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Quantum field theory constrains traversable wormhole geometries

L. H. Ford*
Center for Theoretical Physics, Laboratory for Nuclear Science, Massachusetts Institute of Technology,

Cambridge, Massachusetts 02139
and Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02†

Thomas A. Roman‡

Institute of Cosmology, Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 021
and Department of Physics and Earth Sciences, Central Connecticut State University, New Britain, Connecticut 0§

~Received 31 October 1995!

Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived for a
minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form o
an uncertainty-principle-type constraint on the magnitude and duration of the negative energy density seen b
a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound shou
hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any
boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the boun
to the stress-energy of static traversable wormhole spacetimes. Our analysis implies that either the wormhol
must be only a little larger than Planck size or that there is a large discrepancy in the length scales which
characterize the wormhole. In the latter case, the negative energy must typically be concentrated in a thin ban
many orders of magnitude smaller than the throat size. These results would seem to make the existence o
macroscopic traversable wormholes very improbable.
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I. INTRODUCTION

In recent years there has been considerable interest in
topic of traversable wormholes, solutions of Einstein’s equ
tions which act as tunnels from one region of spacetime
another, through which an observer might freely pass@1–3#.
Traversable wormhole spacetimes have the property t
they must involve ‘‘exotic matter,’’ that is, a stress tenso
which violates the weak energy condition. Thus the ener
density must be negative in the frame of reference of at le
some observers. Although classical forms of matter obey
weak energy condition, it is well known that quantum field
can generate locally negative energy densities, which may
arbitrarily large at a given point. A key issue in the study
wormholes is the nature and magnitude of the violations
the weak energy condition which are allowed by quantu
field theory. One possible constraint upon such violations
given by averaged energy conditions@4#. In particular, the
averaged null energy condition~ANEC! states that
*Tmnk

mkndl>0, where the integral is taken along a com
plete null geodesic with tangent vectorkm and affine param-
eterl. This condition must be violated in wormhole spac
times @2#. Although the ANEC can be proved to hold in
Minkowski spacetime, it is generally violated in curve
spacetime@5,6#. The extent to which it can be violated is no
yet well understood, but limits on the extent of ANEC vio
lation will place constraints upon allowable wormhole geom
etries@7,8#.
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A second type of constraint upon violations of the wea
energy condition are ‘‘quantum inequalities’’~QI’s!, which
limit the magnitude and spatial or temporal extent of nega
tive energy@9–13#. These constraints are intermediate be
tween pointwise conditions and the averaged energy con
tions in that they give information about the distribution o
negative energy in a finite neighborhood. For the most pa
inequalities of this type have only been proved in flat spac
time. The main purpose of this paper will be to argue tha
restricted versions of the flat spacetime inequalities can
employed in curved spacetime, and that these inequaliti
place severe constraints upon wormhole geometries. We
sume that the stress energy of the wormhole spacetime i
renormalized expectation value of the energy-momentu
tensor operator in some quantum state, and ignore fluctu
tions in this expectation value@14,15#.

In this paper, we restrict our attention to static, spherical
symmetric wormholes. We will also assume that the spac
time contains no closed timelike curves. This latter assum
tion may not be necessary, but we make it in order to ensu
that quantum field theory on the wormhole spacetime is we
defined. In Sec. II, a flat spacetime quantum inequality
reviewed, and an argument is presented for the application
this inequality in small regions of a curved spacetime. I
Sec. III, we briefly review some of the essential features o
traversable~Morris-Thorne! wormholes. We next consider a
number of particular wormhole models in Sec. IV, and argu
that the quantum inequality places strong restrictions upo
the dimensions of these wormholes. In Sec. V we formula
a more general bound upon the relative dimensions of
arbitrary Morris-Thorne wormhole. Finally, in Sec. VI we
summarize and interpret our results. Our units are taken to
5496 © 1996 The American Physical Society
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53 5497QUANTUM FIELD THEORY CONSTRAINS TRAVERSABLE . . .
those in which\5G5c51, and our sign conventions are
those of Ref.@1#.

II. QUANTUM INEQUALITIES
IN FLAT AND CURVED SPACETIME

In Ref. @13#, an inequality was proved which limits the
magnitude and duration of the negative energy density s
by an inertial observer in Minkowski spacetime~without
boundaries!. Let ^Tmn& be the renormalized expectation
value of the stress tensor for a free, massless, minima
coupled scalar field in an arbitrary quantum state. Letum be
the observer’s four-velocity, so that^Tmnu

mun& is the expec-
tation value of the local energy density in this observe
frame of reference. The inequality states that

t0
p E

2`

` ^Tmnu
mun&dt

t21t0
2 >2

3

32p2t0
4 , ~1!

for all t0 , wheret is the observer’s proper time. The Loren
zian function which appears in the integrand is a convenie
choice for a sampling function, which samples the ener
density in an interval of characteristic durationt0 centered
around an arbitrary point on the observer’s world line. Th
proper time coordinate has been chosen so that this poin
at t50. The physical content of Eq.~1! is that the more
negative the energy density is in an interval, the shorter m
be the duration of the interval. Consider, for example,
pocket of negative energy which our observer traverses i
proper timeDt. A natural choice of the sampling time is
t05Dt, in which case we infer that the average value of t
negative energy in this pocket is bounded below b
23/@32p2(Dt)4#. Because Eq.~1! holds for allt0 , we must
obtain a true statement with other choices. If we l
t0,Dt, then we obtain a weaker bound. If we lett0.Dt,
then we appear to obtain a stronger bound. However, n
the range over which we are sampling extends beyond
boundaries of the pocket and may include positive ene
contributions. Hence it is to be expected that the lower bou
on the average energy density should be less negative.

The basic premise of this paper is that one may obtain
constraint upon the renormalized stress tensor in a cur
spacetime using Eq.~1!, provided thatt0 is taken to be suf-
ficiently small. The main purpose of this section is to explo
the rationale for this premise. The basic idea is that a curv
spacetime appears flat if restricted to a sufficiently small
gion. However, this idea is sufficiently subtle to require a
extended discussion.

First, let us recall the situation in classical general relat
ity. The principle of equivalence has its mathematical expre
sion in the fact that the geodesic equations involve the spa
time metric and the connection coefficients, but not t
curvature tensor. Thus, if we go to a local inertial frame, t
equations of motion for a point test particle take the fl
space form. However, it is possible for equations of motio
to contain curvature terms explicitly. An example is the equ
tion of motion for a classical spinning test particle@16#. In
this case, the principle of equivalence does not hold in
simplest form, and one can treat the system as being in
cally flat spacetime only to the extent that the curvatu
terms are negligible.
een
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In quantum field theory, we will be more interested in th
extent to which solutions of wave equations can be appro
mated by the flat space forms. Consider, for example, t
generalized Klein-Gordon equation

hf1m2f1jRf50 , ~2!

wherej is an arbitrary constant andR is the scalar curvature.
The solutions of this equation will generally not be similar t
the flat space solutions unless the curvature term is sm
compared to the other terms in the equation. However, this
still not sufficient to guarantee that a flat space mode is
solution of Eq.~2!. It is also necessary to require that th
modes have a wavelength that is small compared to the lo
radii of curvature of the spacetime. In this limit, it is possibl
to obtain WKB-type solutions to Eq.~2!, which are approxi-
mately plane wave modes. For an illustration of this, see t
work of Parker and Fulling@17# on adiabatic regularization.
These authors give generalized WKB solutions of wav
equations in an expanding spatially flat Robertson-Walk
universe. In the limit that the wavelength of a mode is sho
compared to the expansion time scale~which is the space-
time radius of curvature in this case!, the leading term, which
is of the plane wave form, becomes a good approximatio

Our primary concern is when we may expect the inequa
ity ~1!, which was derived from Minkowski space quantum
field theory, to hold in a curved spacetime and/or one wi
boundaries. For a givent0 , the dominant contribution to the
right-hand side of this inequality arises from modes fo
which l;t0 . In particular, modes for whichl@t0 yield a
small contribution. To see this more explicitly, note that th
right-hand side of Eq. ~1! arises from the integral
(4p2)21*0

`dvv3e22vt0. @See Eq.~63! of Ref. @13#.# Thus if
the long wavelength modes (v!t0

21) were to be omitted or
to be distorted by the presence of spacetime curvature
boundaries, the result would not change significantly. Th
suggests that we can apply the inequality in a curved spa
time as long ast0 is restricted to be small compared to th
local proper radii of curvature and the proper distance to a
boundaries in the spacetime. This is the criterion that t
relevant modes be approximated by plane wave modes.

The specific example of the Casimir effect may be usef
as an illustration. Here one has a constant negative ene
density, which would not be possible if Eq.~1! holds for all
t0 . However, if we impose some restrictions on the allow
able values oft0 , then the inequalitydoesin fact still apply.
Let us consider a massless scalar field with periodicity
lengthL in the z direction. Let us also consider an observe
moving with velocityv in the1z direction. In the rest frame
of this observer, the expectation value of the energy dens
is

^Tmnu
mun&52

p2

45L4
~113v2!g2, ~3!

whereg5(12v2)21/2. Because this quantity is a constan
Eq. ~1! becomes

2
p2

45L4
~113v2!g2>2

3

32p2t0
4 ~4!



d

e

ns
re.

f

si-

f
he
ck
nts
f

-

of
r-
of
on-
nts

t

or
n-
he
tic
n-

-
ld
es

5498 53L. H. FORD AND THOMAS A. ROMAN
or, equivalently,

t0<
3L

2p S 56D
1/4

@~113v2!g2#21/4. ~5!

Thus for the special case of a static observer (v50), we
must have

t0<
3L

2p S 56D
1/4

'0.46L. ~6!

There are two relevant length scales in the observe
frame of reference. The first is the~Lorentz-contracted! pe-
riodicity length l 15L/g, and the second is the proper tim
required to traverse this distance,l 25L/(vg). Herel 1 is the
smaller of the two, and plays a role analogous to the mi
mum radius of curvature in a curved spacetime. Thus
should let

t05 f l 15
f L

g
. ~7!

Equation~5! will be satisfied if

f<g~v ![
3

2p S 56D
1/4

@~113v2!~12v2!#21/4. ~8!

The functiong(v) has its minimum value atv51/A3, at
which point

gS 1

A3D 5
3

2p S 58D 1/4'0.42. ~9!

Thus if we restrictt0,0.42l 1 , then the Minkowski space
quantum inequality also holds in the compactified spacetim
Note that the constraint obtained by considering arbitraryv
differs only slightly from that for static observers, Eq.~6!.

The Casimir effect example contains some of the essen
features that we encounter in a renormalized stress tenso
a curved background spacetime. However, on a curv
spacetimê Tmn& is a sum of a state-dependent part and
state-independent geometrical part. The latter consists
terms which are either quadratic in the Riemann tensor
else linear in second derivatives of the Riemann tensor. O
source of curvature dependence in^Tmn& is the well-known
trace anomaly. For the case of the conformal (j51/6) scalar
field, it is

^Tm
m&5

1

2880p2 ~RabrsR
abrs2RabR

ab1¹r¹rR!.

~10!

Other fields have trace anomalies with similar coefficien
i.e., with magnitudes of the order of 1024. Thus these terms
will give a very small contribution to a quantum inequalit
of the form of Eq.~1! whent0! l , wherel is the character-
istic radius of curvature.

A related source of curvature dependence in the renorm
ized stress tensor is the possible presence of finite term
the form of the quadratic counter-terms required to remo
the logarithmic divergences in a curved spacetime. The
terms are the tensors
r’s
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Hmn
~1![

1

A2g

d

dgmn @A2gR2#52¹n¹mR22gmn¹r¹rR

1
1

2
gmnR

222RRmn ~11!

and

Hmn
~2![

1

A2g

d

dgmn @A2gRabR
ab#52¹a¹nRm

a1¹r¹rRmn

2
1

2
gmn¹r¹rR1

1

2
gmnRabR

ab22Rm
rRrn . ~12!

There can be a term of the formc1Hmn
(1)1c2Hmn

(2) in ^Tmn&.
More generally, there might be a term of the form
(c1Hmn

(1)1c2Hmn
(2)) ln(Rm22), wherem is an arbitrary renor-

malization mass scale@18#. A shift in the value ofm adds a
term proportional toc1Hmn

(1)1c2Hmn
(2) to ^Tmn&. Visser@6# has

recently discussed how terms of this form are likely to lea
to violations of the ANEC in curved spacetime. The problem
is that quantum field theory by itself is not able to predict th
values ofc1 andc2 or, equivalently, ofm. Thus very large
values of these parameters are not,a priori, ruled out. The
status of these terms in the semiclassical Einstein equatio
has been the subject of much discussion in the literatu
They appear to give rise to unstable behavior@19#, analogous
to the runaway solutions of the Lorentz-Dirac equation o
classical electron theory. More recently Simon@20# has sug-
gested that it may be possible to reformulate the semiclas
cal theory to avoid unstable solutions.

If one ignores the possibility of runaway solutions, then i
these terms are to produce a significant correction to t
geometry of a spacetime whose curvature is far below Plan
dimensions, then at least one of the dimensionless consta
c1 or c2 must be extremely large. The Einstein tensor is o
order l22 and theHmn

(1) andHmn
(2) tensors are of orderl24, in

Planck units. The latter are negligible unless their coeffi
cients are at least of order (l / l P)

2, where l P is the Planck
length. Thus if the state-independent geometrical part
^Tmn& is to be the source of the exotic matter which gene
ates the wormhole geometry, either the wormhole must be
Planck dimensions, or else one must accept large dimensi
less coefficients. For example, unless one of these consta
is at least of order 1070, the quadratic curvature terms will be
negligible for the discussion of a wormhole whose throa
radius is of the order of 1 m. A value ofc1 or c2 of 10

70

could arise from a single quantum field or from 1070 fields,
each giving a contribution of order unity@21#. Both possi-
bilities seem equally unnatural.

An alternative is for the state-dependent part of^Tmn& to
be the source of the exotic matter. A nonexotic stress tens
may be made arbitrarily large by increasing the particle co
tent of the quantum state. One might naively expect that t
same could be done for a stress tensor representing exo
matter. However, the essential content of the quantum i
equality ~1! is that arbitrarily extended distributions of arbi-
trarily negative energy are not possible in Minkowski space
time. In this section we have argued that the bound shou
also be applicable in curved spacetimes for sampling tim
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small compared to either the minimum local radius of curv
ture or the proper distance to any boundary.

Let us recall that Eq.~1! was proved for the specific case
of a free massless, minimally coupled scalar field. It shou
be straightforward to generalize the arguments of Ref.@13# to
the case of other massless fields, such as the electromag
field. Although this has not yet been done, it is unlikely th
the result will be significantly different. Generalizations t
massive fields may also be possible, although the results m
be more complicated due to the presence of two leng
scales:t0 and the particle’s Compton wavelength. Howeve
it seems unlikely that adding a mass will make it easier
have large negative energy densities, as one now has to o
come the positive rest mass energy. Thus, one suspects
massive fields will satisfy inequalities which are more r
strictive than Eq.~1!. The effect of including interactions is
the most difficult to assess. If an interacting theory were
allow regions of negative energy much more extensive th
allowed in free theories, there would seem to be a dange
an instability where the system spontaneously makes a tr
sition to a configuration with large negative energy densi
However, this must be regarded as an open question.

III. MORRIS-THORNE WORMHOLES

The spacetime geometry for a Morris-Thorne~MT! tra-
versable wormhole is described by the metric@1#

ds252e2F~r !dt21
dr2

12b~r !/r
1r 2~du21sin2udf2!,

~13!

where the two adjustable functionsb(r ) andF(r ) are the
‘‘shape function’’ and the ‘‘redshift function,’’ respectively.
The shape functionb(r ) determines the shape of the worm
hole as viewed, for example, in an embedding diagram. T
metric ~13! is spherically symmetric and static, with th
proper circumference of a circle of fixedr being given by
2pr . The coordinater is nonmonotonic in that it decrease
from 1` to a minimum valuer 0 , representing the location
of the throat of the wormhole, whereb(r 0)5r 0 , and then it
increases fromr 0 to 1`. Although there is a coordinate
singularity at the throat, where the metric coefficientgrr be-
comes divergent, the radial proper distance

l ~r !56E
r0

r dr

@12b~r !/r #1/2
~14!

is required to be finite everywhere. Note that becau
0<12b(r )/r<1, the proper distance is greater than
equal to the coordinate distance:u l (r )u>r2r 0 . The metric
~13! may be written in terms of the proper radial distance

ds252e2F~r !dt21dl21r 2~ l !~du21 sin2udf2!. ~15!

The proper distance decreases froml51` to zero at the
throat, and then from zero to2` on the ‘‘other side’’ of the
wormhole. For the wormhole to be traversable it must ha
no horizons, which implies thatgtt52e2F(r ) must never be
allowed to vanish, and henceF(r ) must be everywhere fi-
nite.
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The four-velocity of a static observer is
um5dxm/dt5(ut,0,0,0)5(e2F(r ),0,0,0). The observer’s
four-acceleration is

am5
Dum

dt
5um

;nu
n5~um

,n1Gbn
m ub!un. ~16!

For the metric~13! we have

at50,

ar5G tt
r S dtdt D 25F8~12b/r !, ~17!

whereF85dF/dr. From the geodesic equation, a radiall
moving test particle which starts from rest initially has th
equation of motion

d 2r

dt2
52G tt

r S dtdt D 252ar . ~18!

Hencear is the radial component of proper acceleration th
an observer must maintain in order to remain at rest at co
stantr ,u,f. Note for future reference that from Eq.~17!, a
static observer at the throat of any wormhole is a geodes
observer. ForF8(r )Þ0 wormholes, static observers are no
geodesic~except at the throat!, whereas forF8(r )50 worm-
holes they are. A wormhole is ‘‘attractive’’ ifar.0 ~observ-
ers must maintain an outward-directed radial acceleration
keep from being pulled into the wormhole! and ‘‘repulsive’’
if ar,0 ~observers must maintain an inward-directed radi
acceleration to avoid being pushed away from the worm
hole!. From Eq.~17!, this distinction depends on the sign o
F8. For ar50, the wormhole is neither attractive nor repul
sive.

Substitution of Eq.~13! into the Einstein equations gives
the stress-energy tensor required to generate the wormh
geometry. It is often convenient to work in the static ortho
normal frame given by the basis

et̂5e2Fet ,

er̂5~12b/r !1/2er ,

eû5r21eu ,

ef̂5~rsinu!21ef . ~19!

This basis represents the proper reference frame of an
server who is at rest relative to the wormhole. In this fram
the stress tensor components are given by

Tt̂ t̂5r5
b8

8pr 2
, ~20!

Tr̂ r̂5pr52
1

8p F br 3 2
2F8

r S 12
b

r D G , ~21!
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Tû û5Tf̂f̂5P5
1

8p F12 S br 3 2
b8

r 2 D1
F8

r S 12
b

2r
2
b8

2 D
1S 12

b

r D @F91~F8!2#G . ~22!

The quantitiesr, pr , and P are the mass-energy density
radial pressure, and transverse pressure, respectively, as
sured by a static observer@22#. At the throat of the worm-
hole, r5r 0 , these reduce to

r05
b08

8pr 0
2 , ~23!

p052
1

8pr 0
2 , ~24!

P05
12b08

16pr 0
S F081

1

r 0
D , ~25!

whereb085b8(r 0) andF085F8(r 0).
The curvature tensor components are given by

Rt̂r̂ t̂ r̂5S 12
b

r D @F91~F8!2#1
F8

2r 2
~b2b8r !, ~26!

Rt̂ û t̂ û5Rt̂ f̂ t̂ f̂5
F8

r S 12
b

r D , ~27!

Rr̂ û r̂ û5Rr̂ f̂ r̂ f̂5
1

2r 3
~b8r2b!, ~28!

Rûf̂ûf̂5
b

r 3
. ~29!

All other components of the curvature tensor vanish, exc
for those related to the above by symmetry. At the thro
these components reduce to

Rt̂r̂ t̂ r̂ ur05
F08

2r 0
~12b08!, ~30!

Rt̂ û t̂ ûur05Rt̂ f̂ t̂ f̂ur050, ~31!

Rr̂ û r̂ ûur05Rr̂ f̂ r̂ f̂ur052
1

2r 0
2 ~12b08!, ~32!

Rûf̂ûf̂ur05
1

r 0
2 . ~33!

Let us now define the following set of length scales:

r̄ 05b, r 15U bb8
U, r 25U F

F8
U, r 35UF8

F9
U. ~34!

The quantitiesr 1 , r 2 , andr 3 are a measure of the coordinat
length scales over whichb, F, and F8, respectively,
change. The number of length scales corresponds to the n
,
mea-

ept
at,

e

um-

ber of derivatives which appear in the curvature tensor, a
b. It will prove convenient to absorbuFu into another length
scale defined by

R25
r 2

uFu
5

1

uF8u
. ~35!

The smallest of the above length scales is

rm[min~ r̄ 0 ,r 1 ,R2 ,r 3!. ~36!

As an aside, note that ifrm5R2 , then we can say that eithe
r 2 is very small oruFu is very large~which implies that the
redshift or blueshifte6uFu is very large!, or both. The curva-
ture components may be written in terms of these len
scales as

Rt̂r̂ t̂ r̂5S 12
b

r D F6
1

R2r 3
1

1

R2
2G6

b

r S 6
1

2r 1R2
2

1

2rR2
D ,
~37!

Rt̂ û t̂ û5Rt̂ f̂ t̂ f̂56S 12
b

r D 1

rR2
, ~38!

Rr̂ û r̂ û5Rr̂ f̂ r̂ f̂5
b

r S 6
1

2rr 1
2

1

2r 2D , ~39!

Rûf̂ûf̂5
b

r 3
. ~40!

The choice of plus or minus signs in the various terms of
above equations will depend on the signs of the derivati
of b andF, which will in turn depend on the specific worm
hole geometry.

Let the magnitude of the maximum curvature compone
beRmax. Since the largest value of (12b/r ) and ofb/r is
1, an examination of Eqs. ~37!–~40! shows that
Rmax&1/(rm

2 ). Therefore the smallest proper radius of curv
ture ~which is also the coordinate radius of curvature in
orthonormal frame! is

r c'
1

ARmax
*rm . ~41!

Our length scales at the throat become

r 0̄5r 0 , r 15U r 0b08U, R25
r 2

uF0u
, r 35UF08

F09
U. ~42!

At the throat of the wormhole Eqs.~37!–~40! simplify to

Rt̂r̂ t̂ r̂ ur056
1

2r 0R2
6

1

2r 1R2
, ~43!

Rt̂ û t̂ ûur05Rt̂ f̂ t̂ f̂ur050, ~44!

Rr̂ û r̂ ûur05Rr̂ f̂ r̂ f̂ur056
1

2r 0r 1
2

1

2r 0
2 , ~45!
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Rûf̂ûf̂ur05
1

r 0
2 . ~46!

~At the throat, the length scaler 3 does not explicitly appear
in the curvature components.! Again, we see that
Rmax&1/(rm

2 ) and r c*rm .
We wish to work in a small spacetime volume around th

throat of the wormhole such that all dimensions of this vo
ume are much smaller thanr c , the smallest proper radius o
curvature anywhere in the region. Thus, in the absence
boundaries, spacetime can be considered to be approxima
Minkowskian in this region, and we should be able to app
our QI bound.

IV. SPECIFIC EXAMPLES

To develop physical intuition for the general case, as w
as to get a feeling for the magnitudes of the numbers
volved, in this section we apply our bound to a series
specific examples.

A. F50 , b5r 0
2/r wormholes

This is a particularly simple wormhole which is discusse
in box 2 and the bottom left-hand column of p. 400 of Re
@1#. In terms of the proper radial distancel (r ), the metric is

ds252dt21dl21~r 0
21 l 2!~du21sin2udf2!, ~47!

where l56(r 22r 0
2). ~Recall thatl50 at the throat.! The

stress-tensor components are given by

r5pr52P52
r 0
2

8pr 4
52

r 0
2

8p~r 0
21 l 2!2

. ~48!

The curvature components are

Rûf̂ûf̂52Rl̂ û l̂ û52Rl̂ f̂ l̂ f̂5
r 0
2

~r 0
21 l 2!2

. ~49!

Note that all the curvature components are equal in mag
tude, and have their maximum magnitude 1/(r 0

2) at the
throat. The same holds true for the stress-tensor compone
At the throat, our length scales arer̄ 05r 05r 1 , and so
r c5r 0 .

Let us apply our QI bound to a static observer atr5r 0 .
~Recall that such an observer is geodesic.! Since the energy
density seen by this static observer is constant, we have

t0
p E

2`

` ^Tmnu
mun&dt

t21t0
2 5r0*2

c

t0
4 , ~50!

wherec[3/(32p2), t is the observer’s proper time, andt0
is the sampling time. Choose our sampling time to
t05 f r m5 f r 0!r c , with f!1. Substitution into Eq.~50!
yields

r 0&
l P
2 f 2

, ~51!

where l P is the Planck length. Here it is fairly obvious tha
any reasonable choice off gives a value ofr 0 which is not
e
l-
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much larger than l P . For example, for f'0.01,
r 0&104 l P510231 m. Note from Eqs.~48! and ~49! that if
we choose our spacetime region to be such thatl!r 0 , then
the curvature and stress-tensor components do not cha
very much.

B. F50, b5r 05const wormholes

For this wormholeF50 andb5const, and sob850, and
thereforer50. This is a special case of ‘‘zero density
wormholes @23#. Here gtt is the same as for Minkowsk
spacetime, while the spatial sections are the same as tho
Schwarzschild. The energy density and radial pressure s
by a static observer are

r50 , pr52
r 0

8pr 3
. ~52!

Since the energy density is zero in the static frame, to ob
a bound we boost to the frame of a radially moving geode
observer. The energy density in the boosted frame is, b
Lorentz transformation,

T0̂80̂85r85g2~r1v2pr !, ~53!

wherev is the velocity of the boosted observer relative to t
static frame, andg5(12v2)21/2. In our case, we have

r852
g2v2r 0
8pr 3

. ~54!

Note that in this caseanynonzerov givesr8,0, in contrast
to the discussion surrounding Eq.~57! of Ref. @1#. The non-
zero curvature components in the static frame are

Rr̂ û r̂ û5Rr̂ f̂ r̂ f̂52
r 0
2r 3

, Rûf̂ûf̂5
r 0
r 3
. ~55!

Here the only relevant length scale isr 0 , sinceF50 and
b5r 0 everywhere. For a general wormhole, when we bo
to the radially moving frame, we have

R0̂81̂80̂81̂85Rt̂r̂ t̂ r̂ ,

R2̂80̂82̂80̂85R3̂80̂83̂80̂85
g2

2r 2 Fv2S b82
b

r D12~r2b!F8G ,
R2̂81̂82̂81̂85R3̂81̂83̂81̂85

g2

2r 2 F S b82
b

r D12v2~r2b!F8G ,
R2̂80̂82̂81̂85R3̂80̂83̂81̂85

g2v
2r 2 F S b82

b

r D12~r2b!F8G ,
R2̂83̂82̂83̂85Rûf̂ûf̂ . ~56!

In the present case the nonzero components in the prim
frame are
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R2̂80̂82̂80̂85R3̂80̂83̂80̂852
g2v2r 0
2r 3

,

R2̂81̂82̂81̂85R3̂81̂83̂81̂852
g2r 0
2r 3

,

R2̂80̂82̂81̂85R3̂80̂83̂81̂852
g2vr 0
2r 3

,

R2̂83̂82̂83̂85Rûf̂ûf̂5
r 0
r 3
. ~57!

In the vicinity of the throat, the magnitude of the max
mum curvature component in the boosted frame
Rmax8 &g2/(r 0

2), and therefore the smallest local proper radi
of curvature in that frame isr c8*r 0 /g. Apply our QI bound
to the boosted observer and taket05 f r 0 /g!r c8 , for f!1.
Since the energy density does not change much over
time scale, we may write

t0
p E

2`

` ^Tmnu
mun&dt

t21t0
2 'r08*2

c

t0
4 , ~58!

which leads to

r 0&
g

2 f 2v
l P . ~59!

In this case, any nonzerov gives us a bound, but we can find
the optimum bound by minimizingg/v, a procedure which
yields v51/g51/A2 and

r 0&
l P
f 2
. ~60!

Equation~60! is essentially the same as Eq.~51!, which was
the bound we obtained in theF50, b5r 0

2/r case.

C. ‘‘Absurdly benign’’ wormholes

Classically, one can design a wormhole so that the exo
matter is confined to an arbitrarily small region around th
throat. MT call this an ‘‘absurdly benign’’ wormhole. It is
given by the choicesF50 everywhere and

b~r !5r 0@12~r2r 0!/a0#
2 for r 0<r<r 01a0 ,

50 for r>r 01a0 . ~61!

For r 0<r,r 01a0 ,

r52
r 0

4pr 2a0
2 ~a01r 02r !,0 , ~62!

pr52
r 0

8pr 3a0
2 ~a01r 02r !2, ~63!

P52
1

2
~r1pr !. ~64!
i-
is
us

this

tic
e

For r>r 01a0 , the spacetime is Minkowskian, and
r5pr5P50. The quantitya0 represents the thickness inr
~on one side of the wormhole! of the negative energy region.
Evaluation of the curvature components using Eq.~61!
shows that they have maximum magnitude at the thro
where

Rr̂ û r̂ ûur05Rr̂ f̂ r̂ f̂ur052
1

a0r 0
2

1

2r 0
2 , ~65!

Rûf̂ûf̂ur05
1

r 0
2 . ~66!

At the throat, our length scales become

r 0̄5r 0 , r 15
a0
2
, ~67!

and rm5min(r 0 ,r 1). Again we see thatRmax&1/(rm
2 ), and

so the smallest local radius of curvature isr c*rm .
Application of our QI bound to a static observer at th

throat yields

r052
1

4pa0r 0
*2

c

t0
4 . ~68!

Although this wormhole was designed for maximum con
finement of the negative energy near the throat, i.
a0!r 0 , there is nothing in principle to keep us from choos
ing a0*r 0 . In what follows, we shall consider both situa
tions. First assumea0,r 0 . We then choose our sampling
time to bet05 f a0 , where f!1. Equation~68! then yields

a0&S r 0
8 f 4l P

D 1/3l P . ~69!

A reasonable choice off is f'0.01. For a small ‘‘human-
sized’’ wormhole with r 0'1 m, our bound gives
a0&1014 l P'10221 m '1026 F, or approximately 1/106 of
the proton radius. The situation does not improve much f
larger wormholes. Forr 0'1 light year, a0&231019 l P
'0.2 F. With r 0'105 light years,a0&1021 l P'10214 m.
So even with a throat radius the size of a galaxy, the negat
energy must be distributed in a band no thicker than abo
ten proton radii. Now suppose thatr 0,a0/2, so that
rm5r 0 . In that case, we chooset05 f r 0 , and our bound
gives

r 0&S a0
8 f 4l P

D 1/3l P ; ~70!

i.e., a0 and r 0 are simply interchanged. Therefore, the sam
numerical examples just discussed now apply tor 0 , for
given choices ofa0 . For example, whena0'1 light year,
now the throat size is less than about 0.2 F, so that even
very largea0 , r 0 must be extremely small. Whena0'r 0 ,
the bound onr 0 is essentially Eq.~51!. One might worry that
sincea0 is the coordinate thickness inr of the negative en-
ergy density, it might not be a good measure of the prop
radial thickness of the negative energy density band seen
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the static observer. In fact, a detailed calculation shows t
a0 is the proper thickness in this case, to within factors
order unity.

D. ‘‘Proximal Schwarzschild’’ wormholes

Another special case of a zero density wormhole is t
‘‘proximal Schwarzschild’’ wormhole @24#. Here
b5r 05const, andgtt is only slightly different from that of
Schwarzschild. The metric in this case is

ds252S 12
r 0
r

1
e

r 2Ddt21 dr2

~12r 0 /r !

1r 2~du21sin2udf2!. ~71!

We recover the Schwarzschild solution fore50; however,
anye.0 gives us a wormhole. The energy density and rad
pressure seen by a static observer are

r50 , ~72!

pr52
e

8pr 4
~22r 0 /r !

~12r 0 /r1e/r 2!
. ~73!

We will assume thatAe!r 0; hence, the radial pressure i
highly peaked near the throat. Here the proper distance fr
r5r 0 to r5r 01Ae, corresponding to the coordinate thick
nessAe, is

D l5E
r0

r01Ae dr

A12r 0 /r
'E

r0

r01Ae Ar 0dr
Ar2r 0

52Ar 0Ae.

~74!

A disadvantage of this wormhole is that it entails extreme
large redshifts. The metric coefficientgtt is very close to that
of Schwarzschild, and therefore this wormhole is very clo
to having a horizon at its throat.

In the regionr 0<r<r 01Ae, the curvature components
have their maximum magnitudes at the throat~except
Rt̂ û t̂ û5Rt̂ f̂ t̂ f̂ , which vanish there!. At r5r 0 ,

Rt̂r̂ t̂ r̂ ur0'
1

4e
, ~75!

Rr̂ û r̂ ûur05Rr̂ f̂ r̂ f̂ur052
1

2r 0
2 , ~76!

Rûf̂ûf̂ur05
1

r 0
2 . ~77!

Our length scales at the throat become

r̄ 05r 0 , r 15`, R2'
2e

r 0
, r 3'

e

r 0
. ~78!

Note thatr 15` is due to the fact thatb850. Although we
can write the curvature components in terms of these len
scales, in this case the smallest radius of curvature in
static frame isr c'1/ARmax'2Ae, which is larger than our
smallest length scalerm5r 3 . Thus we will get a stronger
bound if we frame our argument in terms ofr c'2Ae.
hat
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Since the energy density is zero in the static frame, w
must apply our bound in the frame of a boosted observ
passing through the throat. The curvature tensor compone
in this frame are

R1̂80̂81̂80̂8ur05Rt̂r̂ t̂ r̂ ur0'
1

4e
,

R2̂80̂82̂80̂8ur05R3̂80̂83̂80̂8ur052
g2v2

2r 0
2 ,

R2̂81̂82̂81̂8ur05R3̂81̂83̂81̂8ur052
g2

2r 0
2 ,

R2̂80̂82̂81̂8ur05R3̂80̂83̂81̂8ur052
g2v

2r 0
2 ,

R2̂83̂82̂83̂8ur05Rûf̂ûf̂ur05
1

r 0
2 . ~79!

Which of these components has the maximum magnitu
depends on whetherA2e is greater than or less thanr 0 /g.

First consider the case A2e,r 0 /g. Then
Rmax8 5Rmax'1/(4e), and r c85r c'2Ae. Take t05 f r c8
'2 fAe, with f,,1. The energy density in the boosted
frame should be approximately constant over this samplin
time. Therefore, our QI bound gives

r0852
g2v2

8pr 0
2 *2

c

t0
4 , ~80!

and hence

Ae

r 0
&S 12v2

64v2f 4D
1/4S l Pr 0D

1/2

. ~81!

By makingv arbitrarily close to 1, we can make the right-
hand side of the bound arbitrarily small.

It may be more appropriate to express the width of th
band of exotic matter in the static frame in terms of prope
length, rather than coordinate length. Using Eq.~74!, our
bound Eq.~81! can be rewritten as

D l

r 0
&S 12v2

v2f 4 D 1/8S l Pr 0D
1/4

. ~82!

In this form, the bound is quite a bit weaker, due to th
smaller powers on the right-hand side of the inequality. W
can still in principle make the right-hand side arbitrarily
small, albeit only by choosingv exceedinglyclose to 1.
However, our bound must hold forany boosted observer.
Consequently, for the caseA2e,r 0 /g, proximal Schwarzs-
child wormholes with any finite value ofD l would seem to
be physically excluded.

Next consider the case whereA2e.r 0 /g. Then
Rmax8 5g2/(2r 0

2), and the smallest local radius of curvature in
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the boosted frame isr c8'A2r 0 /g. Take t05 f r c8 , with
f!1. Application of our bound in this case yields

r 0&
A2pc

f 2 S g

v D . ~83!

We get the optimum bound by minimizingg/v, i.e.,

r 0&
l P
2 f 2

, ~84!

which is the same as the bound we obtained in t
F50, b5r 0

2/r case.

E. Morris-Thorne-Yurtsever wormhole

Morris, Thorne, and Yurtsever~MTY ! @2# have discussed
a wormhole consisting of anr 05Q5M Reissner-Nordstro¨m
~RN! metric with a pair of spherical charged Casimir plate
positioned on each side of the throat within a very sm
proper distances of one another. That is, the spacetime
extreme RN from each plate out tor5`, and approximately
flat between the plates. The Casimir energy density betw
the plates is negative, while the stress energy of the exte
classical electromagnetic field is ‘‘near exotic,’’ i.e.
(rc1pc)uEM50. For r>r 01d, the metric has the extreme
RN form

ds252S 12
M

r D 2dt21 dr2

~12M /r !2
1r 2~du21sin2udf2!.

~85!

MTY show that, for this wormhole,

p052
1

8pr 0
2 5pCasimir. ~86!

Then becauserCasimir5pCasimir/3 andrCasimir5r0 , it follows
that r052(24pr 0

2)21. If we apply our bound to a~very
tiny! static observer at the throat, we obtain

2
1

24pr 0
2 *2

c

t0
4 . ~87!

Because spacetime is approximately flat between the pla
the constraint on the choice oft0 is that discussed in the
Casimir effect example in Sec. II. Taket05 f s, whereupon
we find

r 0* f 2s2. ~88!

A reasonable choice off in this case would seem to be
f'0.1. For s'10210 cm '1023 l P , one finds that
r 0*1044 l P;0.01 AU ~astronomical unit!. Since MTY cal-
culater 0'1 AU for a plate separation ofs'10210 cm, this
wormhole satisfies our bound.

However, this wormhole has a number of undesirable fe
tures. First, in order to traverse it, an observer must
through the plates. This implies that ‘‘holes’’ or ‘‘trapdoors’
must be cut in the plates to allow passage. Second, beca
the plates are located atr'r 01d, with d'10210 cm ~ne-
glecting the thickness of the plates!, this wormhole is ex-
he
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tremely close to being a black hole, i.e.
ugttur01d5(12M /r )2'd2/M2. Infalling photons with fre-

quency at infinity v` will have local frequency
v local'v`(M /d), as measured by a static observer on th
plate. Ford'10210 cm andr 0'M'1 AU '1013 cm, we
havev local'1023v` . A typical infalling 3 K photon in the
cosmic microwave background radiation, upon arriving
one of the plates, would get blueshifted to a temperatu
Tlocal'1023 K. A 0.1 MeV g-ray photon would get blue-
shifted toElocal'1019 GeV 'EP , whereEP is the Planck
energy. Stray cosmic-ray particles, with typical energies
;1 GeV, falling into the wormhole will have
Elocal'E`(M /d)'1023 GeV '104EP . A static observer
just outside the plates would likely be incinerated by infal
ing radiation. Similarly, the plates would have to be con
structed out of material capable of withstanding these lar
energies. In addition, the large local impacts of infalling ra
diation and particles on the plates will tend to push the
together, thereby upsetting the force balance, and hence
probably destabilize the wormhole. Onecould imagine
elaborate radiation shielding constructed around a large
gion far away from, but enclosing, the wormhole. Howeve
if the wormhole is unstable to infalling radiation, then infall
ing spaceships would seem like an even more remote po
bility.

V. GENERAL BOUNDS FOR WORMHOLES

In this section QI bounds will be formulated on the rela
tive size scales of arbitrary static, spherically symmetric, M
wormholes; i.e., no assumptions will be made about the sp
cific forms ofF(r ) andb(r ). We work in the vicinity of the
throat and analyze two general subcases:~1! b08,0 and~2!
b08>0. Let rm be the smallest of the length scales
r 0̄ ,r 1 ,R2 ,r 3 , in this region. We saw from Eqs.~37!–~40!
in Sec. III that the magnitude of the maximum curvatur
component in this region isRmax&1/(rm

2 ). It follows that the
smallest proper radius of curvature~in the static orthonormal
frame! is r c'1/ARmax*rm . Spacetime can be considered t
be approximately flat in this region, and therefore our Q
bound should be applicable.

A. Case„1…: b08<0

Sinceb08,0, the energy density is negative at the throa
and so we can apply our bound to a static observer at
throat. This observer is geodesic, and the energy density
constant; so we have

t0
p E

2`

` ^Tmnu
mun&dt

t21t0
2 5r05

b08

8pr 0
2 *2

c

t0
4 , ~89!

where againc[3/(32p2), t is the observer’s proper time,
andt0 is the sampling time. Choose our sampling time to b
t05 f r m!r c , with f!1. Our QI then becomes

rm&S 8pc

ub08u
D 1/4Ar 0f . ~90!

Since our observer is static at the throat, we may wri
ub08u5r 0 /r 1 , and use 8pc'1/4, to get
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rm&
~r 0r 1!

1/4

f
~91!

or, alternatively,

rm
r 0

&
1

f S r 1l P2r 03 D 1/4. ~92!

Now examine specific cases. Forrm5r 0 , we have
r 0 /r 1& f24/3( l P /r 1)

2/3. As an example, ifr 1'1 m and for
f'0.01, thenr 0 /r 1&10221. Even if we choosef to be very
small, this large discrepancy in length scales will not chan
much, and only increases asr 1 increases. Forrm5r 1 ,
r 1 /r 0& f24/3( l P /r 0)

2/3, and so forr 0'1 m and f'0.01,
r 1 /r 0&10221. Again the problem only gets worse as th
throat sizer 0 increases. Whenrm5r 05r 1 , r 0& l P / f

2; for
f'0.01, r 0&104l P;10231 m. For F5 const wormholes,
the only relevant length scales arer 0 and r 1 . The above
results imply that whenb08,0 these wormholes are ex
tremely unlikely, unless one is willing to accept a huge di
crepancy in length scales. Forrm5R2 andR2<r 0<r 1 , from
Eq. ~91! we have thatR2 /r 1&(1/f )(r 0l P

2 /r 1
3)1/4&(1/f )

3( l P /r 1)
1/2. For rm5R2 and R2<r 1<r 0 , R2 /r 0&(1/f )

3( l P /r 0)
1/2. An identical argument yields similar inequali-

ties for the case whererm5r 3 . Thus we find that ifr 0 and/or
r 1 are macroscopic, then the ratio of the minimum leng
scale to the macroscopic length scale must be very tiny.

If the minimum scale happens to beR2 , then our bounds
imply that eitherr 2 , the scale over whichF changes, is very
small or uFu is very large, or both. A situation in which
uFu is very large near the throat, assumingF(`)50, would
not seem to be a desirable characteristic of a traversa
wormhole, as it implies very large redshifts or blueshifts f
a static observer at the throat. A large negativeF0 implies
that the spacetime is close to having a horizon at the thro
A large positiveF0 implies that photons of moderate fre
quency fired outward by an observer at the throat would
blueshifted to very high frequencies upon reaching dista
observers. In the latter case, observers must be shot inw
with initially large kinetic energies in order to reach th
throat.

If some of the wormhole parameters change over ve
short length scales, then it would seem from the ‘‘tidal forc
constraints’’@see Eqs.~49! and~50! of MT# that tidal accel-
erations might also change over very short length scales.
a result, an observer traveling through the wormhole cou
encounter potentially wrenching tidal forces rather abrupt
None of these scenarios seem terribly convenient for wor
hole engineering.

B. Case„2…: b08>0

When b08>0, the energy density at the throat is non
negative for static observers. To obtain a bound in this ca
we Lorentz transform to the frame of a radially movin
boosted observer at the throat. Since the maximum mag
tude curvature component in the static frame
Rmax&1/(rm

2 ), in the boosted frame the curvature compone
with the largest magnitude,Rmax8 , can beno larger than
aboutg2/rm

2 . Therefore, the smallest proper radius of curv
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ture in the boosted frame isr c8'1/ARmax8 *rm /g. Spacetime
should be approximately flat in the boosted frame on scale
much less thanr c8 . Hence let us take our sampling time to be
t05 f r m /g!r c8 , with f!1. The energy density in this frame
should not change much over the sampling time, and so th
application of our bound gives

t0
p E

2`

` ^Tmnu
mun&dt

t21t0
2 '^Tmnu

mun&5r08*2
c

t0
4 . ~93!

At the throat, from Eq.~53!, the energy density in the
boosted frame is

r085g2~r01v2p0!5
g2

8pr 0
2 ~b082v2!. ~94!

In order for r08,0, we must requirev2.b08 . After making
the required substitutions, we obtain

rm
r 0

&S 1

v22b08
D 1/4Ag

f S l Pr 0D
1/2

. ~95!

For b08>0, 0<b08<1, sinceb08<1, which follows from
the fact that at the throat we must haver01p0<0 @25#. The
quantityb08 is fixed by the wormhole geometry, whereas our
choice ofv2 is arbitrary, subject tob08,v2,1. Our bound,
Eq. ~95!, is weakest whenb08 is extremely close to 1. How-
ever, this would seem to be a highly special case,b0851
corresponding to the maximum possible positive energy den
sity at the throat and tor01p050; i.e., the null energy con-
dition TmnK

mKn>0, applied to radial null vectors, is barely
satisfied at the throat. The latter implies that such a worm
hole ‘‘flares outward’’ very slowly from the throat@see, for
example, Eq.~56! of MT#. To see how closeb08 must be to
1 in order to significantly affect our bound, a numerical ex-
ample is instructive. Letb0851–1028, v251–1029, and
f'0.01. Forr 0'1 m'1035 l P , we find thatrm&10211 m.
Even forr 0'1 AU'1046 l P , we obtainrm&1026 m. If we
consider a more ‘‘typical’’b08>0 to be in about the middle
of the allowed range, say,b08'1/2, then if we choose
v2'3/4, it follows that (v22b08)

21/4'1. If we choose
f'0.01, then we findrm /r 0&100(l P /r 0)

1/2. Even a much
smaller choice off does not avoid the large discrepancy in
wormhole length scales.

The bound~95! is a ‘‘safe’’ bound, but in specific cases it
may not be the optimal bound, due to our rather conservativ
condition onRmax8 , i.e.,Rmax8 &g2/rm

2 , and hence ont0 . For
example, in cases whereRmax8 5uR1̂80̂81̂80̂8u5uRt̂r̂ t̂ r̂ u, such as
the proximal Schwarzschild wormhole, we can get a stronge
bound than that obtained from the inequality for the genera
case.

VI. CONCLUSIONS

In this paper, we used a bound on negative energy densi
derived in four-dimensional Minkowski spacetime to con-
strain static, spherically symmetric traversable wormhole ge
ometries. In Sec. II, we argued that the bound should also b
applicable in curved spacetime on scales which are muc
smaller than the minimum local radius of curvature and/o
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the distance to any boundaries in the spacetime. The ups
of our analysis is that either a wormhole must have a thro
size which is only slightly larger than the Planck lengt
l P , or there must be large discrepancies in the length sca
which characterize the geometry of the wormhole. These d
crepancies are typically of order (l P /r 0)

n, where r 0 is the
throat radius andn&1. They imply that generically the ex-
otic matter is confined to an extremely thin band and/or th
the wormhole geometry involves large redshifts~or blue-
shifts!. The first feature would seem to be rather physical
unnatural. Furthermore, wormholes in which the character
tics of the geometry change over short length scales and
entail large redshifts would seem to present severe diffic
ties for traversability, such as large tidal forces.

There is a number of possible ways to circumvent o
conclusions. The primary contributions to the exotic matt
might come from the state-independent geometrical terms
^Tmn&. However, as discussed in Sec. II, in this case t
dimensionless coefficients of these terms would have to
enormous to generate a wormhole of macroscopic size. O
possibility would be a model in which the effective values o
these coefficients are governed by a new fieldf in such a
way that they are large only whenf is large. It may then be
possible to find self-consistent solutions in whichf is large
only in a very small region, and hence it is conceivable th
one might be able to create thin bands of negative energy
this way @26#. Our bound was strictly derived only for a
massless, minimally coupled scalar field, but we argued t
similar bounds are likely to hold for other massless and ma
sive quantum fields. Another possible circumvention of th
bound might be to superpose the effects of many fields, ea
of which satisfies the bound@27#. For example, suppose we
postulateN fields, each of which contribute approximatel
the same amount to our bound. Then the right-hand side
the inequality~1! would be replaced by2Nc/t0

4 . However,
in practiceN has to be extremely large in order to have
significant effect. For example, in the case of th
F50, b5const wormholes discussed in Sec. IV, the co
straint on the throat size becomesr 0&AN/(2 f 2). For
f'0.01, r 0&AN104l P;AN10231 m. Therefore, to get
r 0'1 m, we would need either 1062 fields or a few fields for
which the constantc is many orders of magnitude larger tha
3/(32p2). Neither of these possibilities seems very likely
Last, it may be that the semiclassical theory breaks do
above the Planck scale, due to large stress-tensor fluctuat
when the mean energy density is negative@14,15#. In that
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case, it becomes difficult to predict what happens. Howev
one might expect the time scale of such fluctuations to be
the order of the minimum radius of curvature. Since o
sampling time is chosen to be much smaller than this, it m
be that our analysis is unaffected by the fluctuations.

We showed that the Morris-Thorne-Yurtsever@2# worm-
hole was compatible with our bound. When this model w
proposed some years ago, it was hoped that one might e
tually be able to do better at spreading the exotic matter
over macroscopic dimensions. Our results indicate that t
kind of wormhole might be the generically allowed cas
However, as we pointed out, this wormhole has undesira
features, such as large redshifts near the throat which m
pose problems for stability and traversability. It might see
that our conclusions imply that the most physically reaso
able wormholes are the ‘‘thin-shell’’ type@28#. However,
these models are constructed by ‘‘cutting and pasting’’ tw
copies of~for example! Minkowski or Schwarzschild space
time, with a resultingd-function layer of negative energy a
the throat.~Note that in these wormholes, by constructio
the throat is not located atb5r 0 .) Physically one does not
really expect infinitely thin layers of energy density and cu
vature in nature@29#. Such approximations are meant to b
idealizations of situations in which the thickness of the
layers are small compared to other relevant length sca
Our results can be construed as placing upper bounds on
actual allowed thicknesses of such layers of negative ene
density. We conclude that, unless one is willing to acce
fantastically large discrepancies in the length scales wh
characterize wormhole geometries, it seems unlikely t
quantum field theory allows macroscopic static traversa
wormholes@30#.

ACKNOWLEDGMENTS

The authors would like to thank Arvind Borde, Eann
Flanagan, John Friedman, Valery Frolov, Bernard Kay, Mi
Morris, Niall O’Murchadha, Adrian Ottewill, Matt Visser,
and Bob Wald for helpful discussions. T.A.R. would like t
thank the members of the Tufts Institute of Cosmology f
their kind hospitality and encouragement while this wo
was being done. This research was supported in part by N
Grant No. PHY-9208805~Tufts!, by the U.S. Department of
Energy~DOE! under cooperative agreement No. DF-FC0
94ER40818~MIT !, and by a CCSU/AAUP Faculty Researc
Grant.
-
@1# M. Morris and K. Thorne, Am. J. Phys.56, 395 ~1988!.
@2# M. Morris, K. Thorne, and U. Yurtsever, Phys. Rev. Lett.61,

1446 ~1988!.
@3# M. Visser,Lorentzian Wormholes—from Einstein to Hawkin

~American Institute of Physics, New York, 1995!.
@4# F.J. Tipler, Phys. Rev. D17, 2521~1978!.
@5# R. Wald and U. Yurtsever, Phys. Rev. D44, 403 ~1991!.
@6# M. Visser, Phys. Lett. B349, 443 ~1995!.
@7# U. Yurtsever, Phys. Rev. D52, R564~1995!.
@8# E. Flanagan and R. Wald, ‘‘Does backreaction enforce t
g

he

average null energy condition in semiclassical gravity?,’’ Re
port No. gr-qc/9602052~unpublished!.

@9# L.H. Ford, Proc. R. Soc. LondonA364, 227 ~1978!.
@10# L.H. Ford, Phys. Rev. D43, 3972~1991!.
@11# L.H. Ford and T.A. Roman, Phys. Rev. D41, 3662~1990!.
@12# L.H. Ford and T.A. Roman, Phys. Rev. D46, 1328~1992!.
@13# L.H. Ford and T.A. Roman, Phys. Rev. D51, 4277~1995!.
@14# C.-I Kuo, Ph.D. thesis, Tufts University, 1994.
@15# C.-I Kuo and L.H. Ford, Phys. Rev. D47, 4510~1993!.
@16# A. Papapetrou, Proc. R. Soc. LondonA209, 248 ~1951!.



.

-

n
in
s

rp
.

53 5507QUANTUM FIELD THEORY CONSTRAINS TRAVERSABLE . . .
@17# L. Parker and S.A. Fulling, Phys. Rev. D9, 341 ~1974!.
@18# In the renormalization of̂f2& for a scalar fieldf on a curved

spacetime, there is an analogous term of the for
R ln(Rm22), which is discussed in detail by L.H. Ford and
D.J. Toms, Phys. Rev. D25, 1510~1982!.

@19# G.T. Horowitz, Phys. Rev. D21, 1455~1980!.
@20# J.Z. Simon, Phys. Rev. D43, 3308~1991!.
@21# Note that the logarithmic dependence upon the curvatu

causes the effective values ofc1 andc2 to be running coupling
constants: for example, letc1 eff5c1ln(Rm22). Thenuc1 effu in-
creases slowly asR increases. Between the Planck scale an
some larger length scale,uc1 effu increases by a factor of
ln( l 2/ l P

2 ), if we takem5 l P
21 . Thus, in our example of a worm-

hole solution withl'1 m, if we wish to haveuc1 effu'1070,
then at the Planck scaleuc1u'1068, which is a marginal
change.

@22# In T. Roman, Phys. Rev. D47, 1370~1995!, it was incorrectly
stated on p. 1374 that there is a sign error in one of the ter
of Eq. ~12! of Ref. @1#. We thank Matt Visser for this correc-
tion.
m

re

d

ms

@23# See Ref.@1#, Eq. ~59!, or Ref. @3#, Sec. 13.4.2.
@24# See Ref.@3#, Sec. 13.4.3. Note that the right-hand side of Eq

~13.88! of that reference is missing a factor of (22r 0 /r ) in the
numerator.

@25# See the argument in Ref.@3#, pp. 104–105 and 109.
@26# This possibility was suggested to us by Valery Frolov.
@27# Wormhole solutions involving large numbers of fields are dis

cussed by M. Morris and L. Parker~unpublished!.
@28# M. Visser, Nucl. Phys.B328, 203 ~1989!; see also Chaps. 14

and 15 of Ref.@3#.
@29# If negative energy density cosmic strings were to exist, the

they might provide a means of localizing negative energy
very small regions. This might allow one to create Visser’
‘‘cubical wormholes’’ @M. Visser, Phys. Rev. D39, 3182
~1989!; see also Sec. 15.1.2 of Ref.@3##.

@30# A similar analysis by M. Pfenning~unpublished!, using our QI
bound, also appears to place severe constraints on ‘‘wa
drive,’’ at least in the form of the scenario discussed by M
Alcubierre @Class. Quantum Grav.11, L73 ~1994!#.


