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Bulk viscous cosmology
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The full causal Miler-Israel-StewartMIS) theory of dissipative processes in relativistic fluids is applied to
a flat, homogeneous, and isotropic universe with bulk viscosity. It is clarified in which sense the so-called
truncated version is a reasonable limiting case of the full theory. The possibility of bulk viscosity-driven
inflationary solutions of the full theory is discussed. As long as the particle number is conserved, almost all
these solutions exhibit an exponential increase of the temperature. Assuming that the bulk viscous pressure of
the MIS theory may also be interpreted as an effective description for particle production processes, the
thermodynamical behavior of the Universe changes considerably. In the latter case, the temperature increases
at a lower rate or may remain constant during a hypothetical de Sitter stage, accompanied by a substantial
growth of the comoving entropy.

PACS numbe(s): 98.80.Hw, 04.40.Nr, 05.70.Ln, 95.30.Tg

I. INTRODUCTION mological evolution equations. Partially, these differences

A : gccur since different equations of state were used. But the
Nonequilibrium thermodynamical processes are supposed

. . : . results also depend on whether the investigations were per-
to play a crucial role in the physics of the early UnlVerse'formed within the full, causal second-order theory or in a
Traditionally, for the description of these phenomena, thetruncated version of it,
theories of Eckarf1] and Landau and Lifshig2] were used. One should be aw'are that discussing the issue of bulk
2?;\/3;;?5065 tgzvf’c"’]‘)rljozf Z/Inlﬁr égl:af:@edg][’ﬂlsﬁieslcggs viscous-driven inflationary solutions at all, implies in any
and Lindb,Ior,n[S] it t,)ecarr,1e clear howeeer thait the Eckart. €2S€ an extrapolation of nonequilibrium thermodynamical
type theories suffer from serious,drawback,s concernin CaJ_heories beyond the range for which their applicability was
yp " e 9 strictly justified[29]. Bulk viscous inflation, if it exists, is a
salty and stability. These difficulties could be traced back t ar-from-equilibrium ohenomenon. while even the full
their restriction to first-order deviations from equilibrium. If ausal segond—order ll?/llS theory is’ a theory for small devi’a—
one includes h|gher-order deV|at|or.1$. as well, the corresponc{ions from equilibrium. Therefore, all theoretical conclusions
ing problems disappear. By now, it is generally agreed thaj

any analysis of dissipative phenomena in relativity should b€ necessarily tentative. It is the hope that they nevertheless

based on the theories of Mer, Israel, and StewartMIS). will lpro.\nde an indication of the correct behavior far from
: . . 0 equilibrium.
including at least second-order deviations from equilibrium,

although, in specific cases, the latter might reproduce results As to the relation petween the full theory and the trun-
of the Eckart theory[9]. Cosmological implications of cated version, to be discussed in some detail below, the fol-

second-order theories were first considered by Belinskil®Wing comment should be made from the outset. To decide
et al. [10]. In the realm of cosmology, especially bulk vis- whether a theor)_/ is truncated or not on apparently obvious
cous phenomena have attracted considerable intésest for_mal groun_ds, i.e., from th_e appearance of the causal evo-
e.g.[11]), since bulk viscosity is the only possible dissipative lution equations may be misleading. The structure of the
mechanism in homogeneous and isotropic spacetimes. WhiRvolution equation depends on the choice of the basic ther-
the coefficient of bulk viscosity vanishes both for pure rela-modynamical variables. In most cases, the latter are equilib-
tivistic and pure nonrelativistic equations of state, it may befium variables and the Gibbs equation has their familiar
important, e.g., for mixtures of radiation and maftezZ]. On  form. In the framework of “extended irreversible thermody-
the other hand, it is well knowh13—-15 and widely used namics” (EIT), however, a generalized Gibbs equation is
[17-29 that particle production processes in the expandingised which includes dissipative quantities as independent
Universe may be phenomenologically described in terms ofariables. Temperature and pressure in EIT are nonequilib-
effective viscous pressures. rium quantities, different from their equilibrium counter-
A major point of interest in the study of bulk viscous parts. Written in terms of these nonequilibrium quantities,
universes has been the question whether there are conditiotige causal evolution equation formally may look identical to
under which a sufficiently large bulk viscous pressures couldhe truncated theory written in terms of the more familiar
lead to an inflationary behavior. While some authors con-equilibrium variables. These points have been clarified in a
cluded that a bulk viscosity-driven inflation is impossible recent paper by Gariel and Le Denmia6] who pointed out
[26], others[27—29 found inflationary solutions of the cos- that the apparentlybecause of the use of nonequilibrium
variable$ truncated theory of Pawoet al. [7], in fact, is
equivalent to the full theory of Isra¢#t]. The reader is also
*Present address: Fakitltiir Physik, Universita Konstanz, PF  referred to corresponding comments[#8,29.
5560 M678, D-78434 Konstanz, Germany. In the present paper the symbdisand p always denote
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the equilibrium temperature and the equilibrium pressure, reimply
spectively. _

In Sec. Il we reconsider the bulk viscous cosmological n+0n=0, (6)
dynamics within the causal second-order theories. The evo-
lution law for the temperature of the cosmic fluid is shown toand
be different in general from thad hocrelationship used in S
previous treatments by Romano and Rai®1], Zakari and p=—0lptp+m), @
Jou [28], and Maarteng29] (Sec. Il A. In Sec. B we  regpectively, where®=u?, is the fluid expansion and
discuss the conditions under which the truncated versio =n ,u® etc. Combining(é) and(7) with the Gibbs relation
yields results close or identical to those of the full theory. ‘

The general viscous fluid dynamics of the full MIS theory is p 1

presented in Sec. Il C. Section Il D investigates the condi- Tds=d_+pd_, ®
tions for viscous exponential inflation. Almost all corre-

sponding solutions imply an exponential increase of the fluidye get

temperature. As a consequence of this behavior, there is, in

general, no substantial growth of the comoving entropy as nNTs=-0. 9
was found previously29]. The latter result corresponds to a

very specific limiting case. In Sec. Il the viscous pressure of-fom (3) and(6), we find

the full causal theory is assumed to describe partially or fully

the effect of particle creation taken into account by a nonva- R = m
nishing source term in the particle number balance. In this a T
setting, the backreaction of the viscous pressure on the tem-

perature is different from the conventional viscous fluid caséor the entropy production denSiS;ﬁa- The simplest way to

of Sec. Il In the limit that the viscous pressure is entirelygyarantees®, =0 implies the evolution equation
because of particle production, there exist stable inflationary ’

{20\t

. 1 T
O+ -7+ —WT(—Ua) } (10

solutions for which both the particle number density and the . g T
temperature are constant and, moreover, the comoving en- T+ TT=—{0- ST 0+—— 7T (13)
tropy grows exponentially. Section IV summarizes the re-
sults of the paper. Units have been chosen so thgp 7 |eading to
c= kB: 1.
2
s 12)
Il. BULK VISCOUS FLUID DYNAMICS R (

A. General relations For 7—0, Eq.(11) reduces to the corresponding relation of

The energy momentum tensor of a relativistic fluid, with the Eckart theory. The frequently used truncated version
bulk viscosity as the only dissipative phenomenon, is )
_ _ _ m+Trm=—1[0, (13
Tk=pu'uf+(p+mh'. (1)
‘ also known as Maxwell-Cattaneo equation, follows if the
p is the energy density' is the four-velocityp is the equi-  bracket term on the right-hand sidBHS) of (11) can be
liorium pressure, h'™® is the projection tensoth’®*=g™®  neglected compared with the viscosity terrv®. Below,
+u'u, and is the bulk viscous pressure. The particle flow we shall give explicit criteria for this approximation. If the
vectorN? is given by brackets term vanishes identically, i.e., if the condition

N2=nu?, ) Tl T
O+-——-—= =0 (14)
wheren is the particle number density. Limiting ourselves to
second-order deviations from equilibrium, the entropy flow

vector S* takes the forni5,26] is satisfied, the full and the truncated theories become iden-

tical. As we shall see, this is possible only in exceptional

2 cases.
SP=gNA— %ua, ©) Let us assume equations of state in the general form
: L _ p=p(n,T) (15
wheres is the entropy per particle; is the relaxation time,
T is the temperature, anglis the coefficient of bulk viscos- and
ity. The conservation laws
p=p(n,T), (16)
NZ,=0, (4)
according to which the particle number densityand the
and temperaturd are our basic thermodynamical variables. Dif-

ab ferentiating the latter relation, using the balan@@sand (7)
Tp=0, ©) as well as the general thermodynamic relation
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ap p+p Tap Obviously, the truncated version is expected to be applicable
no T naT 17 for
2
one finds the following evolution law for the temperat(cé m(lJr b+ y)<1, %(1+a)<1. 22)
[22]): 2p 2p
aplan p Since for “ordinary” matterb and y lie in the ranges
T=0n ST + ST (18 1/3<=b=<2/3 and ¥ y=<4/3, respectively, the first condition
P p is roughly equivalent tor<p. For radiation withy=4/3,
or b=1/3, anda=1, the second condition is implied by the first

one. For matter withy=1, b=2/3, anda=2m/3T> 1, how-

T aplaT - ever, the second condition has to be checked separately. The
T=" [& T + T /aT}' (29 inequalities(22) may be regarded as criteria under which the

P P truncated theory is a reasonable approximation to the full
theory. Given equations of staf&5) and(16), any solution
7 of the truncated theory may be tested according2®
whether or not, and to which accuracy, it approximates the
full theory.

But there is a different possibility, namely, the case

For mw=0 and with® = 3R/R, whereR is the scale factor of
the Robertson-Walker metric(19) reproduces the well
known T,~R™! behavior in a radiation-dominated
Friedmann-Lemane-Robertson-Walker(FLRW) universe,
while for p=nm+3nT, p=nT, and T<m, we recover
Tm~R™2 in the matter-dominated case. For a viscous fluid, a w2
the behavior of the temperature dependsmnSince 7 is 2—(1+ b+y)+ ﬁ(aJr 1)=0, (23
expected to be negative, the second term in the brackets on P P
the RHS of(19) will counteract the first one. Close to equi- jn which all the terms that distinguish the full from the trun-
librium, i.e., f0r| 7T|<p, the existence of a bulk viscous pres- cated theory cancel among themselves. Re|dﬂ®‘||$ iden-
sure implies that in an expanding Universe the temperaturgca| to (14) for /=pr, i.e., it is the condition under which
decreases less rapidly than in the perfect fluid case. the full theory is identical to the truncated one. Solvigg)
for o/ p, yields

B. The truncated version
: : . [ 1+vy+b
While the truncated version was used in most of the ear- T2 (24)

lier applications, more recently an increasing number of au- p 1+a

e b vk aran yccoring 10 the above.mentoned parameter rangeso
; ) . - 'h anda, || <p is only possible fom>1, i.e., for massive

some cases, these results differ dramatically, which may bearticles Using24) in (7), yields

interpreted as a breakdown of the MaxweII-Cattaneo—typé’ ' Y

equations as a reasonable approximation to the full theory p ya—1-b

under the corresponding conditions. What seems to be miss- —=—0— (25

ing, however, are general criteria according to which one P 1+a

may decide whether the truncated version is sensible and For radiation §/=4/3, b=1/3, a=1) we findp=0 and,

beyond which limits it fails to give an answer close to that Ofconsequently —©,= const in a flat FLRW universe. The

the full theory. Intuitively, one expects the coincidence to b \ncated and the full theories coincide in a specific bulk

better .the closer one is to Fhe equilibrium case. Below, W'?/iscosity-driven inflationary universe. Since wit@4), = is
_shall give an example showing that there; are identical reSUItéompletely determined by, provided, the equations of state
in exceptional cases even far from equilibrium. In order 0 re given, the remaining e,quati(J]:G) i:c, no longer a dynami-
clarify the approximative character of the truncated theoryCal equa:cion on its own, but may be used to calculate
we assume, as usual, the relatiys p7 that guarantees a 7=17(0,). Since the solu,tion is stationary, i.er=0, we
finite propagation velocity of viscous pulsfs0,27-29,31 44 T
In the following section, we are going to generalize this re-
lation. Using(7) and(19) in Eq. (11) with {=p7, we find

r_4 -1

T+rm=—pO7 1+ 1(1+ b+ y)+ 71-—Z(a-i- 1),
2p 2p In a radiation-dominated universe, the full theory and the
(200 truncated version admit a common, bulk viscosity-driven in-
flationary solution with a relaxation time of the order of the
expansion time. This seems to be a new result. For the tem-
perature dependence we find, fr¢@®) and (24),

with the abbreviations

p 1 dp opldT 1 adp
=T “Tnar PTapaT no, o F bealyt)
. T % v @0
y=—". (21

p yielding
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-I—_ —_—
7= (29 =—y—513. (36)

for radiation, orT~R®. The temperature increases in an ex-From (15), using(6) and(19), one realizes
panding Universe. This implication of the conditiéi¥) was .. 2

first noticed by Maarteng29]. While this might appear pP=vsp+Om(vs—h), (37
strange at the first glance, it is an unavoidable feature of an

bulk viscosity-driven inflation as is obvious frotd9). This With the sound velocity s given by

point will be discussed in more detail in the following sec- , (ﬁp) n ap T (dplaT)?
° ap isentropic ptpon  ptp o"p/&T ( )
C. The dynamics of the full second-order theory Differentiating (34) and using(7) and (37), x on the left-
In this section we shall investigate the full causal theoryhand sidg(LHS) of (32) may be replaced by
assuming the existence of general equations of si&jeand . . . s 2
(16) and km=—2H—-6HH(1+b)+9H>y(vi—Db). (39
pplying an in , we arrive at the evolution
l Applying (35 and (39) in (32 i h luti
;Efo(p). (29 equation forH
. . .. . . HZ p . vp 3 .
Following Belinskii et al. [10], usually the relatiory/7=p  sH— —7{ a+ =f'|-3HH7 ya+ = = f'— =(1+b)|+H
was used to guarantee that the propagation velocity of vis- H f 2 f 2
cous pulses, which is expected to be of the of@& 9 foy 3
T T 30 BTN AP 2_ P2
£\ 2H Tp+2(ya 1-b)+ y(vs—h) +27H 0.
U"‘(;) , (30 (40)

does not exceed the velocity of light. We shall not immedi-It should be pointed out again that in arriving at this evolu-
ately specify tof = p in order to admit a certain range for this tion equation, only equations of stat&5), (16), and (29)
propagation velocity. As we shall see below, this additionaiere used. We think this set of equations of state to be more
freedom, allowing, e.gf = ap with 0<a<1, may be useful 9eneral than that used in previous pape$,28,29. Espe-

in characterizing a possible inflationary phase. In this casecially, no specific temperature law, such®s Bp" in [31],

one hasf =f'p, wheref’=df/dp. Consequently, usin(), had to be postulated. There is no freedom to impose a sepa-
rate temperature law. The behavior of the temperature is gen-

erally governed by19). As it is obvious from(18), a relation
. (31) T~p'is possible forgp/dn=0. Even in this case, however,
r is not arbitrary but determined by= p(Tdp/dT) L. In the
specific case of a flat FRLW universe with

o 0.
[

+7T
y+ —
p

Together with(19), Eq. (11) may now be written as

! 2 ' H 1p
frrm—p0d e [ 11br P T s 2L H 2p’ “D
m+T T P Tp 2p ’yf ZZ f . P

B2 Eq.(19 reduces to

It is obvious how the applicability condition2) of the T R
truncated version have to be modified in this more general T=3(ya—b)§+a—. (42
case. Restricting ourselves to a flat FLRW universe with p

For constant values &, b, andy

@2
5 =P, (33 T~ paR3(72=b) (43)
wherex is Einstein’s gravitational constant, and results, which in the radiation-dominated case wth 1,
b=1/3, y=4/3, specifies to
(;:')=—32—K(p+p+77), (34 Tr~er3. (44)

Obviously, withp,~R™* for w=0, one obtains the correct

the latter equation may be used to eliminateand r, re- limiting caseT, ~R 1
; .

spectively. The bulk pressure may be written as

km=—3yH 2_9H , (35) D. Viscous exponential inflation

] It has been a matter of some debate whether a bulk vis-
where H=0 andH=R/R or cous pressure is able to drive inflatipa6—29,3]. While
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Hiscock and Salmonsof26] have shown that, using the . .
equations of state for a Boltzmann gas, the full causal theory To =3y
does not admit an inflationary phase, different equations of

state, such as those used by Romano andPE8H, Zakari  gpecializing to the radiation-dominated cat) reduces to
and Jou[28], and Maarten$29], are compatible with a de (4q) ' o the truncated version yields exactly the same de-

Sitter phase. It should be stressed again that dealing with the, \qence as does the full theory. We have rediscovered the
question of a viscosity-driven inflation, one has to assumepecific case, discussed in Sec. Il B, in which the full theory
that the MIS theory is applicable fa'f from equilipriL[mg]. coincides with the truncated version. For the matter-
Under these premises, we are going to consider now thg,minated case, however, the result of the truncated theory is
possibility of a solution of the evolution equation frwith itterent from (48). This is not unexpected after the consid-
H=Hgy= const. In such a case, E@0) yields erations of Sec. Il B.

We shall now look at the behavior of the basic thermody-
(45) namic quantities under the conditidi=H,. Because of

(40), this impliesp= py=const and36) reduces to

f 2
>t y(vs—b)}Ho. (49

fo1
7o '=3H, %+§(ya—1—b)+v§—b .

In the radiation-dominated case, this reduces to

—=—. (50

43 p

=g 7 Hot. (46)
According to(6), the particle number density decreases ex-
Keeping in mind that until now only=f(p) was used, one ponentially. The temperature evolution lai&9), together
recognizes that the ratio betweeh andH, ! crucially de-  Wwith (50), becomes
pends onf/p. If, as is usually assumed,=p, we have

75<Hy . If, however,f is allowed to be smaller tham, we L [fm/(ﬂ' P } 51
may haver{)>Hgl. It follows from (30) that a relation T 0 dpldT nTg, Y

f<p implies a lower propagation velocity compared with the

casef =p. Providedf=p is equivalent to a propagation ve- equivalent to

locity that coincides with the velocity of light,=p/3, e.g.,

leads to a propagation with,= 1/\/3, the velocity of sound T= 3Ho ’9_/" (52)

(see Israel and Stewal6]). In the latter case, the relation c, an’
(46) specifies to
Generally, the temperature is not constant in the inflationary
4 phase. Provided, is finite, a constant temperatufe=T, is
7o=3zHo " (47) only possible fordp/an=0, corresponding tol ~p" with
r=p(Tdp/dT) ! [see the discussion belo@0)]. For any
implying TE)>H61. In this case, the nonequilibrium is “fro- 9p/9n>0, the temperaturel increases during inflation.
zen in.” The viscous inflation is “nonthermalizing(29].  Since dp/dn>0 and dp/dn=0, respectively, lead to dra-
While for 7j<Hy !, there is a quick(compared with the matically different results for the entropy production during
expansion raterelaxation to(local) equilibrium, this is no a bulk viscosity-driven inflationary phagsee belowy; this
longer the case iff, becomes comparable to the expansionpoint deserves a detailed discussion. It is frequently used that
rateH, 1. Nonequilibrium situations such as this may occur,in the equations of state for radiation in equilibrium,
e.g., in grand unified theorig&SUT’s) close to the Planck P=nT and p=3nT, which are specific cases ¢15 and
time where the underlying microscopic process is the deca{l6), the number densitp may be eliminated according to
of heavy vector bosor82]. According to Maarteng29], the ~ N~T2, resulting inp=p(T) andp=p(T) with p=p/3 and
condition 7o>Hg ! may be regarded as a consistency crite-»~T". Then T is the only independent variable and
rion for causal viscous inflation. Clearly, fap<Hg®, the ~ 9p/dT—dp/dT. In order to check whether a corresponding
Universe will relax to an equilibrium state in less than oneProcedure is possible far+0, we shall assume an arbitrary

expansion time. A successful inflation, however, has to las§éPendencen=n(T) instead of the equilibrium relation

for many characteristic expansion times. n~T°. With (19), we find
In the matter-dominated case with=1, b=2/3, v2<1, q

a=2m/3T>1, we find h= _3HT_n b+ af ) (53)

daT p
m ! Ho' 48 i i i
o o (48) Comparison with(6) leads to the general relation
i.e., we are always in the rang§'<H, *. The time scale for at —(p+ral dn (54)
the relaxation to equilibrium is much smaller than the expan- T '

sion time scale.

Calculating the dependeneg(H,) along the same lines For m=0, we recoverT~n'® for radiation p=1/3). For
that lead to(45) within the truncated version, provides us matter p=2/3), the correct resulf~n?3~R~?2 is obtained
with as well.
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With the condition(50) for bulk viscosity-driven expo- H=Hg[1+h(t)] with |h|<1 in Eq. (40). Equation(40) is

nential inflation and foma= const equatiori54) yields valid for spatially flat homogeneous and isotropic space-
b va times, therefore the stability analysis is restricted to this case
T~n>"7% (59 as well. We assume that the dimensionless quantitips

v, &, b, andv remain unchanged for small deviations from
H=H,. Since we found the relaxation time in the infla-
n~T1 (56)  tionary phase to be proportional td, ', it is natural to
assumer~H ! generally and to fix the proportionality fac-
results. While in equilibriumm is an increasing function of tor by (45). Retaining only terms linear ih, the resulting
T, n decreases witfl in a de Sitter phase, characterized by equation forh is
(50), which is a far-from-equilibrium state. According to . .
(56), the exponential decrease of the particle number density h+3HyKh=0, (59
following from (6) is necessarily accompanied by a corre-
sponding increase in the temperature. This is obviously inwith
compatible withT~ pY* from dp/dn=0. Equations of state ;
with dp/on=0 imply that the exponential dilution of the K51+_+v2_z P
particles of the out-of-equilibrium fluid according ¢6) does yo 5 2\f

not have any impact at all on the energy density of this fluid.,
We conclude that the previously usglL,28,29 ad hocas- | Nere exists a solution= const that may be used to redefine
sumption T~p" is not consistent with(15), (16), and Ho- The other solution is stable fa¢>0. In the radiation-

n=n(T) if apphed to a bulk pressure-driven inflationary dominated casey=4/3, vZ=1/3, a=1, b=1/3 and with
phase. f=ap the solution is stable for ang>0. In the matter-
While an increasing temperature during the de Sitter staggominated casey=1, vi<1, a>1, andb=2/3 we find
appears unfamiliar, this kind of behavior is not quite unex-K~—a/2=—m/3T, i.e., the solution is unstable.
pected for an equation of staf#6). Sincen decreases expo- We conclude that there exist stable viscosity-driven infla-
nentially, T must increase accordingly in order to guaranteetionary solutions as long as the equation of state is close to
p=0, as long aslp/n>0 anddp/dT>0. Exactly this kind  that for relativistic particles. There do not exist stable solu-
of behavior was found by Hiscock and Salmongas] for  tions for equations of state close to that for dust. Even for the
the truncated Israel-Stewart theory. As was demonstrategfable solutions, however, the temperature increases expo-
above, the full theory exhibits a corresponding feature agentially during the de Sitter stage. Since the particle number
well. (Note, that according tf26] there does not exist a de density decreases exponentially, this unfamiliar behavior is
Sitter phase in the full theory for the case of a Boltzmannunavoidable to guarantep=p, as long asdp/dn and
gas) If one does not use, however, a relationsfipp" and ~ dp/JT are assumed to be positive. A temperature depen-
the behavior ofT is governed by(52) with dp/dn>0, this ~ dence such as this is not as strange as it might appear at the
has important consequences for the entropy production dufirst glance. A nonvanishing bulk viscosity has always the

ing bulk viscous-driven inflation, discussed by Maartenstendency to heat up the Universe. Close to local equilibrium,
[29]. The entropy in a comoving volume B=nsR. With this means that the decreaseloflue to the expansion of the

In the radiation-dominated case

f'+al. (60)

(6) and (9), the change oF, is Universe is less than that without bulk viscosity. Applying
the cosmological dynamics with bulk viscosity to situations

70 3 far from equilibrium, in our case to a hypothetical inflation-

2=- TR (57) ary phase, ther term just compensates the equilibrium terms

in (7) and (34). It overcompensates them, however, in the
In the de Sitter phase witfb0), the latter expression reduces case of the temperatufé9).

to In the following section we show how particle production
5 processes may modify this behavior of the thermodynamic
: poR uantities during a de Sitter phase.
Sy =3Hoy 58 g P
. . . I1l. BULK VISCOUS PRESSURE AND PARTICLE

This change of the comoving entropy depends crucially on PRODUCTION

the behavior of T. For T=const which follows from _ _

T~p', equivalent todp/dn=0 [see(52)], we recover the A. Basic dynamics

exponential increase & found by Maarten$29]. For equa- Throughout this paper, the Universe is studied within a

tions of state(15 and (16), however, withdp/dn>0, the  single fluid model. There is entropy production due to a non-
temperature dependence in the case of radiatjon4/3) is  vanishing bulk pressure. While both for pure radiation and
T,~poR? as follows from(44). 3 turns out to be constant pure dust the bulk viscosities tend to zero, considerable val-
rather than exponentially increasing. Integrati(®), one ues of the latter are expected in mixtures of relativistic and
finds only a linear growth ir®. Consequently, there is no nonrelativistic matters. Consequently, the single fluid uni-
way to generate a considerable amount of entropy during gserse with bulk viscosity may be regarded as a simplified
bulk viscosity-driven de Sitter phase. description of a system of tw@r more interacting compo-

To investigate the stability of the solutiomé=H,, we  nents. Usually, it is assumed that the interaction responsible
probe the latter with small perturbations, i.e., we assumédor the existence of a nonvanishing viscous pressure does not
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change the overall number of fluid particles; i.e., it is as-or
sumed that4) holds. However, interactions with conserved
particle numbers are only a special case, particularly at high w§+ {me®=—{nul’, (70
energies. Moreover, at times of the order of the Planck time
or during the scalar field decay in inflationary scenarios, parwhere{ now is a generalized bulk viscosity coefficient. For
ticle or string production processes are supposed to affect tHé+ 0, the latter inhomogeneous quadratic equation replaces
cosmological dynamics, leading to features such as “deflathe familiar linear relationre= — 0. Via (70), the particle
tionary universes” and “string-driven inflation[16-20,38. production ratel’ influences the viscous pressure For

In this section we generalize the previous formalism toI'=0 as well as forw =0, we recoverrg=—{®. It is con-
the case that the existence of a nonvanishing bulk pressurevgnient to splitwz in the following way. LetA be a not
accompanied by an increase in the number of fluid particlemecessarily constant parameter lying in the rangen&1

We start our investigations witti), (2), (3), and(5) as well,  such that the fractiol7¢ of 7¢ describes a “creation”
but (4) is now replaced by pressure, because bf# 0, while the fraction (£ \)wg is
a connected with a conventional bulk viscosity. With this split-
Na=nl", (61)  ting, Eq.(63) may be written as
yielding NTs=—(1-N)Ome—AOme—(p+p)T. (71
n+0®n=nl. (62

Frequently[22—25, the assumption was made that the cre-
agtion process does not affect the entropy per particle. This is
equivalent to the requirement that the termg7t) due to the
creation process cancel among themselves:

I' is the particle production rate which has to be regarded
an input quantity in our phenomenological description. In-
stead of(9), now

nTs=—Om—(p+p)l (63) (p+p)T'=—A7e0. (72

results. The entropy production density is given by Physically, this means that the particles are created with a
fixed given entropy. Thersg is given by

TS,=—nul—= , (69 NTse=—(1-\)O . (73)

(T2

®+T'+1 T~
w m™ g_I_U
a

Only that fraction ofrg, that is not connected with a change
in the particle number, contributes $a. In the limit A\=1,
in which the entire viscous pressure is due to particle pro-
u=Ts——. (65  duction, one hasg=0 andSZ.,=nsT', i.e., there is entropy
n production because of the enlargement of the phase space.

A change in the number of particles, i.E+#0, is believed to Using (72) in (69), yields
be phenomenologically equivalent to an effective viscous

pressurd13,15,17—21 A discussion of this equivalence on me=—{0
the level of relativistic kinetic theory has been given recently

[33]. In order to relate the present investigations to previous o ) o ]
work, we shall in a first step focus on the Eckart theory, i.e.Combining the latter relation again witf72), we find that
to the caser=0. Equation(64) reduces to the partA{ of the generalized coefficient of bulk viscosity

{ that arises due to a nonvanishing particle production rate is

whereu is the chemical potential

n
1\

Py | (74)

TS .= —nul'— 70 (66) re-2
in this case, where the subscriptstands for “Eckart.” For- M= p+p—Any’
mal rewriting yields

(75

1 Of course, Eq(74) with (68) is also obtained if the condition
TSa=—mel @ +nume T (67) (72) is immediately introduced i66).
i Obviously, Eq.(68) with (69) is not the only way to guar-
As usual, one has to guarant8g,=0. Since we expect the anteeS% = 0. For a different approach that tredtsas a ther-

particle production to be effectively equivalent to a Viscousmodynémic flux independent of, the reader is referred to a
pressure, we have to demand additionally that the entire erb'aper by Gariel and Le DenmEé4]

tropy production is given in terms afe, i.e., Coming back now to the full second order theory again,

72 we try to find a causal evolution equation ferthat yields
Sg'azg_TE’ (68) (12) in the casd™# 0 as well. Equatior{64) may be written
’ as

where 7rg is determined by nl’ (76)
+u—],
o

a

TSa=-m Oty 1]

7. 1 T
O+-7m+ EWT(—Ua

me=—{[O+numg'T], (69
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generalizing the relatio(67) of the Eckart theory. The con- the effective viscous pressure but there is an additional

dition S?azo with (12) is now satisfied for direct coupling as well. Alternatively, E478) may be writ-
ten as

1 T
2 : 2 =—
’7T+T7T7T+§7T T(g_Tua),a+§7T®_ Lunl', (77) apldT @O+ (p+p)I

1= O T T T TapiaT

instead of(70). The viscous pressure is determined by a .

. . X . : aplaT ns
nonlinear inhomogeneous differential equation. ko« 0, =—(0-T) + )
Eq. (77) formally reduces td@11). For the sake of generality, apldT = dpldT
we shall however retain the term in the following consid-
erations. A chemical potential may act, e.g., as an effectivdVith this evolution law for the temperature, different from
symmetry-breaking parameter in relativistic field theories(19), the evolution equatior§77) for = becomes different
[35-37. from (32) even in the case.=0, although(10) and (76)

In the Eckart theory, the general nonlinear relati@g) seem to coincide. The relatiqB7) for p is now replaced by
was reduced to the linear relatigi4) by the requirement
(72). Unfortunately, a corresponding simplification ©f7) .
via a relation(72) is not possible in general. The essential p=p
physical difference between the noncausal and the causal
theories is the appearance of a finite relaxation time within
the latter. If a nonvanishing is responsible for the occur- Instead of(39), we have
rence of an effective viscous pressure, a causal theory has to ) _
include a finite relaxation time which is just the time interval km=—2H—6HH(1+b)+9H3y(vZ-b)
during which the corresponding part ef decays to zero
. . K 2 2

after I' has been switched off. But the relati¢f2) is an —3HT y(vs—b). (81
Eckart-type relation due to whichr=0 is immediately im-
plied by I'=0. Therefore, an approximatiai2) cannot be The evolution equation forr may be written
used in a causal theory. If, however, the relat{@d) which
follows from the requirement that the creation process does f
not affect the entropy per particle has to be abandoned, this T+ TT= —pT( —(@
means that within the causal theory the creation process con- p

(79

(T-0)yi-b

yr+3”. 80)
p

n
Ly )
pt+p wlp

tributes tos in general. While in the Eckart theory, the par- . pf’
ticle production rate was rather simply related to the viscous + > O|1+b+ 'yT) —TI'(b—ya)
pressure by72), I' enters the equation for of the causal p
theory as an independent parameter in a less obvious way. w? pf’
Our present approach assumes that the deviations from + 52(9 at — } (82

equilibrium may be characterized in terms of one single
guantity 7 also for the case of a nonvanishing particle pro-
duction ratel’. This implies that there is only ongeneral-
ized) coefficient of bulk viscosity and one relaxation time
7. The advantage of this assumption is that there exists onl
one causal evolution equation, namely7), taking into ac-
count the influence oF on . (For an alternative proposal,
see agaifi31].) Since the latter equation is nonlinear, there is
no obvious separation into a conventional bulk pressure an
a ‘“creation” pressure. We shall assume further, thand

7 continue to be related by29). The dependence of the
relaxation timer on I" will be discussed below for specific
cases.

generalizing(32). A procedure analogous to that leading to
(40) in Sec. Il provides us with an evolution equation for

in a flat, homogeneous, and isotropic universe with par-
icle production:

|'_|2

3
=7 ya+ 2 24— 2 (1+b)

2f 2

a+3f')—3HHT

d TH— f

He ok b)— oHer —+ Z(ya-1-b
+ +§ T(ya— )_E 7';"1‘5(’)/3— —b)

For =0, Eq. (77) appears to be identical to the case 2 3 ., 2 ya—b| 3yH?
I'=0, but there are differences in the behavior of the particle ~ + ¥(Vs~D)| + 53 THT | vs=b+—5 2
number density and the temperature. The former is deter- .
mined by(62). Using (16), (17), (7), and(62) instead of(6), wlo, 2B 3 .0 f e @3
the temperature laW19) is replaced by(cf. [22]) YT3RZ 20 T Yrp

T For an easier comparison with E40), we kept separate the

ap/aT+ T N apldT  p+p
dpldT ~ TapldT

common factorr/p [see(36)] on the LHS of this equation.
(78 Having only one evolution equation fét is a consequence

of our previous assumption that it is possible to characterize
in the case of a nonvanishing particle production rate. Theéhe deviations from equilibrium by a single quantityonly.
particle production affects the temperature not only through Equation(83) simplifies considerably fop=0

T apldT  TaplaT



. H? p Yp :
TH—WT a+ —f E?f +H

+
f va

3
~5(1+b)

)—3HHT

f vy )
;—i— E('ya—l—b)-i-y(vs

|

For I'=0, both equations reduce td0). Eliminating 7 in
the evolution equatioii78) for T with the help of(36), we
find

+1FH b 9H3
> 7(ya—Dh) > 7]

(n=0)

3

a—b
4 +E’)/H2

2

—b) 0.

3
+ ETHZF‘y(Ug_b-F

(84)

T—S b R b)I' p 85
7= 3(ra-b)z—(ya—=b) +a;, (89
instead of(42). For constant values &, b, andy,
R3 ya—b 1 ya—b
~ | — = pd| —

T~p N) p<n) : (86)

For y=4/3, b=1/3, a=1, this specifies to

R3

TNPW: ﬁ (87)

B. Inflationary solutions

Looking for solutionsH =H = const of(83), we find the
expression forry that generalize$45):

B f ya-1-b ,
) :3H0 ’)’_p+ 5 +Us_b
nu f ya-b }
— — +vi—Db|. 88
ptp yp 2 s (68

If the particle production rate is comparable with the expan
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For particles withu =0 and an equation of state close to that
for radiation, it is obvious that for any>0, the relaxation
time 7y is larger than that foin=0. In the limiting case

N =1, the production rate of the particles coincides with the
expansion ratery then is given by

p+p }'

Specifying again toy=4/3 and restricting ourselves to
n=0,

(A=1)

f

Yp

1

2

nu

70

3H, (90

(=14 Hy*
7'6 = §f 1 (91)
p 2
results. For f=p, the usual choice in the literature

[10,28,29,3], this expression for is twice as large as the
corresponding expression frofd6), although < Hgl in
both cases. Fof=2p/3, however, we findrfy<H, ' from
(46), while (91) yields 7,>Hy*. In the latter case, the non-
equilibrium is “frozen in,” in the former one it is not. This
demonstrates explicitly that under certain circumstances, par-
ticle production may improve the conditions for bulk viscous
inflation. On the other hand, E91) makes sense only for
f/p>1/2 since forf=p/2, the relaxation time diverges. Es-
pecially the casd =p/3, dealt with forl'=0 in Sec. I, is
impossible forl'=3H,.

The casel’=3H, is singled out in different respects as
well. For anyl’<3H,, the particle number density is de-
creasing according t62), while according tq86), the tem-
perature T increases correspondingly to guarantee
po=Ho=0. In the limitI’=3H,, n becomes constant and it
follows from (86) that the temperature is constant as well.
Only in this extreme limiting case which corresponds to
s=0 (this is only possible since we restricted ourselves to a
time interval withI'=const), the temperature may remain
constant in a de Sitter phase driven by an effective bulk
pressure. FoF <3H, with s#0, the temperature necessar-
ily increases, although fdr #0 at a lower rate than that for

sion rate, it may essentially influence the relaxation timerzo'
7. Especially interesting is the possibility that the resulting

effect of thel” terms in(88) is to enlargery. In this case,
particle production may either enable or improve the fulfil-
ment of the “freezing-in” conditionTo>Ha1 for the non-
equilibrium. In other words, the consistency criterion for in-

C. Entropy production
Eliminating 7 from (63) with the help of(36) and (41),
the time dependence of the entropy per particle is determined
by

flation might be easier to satisfy in the case with particle

production than without. Of course, these considerations

make only sense as long agremains finite. As we shall see
below, there are parameter combinations for whighdi-
verges.

If, during some time interval, the particle production rate
I' is proportional to the expansion rate and approximately

constant as well, i.el;=3\H,, we get

f Anp| 1
71_ - _ _ =
o _3H47P(1 p+p) 2
ya=b
+(1-0)[ 5= +v2-b) |. (89)

nTs=(p+p)[3H-T]+p, (92
) pR37 “N?
nTs=<—Ny ) R (93
With (62) and
p a RSNO)ya—b
T=Tn —| | —— 94
O(Po) (RSN 59

from (86), where the subscript O refers to some initial time,
one finds
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a
Po)
p

In the inflationary phase with=p, andH=H,, we have

1 h+(3H,K—T'M)h=0 (101

o RSN ya—l—b
 NgTo

R3N,

N\” pR3y :
Rl i) 9
instead of(59), where

3n |\ ya—1-b f n
__Po[RoN M=2— — 4y2_p 102
5= noTo Y\ RON, [3Ho—TI'], (96) yp p+p S (
which for radiation (/=4/3, a=1, b=1/3) reduces to Consequently, the inflationary solutions are stable for
4 1 3HK-TM>0. For =0 and the equations of state for
5= ﬂ{ o— —F} (97)  radiation, one ha#1=0 and the stability condition reduces
NoTo 3 to K>0 again. The stability properties of the corresponding

inflationary solutions are not affected at all by a nonvanish-
ing I'. With equations of state for matter, the inflationary
solutions have the same instability as for 0.

Integration of(97) yields

4pg

T +5(tg). (98)

1 [t
Ho(t—to)—gjol“dt

IV. SUMMARY
The basic difference compared with the c&seO0 is that the i . ) .
change of the entropy in a comoving volunk=nsF, is Using particle number density and temperature as basic
no longer determined by the change ©falone. With the thermodynamical variables of the cosmic fluid we have stud-

equations of state for radiatiod, is given by ied the full Muler-Israel-Stewart theory for a spatially flat,
' homogeneous, and isotropic universe with bulk viscous pres-
s = | 4po

. sure. We found general criteria for the applicability of the
+ s(to)] Noepr rdt so-called truncated versions. It was shown that in exceptional
NoTo 0 cases, there exist common solutions of the full and the trun-
(99 cated theories far from equilibrium. The possibility of expo-
, ) ) ) i nential inflationary solutions driven by bulk viscosity was
in the inflationary phase. If' is again assumed to be ap- j,yestigated. Almost all corresponding solutions imply an
proximately given by'=3A\H,, the expressio®9) reduces  gynonential growth of the temperature during the de Sitter

17t
Ho(t—to)—gfol“dt

to stage. Since the number density of the fluid particles de-
4 creases exponentially, only a corresponding increase in the
S(t)= ﬂ(l—)\)Ho(t—to)vLs(to) N(to) temperature guarantees a constant energy density as long as
NoTo the specific heat is positive and finite and the energy density
X exg 3AHo(t—to)]. (100 increases with the particle number density. In the second part

of the paper the bulk viscous pressure was allowed to ac-

It follows that forT'#0, we have an exponential increase of count partially or fully for particle production processes. A
the comoving entrop¥ during the de Sitter phase. Starting nonvanishing particle production rate may enlarge the relax-
from the latter expression foE, it is possible to apply ation time for a viscous pressure that is supposed to drive
Maartens’ numerical estimatiofig9] concerning the entropy inflation. It may help to “freeze in” the corresponding non-
production during the inflationary phase. All his consider-€quilibrium, i.e., to improve the conditions for inflation.
ations of this point are valid in the present case Xat0,  There exist stable, inflationary solutions for equations of
provided hisH, is replaced by\H,. His conclusion that itis State close to that for radiation. Because of the increase in the
possible “to generate the right amount of entropy withoutParticle number, the comoving entropy increases exponen-
reheating” may hold in a universe with particle production. tially in this period. Only in the limiting case where the
There is complete equivalence to Maartens’ result for theentire inflation-driving viscous pressure is due to particle
entropy production forn=1. Consequently, a substantial production, both the number density and the temperature re-
production of entropy during ébulk viscosity-inducegldis- ~ Main constant during the de Sitter phase.
sipational inflationary phase is possible if at least a part of
the bulk viscous pressure is related to an increase in the
particle number. In a sense we have reestablished Maartens’
result, although within a different setting: An exponential This paper was inspired by Ref29]. | thank Roy
growth of the comoving entropy is only possible if the vis- Maartens, Portsmouth, for clarifying conversations. | am in-
cous pressurer in (1) is, at least partially, a “creation” debted to the members of the Grup dsi€a Estaditica of
pressure connected with an increase in the number of fluithe Autonomous University of Barcelona for their warm hos-
particles rather than an increase in the entropy per particlepitality. Helpful discussions with Diego Pampwho criti-

It remains to consider the stability of the inflationary so- cally commented on previous versions of this paper, David
lutions forI" # 0. Proceeding as in Sec. Il we have Jou, and Josep Triginer are gratefully acknowledged.
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