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Metric perturbations in two-field inflation
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We study the metric perturbations produced during inflation in models with two scalar fields evolving
simultaneously. In particular, we emphasize how the large-scale curvature perturbaiiorixed energy
density hypersurfaces may not be conserved in general for multiple field inflation due to the presence of
entropy as well as adiabatic fluctuations. We show that the usual method of solving the linearized perturbation
equations is equivalent to the recently proposed analysis of Sasaki and Stewart in terms of the perturbed
expansion along neighboring trajectories in field space. In the case of a separable potential it is possible to
compute in the slow-roll approximation the spectrum of density perturbations and gravitational waves at the
end of inflation. In general there is an inequality between the ratio of tensor to scalar perturbations and the tilt
of the gravitational wave spectrum, which becomes an equality when only adiabatic perturbations are possible
and{ is conserved[S0556-282(96)05810-9

PACS numbds): 98.80.Cq

I. INTRODUCTION the parameters at horizon crossing depends on the constancy
of ¢ on scales far outside the horizon. The valug efhen a

Inflation is the only known mechanism that solves thegiven comoving scale leaves the horizon during inflation can
horizon and homogeneity problems of hot big bang cosmolthen be equated with that at reentry during the radiation- or
ogy [1]. However, the main observational prediction of in- dust-dominated eras.
flationary models is the spectrum of density and gravitational However, most models of particle physics predict not
wave perturbations they produce. Observations of temperanly one but many coupled scalar fields and in the presence
ture anisotropies in the microwave background, strictlyof additional interacting fields we must reevaluate these re-
speaking, only provide an upper limit on the amplitude ofsults. The conservation dfrelies on the perturbations being
such perturbations, and could in principle be produced bwdiabatic during inflation. In the case of more than one field
some other source of inhomogeneities. Nonetheless, the apvolving, there is the possibility of entropy as well as adia-
parently Gaussian and nearly scale-invariant nature of thpatic fluctuations during inflation. We assume that all our
observed perturbations are natural properties of those pracalar fields will eventually decay during reheating and only
duced by quantum fluctuations of the inflaton field duringadiabatic perturbations remain after inflation. The validity of
inflation. If inflation is indeed responsible for the observedthis assumption is, of course, very dependent upon the re-
anisotropies of the microwave background and the initiaheating mechanism, but we will leave its investigation for
curvature perturbations from which galaxies formed, then théyture work.
amplitude over a limited range is already constrained by ob- |n this paper we will illustrate the wider range of behavior
servationg2—4]. In the future both the range and precision possible in multiple-field inflation from the simultaneous
of these constraints promise to improve considerably and sevolution of two fields. Some previous studies of inflation
it will be increasingly important to fully understand the pre- involving two fields, such as hybrifi7,8] or extended 9]
dictions made by the inflationary paradigm and the robustinflation, only considered the case where one field evolves
ness of these predictions. during inflation and the role of the second field is just to end

Until comparatively recently it was often stated that infla- inflation by a sudden phase transition, so the single-field re-
tion predicts a scale-invariant Harrison-Zel'dovich spectrumsults apply. Double-inflation modef40] invoke consecutive
of density perturbations with a negligible amplitude of gravi- periods of inflation driven by two noninteracting fields. The
tational waves. In fact, both the tilt of the spectrum and thedensity perturbation spectra produced by including an inter-
relative contribution of gravitational waves to the microwaveaction term between these fields was investigated in Ref.
background anisotropies are model-dependent quarnitgies [11]. Perturbations in models that involve two interacting
In the conventional model of inflation driven by the potential scalar fields have usually been considered in the context of
energy density of a single slowly rolling scalar field, the tilt Brans-Dicke gravity{12—14 or more general scalar-tensor
and the ratio of tensdgravitational waveto scalardensity  theories[15,16, where the dilaton is expected to vary to-
perturbations in the microwave background can be detergether with the inflaton field during inflation. However, it is
mined by the slow-roll parameters which describe the slopenhe evolution of the second field rather than its coupling to
and curvature of the potential as the perturbations cross outhe metric tensor that we wish to consider here. Only very
side the horizon during inflatiofb]. Scalar curvature pertur- recently have analytic results for general multiple-field infla-
bations/ can be understood as originating from quantumtion been presented by Sasaki and Stesr.
fluctuations of the inflaton field that perturb the time it takes We will show how to evaluate in the slow-roll approxi-
to end inflation[6], {=Hé&t=H ¢/ ¢. Our ability to deter- mation the curvature perturbation at the end of inflation, us-
mine the linear perturbation at late times solely in terms ofing two alternative approaches corresponding to different

0556-2821/96/53.0)/54379)/$10.00 53 5437 © 1996 The American Physical Society



5438 JUAN GARCIA-BELLIDO AND DAVID WANDS 53

gauge choices. In order to calculate the perturbation, we neeslhere st= dp/p. In particular, for inflation with a single
to explicitly integrate along classical trajectories, and it turnsfield we can writest= 5¢/(}5, which gives the familiar result
out that it is only possible if the potential is separable in thefor the origin of density perturbatiori§].

different fields. We find that the presence of entropy fluctua- We will define a quantity

tions modifies the usual results for the scalar spectra pro-

duced by inflation. In particular, we show that the noncon- V2d H?2 .

servation of/ far outside the horizon leads to the violation of (=Rs———=b——(OP+H D), (2.9
the usual consistency relation between the ratio of tensor to SH H

zgzgiupr)nerturbatlons and the tilt of the gravitational WaV€yritten in terms of the gauge-invariant metric potential,

which coincides with72s on scales far outside the horizon

(k<aH). The time dependence d¢f on these superhorizon
Il. METRIC PERTURBATIONS scales is given by

We will consider linear perturbations about a spatially flat D s
Friedmann-Robertson-WalkéFRW) metric with scale fac- 'gz 3H<.B— op
tor a(t). The most general scalar and tensor metric pertur- op
bations can be written 448-2Q

Z, (2.6

where §p and dp are the perturbations in the pressure and

ds?=—(1+2A)dt?>+2B ;dXdt+a%(t)[(1—2.2) 8j energy density on spatially flat hypersurfaces. As we can see,
o] Eq. (2.6) vanishes for adiabatic perturbations. This is the
+2E j;+ h;Jdx'dx/, (2.1 case for inflation with a single field, so we can evaluate the

B i i curvature perturbation at late times by equating it with that at
whereA, B, E, and.” are scalar perturbations aig is @ porizon crossing. In fact{ continues to be conserved on

transverse traceless tensor perturbation corresponding Qherhorizon scales during the radiation- and dust-dominated

gravitational waves. The perturbations can be decomposegas and, therefore, we can directly equate the curvature

into Fourier modesgwith comoving wave numbek) which  perturbation when it left the horizon during inflation with

can be treated separately in the linear approximation wherg,5t at reentry.

they decouple. , _ The expression in Eq2.5) allows one to evaluaté once
However, not all the scalar perturbauor}s are physical d?\'/ve know®. To that end, one can integrate the coupled per-

grees of freedom and to remove gauge artifacts we can defingation equations fob and the scalar fields in a particular

gauge-invariant quantitied8—-2( gauge; see, for instance, Ref$4,16. This allows us to give
J an expression fof at the end of inflation in terms of the field
d=A+— (B—a’E), (2.2)  fluctuations at horizon crossing. AI_terngtiver, one could find
at { by evaluating the perturbation in the number of

. e-foldings, 6N, given in Eq.(2.4),
V¥ =2%-H(B—a’E), (2.3
) {=7s=6N, (2.7
whereH=a/a is the Hubble rate of expansion. Note that
these are equivalent to the metric perturbatiénand.7 in as proposed recently by Sasaki and SteWar]. On spa-
the longitudinal gauge, wheile=B=0. Moreover, for any tially flat hypersurfaces the perturbed fields on superhorizon
perturbations whose spatial part of the stress energy tensor ssales effectively obey the same equations of motion as the
diagonal, the equations of motion requide=®, [20] so homogeneous background fields; see 832). Thus 6N is
considering only linear perturbations the metric has just onghe difference in the number etfoldings along neighboring
scalar degree of freedom. classical trajectories in phase spack order to evaluate
The scalar7 is the intrinsic curvature perturbation on SN at the end of inflation in terms of field fluctuations at
hypersurfaces of fixed timé, which transforms under a horizon crossing, we have to integrate the background equa-
gauge transformatioh—t+ ¢° as.2—.2+H&° [20]. It is  tions of motion, not only along a single trajectory but also
convenient to evaluate the curvature perturbation on a hyperlong the perturbed trajectories. We will show that this does
surfaceS of constant energy density,! corresponding to indeed yield the same results as those obtained by directly
the choice of gauge é&°=6p/p [21]. This gives solving the evolution of the metric perturbations in the lon-
Jes=.72+Héplp. The intrinsic three-curvature on this sur- gitudinal gauge. The difference between the two approaches
face is ®R=4V2%s, where V?=a 24,9 is the three- Iis just a choice of gauge.
dimensional Laplacian. Note that if we start from a flat hy-  In practice, whichever method one adopts, one needs to
persurface .¢2=0), we can interpret2s as being due to a know not only the initial perturbation but also its integrated
perturbation in the logarithm of the scale factor number  effect along the subsequent trajectory. In the following sec-

of e-foldings, N) on that hypersurface: tions we shall show how the perturbations can be evaluated
in specific models. However, it is important to remember that
s =6N=H6t, (2.9 ¢ only remains a conserved quantity thereafter if we can treat

YIn single-field inflation, this corresponds to a comoving hypersur- 2By classical trajectories we mean the unperturbed trajectories
face. that are solutions of the classical equations of motion.
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the end of inflation as a transition at fixed energy density and’he condition for inflation to occud,H
the subsequent evolution is adiabatic. If we wish to matctEgs.(3.2) and(3.3)],

metric perturbations at the end of inflation, across a hyper- )

surface of fixed energy density, we must matchn large P*+e Ng2<W(op,0). (3.9
scales[21]. While we expect this to be true in single-field

models of inflation, it is a much more complicated issue in In calculating perturbations on a comoving schlewe
two-field inflation, since it depends upon the dynamics ofshall see that an important quantity is the number of
reheating. Such an involved issue deserves further attentigtrfolds from the end of inflation when that scale crossed

<H?, is thus[see

and is beyond the scope of this paper. outside the horizonK=a,H,),

The attractive feature of Sasaki and Stewart’s approach is
that Eq.(2.7) is a purely geometrical result, independent of N=— J’* Hdt (3.5
the matter conterfsubject only to the conditiod’ = ®) and e ' '

could in principle also be applied to calculateon surfaces
long after the end of inflation. However, evaluatifly in the ~ Our present horizon crossed outside the Hubble scale about
radiation-dominated era once again requires a quantitativeO to 60e-foldings before the end of inflation. The precise
understanding of reheating along different trajectories. Imumber depends logarithmically on the energy scale during
what follows we will restrict ourselves to a calculation of the inflation and the efficiency of reheating, and so is weakly
curvature perturbation at the end of inflation. model dependent.

We can derive an exact expression for the time depen-

.. TWO-FIELD MODELS OF INFLATION dence of¢ using the linearly perturbed field equatigris]

In this section we will consider a model with two scalar - H_, o¢ bo
fields, described by the action (== ﬁv <I>+H<—¢—— o Y, (3.6
1 1 1 where
SZJ d*x\g 52R-50%¢.abp— 56 " g%0 40,
1d ¢2—e_2hirz ] e 2h;2
YZza(m) +h'¢’(m) -
—W(é,0) |, (3.1 P +e o pc+e o -
3.

whereR is the usual Ricci curvature scalar art=87G. If Note that although¢ and o are gauge-dependent quanti-
h=0 then the fields have standard kinetic terms, but we havées, their combination in Eq3.6) is gauge invariant. If only
also allowed for the possibility that the kinetic term has a one field is evolving §=0 or ¢=0), we see tha¥ =0 and
¢-dependent prefactor as would come from a conformal is conserved on large scalds<€aH), thus recovering the
transformation of a theory with a nonminimally couple¢d  well known resul{22]. However, ifY #0 and both fields are
field. Such an action might arise, for instance, in the Einsteirevolving, £ only remains constant for perturbations along the
frame’ of general scalar-tensor gravity theorig6], in  classical trajectory do/5p=a/p). The first term on the

which caseW(¢,a)=e *"9V(q). right-hand side of Eq(3.7) is present whenever two fields
The field equations for the fields and ¢ in a spatially  are evolving. The second term is due solely to the presence
flat FRW metric are then of the nonstandard kinetic term far and vanishes when
h= const. It represents the frictional damping of thdield

: IW .
g+3Ho= - ——+2h'(4) o, by ().

A. Slow-roll trajectories

. . W —2h( ) - 2 To make further progress we will work in the slow-roll
¢+3He=~ ﬁ_h ()e %%, 3.2 approximation in both scalar fields. In principle this is not
necessary for inflation to occur: one of the fields might roll
) K2 quickly to the minimum of its potential and then the problem
H=— —(¢?+e 2P y2), reduces to single-field inflation. Models of hybrid inflation
2 [7] or other models of first-order inflatiof®,8] provide ex-
_ oo amples where more than one field is present but only one
and the Hamiltonian constraint is field slow rolls during inflation. However, here we wish to

5 consider the case in which both fields slow roll. The slow-

K- _ . roll approximation amounts to reducing the full field equa-
2_ % o2 2h(¢) 2
H 6 [¢"+e o+ 2W(¢,a)]. @3 tions (3.2) to first-order equations,
3H?=k’W(¢,0), (3.9
3The original Jordan frame, in which is minimally coupled, is
related to the Einstein frame used here via the conformal transfor- = —2h($) JInW ﬂ 3.9
= o .

mationg,,=e?"?g,, . Jo
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JInW H
Ip K2

Udg
U'(¢)’

(3.10 N(db, . be(C))= K> f (3.14

This approximation reduces the effective four-dimensionalThis depends on the values of baffy and o, through the

phase space during inflation down to the two-dimensionatlependence o, uponC(¢, ,o.,).

field space{ ¢, o}. One should, of course, be cautious about evaluating the
This leads to a crucial difference between single-field in-perturbation by integrating along a slow-roll trajectory that is

flation and inflation with two or more fields. In single-field only an approximation to the full equations of motion. In the

inflation the slow-roll solution forms a one-dimensional single-field case the conservation fs an exact result and

phase space, i.e., there is a unique trajectory. The end dfbes not rely on the slow-roll approximation. In the ex-

inflation corresponds to a fixed value of the field and anyamples presented in this paper we have checked by numeri-

comoving scale which crossed the horizdne-foldings be-  cal solutions that the slow-roll results remain a good approxi-

fore the end of inflation also corresponds to a unigue valueénation for a wide range of parameters right up until the end

which may be calculated from E@3.5). In two-field infla-  of inflation.

tion the slow-roll approximation leaves a two-dimensional

phase space. Classical trajectories during inflation in this B. Scalar perturbations

field space correspond to lines which are no longer unique. bati during inflati d ise f
In particular, the end of inflation will in general be described P erturbations during inflation are expected to arise from
uantum fluctuations of the fields on small scales. At suffi-

by a one-dimensional line in this phase space rather than @ v sh | hs the field frectivel I
single point, as will the locus of a given number of ciently short wavelengths the fields are effectively massless

e-foldings from the end of inflation. and any couplings can be neglected so they are assumed to

To calculatel using the formalism of Sasaki and Stewart be in the flat-spacetime vacuum state with the initial ar_npli-
we need to know the dependence of the number OEudes of each mode being independent random variables

e-foldings from the end of inflation upon the perturbations in 23]. Th_ese fluctuations are then stretched by the |nf|e_1t|onary
the fields¢ and o. In the single-field case this can only expansion up to ;uperhonzon sca_les. In the f(_)llowmg we
amount to a perturbation along the classical trajectory,refe.r to the gauge-mvan.ant scalar f|eI.d perturbaﬂkﬂﬁg,’ or.

St— 5¢/¢' due to the equations of motid6]. However, in equivalently the scalar field perturbations in the longitudinal

the two-dimensional field space, perturbations will in generaP2-9¢: As long as we can continue to neglect the potential
' space, pert . 9 erms in the perturbed field equations for the scalar fields for
move the fields onto a different trajectory with a different

end point of inflation, except when the perturbations ha er|1(>aH the expectation values of the perturbations as they
to bepadiabatic k P P PPER0ss outside the Hubble radiuk=ta, H,) are given, to

. - . lowest order in the slow-roll parameters, by independent
Therefore it may no longer be sufficient to use the famil- . ) o on >
iar relations alona a given traiecto Gaussian  random  variables  with e *"(| 5o |?)
gag jectons =H2/2k® and (|6¢,|?)=H2/2k®, wherek is the comov-
N ing wave number. Note that, while the figftlhas a standard
~ L= ===, (3.1)  Kkinetic term in Eq.(3.1), the o field does not and so the
y ¢ do y g ¢-dependent prefactor must be included in the expectation
value acquired at horizon crossifig3]. We shall denote the
in order to work out the change in the number of spectrum of a quantith by #A(k)=4mk*(|A|?)/(27)3, as
e-foldings due to perturbations in the fields. To evaluass  defined in[2]. Thus we have
the end of inflation using Eq2.7), we have to allow for o2
variations away from the classical trajectory. 7)(%):( *) , (3.15

‘9N)~H
7% _

Fortunately, in the case of a separable potential, 2
W(¢,0)=U(p)V(0), 3.1 , Hy 2
(¢,0)=U()V(e) (3.12 S e, 2;) | (518
we can label the slow-roll trajectories by an integral of
motion; For slowly varying, long-wavelengthkaH) modes, to
lowest order in the slow-roll parameters, the perturbation
equations can be integrated to givib
C:sz Vdo zf LA 9 gis]
V(o) U'(¢) 1 U'(4)
_ _ _ _ 5¢:—2le, (3.17
which allows us to parametrize motion off the classical tra- K ¢
jectory. We can then substitute the slow-roll equation of mo- 1 V(o)
tion for ¢ into Eq. (3.5 to obtain the number oé-foldings T (o oh
for a given value ofp, along a trajectory labeled bg, 00="2 V(o) (Q2+e7Qu), (318

where Q; and Q, are constants of integration. It will be
.4One can verify from the slow-roll equations of motion that convenient to define a new constaRs=Q,+e?"+Q,, so
C=0 along any classical trajectory. that Q; and Q3 are independent Gaussian random variables
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whose values, for a given Fourier mode, are determined by ) K2 [H, |2 (1—e?(h—he))2  g2(hi—he)
the amplitude oféo, and 8¢, at horizon crossing. Thus f/)?—>3 py & oZhecr |’
they have expectation values ¢ o (3.26
2 2
P = K_(H_*) (3.19 due to the nonminimal kinetic term we have allowed $ar
T 2\ 2m) " Only ash, —h, do we recover
2,2h 2 2/H.\2 1
7 k"€ [Hy - A . N
Yoy~ e 5 329 -5z e 329

During slow roll, in the long-wavelength limit, the curva-  We will now show that Eq(3.24) can also be derived in
ture perturbation on hypersurfaces of constant energy densitfie framework of Sasaki and Stew4it7] in terms of the

can be written a$l15,24 change in the number oé-foldings, 6N, as given in Eq.
(2.7). We wish to evaluaté,, the curvature perturbation on
¢5¢+e72h(}50 a hypersurface of fixed energy density(oo)V(oe)=
=H———— const, near the end of inflation. The values of the fields
p°te o and o, at the end of inflation on a given classical trajectory
[E¢+(e2h_e2h*)EU]Ql+ €,Q5 will be a function of the conserved quanti@/defined in Eq.

(3.2)  (3.13. Therefore,

€4t e’Me, '
where we have extended the usual definition of the slow-roll 0. (3.28
parametefe for a single field25] to

U\ dge (V') doe_
U dct\v) ac -

1 (V'(0)\? 1 [U'($))\2 Differentiating Eq.(3.13 with respect to the trajector,
€=52 W) , E‘b:ﬁ(W) . (3.22  and using Eq(3.28, we find
2 271-1
If either of the scalar fields is fixed,, or €, identically zero, szae=(1,) (X, +e?Me i) } )
then we recover the single-field results whérés constant dc \V'] [\V'], u'j.
and equal tdQ; or Qg, respectively. We see from E¢3.6)
that{ continues to evolve after horizon crossing if both fields doe U V2 u\2l?
are evolving andY #0. In the slow-roll approximation we K? ==\ | et — .
dC U Y, u
have e e e
(3.29
{=e*MN(e 2 Q- Qy)Y. (3.23

We can now evaluate the dependence of the number of

However, ifh grows significantly during inflation, then the €-folds,N, Eq.(3.14), on the initial valuesp, ando,
change in{ may be small, as can happen in the case of

scalar-tensor gravity theori¢$6,13. On the other hand, for dN:KZ(i) deb _K2<£ dee £
minimally coupled scalar fields, whera=0, we have urj U’/ dC i,
A¢{=(Q3— Q1) fYdt, which is typically of orderZ, .

do,

The spectrum of density perturbations at the end of infla- i dC do (3.30
tion ;;??(k) computed from Eq(3.2)) is do, *| '
e K2 ( H*)Z e§+(e2h6—e2h*)e§)2 1 Using Egs.(3.29 and(3.13 we find
) 2 6354' e2hee§ Ej; N 2 K2 62+(e2he—32h*)53 2
e 2 2h, 5 % €, ~2h, e ,
€, e .24 Ibs| 2¢€y €yt e e
e+e’fee®| € | '
’ Y Y N |2 K2 € 2
where we have used Eq&.19 and(3.20. This is the result do,|  2€" & +ePhec® (3.31

found in Ref.[16]. This includes the case where only one
field is I’O||ing at the end of inflation. For examp|e, let us takeThese are the expressions required to eva[@msing Eq

the limit e;—0 in Eq.(3.24), (2.7 with 8¢, and o, given by Egs(3.15 and(3.16),
k2(H,\%1 H.\2[| gN |2 2
pe_, | *| pe_ * 2h,
75 (277 & (3.29 ./£—<—27) . +e = (3.32

which corresponds to the standard result due to perturbationkhis expression exactly coincides with that obtained in Eq.
in the ¢ field. On the other hand, foaf;—>0 we find (3.24). Note that this result applies both to scalar-tensor theo-
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ries (with U (@) =exp[—4h(¢#)}; see Ref[16]), and for mini- 4
mally coupled h(¢)=0] two-field inflation with a separable
potential in general relativity.

C. Tensor perturbations

In addition to the scalar curvature perturbations that give
rise to density perturbations, tensor or gravitational wave
perturbationg h;; in Eq. (2.1)] can also be generated from
quantum fluctuations during inflatiof26]. These do not
couple to the matter content and are determined only by the
dynamics of the background metric, so the standard results
for the evolution of tensor perturbations of the metric remain
valid. The two independent polarizations evolve like mini- 075
mally coupled massless fields with a spectriif,2] 05

0.25

(3.33 ° 0 1 2 3 4

a

IERERANA

0

2
*

2m

P g=8k?

Note that the tilt of the gravitational wave spectrum,

ny=dIn7,/dink, is given by FIG. 1. Plot of the ratidR/6|ny| from Egs.(3.34 and(3.37) as

a function of the parameters a=Ge 2—1 and
b=G,e " —1=¢}/e} . This ratio reaches a maximum of 1 for
a=b, corresponding ta@G.=G, . In the minimally coupled case

H
Ng=2r7=—2(e}+e’™ek). (3.34
(h=0), we havea= €}/ ¢;, , so botha andb must be non-negative.

H2

Noting the condition for inflation given in Eq3.4) we see _ . L
that the definitive test for inflation is the presence of a gravi-WhereR 6|ny|; see Ref[28]. It shows that in principle one

tational wave spectrum with 2< . <0 and is unaltered b could tell from the spectra of metric perturbations whether
the presence oE‘J more than one sgcalar field. The actual ?’neg]ore than one field is evolving during inflation.
P ' The inequality of Eq.(3.38 becomes an equality only

surement of this slope will be exceedingly difficult. Tensor = ; .
perturbations do not contribute to structure formation and inWhen G, =G Note that{ in Eq.(3.21) can be written as

many inflationary models the observable effect of gravita- h

tional waves is completely negligib[@]. [~ (G—e™)Q1+ Q3 (3.39
Gravitational wave perturbations can contribute to the mi- G ' ’

crowave background anisotropies only on the largest scales

(scales larger than the Hubble scale at last scattering, corrgnd therefore the inequality is saturated whengvegmains
sponding to about 1° on the skyTheir contribution relative  cgonstant after horizon crossing. As shown in E216), this
to scalar curvature perturbations is given by the rg2ip only occurs when the perturbations are adiabatic. This is, of
course, true when only one field is evolving but we can also
- § /')g_ (3.35 find a class of two-field models in whidh is constant in the
4 7 slow-roll approximation.

) o i . Even perturbations off the classical trajectory are forced
The rapid decay of the gravitational wave anisotropies ofg pe adiabatic §p/ Sp= p/p) when the pressune is a func-
smaller scales is their most distinctive signature. If we defing;g, solely of the density. In our two-field model, the pres-

sure and energy density are given by

€
G=-C+e?, (3.39

" p= 3 (#4252~ W(4,0) (340
then we can write the ratio of tensor to scalar contributions 2 Y
as

G2(G, —e®) p=3(¢2+e*2h(}2)+W(¢ o) (3.4

R=12€} e 27 o7 - (337 2 o |
T(Ge— e )+ e (G, —eTN)
Together with Eq(3.34) one can showsee Fig. 1, that and sop=p(p) implies that the kinetic energy density is a
function of the potential. We will now show that in the slow-
R<6 |ng|. (3.38 roll approximation for a separable potential this leadssto

being conserved. Along the classical trajectories,
This result was found by Polarski and Starobinsky in their
model of double inflation27] and given in Ref[17] for
general multiple-field inflation. It generalizes the usual con- G=
sistency relation betweeR andngy in single-field inflation,

. €€
¢_ 62 g. (342

g

!
€
% 1 o2h'eh

o
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If the kinetic energy is to be a function solely of the potential The ratio of tensor to scalar perturbations is given by
energy density, we require,+ e?"e,=f(W), which implies
that R=12Gef=12(es+e M €k). (3.48

€4 ¢ dINW o dinW) df Depending ore?"e, at horizon crossing, we might have sig-
- e_(, e_¢ o B eZhe(, do | dInwW’ (3.43 nificant gravitational wave contributions. As shown eatrlier,
the tensor perturbations’ spectral index is given by
which from the slow-roll equations of motion must be zero.ny=—R/6, the same relation as in the single-field case.
Thus we see that both the relatiét=6 |ng| and the con-
stancy of{ are consequences of the scalar perturbations be- E. Minimally coupled case

ing adiabatic rather than due to the number of fields present. ) . , . i
For example, consider the class of generalized Brans- If we restrict our attention to fields which are minimally

Dicke theories [29,14 where @(¢$)=ykd and coupled, i.e.h=0, with a separable potential, then there is

U(¢$)=e <% in the Einstein frame with a polynomial in- N° frictional damping of ther field and the results simplify
flaton potential V(o) =\ o2"/2n. In this case, we have compared with the general case. The spectrum of curvature
’ ' perturbations at the end of inflation in E®.24 becomes

B? 2n? 2 2
€4+ ezh60=?+eyk¢;2;z- (3.44 P K (H_*>
2

e
o

2
1
x
€

e
E¢ €

]

21
e+ e e_*+ S+ e
¢ (o ¢ ) o
We see that for n=8/y we have f(W)
= B212+2n%/ ?(2nWIN) . As discussed above, this en-
sures that all perturbations are adiabatic and this con-

served. We could also see this by evaluatigwhich in this

and the ratio between the tensor and scalar contributions to
the microwave background anisotropies on large scales is

case become& = ByC, whereC is the conserved quantity given by

along the classical trajectory, given in E§.13. Thus({ is 6. 2 % %

constan{see Eq(3.39] andR=6 |n|. R~12 (gt €,) €€ (3.50
In particular, we find that remains a constant after ho- (€)% +(€5)%e '

rizon crossing in Brans-Dicke gravity, whep=2+v, for a
quartic potentiaV =\ o*/4. We will study this case in more Only if either e, or €, is zero, or if both are constantsor-

detail in the next subsection. responding to exponential potentiglare all perturbations
adiabatic,{ conserved, an®=6[ng|.
D. Brans-Dicke case More generally, the perturbations may still become effec-

tively adiabatic by the end of inflation if the evolution has
ecome essentially one dimensional along, say etlulirec-

tion in field space. This requires not onéj> €, but also

£ on a given scale to be due to perturbations in éheld,

We will study here a very simple case which we can solv
completely. This is the Brans-Dicke case with a quartic po
tential for the4inf|aton fieldh(¢)=ak¢, U(p)=e" 44<?,
andV(o)=\o"/4. The constan& characterizes the relative . . e e
coupling of scalar and tensor fields to matter, and is relate&\'h'fh *fr(zm E_C]' (3.2 requires  €,>€,(Q1/Qa)
to the usual Brans-Dicke parameter byr2=1/(2w+3)  —€sV€,/€y. IN this casel has become constant by the end
[16]. As shown in the preceding section this belongs to the?f inflation and, just as in the single-field case, we expect it
subclass of two-field models for whighis in fact conserved 0 remain conserved until that scale reenters the horizon dur-
on scales outside the horizon in the slow-roll approximation/nd radiation or dust domination. Nonetheless, we may still

Following Eq.(3.13, each classical trajectory can be pa- S€€ ewdenc_e of the second field evoI\_/mg at horizon crossing
rametrized by during inflation due to the decrease in the Hubble tdie

caused by the slow roll of in addition to that due to the

5 €5 evolution ofe. The tilt of the scalar perturbation spectrum in
G=8a"C=""+e", (349 this limit is
wheree ;= 8a? ande,= 8/x?0? are the slow-roll parameters Ns—1l=-6e,+27,-2€,, (3.59)
defined in Eq(3.22.
The spectrum of curvature perturbations is then where we have introduced a further slow-roll parameter
7,=V"/k?V which describes the curvature of the potential
e K?(He\? 1 _ K2 (H,\? 1 alongo. Only asej;—0 do we recover the familiar single-
¢ o \on Ge* 2\ 27 €4t e’ er field result[28,2]. The tilt of the spectrum of tensor pertur-

(3.46  bations isng=—2(e; +€y). Thus the slope of the second
field tends to decrease bothy andny. However, the ratio
This is an extremely simple and compact formula whichpetween tensor and scalar modes is giveRbyl2¢* and so
makes it possible to compute the spectral tilt of the scalajs g function solely of the slope of the potential alomgat
perturbationsps—1=d In7’¢/d Ink, horizon crossing, as in the single-field case. Thus the evolu-
tion of the ¢ leads to the violation of the single-field consis-
Ng—1=—2e,— 3™ ek . (347 tency relationR=—6n,.
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IV. CONCLUSIONS While we have been careful to calculate the evolution of
the curvature perturbation during inflation, we have not at-

The presence of more than one field evolving during in- . . :
flation has important consequences for some of the familia}emIOted to go beyond the end of infiation. Since the observ-

results quoted in inflationary cosmology. In the slow-roll ap_able qugntity is the a_mplitude of scalar perturbations at reen-
proximation,n fields lead to am-dimensional phase space. 'Y during the radiation- or dust-dominated eras, the
Thus there is no longer a single classical trajectory that |ead!§1terpretat|on_ of our results is sen3|t|v9 to the evoIL_mon after
to the end of inflation and different initial conditions may mflatlon. and_ln particular to the dynqmms of reheatmg. If the
lead to different end points. Quantum fluctuations lead tond of inflation corresponds to a fixed energy density then
perturbations not only along the trajectory but also ontoé Will be conserved across this hypersurface. This is the case
neighboring trajectories. We have entropy as well as adiawhen there is a unique end point and only one field is evolv-
batic perturbations and, in this case, the curvature perturbang at the end of inflation. However, in the presence of two
tion ¢ is no longer conserved on superhorizon scales. Theresr more fields this need no longer be true and requires a more
fore the perturbation on a given scale is no longerdetailed study.
determined solely by quantities at horizon crossing, but also An important question remains as to whether, even if a
depends upon the subsequent evolution. In order to evaluatfiven theory has many scalar fields, one should expect to see
¢ at the end of inflation we must be able to integrate theevidence in the perturbation spectra of more than one field
perturbation along the trajectory. We have shown how thisyolving. The evolution during the final 68-foldings of
may be performed for a separable potential in the slow-rolinflation depends upon the initial conditions, and this may
approximation. lead to only one field evolving at late times. For instance, in
In single-field inflation the ratio between the contribution the case of chaotic inflation in some scalar-tensor gravity
of tensor and scalar perturbations of the microwave backiheories, the stochastic evolution may fix the value of the
ground on large scales can be related to the tilt of the gravigravitational coupling, effectively leading to single-field in-
tational wave spectrunR=—6n, [28,5. We have shown fiation[30]. To answer the question of initial conditions, one

that this is a consequence of the scalar perturbations beingseds to understand the stochastic evolution of the coupled
adiabatic and can also occur, within the slow-roll approximaields at early time$24,31.

tion, in a limited class of two-field models. More generally,

in two-field models with a separable potential the ratio obeys

the inequalityR<6|ny|, whereny is given in terms of the ACKNOWLEDGMENTS
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