periodically in an
isometry generator. Elements conjugate to one another gen-

Srate isometric quotients. As we shall see below, elliptic

isometries generate tHd <0 one-particle solutions, hyper-
bolic isometriesM >0 black holes, and the parabolic conju-

gacy class generates thé=0 black hole vacuum.

B. M >0 black hole solutions

The spatial geometry of the black hole solution can be
obtained by identifyingH? periodically in a hyperbolic gen-
erator[1]. Thet=0 spatial slice of the black hole spacetime
(3.1) is given by

I'2 -1
d52=<|—2—SGM) dr’+r2d¢?, 0<¢p<2m.

(3.11)

Defining the radial coordinate= (r>—8GMI?)*2 one ob-
tains

2

X
d52=|—2'

-1
+SGM) dx?+ (x>+8GMI?)d¢?,

—o<x<w, 0<¢p<2.

(3.12

The complete spatial geometry has a wormhole structure
with cylindrical topology, S'XR. It is similar to the
Einstein-Rosen bridge in the Schwarzschild solution except
it is not asymptotically flat. The wormhole mouth is at the
horizonr = (8GM)¥A.

The simplest way to see ho{8.11) can be obtained from
a quotient ofH? is using the coordinated (¢) defined by
the embedding3.2):

T='r“cos}:t;~5, X=\F 2=12, Y='Fsinh?¢;,

pe(—o,»), I<F<o. (3.13

Note that}Z has infinite range because it parametriressts
in the T-Y plane. Inserting intd3.3), the metric becomes
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[ - 2,=2.352 3 This is a surface of revolution of constant negative curvature
ds’= |_2_1 dre+Tede®,  de(—o,=). known as atractroid. Transforming to the new coordinates
314 Y=r.x=¢, (3.19 becomes

~ 2 2
If one identifies$ with period 2(85 M) whereM is the d2=2 dx +2dy . y>0, 0=x<2m. (3.20
mass of the black hole, and rescales the coordinates y
T=r/(8GM)Y2 Zz(SGM)”Zcﬁ (3.15 Comparing with (3.6), the M=0 spatial geometry is the

upper-half plane wittx identified periodically in zr. Alter-
natively, using(3.9) it can be obtained as a quotient of the

one obtains the black hole spatial geome@yl1). Poincaredisk by the SW1,1) parabolic transformation

In terms of the coordinate8.7) (x,y) on the upper-half
plane, the identificatios~ ¢+ 2(8G M) corresponds to
the identification by the scalingx(y)~e~2(88Mm(x vy, Tyo=
The black hole spatial geometry is then the semiannulus in

the upper-half plane with outer unit radius and inner radiua e L . .
~286Mr dentified [7]. From (3.9, the correspondin dentifying in x with different periods are conjugate transfor-
€ . L7 . = JIresp 9 mations. Hence, the resulting spaces generated by identifying
SU(1,2) matrix generating the identifications is given by in x with different periods are all isometric to thd =0
1o o y solution. TheM =0 solution is obtained by identifying two
[ coshm(8GM)™] i sin{7(8GM) ?] geodesics which are tangential to one anothes.at
M7\ =i sinH #(8GM)Y?]  cosli w(8GM)*?] | The generator for thé1=0 solution (3.21) can be ob-
(3.16  tained by conjugating the generator for tive<O conical
solution (3.18 by a translationT4 by a distanced in the x

Hence, theM >0 black hole is obtained by identifying two direction in the Poincarelisk,

geodesics which do not intersect and are not tangential to _
one another at infinity. cosh(d/2l) sinh(d/2l)

1+ i

i
L |esuLy. @2

™

T.=( . , 3.2
4\ sinh(d/2) coshd/2l) (322
C. —1/(8G)<M<0 solutions as quotients of hyperbolic space ) _ o
The — 1/(8G) <M <0 solutions and taking the simultaneous limit—0, d—oo,
2 Ty—o= lim TqlnTqt, (3.23

r -1
d52:(|—2+(1—4Gm)2) dr+r?dg?, M—0d—o

with m coshd/l =m, fixed. This limit is analogous to a con-
1 —M\ 2 traction where a lightlike solution is obtained by taking a

= E—(E) (3.17  simultaneousn—0, v—c limit with the energy held fixed.
The M =0 generator can be obtained in the same way from

are the familiar anti—de Sitter conical spaces with a particIé[he M>0 black hole generata8.16).

source[5] obtained by excising a wedge of deficit angle

87Gm from the Poincare disk with vertex located at the IV. TWO-BODY SOLUTIONS

source. The edges of the wedge are then identified by a ro- |, s section, we construct initial data for two-body so-
tationz—e®"*"z which as an element of SU,1) is given | 4ions. As in the one-body case, we obtain these solutions

m

by by taking quotients oH?2. While the quotient group for the
4mGm one-body solutions is generated by one element, for the
I :(e 0 ) (3.18 multibody solutions more generators are required. The total

m 0 @ i4mGm/" ) mass of the systeniyl, can be obtained from the spatial

metric at large distances. However, a simpler way is to ob-
m is the proper mass defined y= [ pdA. The maximum tain it from the generator for the system. The generRttor
allowable deficit angle of 2 corresponds tan.=1/4G. For  the total system is the composition of the generators for the

a particle located at a different point, the wedge excised conindividual bodies. Expresk as an effective one-body gen-
sists of two geodesic edges with the same deficit angle sinc@rator up to a conjugation corresponding to an overall isom-

the model is conformal. etry

r=TryT7 %, (4.1
D. M =0 black hole vacuum

Thet=0 spatial geometry of th&1 =0 black hole vacuum WhereT)y, is given in (3.16. The total mass can then be
is given by obtained from the trace:

dr? 1
ds?=|? r—2+r2d¢2. (3.19 cosh 7(8G M)”Z]:ETrI‘. 4.2
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We now consider three two-body systems: two particles, a _ tan47Gm)
particle and black hole, and two black holes. Depending on  fc(m,m)<coshd/l)< —————== black hole
: ) . tan47Gm)
the masses and locations of the bodies, there are three quali- 4.7)

tatively different kinds of solutions: the space exterior to the
two bodies is open without horizons; the space exterior to thgith

two bodies is open with the two bodies enclosed by an ap-

parent horizon; or, the space exterior to the two bodies is _  1+cog4mwGm)cog4mGm)
closed with additional image masses. For some values of fo(m,m)= - - ——,
these parameters, there may be no solufianleast with sin4aGm)sin(4aGm)
positive-energy matter The same kinds of solutions were
found in the case of a ring of pressure-free dagt

4.9

the two particles are surrounded by a horizon. The size of the
horizon is that of a black hole of ma$sd (4.5 as can be

verified directly from the geometry. The space outside the
A. Two-particle solutions horizon is of course the black hole spatial geometry. When

Consider two particles initially at rest with massesm  cosh@/l)=f,(m,m), (4.5 yields M =0, and the space out-
separated by a geodesic distamteTo construct the spatial Side the particles forms an infinite thin throat at infinity
geometry, it is convenient to use the Poincdisk represen- Which is identical to theM =0 throat. For
tation. As in the flat casgb], we excise a wedge for each of _
the particles with deficit angless85m and 87Gm. For a coshd/l)<f,(m,m) closed space (4.9

particle of massn translated by a distanak the generator is
the space is closed with an additional image mass,ap-

=T Tt (4.3  pearing. The total mass,M, is negative with
M’ = Myge=1/4G — (— M/2G) V2.
whereTl’,, is the one-particle generat¢8.18 and T is the For m,m>m./2, there are only two kinds of solutions.

translation(3.22. The effective one-body generator for the Ford in the range
whole system is then the product _
coshd/l)>f.(m,m) black hole (4.10

I=T,Td7T4" (4.4)
the two particles are enclosed by a horizon. If
cosh@/1)=f (m,m), the infinite throat forms at infinity. For
d in the range(4.9), the space is closed with an additional
image mass. Sincé,(m,m)=1 and from(4.9), we recover
that the space is closed in theso flat space limit.

From (4.2), the total mass of the system is given by

cosh w(8GM)¥2]=coshd/l)sin(4wGm)sin(47Gm)

—cog4mGmycog47Gm). (4.5
B. A system consisting of one particle and one black hole
s ;zpigﬂmgeog tgﬁ \\:V?zﬁgﬁtogtﬂirg)zfggmoeteéﬁ%g%‘ ttrr:g - Consider a system consisting of a particle of masmi-
pac P ; » OP€ e ially at rest located a geodesic distariRdrom the horizon
particles enclosed by a horizon, or closed with an additiona

image mass. I+ m<m. . the space is open with total mass f a black hole of mas® also initially at rest. The spatial
nag : ~ c P P ) geometry can again be obtained from a quotient of the Poin-
given by (4.5. If m=0, we recover the one-particle mass

_ 2 r caredisk. Consider the fundamental region on the Poincare
M= —(1-4Gm)7/(8G) from (3.17. Whend=0, we re-  y aoqciated with the one-black-hole solution. This is the
cover the flat space formulam,,=m+m where

o 2 : . region bound by two geodesics which do not intersect and
M= (.1 4G.m‘°ta') /(SG)‘ M INCreases wittd QUe o the are not tangential to one another at infinity. Now insert a
attractive anti—de Sitter force, and increases with the mass%%mt particle of massn a distanceR from the horizon of the
m,m due to t_he rest mass c%trlbutlon to the total_energy. black hole by excising a wedge of deficit angle®m with

_Now consider the case+ m=me. Recall that this coN"  yertex at the point particle and identifying the two edges.
dition means that the sum of the deficit angles of the particles The total mass of the system can be found from the effec-
exceeds z. In flat space, this would imply that the universe tive one-body generatd? obtained from the composition of

closes with an additional image mass appearing. In anti—dﬁ]e generators for the black haf@ 16 and the inverse of the
Sitter space, this is not necessarily the case. Consider the “%%nerator for the translated arfic(LeB)'
subcasesn=m./2, m>m_/2 (or equivalently,m>m./2 and P '

m=m./2) and m,m>mc/2 separately. =T\ (Tel'mTr h-1, (4.1
For m=m,2 and m>m_./2, the different kinds of solu-
tions that can occur ad decreases are as follows. Fdin  The inverse is taken because the wedge is beimgoved
the range from the space. From the tra¢é.2), we find the total mass
M ot Of the system:
tan47Gm)

open, no horizon,(4.6) coshi 7(8G M) V2] = cosh By cog4mGm)

the space is open with total mags5) and without any ho- Fsinf(R/Dsinh By sin(4mGm),
rizon. Ford in the range (4.12
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where By=m(8G M)¥2 As m—0, we recoveMyia—M,  As m—0 we recoverM,,=0. We find similar qualitative
and similarly, as M—-—1/8G, we recover behavior to the finiteM case. Asm increases, a horizon

M ora=—(1—4Gm)?/(8G). forms at
Depending on the values of the parametensN\],R), the
space exterior to the particle and black hole can be open tan47Gm)=ar/l (4.19

without a horizon, open with the particle and black hole en- . : .
closed by a horizon, or closed with an additional imageFor_apgrtmIe far down th1 =0 throat § <I), it requires an
mass. Consider increasing valuesnaf arbitrarily small amount of mass to form a horizon. For a

For O<tan(4wGm)<sinh8,,, the different kinds of so- particle far awayy>1, a horizon forms whem~m_,/2.

lutions that can occur &R decreases are as follows. F®in _
the range C. Two-black-hole solution

Consider two black holes of masskl, and M, initially
tan47Gm) i at rest. Let the geodesic distance between the horizons be
open, no horizon, (4.13 ; .
tanh By given by d. Depending on the values of the parameters

) ) ) ) (M,M5,d), either the black holes are enclosed by a third
the exterior space is open with total m&dsl2, and without  horizon, or the space is closed with an additional image
any additional horizons. Again, the total mass increases With,5ss. Fod in the range

R and withm. For R in the range

sinh(R/l)>

coshd/l)>gS(M;,M,) black hole,  (4.20

nt(Ri < 2ATOM) - ekhole (4.1
sink( )\W ack hole (4.149 with
the particle and black hole are surrounded by a horizon with . Cosmml COSfﬁMZi 1
mass given by(4.12) as can be verified directly from the gc (M, My)= sinhB,,. sinh3 '
geometry. M, M,
For m in the range, sinBy,<tan(47Gm) <, (4.13 con- _ 2
tinues to hold. A horizon forms for B, ;= m(BCMy 7)™ (4.21)
1—cosh By cog4wGm) the two black holes are merged, i.e., surrounded by a hori-
Sinh By, SiN4=Gm) <sinh(R/I) zon. The length of the horizot, is determined from the
M 7 geometry as follows. By cutting the space in half along geo-
tan(47Gm) desic seams connecting the horizons, one obtains two hex-
< black hole. agonal regions with interior right angles. Using hyperbolic

tanh By geometry, one finds

(4.15
coshilg/(21)]=coshd/l )sinhBMlsinh Bw,
—costﬁMlcosfﬁMz. (4.22

For cosh@/1)=g¢(M;,M,), (4.22 yields 1,=0, and the
(4.19 infinite M =0 throat forms at infinity. Fod in the range

For R in the range

—coshBy cog47Gm)
sinhBy sin(47Gm)

1
sinnR/l)< closed space,

the space exterior to the particle and black hole closes with g-(M,;,M,)<coshd/l)<gf(M,M,) closed space,

an additional image mass appearing. (4.23
Finally, for m>m./2 [tan(4wGm)<O0], an open solu-

tion without a horizon is not possible. In addition,Rfis  the space exterior to the two black holes is closed with an

small enough, additional image mass. Finally, farin the range

tanh By coshid/l)=<g; (M{,M,) no solutions, (4.29

sinh( R/I)<m no solution, (4.17

there are no solutions. For the case of equal masses, the
instead of the space closing, there is no solution. right-hand side of(4.24) is unity and therefore, there are
We now consider solutions describing a point partic'e inalways solutions. In COﬂClL.JS|0n, we find the Str|k|ng Teature
the M =0 black hole vacuunt3.19. These solutions can be that when the space exterior to the two black holes is open,
obtained from the solutions above by taking a limit in which the black holes are necessarily merged, i.e., surrounded by an
M —0 andR— simultaneously. The distand® to the ho- apparent horizon. However, if the space exterior to the two
rizon of theM >0 black hole from the particle at coordinate Plack holes is closed, the black holes can exist separately
r is given byR=1 cosh(r/r,). Now substituting this into  Provided there is an additional point mass or a third black
the expressiort4.12) and takingM —0 vields the total mass hole. This can be seen from the fact that the solution describ-

of the system: ing two black holes surrounded by a horizon can alterna-
tively be viewed as a closed universe with three separate
cosh 7m(8G M) ¥?]=cog47Gm) + rr/l sin(47Gm). black holes. One can also find solutions in which one or both

(4.18 of the black holes is th&1 =0 black hole vacuum. As in the
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previous section, these solutions can be obtained by taking @harged black holes in four dimensions in a theory with cos-
simultaneous limit in whichM,; ,—0 andd—~. One finds mological constant can collide and form naked singularities.

the same qualitative features as for nonzero mass. Also, the extremalM =0 black hole vacuum is similar in
some ways to the extremal charg@d-1)-dimensional black
V. CONCLUSION hole.

) o . Note addedUpon completion of this paper, | received a
dependent solution describing the merging of two bodies tqncjuded a discussion of initial data for multi-black-hole so-
form a black hole should be possible. It would also be inter{tions.

esting to see whether critical behavior of the sort found by
Choptuik [9] exists in this case. Since previous studies of
critical behavior in gravitational collapse were restricted to
cases with a high degree of symmetry, this would be an
example of critical behavior under more general circum- | would like to thank Steve Carlip, Richard Epp, Joel
stances. In addition, the collision of two bodies likely pro- Hass, and Yoav Peleg for helpful discussions and for useful
duces a naked singularity for certain initial conditions. Thiscomments on the paper. This work was supported by NSF
is reminiscient of10,11] where it was shown that extremal Grant No. PHY-93-57203.
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