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Multiparton interactions and production of minijets in high energy hadronic collisions 
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We discuss the inclusive cross section to produce two minijets with a large separation in rapidity in 
high energy hadronic collisions. The contribution to the inclusive cross section from the exchange of a 
BFKL Pomeron is compared with the contribution from the exchange of two BFKL Pomerons, which 
is induced by the unitarisation of the semihard interaction. The effect of the multiple exchange is 
studied both as a function of the mimuthal correlation and as a function of the transverse momentum 
of the observed minijets. 
 

I. INTRODUCTION 

One of the main topics in perturbative QCD is 
presently represented by semihard hadronic interactions, 
namely, by h&on interactions with momentum transfer 
constant with energy but large enough to apply pertur- 
bation theory. One of the characteristic features of this 
kinematical regime is the large size of the corresponding 
cross sections, which, although in the perturbative do- 
main, rise rapidly with energy. In fact, already at the en- 
ergies of present hadron colliders, one may easily obtain 
semihard CROSS sections whose size is comparable to the 
total hadronic &ss section [1,2]. At the partonic level, in 
a typical interaction configuration, one of the two inter- 
acting paxtons has a finite fraction of the parent’s hadron 
momentum while the other one has a momentum fraction 
close to zero. The separation in rapidity of the two par- 
tons is therefore increasingly large with energy and, in 
the parton-parton cm. system, the transverse momen- 
tum exchange is small with respect to the longitudinal 
momenta. The Regge limit is then approach in semihard 
interactions not only in the whole hadron-hadron process 
but also in the underlying parton-parton interactions. 

When considering the large pt regime the momentum 
exchange is of the order of the incoming partons mo- 
menta. At the parton level such a large scale factor can 
be transferred only in a few interaction vertices and, as a 
result, the elastic two body parton collision is a good lirst 
order approximation to the eltimentary partonic interac- 
tion. In the semihard regime, since the semihard scale 
is small with respect to th&total energy available, there 
are several parton vertices with momentum exchange of 
the order of the semihard scale. A consequence is that all 
semihard radiated gluons are to be taken explicitly into 
account for a proper factorization of the semihard com- 
ponent of the interaction. When the 2 + n, rather than 
the 2 + 2, is the parton subprocess relevant to the semi- 
hard component of the hadronic interaction, a difficulty 
arises in constructing an inclusive cross section, where 
only few of the radiated partons me actually detected as 
minijets in the final state. In fact one is not allowed any 
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more to use the lowest order tree diagram to represent the 
parton amplitude, since the tree level amplitude is singu- 
lar in the soft and collinear limit. To avoid the infrared 
problem one faces when evaluating an inclusive cross sec- 
tion, one needs to keep virtual corrections explicitly into 
account and, as a consequence, the elementary subpro- 
cess acquires a nontrivial structure. The problem has 
been addressed already several years ago in a series of pa- 
pers by Lipatov and collaborators [3]. Lip&w’s solution 
is the Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron: 
the part&c interaction is described by the exchange of a 
gluon ladder stiwcture with vacuum quantum numbers in 
the t channel. The s-channel discontinuity of the BFKL 
Pomeron represents the production of the semihard glu- 
ens. In the limit in which the transverse momenta are 
always negligible with respect to the longitudinal ones, 
the steps of the ladder are ordered in rapidity and dynam- 
ics is greatly simplified. Indeed the simplified kinematics 
allows one to isolate the two basic elements which build 
up the ladder: (a) the gauge-independent nonlocal ver- 
tices, which keep into account the dominant term, in the 
t/s + 0 limit, of the diagrams with gluon emission from 
all nearby lines, and (b) the Reggeization of the t-channel 
gluons, which is the virtual correction that allows a solu- 
tion to the infrared problem. The ladder structure can be 
iterated in the t channel, which may be expressed as an 
integral equation, Lipatov’s equation. Lipatov’s equation 
allows an analytic solution fme from inf%red (and ultra- 
violet) singularities. One obtains in this way an explicit 
expression for the cross section where two gluons inter- 
act producing many gluons and two of them, the ones 
with largest rapidity (in absolute value), are observed. If 
y is the separation in rapidity and k,, ka are the trans- 
verse momenta of the observed gluons, the inclusive cross 
section can be expressed as 

dc? 
d2k,d2kb 

= % f(k,,ks>y) [T] , [ 1 (1)
where CA = N, is the number of colors, a, is the strong 
coupling constant, and f (kar ks, y) is the inverse Laplace 
transform of the solution to Lipatov’s equation. Actually, 
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where 4 is the azimuthal angle between the observed glu- 
ons, 

w(v, n) = -2 ~Re~(~+iv)-~(l)] , (3) 

and 

dlnr+) 
+(z) = dz (4) 

is the digamma function. The inclusive cross section 
for production of two minijets, as a result of a BFKL 
Pomeron exchange, is obtained by folding Eq. (1) with 
the structure functions of the interacting hadrons A and 
B: 

where fes is the effective structure function 

fee(l) = G(z) + ; ~lQr(4 + &rb)1 > (‘3) 
f 

namely the gluon structure function plus $ of the quark 
and antiquark structure functions with flavor f. The 
expression for the cross section in Eq. (1) correlates the 
azimuthal angle 4 with the distance in rapidity of the ob- 
served partons. The differential cross section in Eq. (1) 
may be easily integrated, at 4 fixed, on k, and kb down 
to the lower cutoff It,,,, which represents the threshold 
in transverse momentum that allows a parton to be ob- 
served as a minijet in the final state. This yields 

(7) 

which is a suitable expression to study the azimuthal cor- 
relation of the observed partons as a function of the ra- 
pidity difference y. Simple expressions may also be ob- 
tained for the cross section where the momentum of one 
of the two observed gluons has been integrated down to 
the lower limit k,, 

dc? (Caa# 1 J 
+m 2i” -zr 

dale, 2n k:k, -rn 
&,$!$ ; 

( > 
> (8) 

rn 

and for the cross section where both observed gluons mo- 
menta have been integrated down to km, 

(9) 
The high energy behavior of the integrated cross section 
is estimated by evaluating the asymptotic limit of the 
integral in Eq. (9) for large y 141: 

where C is the Riemann zeta function. Equation (10) 
shows that the exchange of a BFKL Pomeron gives rise 
to a partonic cross section which grows as a power of the 
parton-parton cm. energy, and justifies the large size of 
the observed semihard cross section. 

The possibility to describe the elementary parton pro- 
cess by means of Lip&o& dynamics has been considered 
recently in a series of papers [5]. One of the main points 
of interest is the search for clear signatures of the under- 
lying parton dynamics in the final state of high energy 
hadronic collisions. Correlations in transv&se momen- 
tum and azimuthal angle, as a function of the distance in 
rapidity y of final state minijets, have been therefore esti- 
mated according to the expectations of Lipatov’s picture 
of the interaction as expressed by Eqs. (7) and (8) [6]. On 
the other hand, to approach Lipatov’s limit, one needs 
to keep the lower threshold of the transverse momenta 
of the observed minijets as small as possible, compatibly 
with the requirement of being still in the perturbative 
regime. As shown by Eq. (10) smaller values of km cm- 
respond to larger values of 8. As a consequence of the 
larger probability of the elementary partonic intercourse 
one is therefore forced to take into account the possibility 
of having several elementary partonic collisions in each 
inelastic hadronic event, in order to implement unitarity. 

In the present paper, by assuming the validity of 
the Abramovskii-Gribov-Kancheli (AGK) cutting rules 
in semihard interactions, we unitarize the semihard cross 
section and we derive the most general correction term 
to the inclusive cross section in Eq. (5). The correlations 
among the minijets observed in the final state are then 
estimated, considering the simplest possibility of mul- 
tiple parton interaction, and are compared with the ex- 
pectation from the single BFKL Pomeron exchange. The 
paper is organized as follows: in the next section the uni- 
tarity correction to the single scattering term is derived. 
In the following paragraph a few numerical estimates are 
presented, with the purpose of giving an indication on the 
kinematical region where corrections can be expected to 
become sizable. In the last section the general features of 
the unit&&ion of the single scattering term are sum- 
marized and a few general conclusions are drawn. 

II. GENERAL FRAMEWORK FOR 
MULTIPARTON INTERACTIONS 

In order to approach the problem of multiparton in- 
teractions,with the purpose of obtaining for the inclusive 
cross ‘section as expression which is more general with 
respect to Eq. (5), we find it appropriate to introduce a 
functional formalism, which keeps to a minimum level the 
occurrence of cumbersome expressions. As a preliminary 
step, we show how to derive all the relevant inclusive cross 
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sections in the simple case of a single parton-parton col- 
lision with fixed fractional longitudinal momenta (2,~‘). 
Let us introduce the functional 

(11)
where z is the argument of the functional and d& is the 
differential cross section to produce ft partons with mo- 
menta (k,, , kn). Obviously the value of the functional 
for z = 1 is the semihard parton cross section c?(z,z’). 
Actually, 

6[z, 5’; l] = rF(2, z’) (12) 

All the inclusive cross sections are generated by taking 
an appropriate number of functional derivatives of the 
generating functional with respect to 2 17): 
dc?(s,r’)“= c56[l,s’;e] 
dkl...dk, = Sa(kl)...Ge(k,) a=l (13) 

To obtain the inclusive cross section in the case of 
the actual hadronic collision a more elaborate analysis 
is needed. In the case of soft interactions multi-Reggeon 
exchanges are conveniently taken into account by making 
use of the AGK cutting rules (81. Although no general 
proof of their validity is available in the case of semihard 
interactions, it has nevertheless been possible to show 
that the cutting rules hold for one of the components 
of the interaction which is leading in the large-i fixed-i 
limit [9]. If one assumes the validity of the cutting rules 
for semihard interactions, one is allowed to represent the 
semihard cross section 0~ as a probabilistic distribution 
of multiple semihard parton collisions [lo]. The most 
general expression for CJH requires, however, the intro- 
duction of the whole infinite set of multiparton distribu- 
tions [ll], which keep into account hadron fluctuations 
in the parton number: 
Here the W(“)( u1 zlk) are the exclusi+e k-body parton distribution, namely the probabilities to find a hadron in 
a 5uctuation with k partons with coordinates ~1.. uk, ui = (bi, CC<) standing for the transverse partonic coordinate 
(bi) and longitudinal fractional momentum (z;). /3 is the impact parameter between the two interacting hadrons and 
C(ui,u$) represents the probability for the parton i of the A hadron to have a hard interaction with the parton j 

of the B hadron. The semihard cross section is constructed by summing over all possible partonic configurations 
of the two interacting hadrons (the sums over n and rn) and, for each configuration with n A partons and rn B 
partons, summing over all possible multiple partonic interactions. This last sum is constructed by asking for the 
probability of no interaction between the two configurations (actually fly=, ny=,[l- &,j]). The difference from one 

of the probability of no interaction gives the sum over all semihard interactions. ox(P) is then the probability to 
have at least one semihard parton interaction when the impact parameter in the hadronic collision is equal to 0. The 
semihard cross section is obtained by integrating the probability ux(p) on the impact parameter. Analogously, the 
elementary semihard cross section &(z, r’) is obtained by integrating the elementary interaction probability B(u, u’) 
on the relative transverse coordinate b - b’. The expansion of ox(@) as a sum on multiple interactions reads 

S is a symmetrizing operator, which one may conveniently introduce taking advantage of the symmetry of Wck) of 
permutations of the arguments [12], and the index N counts the interactions which, for a given configuration with n 
A partons and rn B partons, range in number from 1 to Q = nm. As a matter of fact, the main advantage of Eq. (15) 
is the clear separation between real and virtual contributions to the semihard cross section. More precisely, after 
summing, according to the AGK cutting rules, over all discontinuities of the semihard amplitudes, which contribute 
to the inelastic process of interest, the product BI.. ‘6~ is the remnant of the contribution from the real production 
terms. The product (l-&+1). (1-4,~) is, on the contrary, the remnant of the contribution of the virtual corrections 

[13]. The replacement & + &[z] in the former product, corresponding to the real production process, allows one to 
generalize the functional in Eq. (11) and to obtain the inclusive cross sections in the most general case of multiple 
parton interactions. One may therefore write 
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which gives the required inclusive cross sections via the relation 

de’ 
dkl...dk, = ‘I 

mf[P; 4 

‘%z(kl) . ..6z(k.) .=l 
(17) 

For later convenience O&3; z] can also be expressed as 

P3) 

We are now in a position to discuss the processes we are interested in, namely the events in which only two minijets 
are tagged. By setting n = 2 in Eq. (17) an d using the second expression for O&3; z], a lengthy but simple algebra 
yields 

day(P) dc+@, u’) 
= 

dkldkz 
D(&L)D~)(u’ - ,O) dkldkz dudu’ 

+ 
.I 

d+,u’) dB(v,v’) 
D~‘(~,v)D~‘(~‘-p,v’-p) dk dudu’dvdd 

1 & 

+ 
s 

D$‘(u)D$‘(u’ - p,v’ - p) 
d&(u,u’) dB(u,v’) 

dkl dkz 
dudu’dv’ 

+ J Dy (u v)Dp(ut _ p) d+v 4 d+h 4 dudvdut 
dkl dkz (19) 

where D(‘)(u) and D@)(u, u) are the one-body and two-body inclusive distributions [lo]: 

D(‘)(u) = W(‘)(u) + / W@)(u,u’)du + ; 1 W@)(u,u’,,u”)du’du” + , 

D(2)(u~,uz) = W@)(UI,UZ) + 
J 

W(3)(ul,u~r~‘)d~’ + ; 
J 

W(4)(u1,~z111’,u”)du’du”... . 

(20) 
In the right-hand side of Eq. (19) every term has a cl& 
physical interpretation. The first convolution is nothing 
but the usual single-collision contribution to the semi- 
hard cross section. The second term corresponds to two 
disconnected partonic collisions; finally, the last two en- 
tries correspond to those events in which a parton Corn 
hadron A cr B has suffered a rescattering on hadron B 
or A, respectively. 

From Ref. [14] we know that the average number of 
rescatterings can be safely neglected in a typical hadron- 
h&on collision and for values of k, which allow the final 
state parton to be observed as an actual minijet in the 
final state. We are therefore allowed to neglect the last 
two terms in the right-hand side (RHS) of Eq. (19). The 
two-body inclusive distribution D@) may be expressed 
by introducing the two-body parton correlation C@): 
D@)(uI,u~) = D(‘)(ul)D(‘)(u,) + ;C(‘)(q,va) (21) 

If one neglects both rescatterings and correlations in 
Eq. (19), one is left with the following simplified expres- 
sion for the inclusive cross section: 

d,,‘“” 
w= 
dkldkz 

s [ 

d2fl Ok’)@ &.D,) 

+ 
( 

Dc’) @ ” @Dc’) 
A dkt B >, 

x D~)c+3D~) 
( 

, 
2 )I (22) 

where @ is a compact notation for the convolutions ap 
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pearing in Eq. (19). A possible further simplification fol- 
lows from the assumption that D(‘)(u) has the factorized 
form 

Dc’%, b) = fe&)F(b) (23) 

with the obvious normalizing condition 

J 
d%‘(b) = 1 (24) 

By substituting Eq. (23) in Eq. (22) one obtains 

&+“l 
x do. 1 do du 
dkldkz 

=-+-b-L, 
dkldkz oe* dkl dkz (25) 

2 
d%F(b)F(b - p) 1 (26) 

and do, is the single collision expression, obtained by 
convoluting the elementary cross section with the usual 
one-body parton distribution f.rr(z). 

III. NUMERICAL ESTIMATES 

The formalism described in the previous section is a 
rather general approach to the problem of unitarity cor- 
rections in semihard interactions. Indeed the expres- 
sion for the inclusive cross section in Eq. (19) is com- 
pletely general in the probabilistic picture of the semi- 
Lard hadronic interaction. It is an exact consequence of 
the cross section as expressed in Eq. (14), which finds its 
justification in the AGK cutting rules [SI. In the inclu- 
sive cross section given by Eq. (19) all possible multiple 
parton collisions are kept into account and multiparton 
correlations are treated at all orders. Consistently with 
the general principles, namely with the AGK cancellation 
[8,15], the double inclusive cross section depends only on 
the single and double scattering terms. For a quantita- 
tive estimate of the role of unitarity corrections to the 
single scattering term, the required nonperturbative in- 
put is represented both by the one-body parton distribu- 
tion D(l) and by the two-body parton distribution D@). 
The two-body parton distribution contains independent 
information on the hadron structure with respect to Dc’), 
actually the two-body parton correlation C@). While no 
experimental information is presently available on C@) 
an indication is available &worn the Collider Detector at 
Fermilab (CDF) Collaboration on the scale factor oe* 
which characterizes the double parton interactions [16]. 
We will therefore limit our numerical analysis to the sim- 
plified case where C@) is neglected and only disconnected 
parton collisions are taken into account, in such a way 
that the inclusive cross section is expressed by Eq. (25). 
All unitarity corrections to single scattering are there- 
fore expressed by the second term in Eq. (25), which is 
obtained with the same input needed to evaluate the sin- 
gle scattering term, apart from the scale factor oe@, that 
summarizes all the geometrical details which enter in the 
unitarity correction. 

A few qualitative considerations are appropriate before 
illustrating the results of a quantitative analysis. By in- 
troducing the jet rapidities (ya, yb) and integrating in the 
transverse momenta down to the lower cutoff k,, while 
keeping fixed the azimuthal angle between the observed 
minijets 4, the inclusive cross section is expressed as 

d@’ du, 1 1 do. do, 

Wyc&a = dWy&s 
f----. 

see 2~ dya da (27) 

In the limit of small relative rapidities y = ye - yb, a 
parton-parton interaction produces only two final state 
partons. Since they are back-to-back in 4, the single col- 
lision expression do./d$dy,dyb is proportional to a D&x 
delta 6(&r). This can be easily verified by setting y = 0 
in Eq. (7). On the opposite side, that is, for large val- 
ues of y, the leading contribution to the RHS of Eq. (7) 
comes from the n = 0 term, for which the partons are 
decorrelated in 4. Physically, this is due to the large 
number of gluons radiated in the parton-parton interac- 
tion. Indeed, the flattening of the 4 distribution with 
increasing dijet rapidity gap was suggested [6] as a signa- 
ture for the BFKL dynamics. From this point of view, a 
multiple partonic collision represents a background pro- 
cess which mimics the effect of multigluon emission. In 
the RHS of Eq. (27), this background is described by the 
term weighted by the scale factor l/oe@. The experimen- 
tal indication on the scale factor is 5.4 < ueeff < 29 mb 
(90% CL.) [16]. Unfortunately oe* is not the only input 
variable which is still rather uncertain for a numerical 
computation. Indeed there is a large ambiguity already 
,to compute the single scattering term. In fact to obtain 
Lipatov’s solution one needs to neglect the running of the 
strong coupling constant, in such a way that a, has to 
be considered as a parameter in the actual evaluation of 
B. Since the dependence of B on a,, as it may be seen 
in Eq. (lo), is exponential a numerical comparison of the 
two terms in Eq. (27) is rather uncertain. 

To have a quantitative feeling of the importance of the 
unitarity’correction we have tried to establish a possible 
sensible choice of the input values of oe* and a, by mak- 
ing a comparison with available experimental data. The 
experimental points in Fig. 1 are the values of the cross 
section for production of minijets with km 2 5 GeV mea- 
sured by UAl (21. The dashed curves refer to the single 
scattering integrated cross section with ag = 0.34 (up- 
per curve) and cla = 0.29 (lower curve), corresponding to 
the values of the running coupling constant at the scale 
&? = kJ3 and J&” = k,/2, respectively. The struc- 
ture functions are the Harriman-Martin-Roberts-Stirling 
set B [HMRS(B)] structure functions [17]. The unitarized 
expression for the semihard cross section has a simple an- 
alytical representation when semihard rescatterings and 
multiparton correlations are neglected [lo]. Actually, 

~H=Jd’P(l-exp[-o,JFa(b)FB(b-~)d’b]) > 

(28) 

where o. is the integrated single scattering inclusive cross 
section. The continuous curves in Fig. 1 refer to the uni- 
tar&d cross section mx, as expressed in nq. (28). For 
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FIG. 1. Cross section for production of minijets with 
k, 2 5 GeV. Experimental data from UAl [Z]. Dashed 
cutws: single BFKL Pomeron exchange with a, = 0.34 (up- 
per curve) and en = 0.29 (lower curve). Continuous cures: 
unitarised cross section, Eq. (28) in the text, same values of 
a. as in the previous case and ne = 20 mb. 

F(b) we have taken a Gaussian, the width correspond- 
ing to a value of 0,~ = 20 mb. The two curves refer to 
the two different choices of a. mentioned above. The re- 
gion identified by the two continuous lines contains the 
experimental points and therefore gives an indication on 
possible meaningful input parameters. One may also ob- 
serve in Fig. 1 how the rise of the experimental cross 
section is much closer to the rise of the unitarized curves 
than to the rise of the single scattering term alone. 

Before moving to different values of energy it is worth- 
while to comment briefly on k,, which, to some extent, is 
a free parameter. A low value of k, corresponds to semi- 
hard cross sections that are well above a,~ (in the single 
collision approximation). In this condition the contribu- 
tion from multiple scatterings is largely dominant and 
the 4 distribution is practically flat. On the contrary, 
large values of k, correspond to semihard cross sections 
that are negligible with respect to oe~ and no unitarity 
correction is required. Keeping this in mind, we realize 
that the interesting values of Ic, are those for which the 
single scattering expression gives a cross section compa- 
rable to cres. This criterion yields km e-5.2-6.1 GeV at 
fi = 1.8 TeV and k, -11.2-12.7 GeV at 6 = 18 TeV, 
depending on the two different choices of values for a., 
which we have considered and for neeff = 20 mb. 

In order to have some quantitative indication on the 
effect that unitarizatitin produces on the expectations 
based on the BFKL dynamics, we have studied the az- 
imuthal correlation of the observed minijets, which, ac- 
cording to the BFKL dynamics, has a distinctive depen- 
dence on the distance in rapidity. In Figs. 2(a) and 2(b) 
we have plotted the differential cross section Eq. (27) as 
a function of 4, for fixed rapidities (ye, ys) at + = 1.8 
TeV (a) and &=I8 TeV (b) (the normalization is such 
that the curves take a value equal to unity at 4 = 0 and 
4 = 2~). The naive 4 distribution, obtained by consid- 
ering one elementary interaction only, is represented by 
t(b) 
I ! I I 

P 

0 2 4 6 

Gb 

FIG. 2. C$ distribution with unitarity corrections included 
(solid line) and in the single collision approximation (dashed 
line). A’(+) is proportional to the differential cross sec- 
tion given by Eq. (27), with minijet rapidities kept fixed at 
y, = 2.5 and yb = -2.5. The normalization is such that 
N(O) = N(27r) = 1. 

'0 2 4 6 

!3 

FIG. 3. 6 distribution for several choices of the cutoff: 
k,i, = 7 GeV (solid line), k,i, = 6 GeV (dashed line), 
k,i, = 5 GeV (dotted line). N(d) is defined as in Fig. 2 
and unitarity corrections are included. 
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FIG. 4. r$ distribution for different choices of the rapidity 
gap. The cutoff is kmi, = 7 GeV and the minijet rapidities 
are fixed at yo,h = +2.5 (solid line) and y.+ = rt3.5 (dashed 
line). 

the dashed line, while the continuous line describes the 
corrected distribution which takes into account an arbi- 
trary number of parton-parton collisions. The flattening 
caused by the unitarity corrections is clearly visible: at 
fi = 1.8 TeV, Fig. 2(a), the height of the central peak 
at 4 = ?r is reduced by a factor three approximately; 
the same trend, but with a stronger suppression of the 
correlation, is present at higher energies, see Fig. 2(b). 
Figure 3 shows how the effect of unitarity corrections 
depends on the cutoff k,. By lowering this threshold 
we increase the semihard cross section and, accordingly, 
we enhance the probability of having several elementary 
parton collisions in each inelastic hadronic event. As a 
consequence, we expect the tagged minijets to become 
less and less correlated in the azimuthal angle 4. This 
is confirmed by OUT plot which corresponds to fi = 1.8 
TeV and to a rapidity gap y = 5, actually ye = 2.5 and 
yb = -2.5. The different choices of the cutoff k, are 
k, = 7 GeV (solid line), k, = 6 GeV (dashed line), and 
k, = 5 GeV (dotted line). It is worthwhile to stress that, 
for the lower choice k, = 5 GeV, we cannot distinguish 
the 4 distribution from a uniform one, unless we per- 
form a quite accurate measure at the 3% level. Finally, 
Fig. 4 shows how the correlation in the azimuthal angle 
of the tagging jets fades away as the rapidity interval is 
increased. 

IV. CONCLUSIONS 

Minijet physics is the ideal tool to study BFKL dy- 
namics. Indeed one comes closer and closer to the BFKL 
limiting case by keeping the lower threshold in transverse 
momentum km of the observed minijets as small as pos- 
sible. However, the region of small k, is also the region 
where unitarity corrections become increasingly impor- 
tant. In the present paper we have made an attempt to 
estimate the unitarity corrections to the inclusive cross 
section for producing two minijets. After assuming the 
validity of the AGK cutting rules in semihard interac- 
tions, we have kept into account unitarity corrections by 
representing the hadronic process as a probabilistic su- 
perposition of multiple BFKL Pomeron exchanges. In 
the case of the inclusive cross section for producing two 
minijets, only the single and the double scattering terms 
contribute. With the purpose of making a quantitative 
estimate, we have considered the simplest possibility for 
the double scattering contribution. Actually we h&e ne- 
glected semihard parton rescatterings in the interaction, 
and two-body parton correlations in the two-body inclu- 
sive distributions. In this simplified case the unitarity 
correction depends on one single parameter only, namely 
~~8, that is the scale factor one needs to introduce in 
order to obtain the probability of the double interaction. 
For a quantitative illustration of the effect of the COT- 
rection term, a second parameter which has to be fixed 
is the strong coupling constant a,, whose value is not 
determined by the BFKL dynamics. Keeping into ac- 
count the experimental suggestion on geeff [NI, we have 
fixed the input parameters by comparing with the UAl 
measurement of the semihard cross section for produc- 
tion of minijets 121. Having selected in this way a pos- 
sible range of values for the parameters, the indication 
we obtain from our numerical estimate is that at Fer- 
milab Tevatron energy the correction term to the sin- 
gle BFKL Pomeron exchange, depending on the actual 
quantity one is considering, may be larger than 100% for 
minijets with k, N 6 GeV. When moving at LHC ener- 
gies the same correction applies with values of k, N 12 
GeV. It is worthwhile noticing that, at Tevatron energy 
and with k, N 6 GeV, the average invariant mass of a 
partonic interaction is II 0.2 TeV, while at LHC energies 
and with k, N 12 GeV, the average invariant mass is 
N 1 TeV. The expectation is therefore that a secondary 
BFKL Pomeron is exchanged in a large fraction of parton 
interactions at those values of invariant mass and at the 
corresponding hadcon-h&on cm. energy. A detailed 
experimental analysis of minijet production at Tevatron 
would therefore be of great importance both as a test 
of th< BFKL approach, and to access the nonperturba- 
tive information on the hadron structure which enters in 
the multiple parton interactions, the detailed knowledge 
of which is of growing importance to understand hadron 
dynamics at higher energies. 
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