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Bulk viscous cosmology
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The full causal Mu¨ller-Israel-Stewart~MIS! theory of dissipative processes in relativistic fluids is applied t
a flat, homogeneous, and isotropic universe with bulk viscosity. It is clarified in which sense the so-c
truncated version is a reasonable limiting case of the full theory. The possibility of bulk viscosity-dri
inflationary solutions of the full theory is discussed. As long as the particle number is conserved, almo
these solutions exhibit an exponential increase of the temperature. Assuming that the bulk viscous press
the MIS theory may also be interpreted as an effective description for particle production processes
thermodynamical behavior of the Universe changes considerably. In the latter case, the temperature inc
at a lower rate or may remain constant during a hypothetical de Sitter stage, accompanied by a subs
growth of the comoving entropy.

PACS number~s!: 98.80.Hw, 04.40.Nr, 05.70.Ln, 95.30.Tg
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I. INTRODUCTION

Nonequilibrium thermodynamical processes are suppo
to play a crucial role in the physics of the early Univers
Traditionally, for the description of these phenomena, t
theories of Eckart@1# and Landau and Lifshitz@2# were used.
Because of the work of Mu¨ller @3#, Israel @4#, Israel and
Stewart@5,6#, Pavón, Jou, and Casas-Va´zquez@7#, Hiscock
and Lindblom@8# it became clear, however, that the Eckar
type theories suffer from serious drawbacks concerning c
salty and stability. These difficulties could be traced back
their restriction to first-order deviations from equilibrium. I
one includes higher-order deviations as well, the correspo
ing problems disappear. By now, it is generally agreed th
any analysis of dissipative phenomena in relativity should
based on the theories of Mu¨ller, Israel, and Stewart~MIS!,
including at least second-order deviations from equilibrium
although, in specific cases, the latter might reproduce res
of the Eckart theory@9#. Cosmological implications of
second-order theories were first considered by Belins
et al. @10#. In the realm of cosmology, especially bulk vis
cous phenomena have attracted considerable interest~see,
e.g.@11#!, since bulk viscosity is the only possible dissipativ
mechanism in homogeneous and isotropic spacetimes. W
the coefficient of bulk viscosity vanishes both for pure rel
tivistic and pure nonrelativistic equations of state, it may
important, e.g., for mixtures of radiation and matter@12#. On
the other hand, it is well known@13–15# and widely used
@17–25# that particle production processes in the expandi
Universe may be phenomenologically described in terms
effective viscous pressures.

A major point of interest in the study of bulk viscou
universes has been the question whether there are condit
under which a sufficiently large bulk viscous pressures cou
lead to an inflationary behavior. While some authors co
cluded that a bulk viscosity-driven inflation is impossibl
@26#, others@27–29# found inflationary solutions of the cos-
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mological evolution equations. Partially, these differenc
occur since different equations of state were used. But t
results also depend on whether the investigations were p
formed within the full, causal second-order theory or in
truncated version of it.

One should be aware that discussing the issue of b
viscous-driven inflationary solutions at all, implies in an
case an extrapolation of nonequilibrium thermodynamic
theories beyond the range for which their applicability wa
strictly justified @29#. Bulk viscous inflation, if it exists, is a
far-from-equilibrium phenomenon, while even the full
causal second-order MIS theory is a theory for small dev
tions from equilibrium. Therefore, all theoretical conclusion
are necessarily tentative. It is the hope that they neverthel
will provide an indication of the correct behavior far from
equilibrium.

As to the relation between the full theory and the trun
cated version, to be discussed in some detail below, the f
lowing comment should be made from the outset. To deci
whether a theory is truncated or not on apparently obvio
formal grounds, i.e., from the appearance of the causal e
lution equations may be misleading. The structure of th
evolution equation depends on the choice of the basic th
modynamical variables. In most cases, the latter are equi
rium variables and the Gibbs equation has their famili
form. In the framework of ‘‘extended irreversible thermody
namics’’ ~EIT!, however, a generalized Gibbs equation
used which includes dissipative quantities as independ
variables. Temperature and pressure in EIT are nonequi
rium quantities, different from their equilibrium counter
parts. Written in terms of these nonequilibrium quantitie
the causal evolution equation formally may look identical t
the truncated theory written in terms of the more familia
equilibrium variables. These points have been clarified in
recent paper by Gariel and Le Denmat@30# who pointed out
that the apparently~because of the use of nonequilibrium
variables! truncated theory of Pavo´n et al. @7#, in fact, is
equivalent to the full theory of Israel@4#. The reader is also
referred to corresponding comments in@28,29#.

In the present paper the symbolsT andp always denote
5483 © 1996 The American Physical Society
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5484 53WINFRIED ZIMDAHL
the equilibrium temperature and the equilibrium pressure,
spectively.

In Sec. II we reconsider the bulk viscous cosmologic
dynamics within the causal second-order theories. The e
lution law for the temperature of the cosmic fluid is shown
be different in general from thead hocrelationship used in
previous treatments by Romano and Pavo´n @31#, Zakari and
Jou @28#, and Maartens@29# ~Sec. II A!. In Sec. II B we
discuss the conditions under which the truncated vers
yields results close or identical to those of the full theo
The general viscous fluid dynamics of the full MIS theory
presented in Sec. II C. Section II D investigates the con
tions for viscous exponential inflation. Almost all corre
sponding solutions imply an exponential increase of the fl
temperature. As a consequence of this behavior, there is
general, no substantial growth of the comoving entropy
was found previously@29#. The latter result corresponds to
very specific limiting case. In Sec. III the viscous pressure
the full causal theory is assumed to describe partially or fu
the effect of particle creation taken into account by a non
nishing source term in the particle number balance. In t
setting, the backreaction of the viscous pressure on the t
perature is different from the conventional viscous fluid ca
of Sec. II. In the limit that the viscous pressure is entire
because of particle production, there exist stable inflation
solutions for which both the particle number density and
temperature are constant and, moreover, the comoving
tropy grows exponentially. Section IV summarizes the
sults of the paper. Units have been chosen so
c5kB51.

II. BULK VISCOUS FLUID DYNAMICS

A. General relations

The energy momentum tensor of a relativistic fluid, wi
bulk viscosity as the only dissipative phenomenon, is

Tik5ruiuk1~p1p!hik. ~1!

r is the energy density,ui is the four-velocity,p is the equi-
librium pressure,hik is the projection tensorhik5gik

1uiuk, andp is the bulk viscous pressure. The particle flo
vectorNa is given by

Na5nua, ~2!

wheren is the particle number density. Limiting ourselves
second-order deviations from equilibrium, the entropy flo
vectorSa takes the form@5,26#

Sa5sNa2
tp2

2zT
ua, ~3!

wheres is the entropy per particle,t is the relaxation time,
T is the temperature, andz is the coefficient of bulk viscos-
ity. The conservation laws

N;a
a 50, ~4!

and

T;b
ab50, ~5!
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ṅ1Qn50, ~6!

and

ṙ52Q~r1p1p!, ~7!

respectively, whereQ[u;a
a is the fluid expansion and

ṅ[n,au
a etc. Combining~6! and~7! with the Gibbs relation

Tds5d
r

n
1pd

1

n
, ~8!

we get

nTṡ52Qp. ~9!

From ~3! and ~6!, we find

S;a
a 52

p

T FQ1
t

z
ṗ1

1

2
pTS t

zT
uaD

;a

G ~10!

for the entropy production densityS;a
a . The simplest way to

guaranteeS;a
a >0 implies the evolution equation

p1tṗ52zQ2
1

2
ptFQ1

ṫ

t
2

ż

z
2
Ṫ

TG ~11!

for p, leading to

S;a
a 5

p2

zT
. ~12!

For t→0, Eq. ~11! reduces to the corresponding relation o
the Eckart theory. The frequently used truncated version

p1tṗ52zQ, ~13!

also known as Maxwell-Cattaneo equation, follows if th
bracket term on the right-hand side~RHS! of ~11! can be
neglected compared with the viscosity term2zQ. Below,
we shall give explicit criteria for this approximation. If the
brackets term vanishes identically, i.e., if the condition

Q1
ṫ

t
2

ż

z
2
Ṫ

T
50 ~14!

is satisfied, the full and the truncated theories become ide
tical. As we shall see, this is possible only in exception
cases.

Let us assume equations of state in the general form

p5p~n,T! ~15!

and

r5r~n,T!, ~16!

according to which the particle number densityn and the
temperatureT are our basic thermodynamical variables. Dif
ferentiating the latter relation, using the balances~6! and~7!
as well as the general thermodynamic relation
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]r

]n
5

r1p

n
2
T

n

]p

]T
, ~17!

one finds the following evolution law for the temperature~cf.
@22#!:

Ṫ5Qn
]r/]n

]r/]T
1

ṙ

]r/]T
, ~18!

or

Ṫ

T
52QF]p/]T]r/]T

1
p

T]r/]TG . ~19!

Forp50 and withQ53Ṙ/R, whereR is the scale factor of
the Robertson-Walker metric,~19! reproduces the well
known Tr;R21 behavior in a radiation-dominated
Friedmann-Lemaıˆtre-Robertson-Walker~FLRW! universe,
while for r5nm1 3

2nT, p5nT, and T!m, we recover
Tm;R22 in the matter-dominated case. For a viscous flu
the behavior of the temperature depends onp. Sincep is
expected to be negative, the second term in the brackets
the RHS of~19! will counteract the first one. Close to equi
librium, i.e., for upu,p, the existence of a bulk viscous pres
sure implies that in an expanding Universe the temperat
decreases less rapidly than in the perfect fluid case.

B. The truncated version

While the truncated version was used in most of the e
lier applications, more recently an increasing number of a
thors@26,28,31,29# has studied the full theory and compare
the results of the latter wih those of the truncated version.
some cases, these results differ dramatically, which may
interpreted as a breakdown of the Maxwell-Cattaneo-ty
equations as a reasonable approximation to the full the
under the corresponding conditions. What seems to be m
ing, however, are general criteria according to which o
may decide whether the truncated version is sensible a
beyond which limits it fails to give an answer close to that
the full theory. Intuitively, one expects the coincidence to b
better the closer one is to the equilibrium case. Below, w
shall give an example showing that there are identical resu
in exceptional cases even far from equilibrium. In order
clarify the approximative character of the truncated theo
we assume, as usual, the relationz5rt that guarantees a
finite propagation velocity of viscous pulses@10,27–29,31#.
In the following section, we are going to generalize this r
lation. Using~7! and ~19! in Eq. ~11! with z5rt, we find

p1tṗ52rQtF11
p

2r
~11b1g!1

p2

2r2
~a11!G ,

~20!

with the abbreviations

a[
r

nTcv
, cv[

1

n

]r

]T
, b[

]p/]T

]r/]T
5

1

ncv

]p

]T
,

g5
r1p

r
. ~21!
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Obviously, the truncated version is expected to be applica
for

upu
2r

~11b1g!!1,
p2

2r2
~11a!!1. ~22!

Since for ‘‘ordinary’’ matter b and g lie in the ranges
1/3<b<2/3 and 1<g<4/3, respectively, the first condition
is roughly equivalent top!r. For radiation withg54/3,
b51/3, anda51, the second condition is implied by the firs
one. For matter withg51, b52/3, anda52m/3T@1, how-
ever, the second condition has to be checked separately.
inequalities~22! may be regarded as criteria under which th
truncated theory is a reasonable approximation to the f
theory. Given equations of state~15! and ~16!, any solution
p of the truncated theory may be tested according to~22!
whether or not, and to which accuracy, it approximates t
full theory.

But there is a different possibility, namely, the case

p

2r
~11b1g!1

p2

2r2
~a11!50, ~23!

in which all the terms that distinguish the full from the trun
cated theory cancel among themselves. Relation~23! is iden-
tical to ~14! for z5rt, i.e., it is the condition under which
the full theory is identical to the truncated one. Solving~23!
for p/r, yields

p

r
52

11g1b

11a
. ~24!

According to the above-mentioned parameter ranges forg,
b, anda, upu!r is only possible fora@1, i.e., for massive
particles. Using~24! in ~7!, yields

ṙ

r
52Q

ga212b

11a
. ~25!

For radiation (g54/3, b51/3, a51) we find ṙ50 and,
consequently,Q5Q05 const in a flat FLRW universe. The
truncated and the full theories coincide in a specific bu
viscosity-driven inflationary universe. Since with~24!, p is
completely determined byr, provided, the equations of state
are given, the remaining equation~13! is no longer a dynami-
cal equation on its own, but may be used to calcula
t5t(Q0). Since the solution is stationary, i.e.,ṗ50, we
find

t0
r 5

4

3
Q0

21 . ~26!

In a radiation-dominated universe, the full theory and th
truncated version admit a common, bulk viscosity-driven in
flationary solution with a relaxation time of the order of th
expansion time. This seems to be a new result. For the te
perature dependence we find, from~19! and ~24!,

Ṫ

T
52Q

b2a~g11!

11a
, ~27!

yielding
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Ṫ

T
5Q ~28!

for radiation, orT;R3. The temperature increases in an e
panding Universe. This implication of the condition~14! was
first noticed by Maartens@29#. While this might appear
strange at the first glance, it is an unavoidable feature of a
bulk viscosity-driven inflation as is obvious from~19!. This
point will be discussed in more detail in the following sec
tion.

C. The dynamics of the full second-order theory

In this section we shall investigate the full causal theo
assuming the existence of general equations of state~15! and
~16! and

z

t
[ f5 f ~r!. ~29!

Following Belinskii et al. @10#, usually the relationz/t5r
was used to guarantee that the propagation velocity of v
cous pulses, which is expected to be of the order@28#

v;S z

rt D 1/2, ~30!

does not exceed the velocity of light. We shall not immed
ately specify tof5r in order to admit a certain range for this
propagation velocity. As we shall see below, this addition
freedom, allowing, e.g.,f5ar with 0,a<1, may be useful
in characterizing a possible inflationary phase. In this ca
one hasḟ5 f 8ṙ, wheref 8[d f /dr. Consequently, using~7!,

ḟ

f
52Qr

f 8

f S g1
p

r D . ~31!

Together with~19!, Eq. ~11! may now be written as

p1tṗ52rQtF fr 1
p

2r S 11b1g
r f 8

f D1
p2

2r2 S a1
r f 8

f D G .
~32!

It is obvious how the applicability conditions~22! of the
truncated version have to be modified in this more gene
case. Restricting ourselves to a flat FLRW universe with

Q2

3
5kr, ~33!

wherek is Einstein’s gravitational constant, and

Q̇52
3k

2
~r1p1p!, ~34!

the latter equation may be used to eliminatep and ṗ, re-
spectively. The bulk pressurep may be written as

kp523gH222Ḣ, ~35!

where 3H5Q andH[Ṙ/R or
x-
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p

r
52g2

2

3

Ḣ

H2 . ~36!

From ~15!, using~6! and ~19!, one realizes

ṗ5vs
2ṙ1Qp~vs

22b!, ~37!

with the sound velocityvs given by

vs
25S ]p

]r D
isentropic

5
n

r1p

]p

]n
1

T

r1p

~]p/]T!2

]r/]T
. ~38!

Differentiating ~34! and using~7! and ~37!, kṗ on the left-
hand side~LHS! of ~32! may be replaced by

kṗ522Ḧ26HḢ~11b!19H3g~vs
22b!. ~39!

Applying ~35! and ~39! in ~32!, we arrive at the evolution
equation forH

tḦ2
Ḣ2

H
tS a1

r

f
f 8D23ḢHtFga1

g

2

r

f
f 82

3

2
~11b!G1Ḣ

2
9

2
H3tF fr 1

g

2
~ga212b!1g~vs

22b!G1
3

2
gH250.

~40!

It should be pointed out again that in arriving at this evolu
tion equation, only equations of state~15!, ~16!, and ~29!
were used. We think this set of equations of state to be mo
general than that used in previous papers@31,28,29#. Espe-
cially, no specific temperature law, such asT5br r in @31#,
had to be postulated. There is no freedom to impose a se
rate temperature law. The behavior of the temperature is g
erally governed by~19!. As it is obvious from~18!, a relation
T;r r is possible for]r/]n50. Even in this case, however,
r is not arbitrary but determined byr5r(Tdr/dT)21. In the
specific case of a flat FRLW universe with

Ḣ

H
5
1

2

ṙ

r
, ~41!

Eq. ~19! reduces to

Ṫ

T
53~ga2b!

Ṙ

R
1a

ṙ

r
. ~42!

For constant values ofa, b, andg

T;raR3~ga2b! ~43!

results, which in the radiation-dominated case witha51,
b51/3, g54/3, specifies to

Tr;r rR
3. ~44!

Obviously, withr r;R24 for p50, one obtains the correct
limiting caseTr;R21.

D. Viscous exponential inflation

It has been a matter of some debate whether a bulk v
cous pressure is able to drive inflation@26–29,31#. While
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Hiscock and Salmonson@26# have shown that, using the
equations of state for a Boltzmann gas, the full causal the
does not admit an inflationary phase, different equations
state, such as those used by Romano and Pavo´n @31#, Zakari
and Jou@28#, and Maartens@29#, are compatible with a de
Sitter phase. It should be stressed again that dealing with
question of a viscosity-driven inflation, one has to assu
that the MIS theory is applicable far from equilibrium@29#.
Under these premises, we are going to consider now
possibility of a solution of the evolution equation forH with
H5H05 const. In such a case, Eq.~40! yields

t0
2153H0F f

gr
1
1

2
~ga212b!1vs

22bG . ~45!

In the radiation-dominated case, this reduces to

t0
r 5

4

9

r

f
H0

21 . ~46!

Keeping in mind that until now onlyf5 f (r) was used, one
recognizes that the ratio betweent0

r andH0
21 crucially de-

pends onf /r. If, as is usually assumed,f5r, we have
t0
r ,H0

21 . If, however,f is allowed to be smaller thanr, we
may havet0

r .H0
21 . It follows from ~30! that a relation

f,r implies a lower propagation velocity compared with th
casef5r. Providedf5r is equivalent to a propagation ve
locity that coincides with the velocity of light,f5r/3, e.g.,
leads to a propagation withvs51/A3, the velocity of sound
~see Israel and Stewart@6#!. In the latter case, the relatio
~46! specifies to

t0
r 5

4

3
H0

21 , ~47!

implying t0
r .H0

21 . In this case, the nonequilibrium is ‘‘fro-
zen in.’’ The viscous inflation is ‘‘nonthermalizing’’@29#.
While for t0

r ,H0
21 , there is a quick~compared with the

expansion rate! relaxation to~local! equilibrium, this is no
longer the case ift0

r becomes comparable to the expansi
rateH0

21 . Nonequilibrium situations such as this may occu
e.g., in grand unified theories~GUT’s! close to the Planck
time where the underlying microscopic process is the de
of heavy vector bosons@32#. According to Maartens@29#, the
condition t0.H0

21 may be regarded as a consistency cri
rion for causal viscous inflation. Clearly, fort0,H0

21 , the
Universe will relax to an equilibrium state in less than o
expansion time. A successful inflation, however, has to
for many characteristic expansion times.

In the matter-dominated case withg51, b52/3, vs
2!1,

a52m/3T@1, we find

t0
m;

T

m
H0

21 , ~48!

i.e., we are always in the ranget0
m!H0

21 . The time scale for
the relaxation to equilibrium is much smaller than the expa
sion time scale.

Calculating the dependencet0(H0) along the same lines
that lead to~45! within the truncated version, provides u
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t0
2153g21F fr 1g~vs

22b!GH0 . ~49!

Specializing to the radiation-dominated case,~49! reduces to
~46!, i.e., the truncated version yields exactly the same d
pendence as does the full theory. We have rediscovered
specific case, discussed in Sec. II B, in which the full theor
coincides with the truncated version. For the matte
dominated case, however, the result of the truncated theory
different from ~48!. This is not unexpected after the consid
erations of Sec. II B.

We shall now look at the behavior of the basic thermody
namic quantities under the conditionH5H0 . Because of
~40!, this impliesr5r05const and~36! reduces to

p

r
52g. ~50!

According to~6!, the particle number density decreases ex
ponentially. The temperature evolution law~19!, together
with ~50!, becomes

Ṫ

T
523H0F]p/]T]r/]T

2
r

nTcv
gG , ~51!

equivalent to

Ṫ5
3H0

cv

]r

]n
. ~52!

Generally, the temperature is not constant in the inflationa
phase. Providedcv is finite, a constant temperatureT5T0 is
only possible for]r/]n50, corresponding toT;r r with
r5r(Tdr/dT)21 @see the discussion below~40!#. For any
]r/]n.0, the temperatureT increases during inflation.
Since ]r/]n.0 and ]r/]n50, respectively, lead to dra-
matically different results for the entropy production during
a bulk viscosity-driven inflationary phase~see below!, this
point deserves a detailed discussion. It is frequently used th
in the equations of state for radiation in equilibrium
p5nT and r53nT, which are specific cases of~15! and
~16!, the number densityn may be eliminated according to
n;T3, resulting inp5p(T) andr5r(T) with p5r/3 and
r;T4. Then T is the only independent variable and
]r/]T→dr/dT. In order to check whether a corresponding
procedure is possible forpÞ0, we shall assume an arbitrary
dependencen5n(T) instead of the equilibrium relation
n;T3. With ~19!, we find

ṅ523HT
dn

dT S b1a
p

r D . ~53!

Comparison with~6! leads to the general relation

dT

T
5S b1a

p

r D dnn . ~54!

For p50, we recoverT;n1/3 for radiation (b51/3). For
matter (b52/3), the correct resultT;n2/3;R22 is obtained
as well.
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5488 53WINFRIED ZIMDAHL
With the condition~50! for bulk viscosity-driven expo-
nential inflation and fora5const equation~54! yields

T;nb2ga. ~55!

In the radiation-dominated case

n;T21 ~56!

results. While in equilibriumn is an increasing function of
T, n decreases withT in a de Sitter phase, characterized b
~50!, which is a far-from-equilibrium state. According to
~56!, the exponential decrease of the particle number den
following from ~6! is necessarily accompanied by a corre
sponding increase in the temperature. This is obviously
compatible withT;r1/4 from ]r/]n50. Equations of state
with ]r/]n50 imply that the exponential dilution of the
particles of the out-of-equilibrium fluid according to~6! does
not have any impact at all on the energy density of this flu
We conclude that the previously used@31,28,29# ad hocas-
sumption T;r r is not consistent with~15!, ~16!, and
n5n(T) if applied to a bulk pressure-driven inflationar
phase.

While an increasing temperature during the de Sitter sta
appears unfamiliar, this kind of behavior is not quite une
pected for an equation of state~16!. Sincen decreases expo-
nentially,T must increase accordingly in order to guarant
ṙ50, as long as]r/]n.0 and]r/]T.0. Exactly this kind
of behavior was found by Hiscock and Salmonson@26# for
the truncated Israel-Stewart theory. As was demonstra
above, the full theory exhibits a corresponding feature
well. ~Note, that according to@26# there does not exist a de
Sitter phase in the full theory for the case of a Boltzman
gas.! If one does not use, however, a relationshipT;r r and
the behavior ofT is governed by~52! with ]r/]n.0, this
has important consequences for the entropy production d
ing bulk viscous-driven inflation, discussed by Maarte
@29#. The entropy in a comoving volume isS5nsR3. With
~6! and ~9!, the change ofS is

Ṡ52
pQ

T
R3. ~57!

In the de Sitter phase with~50!, the latter expression reduce
to

ṠH5H0
53H0g

r0R
3

T
. ~58!

This change of the comoving entropy depends crucially
the behavior of T. For T5const which follows from
T;r r , equivalent to]r/]n50 @see ~52!#, we recover the
exponential increase ofṠ found by Maartens@29#. For equa-
tions of state~15! and ~16!, however, with]r/]n.0, the
temperature dependence in the case of radiation (g54/3) is
Tr;r0R

3 as follows from~44!. Ṡ turns out to be constant
rather than exponentially increasing. Integrating~58!, one
finds only a linear growth inS. Consequently, there is no
way to generate a considerable amount of entropy durin
bulk viscosity-driven de Sitter phase.

To investigate the stability of the solutionsH5H0 , we
probe the latter with small perturbations, i.e., we assum
y
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H5H0@11h(t)# with uhu!1 in Eq. ~40!. Equation~40! is
valid for spatially flat homogeneous and isotropic spac
times, therefore the stability analysis is restricted to this ca
as well. We assume that the dimensionless quantitiesf /r,
g, a, b, andvs remain unchanged for small deviations from
H5H0 . Since we found the relaxation timet0 in the infla-
tionary phase to be proportional toH0

21 , it is natural to
assumet;H21 generally and to fix the proportionality fac-
tor by ~45!. Retaining only terms linear inh, the resulting
equation forh is

ḧ13H0Kḣ50, ~59!

with

K[11
f

gr
1vs

22
g

2 S r

f
f 81aD . ~60!

There exists a solutionh5const that may be used to redefin
H0 . The other solution is stable forK.0. In the radiation-
dominated caseg54/3, vs

251/3, a51, b51/3 and with
f5ar the solution is stable for anya.0. In the matter-
dominated caseg51, vs

2!1, a@1, and b52/3 we find
K'2a/252m/3T, i.e., the solution is unstable.

We conclude that there exist stable viscosity-driven infl
tionary solutions as long as the equation of state is close
that for relativistic particles. There do not exist stable sol
tions for equations of state close to that for dust. Even for t
stable solutions, however, the temperature increases ex
nentially during the de Sitter stage. Since the particle numb
density decreases exponentially, this unfamiliar behavior
unavoidable to guaranteer5r0 as long as]r/]n and
]r/]T are assumed to be positive. A temperature depe
dence such as this is not as strange as it might appear at
first glance. A nonvanishing bulk viscosity has always th
tendency to heat up the Universe. Close to local equilibriu
this means that the decrease ofT due to the expansion of the
Universe is less than that without bulk viscosity. Applyin
the cosmological dynamics with bulk viscosity to situation
far from equilibrium, in our case to a hypothetical inflation
ary phase, thep term just compensates the equilibrium term
in ~7! and ~34!. It overcompensates them, however, in th
case of the temperature~19!.

In the following section we show how particle productio
processes may modify this behavior of the thermodynam
quantities during a de Sitter phase.

III. BULK VISCOUS PRESSURE AND PARTICLE
PRODUCTION

A. Basic dynamics

Throughout this paper, the Universe is studied within
single fluid model. There is entropy production due to a no
vanishing bulk pressure. While both for pure radiation an
pure dust the bulk viscosities tend to zero, considerable v
ues of the latter are expected in mixtures of relativistic an
nonrelativistic matters. Consequently, the single fluid un
verse with bulk viscosity may be regarded as a simplifie
description of a system of two~or more! interacting compo-
nents. Usually, it is assumed that the interaction responsi
for the existence of a nonvanishing viscous pressure does
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change the overall number of fluid particles; i.e., it is a
sumed that~4! holds. However, interactions with conserve
particle numbers are only a special case, particularly at h
energies. Moreover, at times of the order of the Planck tim
or during the scalar field decay in inflationary scenarios, p
ticle or string production processes are supposed to affect
cosmological dynamics, leading to features such as ‘‘defl
tionary universes’’ and ‘‘string-driven inflation’’@16–20,38#.

In this section we generalize the previous formalism
the case that the existence of a nonvanishing bulk pressur
accompanied by an increase in the number of fluid particl
We start our investigations with~1!, ~2!, ~3!, and~5! as well,
but ~4! is now replaced by

N;a
a 5nG, ~61!

yielding

ṅ1Qn5nG. ~62!

G is the particle production rate which has to be regarded
an input quantity in our phenomenological description. I
stead of~9!, now

nTṡ52Qp2~r1p!G ~63!

results. The entropy production density is given by

TS;a
a 52nmG2pFQ1

t

z
ṗ1

1

2
pTS t

zT
uaD

;a

G , ~64!

wherem is the chemical potential

m5Ts2
r1p

n
. ~65!

A change in the number of particles, i.e.,GÞ0, is believed to
be phenomenologically equivalent to an effective visco
pressure@13,15,17–21#. A discussion of this equivalence on
the level of relativistic kinetic theory has been given recen
@33#. In order to relate the present investigations to previo
work, we shall in a first step focus on the Eckart theory, i.
to the caset50. Equation~64! reduces to

TSE;a
a 52nmG2pEQ ~66!

in this case, where the subscriptE stands for ‘‘Eckart.’’ For-
mal rewriting yields

TSE;a
a 52pE@Q1nmpE

21G#. ~67!

As usual, one has to guaranteeSE;a
a >0. Since we expect the

particle production to be effectively equivalent to a visco
pressure, we have to demand additionally that the entire
tropy production is given in terms ofpE , i.e.,

SE;a
a 5

pE
2

zT
, ~68!

wherepE is determined by

pE52z@Q1nmpE
21G#, ~69!
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pE
21zpEQ52znmG, ~70!

wherez now is a generalized bulk viscosity coefficient. Fo
GÞ0, the latter inhomogeneous quadratic equation replac
the familiar linear relationpE52zQ. Via ~70!, the particle
production rateG influences the viscous pressurep. For
G50 as well as form50, we recoverpE52zQ. It is con-
venient to splitpE in the following way. Letl be a not
necessarily constant parameter lying in the range 0<l<1
such that the fractionlpE of pE describes a ‘‘creation’’
pressure, because ofGÞ0, while the fraction (12l)pE is
connected with a conventional bulk viscosity. With this spli
ting, Eq. ~63! may be written as

nTṡE52~12l!QpE2lQpE2~r1p!G. ~71!

Frequently@22–25#, the assumption was made that the cre
ation process does not affect the entropy per particle. This
equivalent to the requirement that the terms in~71! due to the
creation process cancel among themselves:

~r1p!G52lpEQ. ~72!

Physically, this means that the particles are created with
fixed given entropy. Then,ṡE is given by

nTṡE52~12l!QpE . ~73!

Only that fraction ofpE , that is not connected with a change
in the particle number, contributes toṡE . In the limit l51,
in which the entire viscous pressure is due to particle pr
duction, one hasṡE50 andSE;a

a 5nsEG, i.e., there is entropy
production because of the enlargement of the phase spa
Using ~72! in ~69!, yields

pE52zQF12l
nm

r1pG . ~74!

Combining the latter relation again with~72!, we find that
the partlz of the generalized coefficient of bulk viscosity
z that arises due to a nonvanishing particle production rate

lz5
GQ22

r1p2lnm
. ~75!

Of course, Eq.~74! with ~68! is also obtained if the condition
~72! is immediately introduced in~66!.

Obviously, Eq.~68! with ~69! is not the only way to guar-
anteeS;a

a >0. For a different approach that treatsG as a ther-
modynamic flux independent ofp, the reader is referred to a
paper by Gariel and Le Denmat@34#.

Coming back now to the full second order theory agai
we try to find a causal evolution equation forp that yields
~12! in the caseGÞ0 as well. Equation~64! may be written
as

TS;a
a 52pFQ1

t

z
ṗ1

1

2
pTS t

zT
uaD

;a

1m
nG

p G , ~76!
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generalizing the relation~67! of the Eckart theory. The con-
dition S;a

a >0 with ~12! is now satisfied for

p21tpṗ1
1

2
p2TS t

zT
uaD

;a

1zpQ52zmnG, ~77!

instead of~70!. The viscous pressurep is determined by a
nonlinear inhomogeneous differential equation. Form50,
Eq. ~77! formally reduces to~11!. For the sake of generality,
we shall however retain them term in the following consid-
erations. A chemical potential may act, e.g., as an effect
symmetry-breaking parameter in relativistic field theorie
@35–37#.

In the Eckart theory, the general nonlinear relation~70!
was reduced to the linear relation~74! by the requirement
~72!. Unfortunately, a corresponding simplification of~77!
via a relation~72! is not possible in general. The essentia
physical difference between the noncausal and the cau
theories is the appearance of a finite relaxation time with
the latter. If a nonvanishingG is responsible for the occur-
rence of an effective viscous pressure, a causal theory ha
include a finite relaxation time which is just the time interva
during which the corresponding part ofp decays to zero
after G has been switched off. But the relation~72! is an
Eckart-type relation due to whichlp50 is immediately im-
plied by G50. Therefore, an approximation~72! cannot be
used in a causal theory. If, however, the relation~72! which
follows from the requirement that the creation process do
not affect the entropy per particle has to be abandoned,
means that within the causal theory the creation process c
tributes toṡ in general. While in the Eckart theory, the par
ticle production rate was rather simply related to the visco
pressure by~72!, G enters the equation forp of the causal
theory as an independent parameter in a less obvious wa

Our present approach assumes that the deviations fr
equilibrium may be characterized in terms of one sing
quantityp also for the case of a nonvanishing particle pr
duction rateG. This implies that there is only one~general-
ized! coefficient of bulk viscosityz and one relaxation time
t. The advantage of this assumption is that there exists o
one causal evolution equation, namely,~77!, taking into ac-
count the influence ofG on p. ~For an alternative proposal
see again@31#.! Since the latter equation is nonlinear, there
no obvious separation into a conventional bulk pressure a
a ‘‘creation’’ pressure. We shall assume further, thatz and
t continue to be related by~29!. The dependence of the
relaxation timet on G will be discussed below for specific
cases.

For m50, Eq. ~77! appears to be identical to the cas
G50, but there are differences in the behavior of the partic
number density and the temperature. The former is de
mined by~62!. Using ~16!, ~17!, ~7!, and~62! instead of~6!,
the temperature law~19! is replaced by~cf. @22#!

Ṫ

T
52QF]p/]T]r/]T

1
p

T]r/]TG1GF]p/]T]r/]T
2

r1p

T]r/]TG
~78!

in the case of a nonvanishing particle production rate. T
particle production affects the temperature not only throu
ive
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the effective viscous pressurep but there is an additional
direct coupling as well. Alternatively, Eq.~78! may be writ-
ten as

Ṫ

T
52~Q2G!

]p/]T

]r/]T
2

pQ1~r1p!G

T]r/]T

52~Q2G!
]p/]T

]r/]T
1

nṡ

]r/]T
. ~79!

With this evolution law for the temperature, different from
~19!, the evolution equation~77! for p becomes different
from ~32! even in the casem50, although~10! and ~76!
seem to coincide. The relation~37! for ṗ is now replaced by

ṗ5rF ~G2Q!gvs
22bS gG1Q

p

r D G . ~80!

Instead of~39!, we have

kṗ522Ḧ26HḢ~11b!19H3g~vs
22b!

23H2Gg~vs
22b!. ~81!

The evolution equation forp may be written

p1tṗ52rtH fr S Q1
nm

r1p

g

p/r
G D

1
p

2r FQS 11b1g
r f 8

f D2G~b2ga!G
1

p2

2r2
QS a1

r f 8

f D J , ~82!

generalizing~32!. A procedure analogous to that leading t
~40! in Sec. II provides us with an evolution equation fo
H in a flat, homogeneous, and isotropic universe with pa
ticle production:

H tḦ2
Ḣ2

H
tS a1

r

f
f 8D 23ḢHtFga1

g

2

r

f
f 82

3

2
~11b!G

1Ḣ1
1

2
GḢt~ga2b!2

9

2
H3tF fr 1

g

2
~ga212b!

1g~vs
22b!G1

3

2
tH2GgS vs22b1

ga2b

2 D 1
3gH2

2 J
3H 2g2

2

3

Ḣ

H2 J 2
3

2
H2Gt

f

r
g

nm

r1p
50. ~83!

For an easier comparison with Eq.~40!, we kept separate the
common factorp/r @see~36!# on the LHS of this equation.
Having only one evolution equation forH is a consequence
of our previous assumption that it is possible to character
the deviations from equilibrium by a single quantityp only.

Equation~83! simplifies considerably form50
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tḦ2
Ḣ2

H
tS a1

r

f
f 8D23ḢHtFga1

g

2

r

f
f 82

3

2
~11b!G1Ḣ

1
1

2
GḢt~ga2b!2

9

2
H3tF fr 1

g

2
~ga212b!1g~vs

2

2b!G1
3

2
tH2GgS vs22b1

ga2b

2 D1
3

2
gH2 5

~m50!

0.

~84!

For G50, both equations reduce to~40!. Eliminating p in
the evolution equation~78! for T with the help of~36!, we
find

Ṫ

T
53~ga2b!

Ṙ

R
2~ga2b!G1a

ṙ

r
, ~85!

instead of~42!. For constant values ofa, b, andg,

T;raSR3

N D ga2b

5raS 1nD
ga2b

. ~86!

For g54/3, b51/3, a51, this specifies to

T;r
R3

N
5

r

n
. ~87!

B. Inflationary solutions

Looking for solutionsH5H05const of~83!, we find the
expression fort0 that generalizes~45!:

t0
2153H0F f

gr
1

ga212b

2
1vs

22bG
2GF nm

r1p

f

gr
1

ga2b

2
1vs

22bG . ~88!

If the particle production rate is comparable with the expa
sion rate, it may essentially influence the relaxation tim
t0 . Especially interesting is the possibility that the resultin
effect of theG terms in~88! is to enlarget0 . In this case,
particle production may either enable or improve the fulfi
ment of the ‘‘freezing-in’’ conditiont0.H0

21 for the non-
equilibrium. In other words, the consistency criterion for in
flation might be easier to satisfy in the case with partic
production than without. Of course, these consideratio
make only sense as long ast0 remains finite. As we shall see
below, there are parameter combinations for whicht0 di-
verges.

If, during some time interval, the particle production ra
G is proportional to the expansion rate and approximate
constant as well, i.e.,G53lH0 , we get

t0
2153H0F f

gr S 12
lnm

r1pD2
1

2

1~12l!S ga2b

2
1vs

22bD G . ~89!
n-
e
g

l-

-
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ly

For particles withm50 and an equation of state close to tha
for radiation, it is obvious that for anyl.0, the relaxation
time t0 is larger than that forl50. In the limiting case
l51, the production rate of the particles coincides with th
expansion rate.t0 then is given by

t0
21 5

~l51!

3H0F f

gr S 12
nm

r1pD2
1

2G . ~90!

Specifying again tog54/3 and restricting ourselves to
m50,

t0
r 5

~l51!4

9

H0
21

f

r
2
1

2

~91!

results. For f5r, the usual choice in the literature
@10,28,29,31#, this expression fort0 is twice as large as the
corresponding expression from~46!, althought0

r ,H0
21 in

both cases. Forf52r/3, however, we findt0
r ,H0

21 from
~46!, while ~91! yields t0

r .H0
21 . In the latter case, the non-

equilibrium is ‘‘frozen in,’’ in the former one it is not. This
demonstrates explicitly that under certain circumstances, p
ticle production may improve the conditions for bulk viscou
inflation. On the other hand, Eq.~91! makes sense only for
f /r.1/2 since forf5r/2, the relaxation time diverges. Es-
pecially the casef5r/3, dealt with forG50 in Sec. II, is
impossible forG53H0 .

The caseG53H0 is singled out in different respects as
well. For anyG,3H0 , the particle number densityn is de-
creasing according to~62!, while according to~86!, the tem-
perature T increases correspondingly to guarante
ṙ05Ḣ050. In the limitG53H0 , n becomes constant and it
follows from ~86! that the temperature is constant as we
Only in this extreme limiting case which corresponds t
ṡ50 ~this is only possible since we restricted ourselves to
time interval withG5const), the temperature may remai
constant in a de Sitter phase driven by an effective bu
pressure. ForG,3H0 with ṡÞ0, the temperature necessar
ily increases, although forGÞ0 at a lower rate than that for
G50.

C. Entropy production

Eliminating p from ~63! with the help of~36! and ~41!,
the time dependence of the entropy per particle is determin
by

nTṡ5~r1p!@3H2G#1 ṙ, ~92!

or

nTṡ5S rR3g

Ng D • Ng

R3g . ~93!

With ~62! and

T5T0S r

r0
D aSR3N0

R0
3N D ga2b

~94!

from ~86!, where the subscript 0 refers to some initial time
one finds
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ṡ5
1

n0T0
S r0

r D aS R0
3N

R3N0
D ga212bS NR3D gS rR3g

Ng D •. ~95!

In the inflationary phase withr5r0 andH5H0 , we have

ṡ5
r0
n0T0

gS R0
3N

R3N0
D ga212b

@3H02G#, ~96!

which for radiation (g54/3, a51, b51/3) reduces to

ṡ5
4r0
n0T0

FH02
1

3
G G . ~97!

Integration of~97! yields

s5
4r0
n0T0

FH0~ t2t0!2
1

3E0
t

GdtG1s~ t0!. ~98!

The basic difference compared with the caseG50 is that the
change of the entropy in a comoving volume,S5nsR3, is
no longer determined by the change ofs alone. With the
equations of state for radiation,S is given by

S5H 4r0
n0T0

FH0~ t2t0!2
1

3E0
t

GdtG1s~ t0!JN0expE
0

t

Gdt

~99!

in the inflationary phase. IfG is again assumed to be ap
proximately given byG53lH0 , the expression~99! reduces
to

S~ t !5F 4r0
n0T0

~12l!H0~ t2t0!1s~ t0!GN~ t0!

3exp@3lH0~ t2t0!#. ~100!

It follows that forGÞ0, we have an exponential increase o
the comoving entropyS during the de Sitter phase. Startin
from the latter expression forS, it is possible to apply
Maartens’ numerical estimations@29# concerning the entropy
production during the inflationary phase. All his conside
ations of this point are valid in the present case forlÞ0,
provided hisH0 is replaced bylH0 . His conclusion that it is
possible ‘‘to generate the right amount of entropy witho
reheating’’ may hold in a universe with particle production
There is complete equivalence to Maartens’ result for t
entropy production forl51. Consequently, a substantia
production of entropy during a~bulk viscosity-induced! dis-
sipational inflationary phase is possible if at least a part
the bulk viscous pressure is related to an increase in
particle number. In a sense we have reestablished Maart
result, although within a different setting: An exponenti
growth of the comoving entropy is only possible if the vis
cous pressurep in ~1! is, at least partially, a ‘‘creation’’
pressure connected with an increase in the number of fl
particles rather than an increase in the entropy per partic

It remains to consider the stability of the inflationary so
lutions forGÞ0. Proceeding as in Sec. II we have
-

f
g

r-

ut
.
he
l

of
the
ens’
al
-

uid
le.
-

ḧ1~3H0K2GM !ḣ50 ~101!

instead of~59!, where

M[2
f

gr

nm

r1p
1vs

22b. ~102!

Consequently, the inflationary solutions are stable f
3H0K2GM.0. For m50 and the equations of state for
radiation, one hasM50 and the stability condition reduces
to K.0 again. The stability properties of the correspondin
inflationary solutions are not affected at all by a nonvanis
ing G. With equations of state for matter, the inflationar
solutions have the same instability as forG50.

IV. SUMMARY

Using particle number density and temperature as ba
thermodynamical variables of the cosmic fluid we have stu
ied the full Müller-Israel-Stewart theory for a spatially flat,
homogeneous, and isotropic universe with bulk viscous pre
sure. We found general criteria for the applicability of th
so-called truncated versions. It was shown that in exceptio
cases, there exist common solutions of the full and the tru
cated theories far from equilibrium. The possibility of expo
nential inflationary solutions driven by bulk viscosity wa
investigated. Almost all corresponding solutions imply a
exponential growth of the temperature during the de Sitt
stage. Since the number density of the fluid particles d
creases exponentially, only a corresponding increase in
temperature guarantees a constant energy density as lon
the specific heat is positive and finite and the energy dens
increases with the particle number density. In the second p
of the paper the bulk viscous pressure was allowed to a
count partially or fully for particle production processes. A
nonvanishing particle production rate may enlarge the rela
ation time for a viscous pressure that is supposed to dr
inflation. It may help to ‘‘freeze in’’ the corresponding non
equilibrium, i.e., to improve the conditions for inflation
There exist stable, inflationary solutions for equations
state close to that for radiation. Because of the increase in
particle number, the comoving entropy increases expone
tially in this period. Only in the limiting case where the
entire inflation-driving viscous pressure is due to partic
production, both the number density and the temperature
main constant during the de Sitter phase.
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