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Quantum field theory constrains traversable wormhole geometries
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Recently a bound on negative energy densities in four-dimensional Minkowski spacetime was derived for a
minimally coupled, quantized, massless, scalar field in an arbitrary quantum state. The bound has the form of
an uncertainty-principle-type constraint on the magnitude and duration of the negative energy density seen by
a timelike geodesic observer. When spacetime is curved and/or has boundaries, we argue that the bound should
hold in regions small compared to the minimum local characteristic radius of curvature or the distance to any
boundaries, since spacetime can be considered approximately Minkowski on these scales. We apply the bound
to the stress-energy of static traversable wormhole spacetimes. Our analysis implies that either the wormhole
must be only a little larger than Planck size or that there is a large discrepancy in the length scales which
characterize the wormhole. In the latter case, the negative energy must typically be concentrated in a thin band
many orders of magnitude smaller than the throat size. These results would seem to make the existence of
macroscopic traversable wormholes very improbable.

PACS numbegp): 04.20.Gz, 04.62:v

I. INTRODUCTION A second type of constraint upon violations of the weak
energy condition are “quantum inequalitiegQI’'s), which
In recent years there has been considerable interest in thignit the magnitude and spatial or temporal extent of nega-
topic of traversable wormholes, solutions of Einstein’s equative energy[9—-13]. These constraints are intermediate be-
tions which act as tunnels from one region of spacetime tqyeen pointwise conditions and the averaged energy condi-
another, through which an observer might freely §dss3l.  {ions in that they give information about the distribution of

Traversable wormhole spacetimes have the property thafe,.rive energy in a finite neighborhood. For the most part,
they must involve “exotic matter,” that is, a stress tensor. .

which violates the weak energy condition. Thus the energ)w . . .
density must be negative in the frame of reference of at leadf™e- The main purpose of this paper will be to argue that

some observers. Although classical forms of matter obey theestricted versions of the flat spacetime inequalities can be
weak energy condition, it is well known that quantum fieldsemployed in curved spacetime, and that these inequalities
can generate locally negative energy densities, which may bglace severe constraints upon wormhole geometries. We as-
arbitrarily large at a given point. A key issue in the study of sume that the stress energy of the wormhole spacetime is a
wormholes is the nature and magnitude of the violations ofenormalized expectation value of the energy-momentum

the weak energy condition which are allowed by quantumensor operator in some quantum state, and ignore fluctua-
field theory. One possible constraint upon such violations igjons in this expectation valug4,15.

given by averaged energy conditiop#l. In particular, the In this paper, we restrict our attention to static, spherically

a"erage‘;’ null - energy cqnd|t|or(ANEC) states  that symmetric wormholes. We will also assume that the space-
JT,.k*k’d\N=0, where the integral is taken along a com- . . o .
K time contains no closed timelike curves. This latter assump-

plete null geodesic with tangent vectiot and affine param- i b but ke it in order t
eter\. This condition must be violated in wormhole space- lon may not be hecessary, but we make it in order to ensure

times [2]. Although the ANEC can be proved to hold in thanuantum field theory on the vyormhole spacgtlme is wgll
Minkowski spacetime, it is generally violated in curved d€finéd. In Sec. I, a flat spacetime quantum inequality is
spacetimé5,6]. The extent to which it can be violated is not réviewed, and an argument is presented for the application of
yet well understood, but limits on the extent of ANEC vio- this inequality in small regions of a curved spacetime. In
lation will place constraints upon allowable wormhole geom-Sec. lll, we briefly review some of the essential features of
etries[7,8]. traversablgMorris-Thorng wormholes. We next consider a
number of particular wormhole models in Sec. IV, and argue
that the quantum inequality places strong restrictions upon

*Electronic address: lford@pear!.tufts.edu the dimensions of these wormholes. In Sec. V we formulate
"Permanent address. a more general bound upon the relative dimensions of an
*Electronic address: roman@ccsu.ctstateu.edu arbitrary Morris-Thorne wormhole. Finally, in Sec. VI we

SPermanent address. summarize and interpret our results. Our units are taken to be
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those in whichh=G=c=1, and our sign conventions are  In quantum field theory, we will be more interested in the
those of Ref[1]. extent to which solutions of wave equations can be approxi-
mated by the flat space forms. Consider, for example, the
Il. QUANTUM INEQUALITIES generalized Klein-Gordon equation

IN FLAT AND CURVED SPACETIME
O¢+m?ep+ERp=0, 2
In Ref. [13], an inequality was proved which limits the

magnitude and duration of the negative energy density se@fhere¢ is an arbitrary constant arilis the scalar curvature.

by an inertial observer in Minkowski spacetinfeithout  The solutions of this equation will generally not be similar to
boundaries Let (T,,) be the renormalized expectation the flat space solutions unless the curvature term is small
value of the stress tensor for a free, massless, minimall¢ompared to the other terms in the equation. However, this is
coupled scalar field in an arbitrary quantum state.d’ebe  stjll not sufficient to guarantee that a flat space mode is a
the observer’s four-velocity, so thaT , ,u“u”) is the expec-  solution of Eq.(2). It is also necessary to require that the
tation value of the local energy density in this observer'smodes have a wavelength that is small compared to the local

frame of reference. The inequality states that radii of curvature of the spacetime. In this limit, it is possible
to obtain WKB-type solutions to Eq2), which are approxi-
EJ“ (TMVU“UV>dT>_ 3 1 mately plane wave modes. For an illustration of this, see the
m)_w 15 32w%r @ work of Parker and Fulling17] on adiabatic regularization.

These authors give generalized WKB solutions of wave

for all 7y, wherer is the observer’s proper time. The Lorent- €quations in an expanding spatially flat Robertson-Walker
zian function which appears in the integrand is a conveniengéniverse. In the limit that the wavelength of a mode is short
choice for a sampling function, which samples the energygompared to the expansion time scaheich is the space-
density in an interval of characteristic duratiep centered time radius of curvature in this caséhe leading term, which
around an arbitrary point on the observer's world line. Theis of the plane wave form, becomes a good approximation.
proper time coordinate has been chosen so that this point is OUr primary concern is when we may expect the inequal-
at 7=0. The physical content of Eq1) is that the more ity (1), which was derived from Minkowski space quantum
negative the energy density is in an interval, the shorter mudteld theory, to hold in a curved spacetime and/or one with
be the duration of the interval. Consider, for example, aPoundaries. For a giver,, the dominant contribution to the
pocket of negative energy which our observer traverses in B9ht-hand side of this inequality arises from modes for
proper timeAr. A natural choice of the sampling time is Which A~7,. In particular, modes for which> 7, yield a
To=A7, in which case we infer that the average value of thesmall contribution. To see this more explicitly, note that the
negative energy in this pocket is bounded below bytight-hand side of Eq.(1) arises from the integral
—3[3272(A 7). Because Eql) holds for all7y, we must  (47%) " '[jdww’e™ 2“7, [See Eq(63) of Ref.[13]] Thus if
obtain a true statement with other choices. If we letthe long wavelength modesa( 7, *) were to be omitted or
To<A7, then we obtain a weaker bound. If we lgt>Ar, to be distorted by the presence of spacetime curvature or
then we appear to obtain a stronger bound. However, nowoundaries, the result would not change significantly. This
the range over which we are sampling extends beyond theuggests that we can apply the inequality in a curved space-
boundaries of the pocket and may include positive energjime as long as is restricted to be small compared to the
contributions. Hence it is to be expected that the lower boundbcal proper radii of curvature and the proper distance to any
on the average energy density should be less negative.  boundaries in the spacetime. This is the criterion that the

The basic premise of this paper is that one may obtain &levant modes be approximated by plane wave modes.
constraint upon the renormalized stress tensor in a curved The specific example of the Casimir effect may be useful
spacetime using Ed1), provided thatr, is taken to be suf- as an illustration. Here one has a constant negative energy
ficiently small. The main purpose of this section is to exploredensity, which would not be possible if EL) holds for all
the rationale for this premise. The basic idea is that a curved,. However, if we impose some restrictions on the allow-
spacetime appears flat if restricted to a sufficiently small reable values ofry, then the inequalityloesin fact still apply.
gion. However, this idea is sufficiently subtle to require anLet us consider a massless scalar field with periodicity of
extended discussion. lengthL in the z direction. Let us also consider an observer

First, let us recall the situation in classical general relativ-moving with velocityv in the + z direction. In the rest frame
ity. The principle of equivalence has its mathematical expresef this observer, the expectation value of the energy density
sion in the fact that the geodesic equations involve the spacés
time metric and the connection coefficients, but not the
curvature tensor. Thus, if we go to a local inertial frame, the T
equations of motion for a point test particle take the flat (T uiut)=— W(1+302) ¥, 3
space form. However, it is possible for equations of motion
to contain curvature terms explicitly._An example_ is the equas, here y=(1-v2) Y2, Because this quantity is a constant,
tion of motion for a classical spinning test parti¢t&s]. In E

. < ! ... Eq. (1) becomes
this case, the principle of equivalence does not hold in its
simplest form, and one can treat the system as being in lo- 2 3
cally flat spacetime only to the extent that the curvature - 2(1+302)y?=
terms are negligible. 45L
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or, equivalently, S
(D= _ - _
3l (5|14 N 5gw[\/ gR*]=2V,V,R-29,,V, VR
n<5—|5] [(1+3v%)y* ] (5)
i + ! R2-2RR (12)
Thus for the special case of a static observer0Q), we 29 my
must have
and
3L 1/4
27\ 6 (2)— B _ o
HMVZ?QW[V_QRQ’BR B]—zVaVVR#'FVpVPR#V

There are two relevant length scales in the observer's
frame of reference. The first is tHeorentz-contractedpe- 1 1 p
riodicity lengthl,=L/y, and the second is the proper time = 59wV, V' RT 50, R R —2RUR . (12)
required to traverse this distande=L/(v y). Herel, is the

smaller of the two, and plays a role analogous to the miniThere can be a term of the formH® +c,H?) in (T,
mum radius of curvature in a curved spacetime. Thus W ore generally, there might be #Va termwof thg form
should let (ciHE)+c,HE)IN(Ru™2), where . is an arbitrary renor-
fL malization mass scale8]. A shift in the value ofu adds a
To=f l;=—. (7). term proportional ta;H{})+c,H?) to(T,,). Visser[6] has
Y recently discussed how terms of this form are likely to lead
Equation(5) will be satisfied if to violations of the ANEC in curved spacetime. The problem
is that quantum field theory by itself is not able to predict the
5\ 14 - values ofc, andc, or, equivalently, ofu. Thus very large
5 [(1+3v%)(1-0v?)] (8  values of these parameters are refpriori, ruled out. The
6 p
status of these terms in the semiclassical Einstein equations
The functiong(v) has its minimum value at=1/\/3, at has been the subject of much discussion in the literature.

fgg(v)fz

which point They appear to give rise to unstable beha{i®, analogous
to the runaway solutions of the Lorentz-Dirac equation of
1 3 [5\" classical electron theory. More recently Sim@@] has sug-
g ﬁ =5-\g| ~042 (9 gested that it may be possible to reformulate the semiclassi-

cal theory to avoid unstable solutions.
If one ignores the possibility of runaway solutions, then if
ethese terms are to produce a significant correction to the

Note that the constraint obtained by considering arbittary geometry of a spacetime whose curvature is far below Planck
dimensions, then at least one of the dimensionless constants

differs only slightly from that for static observers, E®). ) : .

The Casimir effect example contains some of the essentiit O C2 Must be e(xlt)remely(lz?rge. The Einstein tensor is of
features that we encounter in a renormalized stress tensor @jder! = and theH, 7 andH 7 tensors are of orddr *, in
a curved background spacetime. However, on a CurVeﬁ’_lanck units. The latter are negligible unI_ess their coeffi-
spacetime(T,,,) is a sum of a state-dependent part and eCl€nts are at least of orde_r/(p)z, wherelp is the Planck
state-independent geometrical part. The latter consists dgngth. Thus if the state-independent geometrical part of
terms which are either quadratic in the Riemann tensor of T .») iS to be the source of the exotic matter which gener-
else linear in second derivatives of the Riemann tensor. On@tes the wormhole geometry, either the wormhole must be of
source of curvature dependence(T,,) is the well-known Planck dimensions, or else one must accept large dimension-

trace anomaly. For the case of the conforméa(L/6) scalar less coefficients. For example, unless one of these constants
field, it is is at least of order 18, the quadratic curvature terms will be

negligible for the discussion of a wormhole whose throat
1 radius is of the order of 1 m. A value af; or ¢, of 10
(T)= W(RaﬁpaRaﬁp”—RaﬁRaﬁ—’_VprR)‘ could arise from a single quantum field or from’46ields,
(100  €ach giving a contribution of order unif21]. Both possi-
bilities seem equally unnatural.
Other fields have trace anomalies with similar coefficients, An alternative is for the state-dependent par{®f,,) to
i.e., with magnitudes of the order of 16, Thus these terms be the source of the exotic matter. A nonexotic stress tensor
will give a very small contribution to a quantum inequality may be made arbitrarily large by increasing the particle con-
of the form of Eq.(1) when ry<<l, wherel is the character- tent of the quantum state. One might naively expect that the
istic radius of curvature. same could be done for a stress tensor representing exotic
A related source of curvature dependence in the renormatatter. However, the essential content of the quantum in-
ized stress tensor is the possible presence of finite terms efquality (1) is that arbitrarily extended distributions of arbi-
the form of the quadratic counter-terms required to removerarily negative energy are not possible in Minkowski space-
the logarithmic divergences in a curved spacetime. ThesBme. In this section we have argued that the bound should
terms are the tensors also be applicable in curved spacetimes for sampling times

Thus if we restrict7y<<0.44,, then the Minkowski space
guantum inequality also holds in the compactified spacetim
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small compared to either the minimum local radius of curva- The four-velocity of a static observer s

ture or the proper distance to any boundary. ut=dx*/dr=(u',0,0,0=(e”*",0,0,0). The observers
Let us recall that Eq(1) was proved for the specific case four-acceleration is

of a free massless, minimally coupled scalar field. It should

be straightforward to generalize the arguments of R to Du*

the case of other massless fields, such as the electromagnetic at=—g - =uhut=(uf I, uf)u”. (16)

field. Although this has not yet been done, it is unlikely that

the result will be significantly different. Generalizations to .

massive fields may glso be p)(;ssible, although the results mA:)Pr the metri13) we have

be more complicated due to the presence of two length .

scales:ty and the particle’s Compton wavelength. However, a=0,

it seems unlikely that adding a mass will make it easier to

have large negative energy densities, as one now has to over- .

come the positive rest mass energy. Thus, one suspects that a'=Iy

massive fields will satisfy inequalities which are more re-

strictive than Eq(1). The effect of including interactions is

the most difficult to assess. If an interacting theory were to

allow regions of negative energy much more extensive tha

allowed in free theories, there would seem to be a danger o

an instability where the system spontaneously makes a tran-

2

—| =d'(1-b/r), 17
dr

whered’=d®/dr. From the geodesic equation, a radially
movmg test particle which starts from rest initially has the
quation of motion

2
sition to a configuration with large negative energy density. d*r T dt)? o
: _ > 'y a'. (18
However, this must be regarded as an open question. dr dr
. MORRIS-THORNE WORMHOLES Hencea' is the radial component of proper acceleration that

an observer must maintain in order to remain at rest at con-
The spacetime geometry for a Morris-Thor(dT) tra-  Stantr,6,¢. Note for future reference that from E(L7), a

versable wormhole is described by the meffi¢ static observer at the throat of any wormhole is a geodesic
observer For ®'(r)#0 wormholes, static observers are not
dr2 geodesidexcept at the throgtwhereas fod’(r)=0 worm-
ds?=—e?*(Ndt?+ 1=b(r)ir +r?(d6?+sinfod¢?), holes they are. A wormhole is “attractive” & >0 (observ-

(13 ~ ers must maintain an outward-directed radial acceleration to
keep from being pulled into the wormhgland “repulsive”

where the two adjustable functiotgr) and ®(r) are the if a"<0 (observers must maintain an inward-directed radial
“shape function” and the “redshift function,” respectively. acceleration to avoid being pushed away from the worm-
The shape functiob(r) determines the shape of the worm- hole). From Eq.(17), this distinction depends on the sign of
hole as viewed, for example, in an embedding diagram. Thé'. Fora"=0, the wormhole is neither attractive nor repul-
metric (13) is spherically symmetric and static, with the Sive.
proper circumference of a circle of fixadbeing given by Substitution of Eq(13) into the Einstein equations gives
27r. The coordinate is nonmonotonic in that it decreases the stress-energy tensor required to generate the wormhole
from +o to a minimum value o, representing the location geometry. It is often convenient to work in the static ortho-
of the throat of the wormhole, whetgr,)=r,, and then it normal frame given by the basis
increases fronr, to +o0. Although there is a coordinate
singularity at the throat, where the metric coefficigpt be- ei=e
comes divergent, the radial proper distance

()= fr i b(r [1-b(r)/r]? (14)

,(I)et,

e;=(1—b/r)Y%,,

e;=r"le,,

is required to be finite everywhere. Note that because o
0<1-b(r)/r<1, the proper distance is greater than or e,=(rsind) "e,. (19)
equal to the coordinate distandé(r)|=r—r,. The metric
(13) may be written in terms of the proper radial distance asThis basis represents the proper reference frame of an ob-
server who is at rest relative to the wormhole. In this frame
ds?=—e?®dt2+dI%+r%(1)(d6?+ sirfedgp?). (15  the stress tensor components are given by

The proper distance decreases frbm+ to zero at the b’

throat, and then from zero te = on the “other side” of the Ti=p=g 2 (20
wormhole. For the wormhole to be traversable it must have

no horizons, which implies thag,= —e?®*(") must never be ,

allowed to vanish, and henck(r) must be everywhere fi- Te=p.=— L[R_ Q( 1— E” 21
nite. PP T g T Ty ’ 21)
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1/1/b b’ o' b b’ ber of derivatives which appear in the curvature tensor, and
Tor=Tos=P=g-|3|73 12/ * T( o 7) b. It will prove convenient to absorjb| into another length
scale defined by
b
+ 1—F)[c1>"+(c1>')2] : (22) r
Ry= et = ot (35
2ol o]

The quantitiesp, p,, and P are the mass-energy density,
radial pressure, and transverse pressure, respectively, as mdde smallest of the above length scales is
sured by a static observgR?2]. At the throat of the worm-

hole,r=r,, these reduce to rm=min(ro,r1,Rz,r3). (36)
b As an aside, note that if,,=R,, then we can say that either
Po=g 2 (23 r, is very small or]®| is very large(which implies that the
0 redshift or blueshife™!®! is very large, or both. The curva-
1 ture components may be written in terms of these length
Po=——=—>, (24) scales as
R“—lb+1+1+b+1 1
P0=1_b0 <b’+i 25 trr r/| "Rars R3| 71| 2r;R,  2rRy)’
16mry| 9 1)’ (37
wherebg=b'(rq) and®y=d'(ro). b
The curvature tensor components are given by Risto=Rigia=* ( 1- F) R, (38
Rt (1 b)[fl)”+(<l>’)2]+ ¢ (b—=b'r), (26 b 1 1
tr=| L7 7 5.2(b=Db'r), e
r 2r Riio= RF¢?¢—F( TP ) (39)
Rizia=Risig ¢ (1 b) (27 b
tote— Ntptp— . | LT )
r r ng(f)g(i,:r_s (40)
1 . . . . .
Rigio= R;;,;;,,zz—(b’r— b), (28)  The choice of plus or minus signs in the various terms of the
r above equations will depend on the signs of the derivatives
b of b and®, which will in turn depend on the specific worm-

(29) hole geometry.
Let the magnitude of the maximum curvature component

) be Ryhax. Since the largest value of (db/r) and ofb/r is
All other components of the curvature tensor vanish, excepf  an examination of Egs.(37)—(40) shows that

for those related to the above by symmetry. At the throatg  —1/(r2). Therefore the smallest proper radius of curva-

these components reduce to ture (which is also the coordinate radius of curvature in an
, orthonormal framgis

Risos=r3-

(I)O ,
Rittilr, = 2_r0(1_b°)’ (30 1
M=~ \/—zrm. 41
R
Rigialr,=Rigiali,=0, (3D e
Our length scales at the throat become
1
Reiiilry=Rtatalr, =~ 5r2(1bo), (32 B o rz o)
0 r 0=I’0, r1= b_(,) y zzm, I’3= (}Tg . (42)
1
R0¢0¢|ro: %' (33) At the throat of the wormhole Eq$37)—(40) simplify to
Let us now define the following set of length scales: Resil, =+ 1 1 43
it —2r R, ~ 2r;Ry’
oo nelgl ol
ro=0, M=, 2|57, 35|57 o o
0 Ylb 2o o Rt€t0|r0:Rt¢t¢|r0:Oa (44)
The quantities 1, r,, andr; are a measure of the coordinate 1
length scales over whicth, ®, and &', respectively, Rzl =Rigiale = T5—— -2, (45)
change. The number of length scales corresponds to the num- 0 0 2rofy  2rg
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Rigidlry= 7 (46)

O N

(At the throat, the length scalg does not explicitly appear
in the curvature components.Again, we see that
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much larger thanlp,. For example, for f~0.01,
ro=10*1,=10"3' m. Note from Eqs(48) and (49) that if

we choose our spacetime region to be such ltkaty, then

the curvature and stress-tensor components do not change
very much.

Rmax<1/(r2) andr =ry,.
We wish to work in a small spacetime volume around the
throat of the wormhole such that all dimensions of this vol- .o o0 0ien o andb=const, and sb’ =0, and

ume are much smaller than, the smallest proper radius of tpereforep=0. This is a special case of “zero density”

curvature anywherg in the region. _Thus, in the absence oWormholes[23]. Here g;; is the same as for Minkowski
boundaries, spacetime can be considered to be approximatel

Minkowskian in this reaion. and we should be able to appl S}Sacetime, while the spatial sections are the same as those of
our QI bound glon, PPYschwarzschild. The energy density and radial pressure seen

by a static observer are

B. ®=0, b=ry=const wormholes

IV. SPECIFIC EXAMPLES
(52)

To develop physical intuition for the general case, as well
as to get a feeling for the magnitudes of the numbers in-
volved, in this section we apply our bound to a series ofSince the energy density is zero in the static frame, to obtain

specific examples.

A. ®=0, b=rj/r wormholes

This is a particularly simple wormhole which is discussed
in box 2 and the bottom left-hand column of p. 400 of Ref.

[1]. In terms of the proper radial distanbg), the metric is
(47)

wherel=+(r?—r3). (Recall thatl=0 at the throaj. The
stress-tensor components are given by

ds?=—dt?+dI?+ (r3+12)(d6?+sirfad¢?),

2 2
o _ ro o
L T e S I LA
The curvature components are
0
R@;s@<;=—Riaf@=—Ri;sif—(rgﬂz)z- (49)

Note that all the curvature components are equal in magnil—_|

tude, and have their maximum magnituder@)( at the

throat. The same holds true for the stress-tensor componen

At the throat, our length scales arg=ro=r,;, and so
I’C= ro .

Let us apply our QI bound to a static observer atr.
(Recall that such an observer is geodegsgince the energy
density seen by this static observer is constant, we have

7o [* (T uku”)dr
—_ -~ > _ ___
’ITf T+ 7'(2) Po= Tg' (50

—o0

wherec=3/(32r?), 7 is the observer’s proper time, ang

a bound we boost to the frame of a radially moving geodesic
observer. The energy density in the boosted frame is, by a
Lorentz transformation,

Too=p'=7(p+v°py), (53)
wherev is the velocity of the boosted observer relative to the
static frame, andy=(1—v?) Y2 In our case, we have

2,2
(54)

Note that in this casany nonzerov givesp’<0, in contrast
to the discussion surrounding E¢.7) of Ref.[1]. The non-
zero curvature components in the static frame are

r r

Ritio=Rigis= — 53 Rugs=13- 59

ere the only relevant length scalerig, since® =0 and
b=rq, everywhere. For a general wormhole, when we boost

S the radially moving frame, we have

Rovor =Rt

’)/2

Reioz0=Rao70= 512

b
vz(b’—r)+2(r—b)<b’}

2 b
P = TP Y ’ 2 ’
RZ’l’Z’l’_R3/l'3'l/__2r2|:(b _F +2v (r—b)(I) },

is the sampling time. Choose our sampling time to be

o= frn="fro<<r., with f<1. Substitution into Eq.50)
yields

lp

rOS W’ (51)

e 2 YO[B ,
R§'0'2'1':R§/0!3'1/:? b _F +2(r_b)q) ’

R332 =Rog0s - (56)

wherel; is the Planck length. Here it is fairly obvious that In the present case the nonzero components in the primed

any reasonable choice 6fgives a value of ; which is not

frame are
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y2vlrg For r=ry+ay, the spacetime is Minkowskian, and
Roo20=Rao30=~ 3 p=p,=P=0. The quantitya, represents the thickness in

(on one side of the wormholef the negative energy region.
Evaluation of the curvature components using E61)

2
r . )
Ré,i,é,i,:Ré,i,é,l,:—’y—gg, shows that they have maximum magnitude at the throat
2r where
R =Rir =~ o Re i olry=Re g7 3l S (65)
27021 = R3ro3 23 Fiilrg = Regialo =~ 30 22"
Rs/yys = Riji= 5 !
2923 =Rigip=13- (57) Rg;l,;g;/,|r0=r—2. (66)
0
In the vicinity of the throat, the magnitude of the maxi- st the throat. our length scales become
mum curvature component in the boosted frame is
rax= Y2 (r3), and therefore the smallest local proper radius _ ag
of curvature in that frame is=rq/vy. Apply our QI bound o=l "1=% (67)

to the boosted observer and takg=fry/y<<r;, for f<1.
Since the energy density does not change much over thigndr ,=min(ry,r;). Again we see thaR = 1/(rr2n), and
time scale, we may write so the smallest local radius of curvaturer j&r .

Application of our QI bound to a static observer at the

EJW (Twuﬂuv>d¢% __C (59) throat yields
) 7+ 70 Po= 7'3 ’
_ 1 _ c
which leads to PO~ Arare T_é' (68)

p= Y (59 Although this Wormhole_was designed for maximum con-
0= 2§, 'P- finement of the negative energy near the throat, i.e.,
ay<<rg, there is nothing in principle to keep us from choos-
In this case, any nonzerogives us a bound, but we can find ing as=rq. In what follows, we shall consider both situa-
the optimum bound by minimizing/v, a procedure which tions. First assumey<ro,. We then choose our sampling
yieldsv =1/y=1/\2 and time to bery=fay, wheref<1. Equation(68) then yields

e

poo\ 13
01 (69)
f gtal, P

Equation(60) is essentially the same as H§1), which was A reasonable choice df is f~0.01. For a small “human-
the bound we obtained in the=0, b=r3/r case. sized” wormhole with ro~1 m, our bound gives
ag=10"1p~10"2'm ~10"° F, or approximately 1/19of
the proton radius. The situation does not improve much for
larger wormholes. Forr,~1 light year, ap<2x10Y1p
Classically, one can design a wormhole so that the exotie.0.2 F. withr,~10° light years,a,<10?* |,~10" 1% m.
matter is confined to an arbitrarily small region around thegqg even with a throat radius the size of a galaxy, the negative
throat. MT call this an “absurdly benign” wormhole. It is energy must be distributed in a band no thicker than about

C. “Absurdly benign” wormholes

given by the choice» =0 everywhere and ten proton radii. Now suppose thaty<a,/2, so that
b(r)=ro[1—(r—ro)lag]? for ry=r=ry+ap, ;,E”VZ;O' In that case, we choose,=fr,, and our bound
=0 for r=ry+a,. (61 ag |1
Forro<r<ro+ayp, fo= 8f4p e (70
_ o i.e.,ap andry are simply interchanged. Therefore, the same
P=" 4m2ag(a0+ro—r)<0, 62 humerical examples just discussed now applyrgo for
given choices of. For example, whemy~1 light year,
o now the throat size is less than about 0.2 F, so that even for
pr=- —3z(ao+r0—r)2, (63)  very largeag, ro must be extremely small. Whesyy~r,
8w ag the bound orr is essentially Eq(51). One might worry that
sinceay is the coordinate thickness mof the negative en-
p—_ }( +p.) 64) ergy density, it might not be a good measure of the proper
2P Pr)- radial thickness of the negative energy density band seen by
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the static observer. In fact, a detailed calculation shows that Since the energy density is zero in the static frame, we
ag Is the proper thickness in this case, to within factors ofmust apply our bound in the frame of a boosted observer
order unity. passing through the throat. The curvature tensor components

in this frame are
D. “Proximal Schwarzschild” wormholes
Another special case of a zero density wormhole is the

“proximal  Schwarzschild” wormhole [24]. Here
b=ry=const, andy, is only slightly different from that of

Riovolr,=Ririiley= 72

Schwarzschild. The metric in this case is o o y?v?
Roo20lr,=Rao30l,= = 52
52 lo € 2 2 2r0
=—|1-—+ 5 |dP+ ——
d (1 roor? dt (1—rolr) 5
R T 4
+r2(d6?+ sin?od ). (71) Rev2lr, =Ravaili= =32,

We recover the Schwarzschild solution fex=0; however, )

any e>0 gives us a wormhole. The energy density and radial Rsryyyle =Rayylr = — Yv

pressure seen by a static observer are 210221 = 03I 9r2e
p=0, (72)

(2—ro/r) Ro323 = Ridoalr,=
(73)

|

(79

O N

€
P T g (L=roir+eltd)

r

_ _ ~ Which of these components has the maximum magnitude
We will assume that/e<rg; hence, the radial pressure is depends on whethef2e is greater than or less thag/y.
highly peaked near the throat. Here the proper distance from Fjrst  consider the case \2e<ry,/y. Then
r=rq to r=ry+ e, corresponding to the coordinate thick- R/ ..=Rmax=1/(4€), and r.=r.~2\e. Take ro=fr,

nessye, Is ~2f.\/e, with f<<1. The energy density in the boosted
e dr 4z \Jrodr frame should be approximately constant over this sampling
AI:] ot e o [N, Jrove. time. Therefore, our QI bound gives
ro  Vl-rolt Jryg  Nr—rg 0
(74) y?v? c
. . . . . PO= a2 I (80)
A disadvantage of this wormhole is that it entails extremely 87y To

large redshifts. The metric coefficiegy; is very close to that
of Schwarzschild, and therefore this wormhole is very closeand hence
to having a horizon at its throat.

In the regionr,<r=r,+ e, the curvature components Je 1-02 \ Y415\ 12
have their maximum magnitudes at the thro@xcept r—5<m) (r_) (81)
Rizs=Rizis, which vanish there At r=ry, 0 0
1 By makingv arbitrarily close to 1, we can make the right-
Riritlry™ 72 (79 hand side of the bound arbitrarily small.

It may be more appropriate to express the width of the
band of exotic matter in the static frame in terms of proper

1
R;;,;;,|r0:R;(;S;;,|rO=—?, (76)  length, rather than coordinate length. Using Ed4), our
0 bound Eqg.(81) can be rewritten as
1 2\ 18 1/4
= T —— 7 Al 1-v Ip
ot g v =) [ (82

Our length scales at the throat become ) ) _ )
In this form, the bound is quite a bit weaker, due to the

_ 2e € smaller powers on the right-hand side of the inequality. We
ro=ro,» "=, RZ*E' uwa. (78 can still in principle make the right-hand side arbitrarily
small, albeit only by choosing exceedinglyclose to 1.
Note thatr,=c is due to the fact thah’ =0. Although we  However, our bound must hold fany boosted observer.
can write the curvature components in terms of these lengtionsequently, for the cas@e<ry/y, proximal Schwarzs-
scales, in this case the smallest radius of curvature in thehild wormholes with any finite value afl would seem to
static frame isr .~ 1/\Rma~2 /€, which is larger than our be physically excluded.
smallest length scale,,=rz. Thus we will get a stronger Next consider the case wherg/2e>ry/y. Then

!

bound if we frame our argument in terms f~2/e. I o= v21(2r3), and the smallest local radius of curvature in
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the boosted frame ig.~\2ro/y. Take ro=fr., with
f<1. Application of our bound in this case yields

o= szc(z) 83)

[

We get the optimum bound by minimizing/v, i.e.,

lp
o= W’ (84)

which is the same as the bound we obtained in the~1 GeV,

®=0, b=r3/r case.

E. Morris-Thorne-Yurtsever wormhole
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tremely close to being a black hole, i.e.,
|Gutlry+ 5= (1—M/r)?~5%/M?. Infalling photons with fre-

quency at infinity o, will have local frequency
Wocal™ @(M/8), as measured by a static observer on the
plate. For5~10 %% cm androp~M~1 AU ~10" cm, we
have e~ 10%w., . A typical infalling 3 K photon in the
cosmic microwave background radiation, upon arriving at
one of the plates, would get blueshifted to a temperature
Tioca~ 107 K. A 0.1 MeV y-ray photon would get blue-
shifted t0 E,y.,~10' GeV ~Ep, whereEp is the Planck
energy. Stray cosmic-ray particles, with typical energies of
falling into the wormhole will have
Etoca~E»(M/8)~102 GeV ~10°Ep. A static observer
just outside the plates would likely be incinerated by infall-
ing radiation. Similarly, the plates would have to be con-

Morris, Thorne, and YurtsevéMTY ) [2] have discussed structed out of material capable of withstanding these large
a wormhole consi’sting of an,=Q=M Reissner-Nordstra energies. In addition, the large local impacts of infalling ra-
(RN) metric with a pair of spherical charged Casimir platesdiation and particles on the plates will tend to push them
positioned on each side of the throat within a very smalll09€ther, thereby upsetting the force balance, and hence will
proper distances of one another. That is, the spacetime isProPably destabilize the wormhole. Oneould imagine
extreme RN from each plate out =, and approximately e!aborate radiation shielding cpnstructed around a large re-
flat between the plates. The Casimir energy density betwee%'ohn far awr?yl frqm, but t()elnclos'lr;gl,llthe wdo'rmholehHoyv?VEr,
the plates is negative, while the stress energy of the externdiN€ wormhole is unstable to infalling radiation, then infall-
classical electromagnetic field is “near exotic,” i.e., ing spaceships would seem like an even more remote possi-

(pet P)|em=0. FOrr=r,+ 5, the metric has the extreme PlILY-

RN form

2

> +r2(d6?+sirf6d¢?).

M) ? r
d32:_<1—7) dt2+(1—Tr)
(85

MTY show that, for this wormhole,

1
2 = Pcasimir- (86)

Po=" §r?

Then becauspcasimi= Pcasimil 3 @Ndpcasimir= Po. it follows
that p0=—(247rr§)*1. If we apply our bound to dvery
tiny) static observer at the throat, we obtain

1 c
-———=— .
241§ 75

(87

Because spacetime is approximately flat between the plates
the constraint on the choice af, is that discussed in the
Casimir effect example in Sec. Il. Takg=fs, whereupon

we find

ro=f2s2. (88)

A reasonable choice of in this case would seem to be
For s~10° %% cm ~10?%1,, one finds that
ro=10"1,~0.01 AU (astronomical unjt Since MTY cal-

f~0.1.

culatero~1 AU for a plate separation af~10° cm, this
wormhole satisfies our bound.

V. GENERAL BOUNDS FOR WORMHOLES

In this section QI bounds will be formulated on the rela-
tive size scales of arbitrary static, spherically symmetric, MT
wormholes; i.e., no assumptions will be made about the spe-
cific forms of ®(r) andb(r). We work in the vicinity of the
throat and analyze two general subcagésb<0 and(2)
by=0. Let r,, be the smallest of the length scales:
I 0.r1,Ry,r3, in this region. We saw from Eq$37)—(40)
in Sec. Il that the magnitude of the maximum curvature
component in this region Bma,<1/(r2). It follows that the
smallest proper radius of curvatuiie the static orthonormal
frame isr ~1/\VRnarm- Spacetime can be considered to
be approximately flat in this region, and therefore our QI
bound should be applicable.

A. Case(1): bg<O

' Sinceby<0, the energy density is negative at the throat,
and so we can apply our bound to a static observer at the
throat. This observer is geodesic, and the energy density is
constant; so we have

7o [* (T uku”)dr bg C
—| ————=—=po= =——, 89
77,[700 7+ 75 Po 8mry 75 ®9

where againc=3/(327?), 7 is the observer’s proper time,
and 1 is the sampling time. Choose our sampling time to be

To=fry<<r, with f<1. Our QI then becomes

However, this wormhole has a number of undesirable fea-

tures. First, in order to traverse it, an observer must go
through the plates. This implies that “holes” or “trapdoors”

(90

87 1/4\/6
M=\ 77 - .

bl ) f

must be cut in the plates to allow passage. Second, because

the plates are located atsry+ &, with 6~1071° cm (ne-

glecting the thickness of the plajeghis wormhole is ex-

Since our observer is static at the throat, we may write

|bg|=ro/rq, and use &c~1/4, to get
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_ (rory) ¥4 @) ture in the boosted frame ig~1/\R),,=rm/y. Spacetime
m= f should be approximately flat in the boosted frame on scales
much less than; . Hence let us take our sampling time to be
or, alternatively, 7o=frm/y<r/, with f<1. The energy density in this frame
should not change much over the sampling time, and so the
Mm_ 1 ( rll,%) va ©2 application of our bound gives
ro flrg 7o [ (T uku”)dr c
o[ e (T =gz~ . (93
Now examine specific cases. Far,=r,, we have Tl T TG o

ro/t1=f"*1p/r;)*2 As an example, if;~1 m and for ity i
(2001, therr o/ 10-21 Even il we cheosé to bo very Q(t)ot;idt?rr:s]té ifsrom Eq.(53), the energy density in the

small, this large discrepancy in length scales will not change

much, and only increases ag increases. Forr,=rq, Y
rolro<f*¥1p/ry)?® and so forry=1 m andf~0.01, p6=72(p0+v2p0)=8?2(b6—v2). (94)
0

r,/ro=10 2L Again the problem only gets worse as the
throat sizer, increases. Whem,,=ro=ry, ro=<Ip/f? for
f~0.01, ry=1015~10"3! m. For ®= const wormholes,
the only relevant length scales arg andr,. The above
results imply that wherby<O these wormholes are ex- F'm 1\
tremely unlikely, unless one is willing to accept a huge dis- (Uz_b/> T
crepancy in length scales. Fgp=R, andR,=<ry=<r,, from 0
Eq. (9) we have thatR,/ry=(Uf)(rola/r)™<(1f)  Forp;=0, 0=bj=1, sinceb)=1, which follows from
X(Ip/ry)M% For rp=R, and Ry=<ry=ro, Ro/fo=(1f)  the fact that at the throat we must hawg+ po=<0 [25]. The
X(Ip/rg) An identical argument yields similar inequali- quantityb}, is fixed by the wormhole geometry, whereas our
ties for the case whemg,=r5. Thus we find that if ; and/or choice ofv? is arbitrary, subject td,<uv?<1. Our bound,

r, are macroscopic, thgn the ratio of the minimum .Iengtth_ (95), is weakest whem is extremely close to 1. How-
scale to the macroscopic length scale must be very tiny. : ) : ,
ever, this would seem to be a highly special casgs1

If the minimum scale happens to B, then our bounds di h . il ”» d
imply that eitherr,, the scale over whictb changes, is very corresponding to the maX|mu_m PQSS' e positive energy den-
sity at the throat and tpy+ po=0; i.e., the null energy con-

small or |®| is very large, or both. A situation in which > ) ; .
|P| y larg dition T, K#K”=0, applied to radial null vectors, is barely

®| is very large near the throat, assumigoc) =0, would o S
2| y 'arg 4) tisfied at the throat. The latter implies that such a worm-

not seem to be a desirable characteristic of a traversab e “f 9 lowlv f he th »
wormhole, as it implies very large redshifts or blueshifts for ole "flares outward™ very slowly from the t, rogsee, for
example, Eq(56) of MT]. To see how closé, must be to

a static observer at the throat. A large negativg implies ! i s
that the spacetime is close to having a horizon at the throat in order to significantly a}ffect our8bougd, a nun;erlcal ex-
A large positived, implies that photons of moderate fre- @mMPple is instructive. Leb,=1-10""°, v°=1-10", and
quency fired outward by an observer at the throat would bd~0.01. Forrg=~1 m ~10* I, we find thatr ,<10 "' m.
blueshifted to very high frequencies upon reaching distanEven forro=1 AU~10"1p, we obtainr ,=10"° m. If we
observers. In the latter case, observers must be shot inwag@nsider a more “typical’b,=0 to be in about the middle
with initially large kinetic energies in order to reach the of the allowed range, sayb,~1/2, then if we choose
throat. v2~3/4, it follows that ¢2—bp) Y4~1. If we choose

If some of the wormhole parameters change over verf~0.01, then we find,/r,=100(p/r,)*% Even a much
short length scales, then it would seem from the “tidal forcesmaller choice of does not avoid the large discrepancy in
constraints”[see Eqs(49) and(50) of MT] that tidal accel- wormhole length scales.
erations might also change over very short length scales. As The bound95) is a “safe” bound, but in specific cases it
a result, an observer traveling through the wormhole couldnay not be the optimal bound, due to our rather conservative
encounter potentially wrenching tidal forces rather abruptly condition onR/,,,, i.e.,R’,.,.< ¥%/r2,, and hence om,. For

. . . max?
None of these scenarios seem terribly convenient for wormexample, in cases whef' ..=|Ri/vvy|=|Ri:iil, such as

hole engineering. the proximal Schwarzschild wormhole, we can get a stronger
bound than that obtained from the inequality for the general
B. Case(2): bi=0 case.

In order for pj,<<0, we must require®>>b/. After making
the required substitutions, we obtain

| 1/2
—”) . (95)
o

ro

When b;=0, the energy density at the throat is non-
negative for static observers. To obtain a bound in this case,
we Lorentz transform to the frame of a radially mOVing In this paper, we used a bound on negative energy density
boosted observer at the throat. Since the maximum magniterived in four-dimensional Minkowski spacetime to con-
tude curvature component in the static frame isstrain static, spherically symmetric traversable wormhole ge-
Rmax=<1/(r7), in the boosted frame the curvature componeniometries. In Sec. Il, we argued that the bound should also be
with the largest magnitudeR’,,,, can beno larger than applicable in curved spacetime on scales which are much
aboutyzlrﬁq. Therefore, the smallest proper radius of curva-smaller than the minimum local radius of curvature and/or

VI. CONCLUSIONS
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the distance to any boundaries in the spacetime. The upshoase, it becomes difficult to predict what happens. However,
of our analysis is that either a wormhole must have a throadne might expect the time scale of such fluctuations to be of
size which is only slightly larger than the Planck lengththe order of the minimum radius of curvature. Since our
I, or there must be large discrepancies in the length scalegampling time is chosen to be much smaller than this, it may
which characterize the geometry of the wormhole. These dighe that our analysis is unaffected by the fluctuations.
crepancies are typically of ordetd/ry)", wherer, is the We showed that the Morris-Thorne-Yurtseyei worm-
throat radius anch=<1. They imply that generically the ex- hole was compatible with our bound. When this model was
otic matter is confined to an extremely thin band and/or thaproposed some years ago, it was hoped that one might even-
the wormhole geometry involves large redshifts blue- tually be able to do better at spreading the exotic matter out
shiftg). The first feature would seem to be rather physicallyover macroscopic dimensions. Our results indicate that this
unnatural. Furthermore, wormholes in which the characteriskind of wormhole might be the generically allowed case.
tics of the geometry change over short length scales and/diowever, as we pointed out, this wormhole has undesirable
entail large redshifts would seem to present severe difficulfeatures, such as large redshifts near the throat which may
ties for traversability, such as large tidal forces. pose problems for stability and traversability. It might seem
There is a number of possible ways to circumvent ourthat our conclusions imply that the most physically reason-
conclusions. The primary contributions to the exotic matterable wormholes are the “thin-shell” typg28]. However,
might come from the state-independent geometrical terms dghese models are constructed by “cutting and pasting” two
(T,,). However, as discussed in Sec. Il, in this case thecopies of(for examplg Minkowski or Schwarzschild space-
dimensionless coefficients of these terms would have to béime, with a resultings-function layer of negative energy at
enormous to generate a wormhole of macroscopic size. OriBe throat.(Note that in these wormholes, by construction,
possibility would be a model in which the effective values ofthe throat is not located &t=r,.) Physically one does not
these coefficients are governed by a new figldn such a really expect infinitely thin layers of energy density and cur-
way that they are large only whef is large. It may then be vature in naturg¢29]. Such approximations are meant to be
possible to find self-consistent solutions in whighis large  idealizations of situations in which the thickness of these
only in a very small region, and hence it is conceivable thalayers are small compared to other relevant length scales.
one might be able to create thin bands of negative energy i@ur results can be construed as placing upper bounds on the
this way [26]. Our bound was strictly derived only for a actual allowed thicknesses of such layers of negative energy
massless, minimally coupled scalar field, but we argued thadensity. We conclude that, unless one is willing to accept
similar bounds are likely to hold for other massless and masfantastically large discrepancies in the length scales which
sive quantum fields. Another possible circumvention of thecharacterize wormhole geometries, it seems unlikely that
bound might be to superpose the effects of many fields, eacuantum field theory allows macroscopic static traversable
of which satisfies the bouni®7]. For example, suppose we Wormholes[30].
postulateN fields, each of which contribute approximately
the same amount to our bound. Then the right-hand side of
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