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Metric perturbations in two-field inflation

Juan Garcı´a-Bellido and David Wands
Astronomy Centre, School of Mathematical and Physical Sciences, University of Sussex, Brighton BN1 9QH, United K

~Received 13 November 1995!

We study the metric perturbations produced during inflation in models with two scalar fields evolving
simultaneously. In particular, we emphasize how the large-scale curvature perturbationz on fixed energy
density hypersurfaces may not be conserved in general for multiple field inflation due to the presence of
entropy as well as adiabatic fluctuations. We show that the usual method of solving the linearized perturbation
equations is equivalent to the recently proposed analysis of Sasaki and Stewart in terms of the perturbed
expansion along neighboring trajectories in field space. In the case of a separable potential it is possible to
compute in the slow-roll approximation the spectrum of density perturbations and gravitational waves at the
end of inflation. In general there is an inequality between the ratio of tensor to scalar perturbations and the tilt
of the gravitational wave spectrum, which becomes an equality when only adiabatic perturbations are possible
andz is conserved.@S0556-2821~96!05810-9#

PACS number~s!: 98.80.Cq
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I. INTRODUCTION

Inflation is the only known mechanism that solves th
horizon and homogeneity problems of hot big bang cosm
ogy @1#. However, the main observational prediction of in
flationary models is the spectrum of density and gravitatio
wave perturbations they produce. Observations of tempe
ture anisotropies in the microwave background, stric
speaking, only provide an upper limit on the amplitude
such perturbations, and could in principle be produced
some other source of inhomogeneities. Nonetheless, the
parently Gaussian and nearly scale-invariant nature of
observed perturbations are natural properties of those p
duced by quantum fluctuations of the inflaton field durin
inflation. If inflation is indeed responsible for the observe
anisotropies of the microwave background and the init
curvature perturbations from which galaxies formed, then
amplitude over a limited range is already constrained by o
servations@2–4#. In the future both the range and precisio
of these constraints promise to improve considerably and
it will be increasingly important to fully understand the pre
dictions made by the inflationary paradigm and the robu
ness of these predictions.

Until comparatively recently it was often stated that infl
tion predicts a scale-invariant Harrison-Zel’dovich spectru
of density perturbations with a negligible amplitude of grav
tational waves. In fact, both the tilt of the spectrum and t
relative contribution of gravitational waves to the microwav
background anisotropies are model-dependent quantities@2#.
In the conventional model of inflation driven by the potenti
energy density of a single slowly rolling scalar field, the t
and the ratio of tensor~gravitational wave! to scalar~density!
perturbations in the microwave background can be de
mined by the slow-roll parameters which describe the slo
and curvature of the potential as the perturbations cross
side the horizon during inflation@5#. Scalar curvature pertur-
bationsz can be understood as originating from quantu
fluctuations of the inflaton field that perturb the time it tak
to end inflation@6#, z5Hdt5Hdf/ḟ. Our ability to deter-
mine the linear perturbation at late times solely in terms
530556-2821/96/53~10!/5437~9!/$10.00
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the parameters at horizon crossing depends on the const
of z on scales far outside the horizon. The value ofz when a
given comoving scale leaves the horizon during inflation c
then be equated with that at reentry during the radiation-
dust-dominated eras.

However, most models of particle physics predict n
only one but many coupled scalar fields and in the prese
of additional interacting fields we must reevaluate these
sults. The conservation ofz relies on the perturbations being
adiabatic during inflation. In the case of more than one fie
evolving, there is the possibility of entropy as well as adi
batic fluctuations during inflation. We assume that all o
scalar fields will eventually decay during reheating and on
adiabatic perturbations remain after inflation. The validity
this assumption is, of course, very dependent upon the
heating mechanism, but we will leave its investigation f
future work.

In this paper we will illustrate the wider range of behavio
possible in multiple-field inflation from the simultaneou
evolution of two fields. Some previous studies of inflatio
involving two fields, such as hybrid@7,8# or extended@9#
inflation, only considered the case where one field evolv
during inflation and the role of the second field is just to e
inflation by a sudden phase transition, so the single-field
sults apply. Double-inflation models@10# invoke consecutive
periods of inflation driven by two noninteracting fields. Th
density perturbation spectra produced by including an int
action term between these fields was investigated in R
@11#. Perturbations in models that involve two interactin
scalar fields have usually been considered in the contex
Brans-Dicke gravity@12–14# or more general scalar-tenso
theories@15,16#, where the dilaton is expected to vary to
gether with the inflaton field during inflation. However, it i
the evolution of the second field rather than its coupling
the metric tensor that we wish to consider here. Only ve
recently have analytic results for general multiple-field infl
tion been presented by Sasaki and Stewart@17#.

We will show how to evaluate in the slow-roll approxi
mation the curvature perturbation at the end of inflation, u
ing two alternative approaches corresponding to differe
5437 © 1996 The American Physical Society
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5438 53JUAN GARCÍA-BELLIDO AND DAVID WANDS
gauge choices. In order to calculate the perturbation, we n
to explicitly integrate along classical trajectories, and it tur
out that it is only possible if the potential is separable in t
different fields. We find that the presence of entropy fluctu
tions modifies the usual results for the scalar spectra p
duced by inflation. In particular, we show that the nonco
servation ofz far outside the horizon leads to the violation o
the usual consistency relation between the ratio of tenso
scalar perturbations and the tilt of the gravitational wa
spectrum.

II. METRIC PERTURBATIONS

We will consider linear perturbations about a spatially fl
Friedmann-Robertson-Walker~FRW! metric with scale fac-
tor a(t). The most general scalar and tensor metric pert
bations can be written as@18–20#

ds252~112A!dt212B,idx
idt1a2~ t !@~122R!d i j

12E,i j1hi j #dx
idxj , ~2.1!

whereA, B, E, andR are scalar perturbations andhi j is a
transverse traceless tensor perturbation corresponding
gravitational waves. The perturbations can be decompo
into Fourier modes~with comoving wave numberk) which
can be treated separately in the linear approximation wh
they decouple.

However, not all the scalar perturbations are physical
grees of freedom and to remove gauge artifacts we can de
gauge-invariant quantities@18–20#

F[A1
]

]t
~B2a2Ė!, ~2.2!

C[R2H~B2a2Ė!, ~2.3!

whereH5ȧ/a is the Hubble rate of expansion. Note th
these are equivalent to the metric perturbationsA andR in
the longitudinal gauge, whereE5B50. Moreover, for any
perturbations whose spatial part of the stress energy tens
diagonal, the equations of motion requireC5F, @20# so
considering only linear perturbations the metric has just o
scalar degree of freedom.

The scalarR is the intrinsic curvature perturbation o
hypersurfaces of fixed timet, which transforms under a
gauge transformationt→t1j0 asR→R1Hj0 @20#. It is
convenient to evaluate the curvature perturbation on a hyp
surfaceS of constant energy densityr,1 corresponding to
the choice of gauge j05dr/ ṙ @21#. This gives
RS5R1Hdr/ ṙ. The intrinsic three-curvature on this su
face is (3)R54¹2RS , where ¹25a22] i]

i is the three-
dimensional Laplacian. Note that if we start from a flat h
persurface (R50), we can interpretRS as being due to a
perturbation in the logarithm of the scale factor~or number
of e-foldings,N) on that hypersurface:

RS5dN5Hdt, ~2.4!

1In single-field inflation, this corresponds to a comoving hypers
face.
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where dt5dr/ ṙ. In particular, for inflation with a single
field we can writedt5df/ḟ, which gives the familiar result
for the origin of density perturbations@6#.

We will define a quantity

z[RS2
¹2F

3Ḣ
5F2

H2

Ḣ
~F1H21Ḟ!, ~2.5!

written in terms of the gauge-invariant metric potential
which coincides withRS on scales far outside the horizon
(k!aH). The time dependence ofz on these superhorizon
scales is given by

ż.3HS ṗṙ 2
dp

dr D z, ~2.6!

wheredp and dr are the perturbations in the pressure an
energy density on spatially flat hypersurfaces. As we can se
Eq. ~2.6! vanishes for adiabatic perturbations. This is th
case for inflation with a single field, so we can evaluate th
curvature perturbation at late times by equating it with that a
horizon crossing. In fact,z continues to be conserved on
superhorizon scales during the radiation- and dust-dominat
eras, and, therefore, we can directly equate the curvatu
perturbation when it left the horizon during inflation with
that at reentry.

The expression in Eq.~2.5! allows one to evaluatez once
we knowF. To that end, one can integrate the coupled pe
turbation equations forF and the scalar fields in a particular
gauge; see, for instance, Refs.@14,16#. This allows us to give
an expression forz at the end of inflation in terms of the field
fluctuations at horizon crossing. Alternatively, one could find
z by evaluating the perturbation in the number o
e-foldings,dN, given in Eq.~2.4!,

z.RS5dN, ~2.7!

as proposed recently by Sasaki and Stewart@17#. On spa-
tially flat hypersurfaces the perturbed fields on superhorizo
scales effectively obey the same equations of motion as t
homogeneous background fields; see Eq.~3.2!. ThusdN is
the difference in the number ofe-foldings along neighboring
classical trajectories in phase space.2 In order to evaluate
dN at the end of inflation in terms of field fluctuations at
horizon crossing, we have to integrate the background equ
tions of motion, not only along a single trajectory but also
along the perturbed trajectories. We will show that this doe
indeed yield the same results as those obtained by direc
solving the evolution of the metric perturbations in the lon
gitudinal gauge. The difference between the two approach
is just a choice of gauge.

In practice, whichever method one adopts, one needs
know not only the initial perturbation but also its integrated
effect along the subsequent trajectory. In the following sec
tions we shall show how the perturbations can be evaluat
in specific models. However, it is important to remember tha
z only remains a conserved quantity thereafter if we can tre

ur- 2By classical trajectories we mean the unperturbed trajectori
that are solutions of the classical equations of motion.
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53 5439METRIC PERTURBATIONS IN TWO-FIELD INFLATION
the end of inflation as a transition at fixed energy density a
the subsequent evolution is adiabatic. If we wish to ma
metric perturbations at the end of inflation, across a hyp
surface of fixed energy density, we must matchz on large
scales@21#. While we expect this to be true in single-fiel
models of inflation, it is a much more complicated issue
two-field inflation, since it depends upon the dynamics
reheating. Such an involved issue deserves further atten
and is beyond the scope of this paper.

The attractive feature of Sasaki and Stewart’s approac
that Eq.~2.7! is a purely geometrical result, independent
the matter content~subject only to the conditionC5F) and
could in principle also be applied to calculatez on surfaces
long after the end of inflation. However, evaluatingdN in the
radiation-dominated era once again requires a quantita
understanding of reheating along different trajectories.
what follows we will restrict ourselves to a calculation of th
curvature perturbation at the end of inflation.

III. TWO-FIELD MODELS OF INFLATION

In this section we will consider a model with two scala
fields, described by the action

S5E d4xAgF 1

2k2R2
1

2
gabf ,af ,b2

1

2
e22h~f!gabs ,as ,b

2W~f,s!G , ~3.1!

whereR is the usual Ricci curvature scalar andk258pG. If
h50 then the fields have standard kinetic terms, but we h
also allowed for the possibility that thes kinetic term has a
f-dependent prefactor as would come from a conform
transformation of a theory with a nonminimally coupledf
field. Such an action might arise, for instance, in the Einst
frame3 of general scalar-tensor gravity theories@16#, in
which caseW(f,s)5e24h(f)V(s).

The field equations for the fieldss andf in a spatially
flat FRW metric are then

s̈13Hṡ52e2h~f!
]W

]s
12h8~f!ḟṡ,

f̈13Hḟ52
]W

]f
2h8~f!e22h~f!ṡ2, ~3.2!

Ḣ52
k2

2
~ḟ21e22h~f!ṡ2!,

and the Hamiltonian constraint is

H25
k2

6
@ḟ21e22h~f!ṡ212W~f,s!#. ~3.3!

3The original Jordan frame, in whichs is minimally coupled, is
related to the Einstein frame used here via the conformal trans
mation ḡab5e2h(f)gab .
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The condition for inflation to occur,uḢu,H2, is thus @see
Eqs.~3.2! and ~3.3!#,

ḟ21e22hṡ2,W~f,s!. ~3.4!

In calculating perturbations on a comoving scalek, we
shall see that an important quantity is the number
e-folds from the end of inflation when that scale cross
outside the horizon (k5a*H* ),

N52E
e

*
Hdt. ~3.5!

Our present horizon crossed outside the Hubble scale ab
50 to 60e-foldings before the end of inflation. The precis
number depends logarithmically on the energy scale dur
inflation and the efficiency of reheating, and so is weak
model dependent.

We can derive an exact expression for the time dep
dence ofz using the linearly perturbed field equations@16#

ż52
H

Ḣ
¹2F1HS df

ḟ
2

ds

ṡ DY, ~3.6!

where

Y5
1

2

d

dt S ḟ22e22hṡ2

ḟ21e22hṡ2D 1h8ḟS e22hṡ2

ḟ21e22hṡ2D 2.
~3.7!

Note that althoughdf andds are gauge-dependent quant
ties, their combination in Eq.~3.6! is gauge invariant. If only
one field is evolving (ṡ50 or ḟ50), we see thatY50 and
z is conserved on large scales (k!aH), thus recovering the
well known result@22#. However, ifYÞ0 and both fields are
evolving,z only remains constant for perturbations along th
classical trajectory (ds/df5ṡ/ḟ). The first term on the
right-hand side of Eq.~3.7! is present whenever two fields
are evolving. The second term is due solely to the prese
of the nonstandard kinetic term fors and vanishes when
h5 const. It represents the frictional damping of thes field
by h(f).

A. Slow-roll trajectories

To make further progress we will work in the slow-ro
approximation in both scalar fields. In principle this is n
necessary for inflation to occur: one of the fields might ro
quickly to the minimum of its potential and then the proble
reduces to single-field inflation. Models of hybrid inflatio
@7# or other models of first-order inflation@9,8# provide ex-
amples where more than one field is present but only o
field slow rolls during inflation. However, here we wish t
consider the case in which both fields slow roll. The slow
roll approximation amounts to reducing the full field equ
tions ~3.2! to first-order equations,

3H2.k2W~f,s!, ~3.8!

ṡ.2e2h~f!
] lnW

]s

H

k2 , ~3.9!for-
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5440 53JUAN GARCÍA-BELLIDO AND DAVID WANDS
ḟ.2
] lnW

]f

H

k2 . ~3.10!

This approximation reduces the effective four-dimension
phase space during inflation down to the two-dimensio
field space$f,s%.

This leads to a crucial difference between single-field
flation and inflation with two or more fields. In single-fiel
inflation the slow-roll solution forms a one-dimension
phase space, i.e., there is a unique trajectory. The end
inflation corresponds to a fixed value of the field and a
comoving scale which crossed the horizonN e-foldings be-
fore the end of inflation also corresponds to a unique va
which may be calculated from Eq.~3.5!. In two-field infla-
tion the slow-roll approximation leaves a two-dimension
phase space. Classical trajectories during inflation in t
field space correspond to lines which are no longer uniq
In particular, the end of inflation will in general be describe
by a one-dimensional line in this phase space rather tha
single point, as will the locus of a given number o
e-foldings from the end of inflation.

To calculatez using the formalism of Sasaki and Stewa
we need to know the dependence of the number
e-foldings from the end of inflation upon the perturbations
the fieldsf and s. In the single-field case this can onl
amount to a perturbation along the classical trajecto
dt5df/ḟ, due to the equations of motion@6#. However, in
the two-dimensional field space, perturbations will in gene
move the fields onto a different trajectory with a differe
end point of inflation, except when the perturbations happ
to be adiabatic.

Therefore it may no longer be sufficient to use the fam
iar relations along a given trajectoryg,

S ]N

]f D
g

.2
H

ḟ
, S ]N

]s D
g

.2
H

ṡ
, ~3.11!

in order to work out the change in the number
e-foldings due to perturbations in the fields. To evaluatez at
the end of inflation using Eq.~2.7!, we have to allow for
variations away from the classical trajectory.

Fortunately, in the case of a separable potential,

W~f,s!5U~f!V~s!, ~3.12!

we can label the slow-roll trajectories by an integral
motion,4

C5k2E Vds

V8~s!
2k2E e2h~f!

Udf

U8~f!
, ~3.13!

which allows us to parametrize motion off the classical tr
jectory. We can then substitute the slow-roll equation of m
tion for f into Eq. ~3.5! to obtain the number ofe-foldings
for a given value off* along a trajectory labeled byC,

4One can verify from the slow-roll equations of motion tha
Ċ.0 along any classical trajectoryg.
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N„f* ,fe~C!….k2E
e

* Udf

U8~f!
. ~3.14!

This depends on the values of bothf* ands* through the
dependence offe uponC(f* ,s* ).

One should, of course, be cautious about evaluating t
perturbation by integrating along a slow-roll trajectory that i
only an approximation to the full equations of motion. In th
single-field case the conservation ofz is an exact result and
does not rely on the slow-roll approximation. In the ex
amples presented in this paper we have checked by num
cal solutions that the slow-roll results remain a good approx
mation for a wide range of parameters right up until the en
of inflation.

B. Scalar perturbations

Perturbations during inflation are expected to arise fro
quantum fluctuations of the fields on small scales. At suffi
ciently short wavelengths the fields are effectively massle
and any couplings can be neglected so they are assume
be in the flat-spacetime vacuum state with the initial amp
tudes of each mode being independent random variab
@23#. These fluctuations are then stretched by the inflationa
expansion up to superhorizon scales. In the following w
refer to the gauge-invariant scalar field perturbations@20#, or
equivalently the scalar field perturbations in the longitudin
gauge. As long as we can continue to neglect the potent
terms in the perturbed field equations for the scalar fields f
k.aH the expectation values of the perturbations as th
cross outside the Hubble radius (k.a*H* ) are given, to
lowest order in the slow-roll parameters, by independe
Gaussian random variables with e22h

* ^uds* u2&
5H

*
2 /2k3 and ^udf* u2&5H

*
2 /2k3, wherek is the comov-

ing wave number. Note that, while the fieldf has a standard
kinetic term in Eq.~3.1!, the s field does not and so the
f-dependent prefactor must be included in the expectati
value acquired at horizon crossing@23#. We shall denote the
spectrum of a quantityA by P A(k)[4pk3^uAu2&/(2p)3, as
defined in@2#. Thus we have

P df.SH*2p D 2, ~3.15!

P ds.e2h* SH*2p D 2. ~3.16!

For slowly varying, long-wavelength (k!aH) modes, to
lowest order in the slow-roll parameters, the perturbatio
equations can be integrated to give@16#

df.
1

k2

U8~f!

U~f!
Q1 , ~3.17!

ds.
1

k2

V8~s!

V~s!
~Q21e2hQ1!, ~3.18!

whereQ1 and Q2 are constants of integration. It will be
convenient to define a new constantQ3[Q21e2h*Q1 , so
thatQ1 andQ3 are independent Gaussian random variabl

t
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whose values, for a given Fourier mode, are determined
the amplitude ofds* and df* at horizon crossing. Thus
they have expectation values

PQ1
5

k2

2ef*
SH*2p D 2, ~3.19!

PQ3
5

k2e2h*

2es*
SH*2p D 2. ~3.20!

During slow roll, in the long-wavelength limit, the curva
ture perturbation on hypersurfaces of constant energy den
can be written as@15,24#

z.H
ḟdf1e22hṡds

ḟ21e22hṡ2

.
@ef1~e2h2e2h* !es#Q11esQ3

ef1e2hes
, ~3.21!

where we have extended the usual definition of the slow-r
parametere for a single field@25# to

es[
1

2k2 SV8~s!

V~s! D 2, ef[
1

2k2 SU8~f!

U~f! D 2. ~3.22!

If either of the scalar fields is fixed,es or ef identically zero,
then we recover the single-field results wherez is constant
and equal toQ1 or Q3 , respectively. We see from Eq.~3.6!
thatz continues to evolve after horizon crossing if both field
are evolving andYÞ0. In the slow-roll approximation we
have

ż.e2~h*
2h!~e22h

*Q32Q1!Y. ~3.23!

However, if h grows significantly during inflation, then the
change inz may be small, as can happen in the case
scalar-tensor gravity theories@16,13#. On the other hand, for
minimally coupled scalar fields, whereh50, we have
Dz.(Q32Q1)*Ydt, which is typically of orderz* .

The spectrum of density perturbations at the end of infl
tion P z

e(k) computed from Eq.~3.21! is

P z
e.

k2

2 SH*2p D 2F S ef
e1~e2he2e2h* !es

e

ef
e1e2hees

e D 2 1ef*

1S es
e

ef
e1e2hees

e D 2e2h*es*
G , ~3.24!

where we have used Eqs.~3.19! and~3.20!. This is the result
found in Ref. @16#. This includes the case where only on
field is rolling at the end of inflation. For example, let us tak
the limit es

e→0 in Eq. ~3.24!,

P z
e→

k2

2 SH*2p D 2 1ef*
, ~3.25!

which corresponds to the standard result due to perturbati
in thef field. On the other hand, foref

e→0 we find
by
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P z
e→

k2

2 SH*2p D 2S ~12e2~h*
2he!!2

ef*
1
e2~h*

2he!

e2hees*
D ,

~3.26!

due to the nonminimal kinetic term we have allowed fors.
Only ash*→he do we recover

P z
e→

k2

2 SH*2p D 2 1

e2h* es*
. ~3.27!

We will now show that Eq.~3.24! can also be derived in
the framework of Sasaki and Stewart@17# in terms of the
change in the number ofe-foldings, dN, as given in Eq.
~2.7!. We wish to evaluateze , the curvature perturbation on
a hypersurface of fixed energy density,U(fe)V(se)5
const, near the end of inflation. The values of the fieldsfe
andse at the end of inflation on a given classical trajecto
will be a function of the conserved quantityC defined in Eq.
~3.13!. Therefore,

SU8

U D
e

dfe

dC
1SV8

V D
e

dse

dC
50 . ~3.28!

Differentiating Eq.~3.13! with respect to the trajectoryC,
and using Eq.~3.28!, we find

k2
dse

dC
5S VV8D

e

F S VV8D
e

2

1e2heS UU8D
e

2G21

,

k2
dfe

dC
52S UU8D

e

F S VV8D
e

2

1e2heS UU8D
e

2G21

.

~3.29!

We can now evaluate the dependence of the number
e-folds,N, Eq. ~3.14!, on the initial valuesf* ands* ,

dN5k2S UU8D
*
df*2k2S UU8D

e

dfe

dC F ]C

]f*
df*

1
]C

]s*
ds* G . ~3.30!

Using Eqs.~3.29! and ~3.13! we find

U ]N

]f*
U25 k2

2ef*
F ef

e1~e2he2e2h* !es
e

ef
e1e2hees

e G2,
U ]N

]s*
U25 k2

2es*
F es

e

ef
e1e2hees

e G2. ~3.31!

These are the expressions required to evaluateP z
e using Eq.

~2.7! with df* andds* given by Eqs.~3.15! and ~3.16!,

P z
e5SH*2p D 2FU ]N

]f*
U21e2h*U ]N

]s*
U2G . ~3.32!

This expression exactly coincides with that obtained in E
~3.24!. Note that this result applies both to scalar-tensor the
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5442 53JUAN GARCÍA-BELLIDO AND DAVID WANDS
ries ~with U(f)5exp$24h(f)%; see Ref.@16#!, and for mini-
mally coupled@h(f)50# two-field inflation with a separable
potential in general relativity.

C. Tensor perturbations

In addition to the scalar curvature perturbations that g
rise to density perturbations, tensor or gravitational wa
perturbations@hi j in Eq. ~2.1!# can also be generated from
quantum fluctuations during inflation@26#. These do not
couple to the matter content and are determined only by
dynamics of the background metric, so the standard res
for the evolution of tensor perturbations of the metric rema
valid. The two independent polarizations evolve like min
mally coupled massless fields with a spectrum@20,2#

P g58k2SH*2p D 2. ~3.33!

Note that the tilt of the gravitational wave spectrum
ng[d lnP g /dlnk, is given by

ng52
Ḣ

H2 .22~ef*1e2h* es* !. ~3.34!

Noting the condition for inflation given in Eq.~3.4! we see
that the definitive test for inflation is the presence of a gra
tational wave spectrum with22,ng,0 and is unaltered by
the presence of more than one scalar field. The actual m
surement of this slope will be exceedingly difficult. Tens
perturbations do not contribute to structure formation and
many inflationary models the observable effect of gravi
tional waves is completely negligible@2#.

Gravitational wave perturbations can contribute to the m
crowave background anisotropies only on the largest sca
~scales larger than the Hubble scale at last scattering, co
sponding to about 1° on the sky!. Their contribution relative
to scalar curvature perturbations is given by the ratio@2#

R.
3

4

P g

P z
. ~3.35!

The rapid decay of the gravitational wave anisotropies
smaller scales is their most distinctive signature. If we defi

G[
ef

es
1e2h, ~3.36!

then we can write the ratio of tensor to scalar contributio
as

R.12 es*
Ge
2~G*2e2h* !

~Ge2e2h* !21e2h* ~G*2e2h* !
. ~3.37!

Together with Eq.~3.34! one can show~see Fig. 1!, that

R<6 ungu. ~3.38!

This result was found by Polarski and Starobinsky in th
model of double inflation@27# and given in Ref.@17# for
general multiple-field inflation. It generalizes the usual co
sistency relation betweenR andng in single-field inflation,
ive
ve

the
ults
in
i-

,

vi-

ea-
or
in
ta-

i-
les
rre-

on
ne

ns

eir

n-

whereR.6 ungu; see Ref.@28#. It shows that in principle one
could tell from the spectra of metric perturbations whethe
more than one field is evolving during inflation.

The inequality of Eq.~3.38! becomes an equality only
whenG*5Ge . Note thatz in Eq. ~3.21! can be written as

z.
~G2e2h* !Q11Q3

G
, ~3.39!

and therefore the inequality is saturated wheneverz remains
constant after horizon crossing. As shown in Eq.~2.6!, this
only occurs when the perturbations are adiabatic. This is,
course, true when only one field is evolving but we can als
find a class of two-field models in whichG is constant in the
slow-roll approximation.

Even perturbations off the classical trajectory are force
to be adiabatic (dp/dr5 ṗ/ ṙ) when the pressurep is a func-
tion solely of the density. In our two-field model, the pres
sure and energy density are given by

p5
1

2
~ḟ21e22hṡ2!2W~f,s!, ~3.40!

r5
1

2
~ḟ21e22hṡ2!1W~f,s!, ~3.41!

and sop5p(r) implies that the kinetic energy density is a
function of the potential. We will now show that in the slow-
roll approximation for a separable potential this leads toG
being conserved. Along the classical trajectories,

Ġ5S ef8

es
12 h8e2hD ḟ2

efes8

es
2 ṡ. ~3.42!

FIG. 1. Plot of the ratioR/6ungu from Eqs.~3.34! and ~3.37! as
a function of the parameters a[Gee

22h
*21 and

b[G* e
22h

*215ef* /es* . This ratio reaches a maximum of 1 for
a5b, corresponding toGe5G* . In the minimally coupled case
(h50), we havea5ef

e /es
e , so botha andb must be non-negative.
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If the kinetic energy is to be a function solely of the potenti
energy density, we requireef1e2hes5 f (W), which implies
that

Ġ5
ef

es
S ḟ

ef

] lnW

]f
2

ṡ

e2hes

] lnW

]s D d f

d lnW
, ~3.43!

which from the slow-roll equations of motion must be zer
Thus we see that both the relationR56 ungu and the con-
stancy ofz are consequences of the scalar perturbations
ing adiabatic rather than due to the number of fields pres

For example, consider the class of generalized Bra
Dicke theories @29,14# where 2h(f)5gkf and
U(f)5e2bkf in the Einstein frame with a polynomial in-
flaton potential,V(s)5ls2n/2n. In this case, we have

ef1e2hes5
b2

2
1egkf

2n2

k2s2 . ~3.44!

We see that for n5b/g we have f (W)
5b2/212n2/k2(2nW/l)1/n. As discussed above, this en
sures that all perturbations are adiabatic and thusz is con-
served. We could also see this by evaluatingG, which in this
case becomesG5bgC, whereC is the conserved quantity
along the classical trajectory, given in Eq.~3.13!. Thusz is
constant@see Eq.~3.39!# andR56 ungu.

In particular, we find thatz remains a constant after ho
rizon crossing in Brans-Dicke gravity, whereb52g, for a
quartic potentialV5ls4/4. We will study this case in more
detail in the next subsection.

D. Brans-Dicke case

We will study here a very simple case which we can sol
completely. This is the Brans-Dicke case with a quartic p
tential for the inflaton field,h(f)5akf, U(f)5e24akf,
andV(s)5ls4/4. The constanta characterizes the relative
coupling of scalar and tensor fields to matter, and is rela
to the usual Brans-Dicke parameter by 2a251/(2v13)
@16#. As shown in the preceding section this belongs to t
subclass of two-field models for whichz is in fact conserved
on scales outside the horizon in the slow-roll approximatio

Following Eq.~3.13!, each classical trajectory can be p
rametrized by

G58a2C5
ef

es
1e2h, ~3.45!

whereef58a2 andes58/k2s2 are the slow-roll parameters
defined in Eq.~3.22!.

The spectrum of curvature perturbations is then

P z
e.

k2

2 SH*2p D 2 1

Ges*
.

k2

2 SH*2p D 2 1

ef1e2h* es*
.

~3.46!

This is an extremely simple and compact formula whi
makes it possible to compute the spectral tilt of the sca
perturbations,ns21[d lnP z

e/d lnk,

ns21522ef23e2h* es* . ~3.47!
al

o.

be-
ent.
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-
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The ratio of tensor to scalar perturbations is given by

R.12Ges*.12~ef1e2h* es* !. ~3.48!

Depending one2hes at horizon crossing, we might have sig-
nificant gravitational wave contributions. As shown earlier
the tensor perturbations’ spectral index is given b
ng.2R/6, the same relation as in the single-field case.

E. Minimally coupled case

If we restrict our attention to fields which are minimally
coupled, i.e.,h50, with a separable potential, then there is
no frictional damping of thes field and the results simplify
compared with the general case. The spectrum of curvatu
perturbations at the end of inflation in Eq.~3.24! becomes

P z
e.

k2

2 SH*2p D 2F S ef
e

ef
e1es

e D 2 1ef*
1S es

e

ef
e1es

e D 2 1es*
G ,
~3.49!

and the ratio between the tensor and scalar contributions
the microwave background anisotropies on large scales
given by

R.12
~ef

e1es
e !2ef* es*

~ef
e !2es*1~es

e !2ef*
. ~3.50!

Only if either ef or es is zero, or if both are constants~cor-
responding to exponential potentials!, are all perturbations
adiabatic,z conserved, andR56 ungu.

More generally, the perturbations may still become effec
tively adiabatic by the end of inflation if the evolution has
become essentially one dimensional along, say, thes direc-
tion in field space. This requires not onlyes

e@ef
e , but also

z on a given scale to be due to perturbations in thes field,
which from Eq. ~3.21! requires es

e@ef
e (Q1 /Q3)

.ef
eAes* /ef* . In this casez has become constant by the end

of inflation and, just as in the single-field case, we expect
to remain conserved until that scale reenters the horizon du
ing radiation or dust domination. Nonetheless, we may sti
see evidence of the second field evolving at horizon crossin
during inflation due to the decrease in the Hubble rateH*
caused by the slow roll off in addition to that due to the
evolution ofs. The tilt of the scalar perturbation spectrum in
this limit is

ns21.26 es*12 hs*22 ef* , ~3.51!

where we have introduced a further slow-roll paramete
hs[V9/k2V which describes the curvature of the potentia
alongs. Only asef*→0 do we recover the familiar single-
field result@28,2#. The tilt of the spectrum of tensor pertur-
bations isng522(es*1ef* ). Thus the slope of the second
field tends to decrease bothns and ng . However, the ratio
between tensor and scalar modes is given byR.12es* and so
is a function solely of the slope of the potential alongs at
horizon crossing, as in the single-field case. Thus the evol
tion of thef leads to the violation of the single-field consis-
tency relation,R.26ng .
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IV. CONCLUSIONS

The presence of more than one field evolving during
flation has important consequences for some of the fami
results quoted in inflationary cosmology. In the slow-roll a
proximation,n fields lead to ann-dimensional phase space
Thus there is no longer a single classical trajectory that le
to the end of inflation and different initial conditions ma
lead to different end points. Quantum fluctuations lead
perturbations not only along the trajectory but also on
neighboring trajectories. We have entropy as well as ad
batic perturbations and, in this case, the curvature pertur
tion z is no longer conserved on superhorizon scales. The
fore the perturbation on a given scale is no long
determined solely by quantities at horizon crossing, but a
depends upon the subsequent evolution. In order to eval
z at the end of inflation we must be able to integrate t
perturbation along the trajectory. We have shown how t
may be performed for a separable potential in the slow-r
approximation.

In single-field inflation the ratio between the contributio
of tensor and scalar perturbations of the microwave ba
ground on large scales can be related to the tilt of the gra
tational wave spectrum,R526ng @28,5#. We have shown
that this is a consequence of the scalar perturbations be
adiabatic and can also occur, within the slow-roll approxim
tion, in a limited class of two-field models. More generall
in two-field models with a separable potential the ratio obe
the inequalityR<6ungu, whereng is given in terms of the
slow-roll parameters in Eq.~3.34!. While in principle this is
a distinctive prediction of inflation with more than one scal
field, it is very difficult to observe. By contrast, the tilt of th
scalar spectrum is already constrained by observations
does not give a model-independent test of multiple-field
flation.
in-
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While we have been careful to calculate the evolution
the curvature perturbation during inflation, we have not
tempted to go beyond the end of inflation. Since the obse
able quantity is the amplitude of scalar perturbations at re
try during the radiation- or dust-dominated eras, t
interpretation of our results is sensitive to the evolution af
inflation and in particular to the dynamics of reheating. If th
end of inflation corresponds to a fixed energy density th
z will be conserved across this hypersurface. This is the c
when there is a unique end point and only one field is evo
ing at the end of inflation. However, in the presence of tw
or more fields this need no longer be true and requires a m
detailed study.

An important question remains as to whether, even if
given theory has many scalar fields, one should expect to
evidence in the perturbation spectra of more than one fi
evolving. The evolution during the final 60e-foldings of
inflation depends upon the initial conditions, and this m
lead to only one field evolving at late times. For instance,
the case of chaotic inflation in some scalar-tensor grav
theories, the stochastic evolution may fix the value of t
gravitational coupling, effectively leading to single-field in
flation @30#. To answer the question of initial conditions, on
needs to understand the stochastic evolution of the coup
fields at early times@24,31#.
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@4# K. M. Górski et al., Astrophys. J. Lett.430, L89 ~1994!.
@5# For a review, see J. E. Lidsey, A. R. Liddle, E. W. Kolb, E.

Copeland, T. Barreiro, and M. Abney, ‘‘Reconstructing th
Inflaton Potential–An Overview,’’ Report No. astro-ph
9508078, 1995~unpublished!.

@6# A. H. Guth and S.-Y. Pi, Phys. Rev. Lett.49, 1110~1982!; S.
W. Hawking, Phys. Lett.115B, 295~1982!; A. A. Starobinsky,
ibid. 117B, 175 ~1982!.

@7# A. D. Linde, Phys. Lett. B259, 38 ~1991!; Phys. Rev. D49,
748 ~1994!; E. J. Copeland, A. R. Liddle, D. H. Lyth, E. D.
Stewart, and D. Wands,ibid. 49, 6410~1994!.

@8# A. D. Linde, Phys. Lett. B249, 18 ~1990!; F. C. Adams and K.
Freese, Phys. Rev. D43, 353 ~1991!.
y

.

J.
e
/

@9# D. La and P. J. Steinhardt, Phys. Rev. Lett.62, 376 ~1989!; P.
J. Steinhardt and F. S. Accetta,ibid. 64, 2470 ~1990!; J. D.
Barrow and K. Maeda, Nucl. Phys.B341, 294 ~1990!; J.
Garcı́a-Bellido and M. Quiro´s, Phys. Lett. B243, 45 ~1990!.

@10# A. A. Starobinsky, JETP Lett.42, 152~1985!; J. Silk and M. S.
Turner, Phys. Rev. D35, 419 ~1987!; D. Polarski and A. A.
Starobinsky, Nucl. Phys.B385, 623 ~1992!; R. Holman, E.
Kolb, S. L. Vadas, and Y. Wang, Phys. Lett. B269, 252
~1991!.

@11# L. A. Kofman and A. D. Linde, Nucl. Phys.B282, 555~1987!;
L. A. Kofman and D. Yu. Pogosyan, Phys. Lett. B214, 508
~1988!; D. S. Salopek, J. R. Bond, and J. M. Bardeen, Ph
Rev. D40, 1753~1989!.

@12# A. D. Linde, Phys. Lett. B238, 160 ~1990!.
@13# N. Deruelle, C. Gundlach, and D. Langlois, Phys. Rev. D46,

5337 ~1992!.
@14# A. A. Starobinsky and J. Yokoyama, ‘‘Density Fluctuations

Brans-Dicke Inflation,’’ Report No. astro-ph/9502002, 199
~unpublished!.

@15# S. Mollerach and S. Matarrese, Phys. Rev. D45, 1961~1992!.
@16# J. Garcı´a-Bellido and D. Wands, Phys. Rev. D52, 6739

~1995!.



53 5445METRIC PERTURBATIONS IN TWO-FIELD INFLATION
@17# M. Sasaki and E. D. Stewart, Prog. Theor. Phys.95, 71 ~1996!.
@18# J. M. Bardeen, Phys. Rev. D22, 1882~1980!; J. M. Bardeen,

P. J. Steinhardt, and M. S. Turner,ibid. 28, 679 ~1983!.
@19# H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl.78, 1

~1984!; M. Sasaki, Prog. Theor. Phys.76, 1036~1986!.
@20# V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberg

Phys. Rep.215, 203 ~1992!.
@21# N. Deruelle and V. Mukhanov, Phys. Rev. D52, 5549~1995!.
@22# D. H. Lyth, Phys. Rev. D31, 1792~1985!.
@23# J. Garcı´a-Bellido, Nucl. Phys.B423, 221 ~1994!.
@24# J. Garcı´a-Bellido, A. D. Linde, and D. A. Linde, Phys. Rev.

50, 730 ~1994!.
er,

D

@25# A. R. Liddle, P. Parsons, and J. D. Barrow, Phys. Rev. D50,
7222 ~1994!.

@26# L. F. Abbott and M. B. Wise, Nucl. Phys.B244, 541 ~1984!.
@27# D. Polarski and A. A. Starobinsky, Phys. Lett. B356, 196

~1995!.
@28# A. R. Liddle and D. H. Lyth, Phys. Lett. B291, 391 ~1992!.
@29# T. Damour, G. Gibbons, and C. Gundlach, Phys. Rev. Lett.64,

123 ~1990!; Phys. Rev. D43, 3873~1991!.
@30# J. Garcı´a-Bellido and D. Wands, Phys. Rev. D52, 5636

~1995!.
@31# J. Garcı´a-Bellido and A. D. Linde, Phys. Rev. D51, 429

~1995!; ibid. 52, 6730~1995!.


